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Abstract

A tournament solution is a function that maps a tournament, i.e., a directed graph
representing an asymmetric and connex relation on a finite set of alternatives, to
a non-empty subset of the alternatives. Tournament solutions play an important
role in social choice theory, where the binary relation is typically defined via pair-
wise majority voting. If the number of alternatives is sufficiently small, different
tournament solutions may return overlapping or even identical choice sets. For
two given tournament solutions, we define the disparity index as the order of the
smallest tournament for which the solutions differ and the separation index as the
order of the smallest tournament for which the corresponding choice sets are dis-
joint. Isolated bounds on both values for selected tournament solutions are known
from the literature. In this paper, we address these questions systematically using
an exhaustive computer analysis. Among other results, we provide the first tour-
nament in which the bipartisan set and the Banks set are not contained in each
other.

Keywords: Tournament solutions, disjointness, disparity, minimal examples

1. Introduction

An important area in the mathematical social sciences concerns solution con-
cepts that identify desirable sets of alternatives based on the preferences of multi-
ple agents. Many of these concepts are defined in terms of a so-called dominance
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relation, where one alternative dominates another if a strict majority of the agents
prefer the former to the latter. This relation can be nicely represented as an ori-
ented graph whose vertices are the alternatives and there is a directed edge from
a to b if and only if a dominates b. Whenever there is an odd number of agents
with linear preferences, the dominance relation is asymmetric and connex, i.e.,
there is exactly one directed edge between any pair of distinct vertices, and the
graph thus constitutes a tournament. A tournament solution is a function that
maps a tournament to a non-empty subset of its vertices or alternatives. Applica-
tion areas of tournament solutions include voting [39, 35], multi-criteria decision
analysis [2, 4], zero-sum games [27, 34, 23], and coalitional games [8].

A wide variety of tournament solutions have been proposed in the litera-
ture. Even though many of them are based on vastly different ideas, they share
some similarities. For instance, all tournament solutions considered in this pa-
per uniquely select the Condorcet winner, i.e., an alternative that dominates every
other alternative, whenever such an alternative exists. Moreover, some tourna-
ment solutions return completely identical or at least overlapping choice sets if
the number of alternatives is sufficiently small. In this paper, we aim at formaliz-
ing and systematically investigating the similarity of any given pair of tournament
solutions by studying the minimal number of alternatives that are required for the
disparity and the separation of the corresponding choice sets. To this end, we
define the disparity index as the order of the smallest tournament for which the
solutions differ and the separation index as the order of the smallest tournament
for which the corresponding choice sets are disjoint.

Isolated bounds on both values for selected tournament solutions have been
provided in previous work. In particular, the construction of tournaments for
which certain tournament solutions return disjoint choice sets has been addressed
by several researchers. For example, the first tournament proposed in the literature
for which the Banks set and the Slater set are disjoint consists of 75 alternatives
[33].1 Later, this bound on the separation index was improved to 16 alternatives by
Charon et al. [19] and, more recently, to 14 alternatives by Östergård and Vaske-
lainen [40]. Östergård and Vaskelainen have also provided a lower bound of 11 by
means of an exhaustive computer analysis. In other work, Hudry [31] has shown
that the separation index for the Banks set and the Copeland set is 13. Dutta [25]
provided a tournament of order 8 in which the Banks set and the tournament equi-

1Laffond and Laslier [33] presented a similar tournament on 139 alternatives in which the
Banks set, the Slater, and the Copeland set are all disjoint from each other.
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librium set are both strictly contained in the minimal covering set. Among other
facts, our study has shown that Dutta’s example is minimal.

Perhaps the most interesting open problem regarding the relationships between
tournament solutions concerns the bipartisan set and the Banks set. In all examples
studied so far, either the Banks set is contained in the bipartisan set or the Banks
set is contained in the bipartisan set (see, e.g., [35]). In particular, it is unknown
whether these tournament solutions always intersect. In this paper, we provide the
first tournament in which the bipartisan set and the Banks set are not contained in
each other. This tournament is of order 8. The minimal covering set (a superset
of the bipartisan set) has been shown to always intersect with the Banks set. We
show that the smallest tournament in which neither choice set is contained in the
other is of order 10. Our findings are summarized in Sections 4 and 5.

2. Preliminaries

A (finite) tournament T is a pair (A,�), where A is a set of alternatives and�
is an asymmetric and connex (but not necessarily transitive) binary relation on
A, usually referred to as the dominance relation. Intuitively, a � b signifies that
alternative a is preferable to alternative b. The dominance relation can be extended
to sets of alternatives by writing A � B when a � b for all a ∈ A and b ∈ B.
Moreover, for a subset of alternatives B ⊆ A, we will sometimes consider the
restriction of the dominance relation �B= � ∩ (B ×B).

For a tournament (A,�) and an alternative a ∈ A, we denote by D(a) the
dominion (or out-neighborhood) of a, i.e.,

D(a) = { b ∈ A | a � b },

and by D(a) the set of dominators (or in-neighborhood) of a, i.e.,

D(a) = { b ∈ A | b � a }.

The order |T | of a tournament T = (A,�) refers to the cardinality of A, and Tn
denotes the set of all tournaments of order n or less. The set of all linear orders
on some set A is denoted by L(A) and the maximal element of A according to a
linear order L ∈ L(A) is denoted by max(L).

The elements of the adjacency matrix M(T ) = (mab)a,b∈A of a tournament T
are 1 whenever a � b and 0 otherwise. The skew-adjacency matrix G(T ) of the
corresponding tournament graph is skew-symmetric and defined as the difference
of the adjacency matrix and its transpose, i.e., G(T ) = M(T )−M(T )t.
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A tournament solution is a function that maps a tournament to a nonempty
subset of its alternatives. For two tournament solutions S1 and S2, we define the
disparity index d(S1, S2) as the order of the smallest tournament T for which S1

and S2 differ, i.e.,

d(S1, S2) = min{n ∈ N | ∃T ∈ Tn such that S1(T ) 6= S2(T )}.

Similarly, we define the separation index s(S1, S2) as the order of the smallest
tournament T for which the two respective choice sets are disjoint. Formally,

s(S1, S2) = min{n ∈ N | ∃T ∈ Tn such that S1(T ) ∩ S2(T ) = ∅}.

Obviously, d(S1, S2) ≤ s(S1, S2) for all tournament solutions S1 and S2.
We now define the tournament solutions considered in this paper and address

the question of how to compute them. For an overview and more details on most
concepts, we refer to Laslier [35] and Brandt et al. [13]. Computational issues are
discussed by Brandt et al. [13], Hudry [32], and Brandt [5].

Copeland set. The Copeland set CO(T ) [21] of a tournament T consists of all
alternatives whose dominion is of maximum size, i.e.,

CO(T ) = arg max
a∈A
|D(a)|.

|D(a)| is also called the Copeland score of a. This set can be easily computed
in time O(|T |2) by determining all out-degrees and choosing the alternatives with
maximum out-degree.

Top cycle. A nonempty subset of alternatives B ⊆ A is called dominant if B �
A \B. The top cycle TC (T ) [29, 43] of a tournament T is defined as the smallest
dominant set, i.e.,

TC (T ) = {B is dominant | ∀C ( B : C is not dominant}.

Uniqueness of the minimal dominant set is straightforward and was first shown
by Good [29]. The top cycle can be computed in linear time by identifying the
strongly connected components of T [44].
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Uncovered set. The uncovered set UC (T ) [26] of a tournament T consists of all
alternatives that reach all other alternatives in at most two steps,2 i.e.,

UC (T ) = {a ∈ A | {a} ∪D(a) ∪
⋃

b∈D(a)

D(b) = A}.

It is easily seen that a ∈ UC (T ) if and only if (M2 +M)ab 6= 0 for all b ∈
A\{a}. Consequently, the running time for computing UC is governed by matrix
multiplication, i.e., it is in O(|T |2.38) [22].

Iterated uncovered set. UC is not idempotent and one can therefore define a
sequence of tournament solutions by letting UC 1(T ) = UC (T ) and UC k =
UC (UC k−1(T )).3 The iterated uncovered set UC∞(T ) (see [35]) of a tourna-
ment T is then defined as

UC∞(T ) =
⋂
k∈N

UC k(T ).

Due to the finiteness of T , UC∞(T ) = UC |T |, i.e., computing UC∞ requires at
most |T | successive UC -computations. Therefore, UC∞ can be computed in time
O(|T |1+2.38).

Bipartisan set. Let ∆(A) be the set of all probability distributions over A. Laf-
fond et al. [34] and Fisher and Ryan [27] have shown independently that every
tournament T admits a unique probability distribution pT ∈ ∆(A) such that∑

a,b∈A

pT (a)q(b)G(T )a,b ≥ 0 for all q ∈ ∆(A).

pT then corresponds to the unique mixed Nash equilibrium of the zero-sum game
G(T ). The bipartisan set BP(T ) of a tournament T is defined as the support of
this equilibrium, i.e.,

BP(T ) = {a ∈ A | pT (a) > 0}.

BP can be computed in polynomial time using a linear feasibility program [7].

2In the original definition by Fishburn [26], UC (T ) consists of the alternatives which are not
covered by any other alternative. An alternative a covers an alternative b if {b} ∪D(b) ⊆ D(a).

3It is understood that S′(S(T )) denotes S′(T |S(T )).
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Markov set. The tournament matrix can be used to define the transition matrix of
a Markov chain as N = 1

|T |−1 · (M + ICO) where ICO is the diagonal matrix of
the Copeland scores. The Markov set MA(T ) [35] of a tournament T consists of
the alternatives that have maximum probability in the chain’s unique stationary
distribution, i.e.,

MA(T ) = arg max
a∈A
{p(a) | p ∈ ∆(A) and N · p = p} .

Computing p as the eigenvector of N associated with the eigenvalue 1 is again
governed by matrix multiplication [32] and therefore in O(|T |2.38).

Kendall-Wei set. Based on ideas by Kendall and Wei, the alternatives with maxi-
mum entries in the eigenvector of the (unique) largest positive eigenvalue λ of the
adjacency matrix of T comprise the Kendall-Wei set KW (T ). Formally,

KW (T ) = arg max
a∈A
{p(a) | p ∈ ∆(A) and (M − λI) p = 0}

where I is the identity matrix. Alternatively, the Kendall-Wei scores reflect the
outcome of the following process: for each alternative a, count all paths of length k
starting from a, then normalize these numbers and consider k →∞. For this rea-
son, Laslier [35] has called it the long-path method. Computing the eigenvector
in sufficient precision can again be done in polynomial time.

Banks set. Define BT (a) = {B ⊆ A | �B ∈ L(B) and max(�B) = a} as the set
of all transitive subsets with maximal element a. The Banks set BA(T ) [3] of a
tournament is then defined as the set of all alternatives, that are maximal in some
maximal transitive subset, i.e.,

BA(T ) = {a ∈ A | ∃B ∈ BT (a) such that @b : b � B}.

Computing BA is known to be NP-hard [45]. Our implementation is based on a
recent algorithm by Gaspers and Mnich [28] that enumerates all feedback vertex
sets, each of which is the complement of a maximal transitive subset.

Slater set. The Slater set SL(T ) [42] of a tournament T consists of the maximal
elements of those linear orders that have as many directed edges as possible in
common with T , i.e.,

SL(T ) = {max(L) | L ∈ arg max
L′∈L(A)

|L′ ∩ �|}.
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Finding these linear orders is equivalent to solving an instance of the NP-complete
problem feedback arc set [1, 14, 20], which implies that checking membership in
the Slater set is NP-hard [16]. Yet, there are implementations that are sufficiently
fast on small instances (e.g., [17]).

Minimal stable sets. A subset of alternatives B ⊆ A is called S-stable for tour-
nament solution S if a /∈ S(B ∪{a}) for all a ∈ A \B. Stable sets can be used to
define a new tournament solution Ŝ that returns the union of all minimal S-stable
sets, i.e.,

Ŝ(T ) =
⋃
{B is S-stable | ∀C ( B : C is not S-stable}.

This enables the definition of the minimal covering set MC (T ) [24] and the min-
imal extending set ME (T ) [6] of a tournament T by letting

MC (T ) = ÛC (T ) and ME (T ) = B̂A(T ).

A polynomial-time algorithm for computing MC using the BP algorithm as a
subroutine was proposed by Brandt and Fischer [7]. Computing the minimal ex-
tending set is a tedious task. It was recently shown to be an NP-hard problem
while the best known upper bound is Σp

3 [12]. We compute minimal extending
sets using a naive implementation.

Minimal retentive sets. A nonempty subset of alternatives B ⊆ A is called S-
retentive for tournament solution S if S(D(b)) ⊆ B for all b ∈ B such that
D(b) 6= ∅. Just like stable sets, retentive sets can be used to define a new tourna-
ment solution S̊ that returns the union of all minimal S-retentive sets, i.e.,

S̊(T ) =
⋃
{B is S-retentive | ∀C ( B : C is not S-retentive}.

This enables the definition of T̊C [11] and the tournament equilibrium set TEQ =
˚TEQ [41]. Note that the latter is a well-defined recursion as the order of the

subtournament onD(b) in a tournament T is always strictly smaller than the order
of T .

A general method for computing S̊, given an implementation for S, is to com-
pute the corresponding relation S−→ and return the maximal elements of that rela-
tion’s transitive closure, as suggested by Brandt et al. [9]. In order to compute T̊C ,
we consider TC−−→ where for any a, b ∈ A, a TC−−→ b if and only if a ∈ TC (D(b)).
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This takes polynomial time. Due to its recursive nature, computing TEQ is much
harder than computing T̊C . The problem is known to be NP-hard while the best
known upper bound is PSPACE [9]. For general tournaments with more than 100
alternatives, computing TEQ is currently out of reach. For structured tournaments
this changes drastically [10].

All of the aforementioned tournament solutions return subsets of TC and all
except TC and T̊C return subsets of UC .4 On top of that, the following inclusion
relationships are known:

BP ⊆ MC ⊆ UC∞ and TEQ ⊆ BA.

Furthermore, it has been shown that

BA(MC ) ⊆ BA and TEQ(UC∞) = TEQ ,

which implies that

BA ∩MC 6= ∅ , and TEQ ⊆ BA ∩ UC∞ 6= ∅

(see [35]).

3. Methodology

For some pairs of tournament solutions, we can easily show that they always
intersect. As a consequence, their separation index is∞.

Proposition 1. The following statements hold:

1. s(MC ,ME ) =∞
2. s(UC∞,ME ) =∞
3. s(T̊C ,TEQ) =∞
4. s(BA,ME ) =∞

Proof 1. We prove each statement separately.

1. Since BA ⊆ UC , every UC -stable set is also BA-stable.

4The fact that KW ⊆ UC is not yet mentioned in the literature. It follows directly from the
long-path interpretation of the Kendall-Wei scores.
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2. Since MC ⊆ UC∞, this follows from Statement 1.
3. Since TEQ ⊆ TC , every TC -retentive set is also TEQ-retentive.
4. For all tournaments T , BA(T ) is BA-stable [6].

Apart from these theoretical results, we exhaustively searched for minimal
examples with disparate or disjoint choice sets. To this end, we implemented al-
gorithms for computing all the considered tournament solutions. Some of them
were implemented directly (CO and TC ) or with the help of a fast matrix mul-
tiplication library (UC , UC∞, and MA). For BP and MC our implementation
constructs linear programs that are passed to an LP solver (Gurobi [30]). For BA,
we implemented the elaborate algorithm of Gaspers and Mnich, which was also
used for the ME implementation. Computing the complete Slater set is achieved
with the help of a tailored branch-and-bound algorithm by Charon and Hudry
[15]. Finally, we implemented the ◦-operator in its general form, which allows us
to compute T̊C and TEQ .

Obviously, the number of non-isomorphic tournaments of order n grows ex-
ponentially ([38], p. 87). We generated all non-isomorphic tournaments of order
ten or less using McKay’s nauty toolkit [36]. In total, we analyzed about 107 tour-
naments. For each pair of tournament solutions and all tournaments in increasing
order, we examined the choice sets for disparity and disjointness. Some of the
most interesting tournaments we encountered were rearranged using a graphical
tournament tool until the respective statements seemed most intuitive. Figures of
these tournaments are included in Sections 4 and 5. We believe that these might
also be of didactic value when teaching the basics of tournament solutions.

4. Results

Our results are summarized in Table 1. When the exact value of an index is
unknown, we provide lower and upper bounds.

TC , CO , SL, MA, KW vs. the rest. CO , SL, MA, and KW tend to select
significantly smaller choice sets than the other tournament solutions whereas TC
is not very discriminative. This is witnessed by the tournament of order 4 depicted
in Figure 1 where CO , SL, MA, and KW are smaller and TC is larger than all
the remaining tournament solutions. This tournament accounts for all ‘4’ entries
in Table 1.
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a b c d

Figure 1: In this tournament, SL(T ) = MA(T ) = KW (T ) = {a} ( CO(T ) = {a, b} (
UC (T ) = {a, b, d} ( TC (T ) = {a, b, c, d}. All other tournament solutions considered in this
paper coincide with UC . Omitted directed edges point rightwards.

a b c d e

Figure 2: In this tournament, UC∞(T ) = MC (T ) = BP(T ) = T̊C (T ) = ME (T ) =
TEQ(T ) = {a, b, d} whereas UC (T ) = BA(T ) = {a, b, c, d}. Omitted directed edges point
rightwards.

UC , BA vs. UC∞, MC , BP , T̊C , ME , TEQ . A smallest tournament for
which BA (and UC ) differs from MC (and UC∞,BP ,TEQ ,ME , T̊C ) is shown
in Figure 2. It is easy to verify that {a, b, d} is UC -stable. Alternative c, however,
is in BA(T ) because B = {c, d, e} ∈ BT (c) and neither a nor b dominates B.

UC , MA, KW vs. BA. There is an interesting family of tournaments that
serve as minimal examples for a number of set-theoretic relationships between
different tournament solutions. The first is the disparity of UC and BA—two
solutions that return identical choice sets for all tournaments of order up to 6.

The basic variant of this tournament family is shown in Figure 3 and con-
stitutes a minimal tournament for which BA ( UC .5 The difference is that
d /∈ BA(T ) as for all B ∈ BT (d) there is some x ∈ D(d) with x � B. Note
that in this tournament |D(x)| = 4 for all x ∈ BA(T ) = {a, b, c} and |D(x)| ≤ 3
for all x /∈ BA(T ), i.e., CO(T ) = BA(T ).

When each gray alternative is replaced by the unique tournament of order 2,
the resulting tournament of order 10 is a minimal example for BA ( CO , as
CO(T ) = {a, b, c, d}. (This result is not part of Table 1.)

If we go one step further and replace each gray alternative with any tournament
of order 3, the resulting tournament has order 13 and is a known minimal example

5Other examples of the same order can be found in Moulin [39] and Miller et al. [37].
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a

b

c

d

e

f

g

Figure 3: Minimal example for BA(T ) = {a, b, c} ( UC (T ) = {a, b, c, d}. If e, f , and g each
get replaced by any tournament of order 3, the resulting tournament of order 13 is the minimal
example for BA ∩ CO = ∅ by Hudry [31]. If e, f , and g are instead replaced with a tournament
of order 4, we get a tournament of order 16 in which MA(T ) = KW (T ) = {d} is disjoint from
BA(T ) = {a, b, c}. Omitted directed edges point downwards.

a

b
c

d
e

f

Figure 4: In this tournament, BP(T ) = {a, b, c, d, e} ( A = MC (T ) = ME (T ) = TEQ(T ).
Omitted directed edges point rightwards. Note that the subtournament on BP(T ) constitutes the
only regular tournament of order 5.

for the separation of BA and CO proposed by Moulin [39] and Hudry [31].
Finally, if we put any tournament of order 4 in place of the gray alternatives,

we get a tournament of order 16 where still BA(T ) = {a, b, c} but MA(T ) =
KW (T ) = {d}. Since any one of the new alternatives can be removed without
changing BA(T ) or MA(T ), this gives an upper bound of 15 for the separation of
MA and BA and of 16 for the separation of KW and BA.

BP vs. MC , ME , TEQ . Consider the tournament in Figure 4. The unique
equilibrium strategy of the tournament game G(T ) is (1

5
, 1
5
, 1
5
, 1
5
, 1
5
, 0) and there-

fore BP(T ) = {a, b, c, d, e}. However, this set is not UC -stable as f can reach
every other alternative in BP(T ) ∪ {f} = A in at most two steps. This is a min-
imal tournament for which MC differs from BP . The same holds for ME and
TEQ as they coincide with MC for tournaments up to order 7.
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a

b

c

d

e

f

g

h

Figure 5: Minimal tournament for which ME (T ) = TEQ(T ) 6= MC (T ). Here, ME (T ) =
TEQ(T ) = A \ {d} whereas MC (T ) = A. The ellipse indicates {e, f, g} � h and omitted
directed edges point downwards. If we change the dominance relation slightly to e � g, we get
a minimal tournament T ′ for which ME and TEQ do not coincide as TEQ(T ′) = A \ {d} 6=
ME (T ′) = A.

MC vs. ME , TEQ . The minimal tournament for which TEQ and ME differ
from MC is of order 8 and depicted in Figure 5. This tournament is again a vari-
ant of the tournament from Figure 3, this time expanded with an additional vertex
h.6 In this tournament B = A \ {d} is the only BA-stable set. It is easy to check
that B is not UC -stable as d does reach every other vertex in A in at most two
steps. In fact, only A is UC -stable and therefore MC (T ) = A. This implies
that d(MC ,ME ) = 8. The reader can also verify that d does not dominate any
vertex according to the TEQ-relation

TEQ−−−→ and therefore d /∈ TEQ(T ), implying
d(MC ,TEQ) = 8. While TEQ and ME actually coincide for this tournament, a
small modification gives a minimal tournament T ′ for which this is not the case,
similar to the one reported by Brandt [5]. The only necessary change in the dom-
inance relation is e � g, then TEQ(T ′) = A \ {d} ( ME (T ′) = A, accounting
for d(ME ,TEQ) = 8.

CO , MA, KW vs. UC∞, MC , BP , T̊C , ME , TEQ . For the separation
of these tournament solutions, we found the tournaments depicted in Figure 6
and Figure 7. For the tournament T shown in Figure 6, it is easy to verify that
alternative b has the largest dominion but is not contained in the UC -stable set
{a, c, d, e, f}. Therefore, CO(T ) ∩MC (T ) = ∅ which gives s(CO ,MC ) = 8.

6The edge between the vertices a and c can be inverted without changing the result.

12



a

b

c

d

e

f

g

h

Figure 6: In this tournament, CO(T ) = MA(T ) = {b} whereas UC∞(T ) = MC (T ) =
BP(T ) = T̊C (T ) = ME (T ) = TEQ(T ) = {a, c, d, e, f}. This is a smallest tournament
for which the respective choice sets are disjoint. The ellipse indicates {f, g, h} � a and omitted
directed edges point downwards.

As for this tournament CO(T ) = MA(T ) and UC∞(T ) = MC (T ) = BP(T ) =
T̊C (T ) = ME (T ) = TEQ(T ), this also induces a few other separation indices
in Table 1.

Figure 7 contains a similar example in which MA and KW are disjoint from
UC∞, MC , BP , T̊C , ME , and TEQ .

5. Further Findings

BP and BA. Apart from values and bounds for the disparity and separation in-
dices, our exhaustive search also revealed a number of other tournaments with
interesting properties.

For instance, we have found the first tournament where BP and BA have a
proper intersection, i.e., they are not contained in each other. The tournament is
depicted in Figure 8, has 8 alternatives, and is minimal. The equilibrium strategy
is ( 7

23
, 3
23
, 1
23
, 7
23
, 0, 1

23
, 1
23
, 3
23

), i.e., BP(T ) = A\{e}. It is, however, easy to verify
that e ∈ BA as no other alternative dominates {e, f, g, h} ∈ BT (e). At the same
time, every set in BT (f) is dominated by some alternative in {b, c, e} ⊆ D(f) and
therefore f /∈ BA. In fact, BA = A \ {f}.

BA and MC . It was known already that BA and MC always intersect but none
of them always chooses a subset of the other [35]. Our experiments showed that
a proper intersection can only be observed for tournaments of order at least 10. A
tournament of this kind is depicted in Figure 9. The reader can easily check that
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Table 1: Overview of all disparity indices (d) and separation indices (s) currently known for the
tournament solutions considered.
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Figure 7: In this tournament, MA(T ) = KW (T ) = {d} whereas UC∞(T ) = MC (T ) =
BP(T ) = T̊C (T ) = ME (T ) = TEQ(T ) = {a, b, c}. This is a smallest tournament for which
the respective choice sets are disjoint. The ellipses indicate {e, h} � b and {f, g} � c and omitted
directed edges point downwards.

A \ {c, i} is UC -stable. On the other hand, i obviously is in BA(T ), witnessed by
the maximal transitive subset {i, c, j}. Alternative f , however, is not in BA(T ) as
for each B ∈ BT (f), there is an alternative from {b, d, e} ⊆ D(f) that dominates
B. In fact, MC (T ) = A\{c, i} and BA(T ) = A\{c, f}. The choice sets overlap.
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