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Tournament Solutions
Felix Brandta, Markus Brillb, and Paul Harrensteinc

3.1 Introduction

Perhaps one of the most natural ways to aggregate binary preferences from individ-

ual agents to a group of agents is simple majority rule, which prescribes that one

alternative is socially preferred to another whenever a majority of agents prefers the

former to the latter. Majority rule intuitively appeals to democratic principles, is

easy to understand and—most importantly—satisfies some attractive formal prop-

erties. As seen in Chapter 2 (Zwicker, 2016), May’s Theorem shows that a number

of rather weak and intuitively acceptable principles completely characterize major-

ity rule in settings with two alternatives (May, 1952). Moreover, almost all common

voting rules satisfy May’s axioms and thus coincide with majority rule in the two-

alternative case. It would therefore seem that the existence of a majority of individ-

uals preferring alternative a to alternative b signifies something fundamental and

generic about the group’s preferences over a and b. We will say that alternative a

dominates alternative b in such a case.

As is well known from Condorcet’s paradox (see Chapter 2 (Zwicker, 2016)), the

dominance relation may contain cycles. This implies that the dominance relation

may not admit a maximal element and the concept of maximality as such is ren-

dered untenable. On the other hand, Arrow writes that “one of the consequences

of the assumptions of rational choice is that the choice in any environment can be

determined by a knowledge of the choices in two-element environments” (Arrow,

1951, p. 16). Thus, one way to get around this problem—the one pursued in this

chapter—is to take the dominance relation as given and define alternative concepts

to take over the role of maximality. More precisely, we will be concerned with social

choice functions (SCFs) that are based on the dominance relation only, i.e., those

SCFs that Fishburn (1977) called C1 functions. Topics to be covered in this chap-

ter include McGarvey’s Theorem, various tournament solutions (such as Copeland’s

rule, the uncovered set, the top cycle, or the tournament equilibrium set), strat-
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egyproofness, implementation via binary agendas, and extensions of tournament

solutions to weak tournaments. Particular attention will be paid to the issue of

whether and how tournament solutions can be computed efficiently.

In this chapter, we will view tournament solutions as C1 SCFs. However, for

varying interpretations of the dominance relation, tournament solutions and vari-

ants thereof can be applied to numerous other settings such as multi-criteria decision

analysis (Arrow and Raynaud, 1986; Bouyssou et al., 2006), zero-sum games (Fisher

and Ryan, 1995; Laffond et al., 1993a; Duggan and Le Breton, 1996), and coalitional

games (Brandt and Harrenstein, 2010).

3.2 Preliminaries

We first introduce and review some basic concepts and notations used in this

chapter. Let N = {1, . . . , n} be a set of voters, A a set of m alternatives, and

R = (%1, . . . ,%n) a vector of linear orders over A. %i is the preference relation of

voter i and R is called a preference profile. The majority relation % for R is defined

such that for all alternatives a and b,

a % b if and only if |{i ∈ N : a %i b}| ≥ |{i ∈ N : b %i a}|.

See Figure 3.1 for an example preference profile and the corresponding majority

relation. A Condorcet winner is a (unique) alternative a such that there is no other

alternative b with b % a (or in other words, an alternative a such that a � b for

all b ∈ A \ {a}, where � is the asymmetric part of %). By definition, the majority

relation is complete, i.e., a % b or b % a for all alternatives a and b. Apart from

completeness, the majority relation has no further structural properties, i.e., every

complete relation over a set of alternatives can be obtained as the majority relation

for some preference profile. This result is known as McGarvey’s Theorem.

Theorem 3.1 (McGarvey, 1953) Let A be a set of m alternatives and ≥ a com-

plete relation over A. Then, there is a preference profile R = (%1, . . . ,%n) over A

with n ≤ m(m− 1) such that ≥ = %.

Proof Denote the asymmetric part of ≥ by >. For every pair (a, b) of alternatives

with a > b, introduce two voters, iab and jab, i.e., N = {iab, jab : a > b}. Define the

preference profile R such that for all a, b ∈ A,

a �iab
b �iab

x1 �iab
· · · �iab

xm−2 and

xm−2 �jab
· · · �jab

x1 �jab
a �jab

b,

where x1, . . . , xm−2 is an arbitrary enumeration of A\{a, b}. It is easy to check that

the majority relation % for R coincides with ≥. By asymmetry of >, moreover, we

have a > b for at most 1
2m(m− 1) pairs (a, b) and thus n = |N | ≤ m(m− 1).
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The minimal number of voters required to obtain any majority relation has sub-

sequently been improved by Stearns (1959) and Erdős and Moser (1964), who have

eventually shown that this number is of order Θ( m
logm ). This implies that for any

fixed number of voters, there are tournaments which are not induced by any pref-

erence profile. Only little is known about the classes of majority relations that can

be induced by preference profiles with small fixed numbers of voters (see Bachmeier

et al., 2019).

3.2.1 Tournaments

If the number of voters is odd, there can be no majority ties and the majority

relation is antisymmetric. In this case, the asymmetric part � of the majority rela-

tion % is connex and irreflexive and will be referred to as the dominance relation.1 A

dominance relation can be conveniently represented by an oriented complete graph,

a tournament (see Figure 3.1).

a

b

c

de

1: a �1 b �1 c �1 e �1 d

2: d �2 c �2 a �2 b �2 e

3: e �3 d �3 b �3 c �3 a

Figure 3.1 A tournament T = ({a, b, c, d, e},�), which depicts the asymmetric part of the
majority relation of the 3-voter preference profile on the right.

Formally, a tournament T is a pair (A,�) where A is a set of vertices and � is an

asymmetric and connex relation over the vertices. Tournaments have a rich math-

ematical theory and many results for C1 SCFs have a particularly nice form if the

dominance relation constitutes a tournament. Moreover, many C1 functions have

only been defined for tournaments and possess a variety of possible generalizations

to majority graphs that are not tournaments. None of these generalizations can be

seen as the unequivocal extension of the original function. We therefore assume the

dominance relation to be antisymmetric and discuss generalizations of functions in

Section 3.5.2

The dominance relation can be raised to sets of alternatives and we write A � B
to signify that a � b for all a ∈ A and all b ∈ B. Using this notation, a Condorcet

1 A relation � is connex if a � b or b � a for all distinct alternatives a and b. In the absence of
majority ties, � and % are identical except that % is reflexive while � is not.

2 The preference profile constructed in the proof of Theorem 3.1 involves an even number of voters. It
is easily seen, however, that no single additional voter, no matter what his preferences are, will
affect the dominance relation � and we may assume that every tournament is also induced by a
preference profile with an odd number of voters. Likewise, the result by Erdős and Moser (1964)
also holds for tournaments (Moon, 1968, Ch. 19, Ex. 1 (d)).
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winner can be defined as an alternative a such that {a} � A \ {a}. For a subset of

alternativesB ⊆ A, we will sometimes consider the restriction�B= {(a, b) ∈ B×B :

a � b} of the dominance relation � to B. (B,�B) is then called a subtournament

of (A,�).

For a tournament (A,�) and an alternative a ∈ A, we denote by D(a) the

dominion of a, i.e.,

D(a) = { b ∈ A : a � b },

and by D(a) the dominators of a, i.e.,

D(a) = { b ∈ A : b � a }.

The order |T | of a tournament T = (A,�) refers to the cardinality of A.

The elements of the adjacency matrix M(T ) = (mab)a,b∈A of a tournament T

are 1 whenever a � b and 0 otherwise. The skew-adjacency matrix G(T ) of the

corresponding tournament graph is skew-symmetric and defined as the difference of

the adjacency matrix and its transpose, i.e., G(T ) = M(T )−M(T )t (see Figure 3.2).

T

a

b

c

de

M(T )



a b c d e

a 0 1 0 0 1

b 0 0 1 0 1

c 1 0 0 0 1

d 1 1 1 0 0

e 0 0 0 1 0


G(T )



a b c d e

a 0 1 −1 −1 1

b −1 0 1 −1 1

c 1 −1 0 −1 1

d 1 1 1 0 −1

e −1 −1 −1 1 0



Figure 3.2 The tournament T from Figure 3.1 with its adjacency matrix M(T ) and its
skew-adjacency matrix G(T ). Here, for instance, D(a) = {b, e} and D(b) = {a, d}.

An important structural notion in the context of tournaments is that of a com-

ponent. A component is a nonempty subset of alternatives B ⊆ A that bear the

same relationship to any alternative not in the set, i.e., for all a ∈ A \ B, either

B � {a} or {a} � B. A decomposition of T is a partition of A into components.

For a given tournament T̃ , a new tournament T can be constructed by replac-

ing each alternative with a component. Let B1, . . . , Bk be pairwise disjoint sets

of alternatives and consider tournaments T1 = (B1,�1), . . . , Tk = (Bk,�k),

and T̃ = ({1, . . . , k}, �̃). The product of T1, . . . , Tk with respect to T̃ , denoted

by Π(T̃, T1, . . . , Tk), is the tournament (A,�) such that A =
⋃k
i=1Bi and for all

b1 ∈ Bi, b2 ∈ Bj ,

b1 � b2 if and only if i = j and b1 �i b2, or i 6= j and i �̃ j.

Here, T̃ is called the summary of T with respect to the above decomposition. In
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the tournament depicted in Figure 3.2, for example, {a, b, c}, {d}, and {e} are com-

ponents and {{a, b, c}, {d}, {e}} is a decomposition. The tournament can therefore

be seen as the product of a 3-cycle and two singleton tournaments with respect to

a 3-cycle summary. Importantly, every tournament admits a unique decomposition

that is minimal in a well-defined sense (Laslier, 1997, pp. 15–23).

3.2.2 Tournament Solutions

A tournament solution is a function S that maps each tournament T = (A,�)

to a nonempty subset S(T ) of its alternatives A called the choice set . The formal

definition further requires that a tournament solution does not distinguish between

isomorphic tournaments, i.e., if h : A→ A′ is an isomorphism between two tourna-

ments (A,�) and (A′,�′), then

S(A′,�′) = {h(a) : a ∈ S(A,�)}.

As defined in Chapter 2 (Zwicker, 2016), an SCF is a C1 function if its output

only depends on the dominance relation. Since the dominance relation is invariant

under renaming voters, C1 SCFs are anonymous by definition. Moreover, due to

the invariance of tournament solutions under isomorphisms, tournament solutions

are equivalent to neutral C1 functions. In contrast to Laslier (1997), we do not

require tournament solutions to be Condorcet-consistent , i.e., to uniquely select a

Condorcet winner whenever one exists.

For a tournament T = (A,�) and a subset B ⊆ A, we write S(B) for the more

cumbersome S(B,�B). For two tournament solutions S and S′, we write S′ ⊆ S,

and say that S′ is a refinement of S and S a coarsening of S′, if S′(T ) ⊆ S(T ) for

all tournaments T .

The literature on rational choice theory and social choice theory has identified

a number of desirable properties for (social) choice functions, also referred to as

axioms, which can be readily applied to tournament solutions. In this section, we

review three of the most important properties in this context—monotonicity, stabil-

ity, and composition-consistency. As we will see in Section 3.3.2, another important

property of SCFs—Pareto-optimality—is intimately connected to a particular tour-

nament solution, the uncovered set.

A tournament solution is monotonic if a chosen alternative remains in the choice

set when its dominion is enlarged, while leaving everything else unchanged.

Definition 3.2 A tournament solution S is monotonic if for all T = (A,�),

T ′ = (A,�′), a ∈ A such that �A\{a} = �′A\{a} and for all b ∈ A \ {a}, a �′ b
whenever a � b,

a ∈ S(T ) implies a ∈ S(T ′).

Monotonicity of a tournament solution immediately implies monotonicity of the
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corresponding C1 SCF. Note that this notion of monotonicity for irresolute SCFs

is one of the weakest one could think of.

While monotonicity relates choices from tournaments of the same order to each

other, the next property relates choices from different subtournaments of the same

tournament to each other. Informally, stability (or self-stability) requires that a set

is chosen from two different sets of alternatives if and only if it is chosen from the

union of these sets.

Definition 3.3 A tournament solution S is stable if for all tournaments T =

(A,�) and for all nonempty subsets B,C,X ⊆ A with X ⊆ B ∩ C,

X = S(B) = S(C) if and only if X = S(B ∪ C).

In comparison to monotonicity, stability appears to be much more demanding. It

can be factorized into two conditions, α̂ and γ̂. Condition γ̂ corresponds to the impli-

cation from left to right whereas α̂ is the implication from right to left (Brandt and

Harrenstein, 2011). α̂ is also known as Chernoff’s postulate 5∗ (Chernoff, 1954), the

strong superset property (Bordes, 1979), outcast (Aizerman and Aleskerov, 1995),

and the attention filter axiom (Masatlioglu et al., 2012).3 α̂ implies idempotency,4

i.e.,

S(S(T )) = S(T ) for all T .

Finally, we consider a structural invariance property that is based on components

and strengthens common cloning-consistency conditions. A tournament solution is

composition-consistent if it chooses the “best” alternatives from the “best” compo-

nents.

Definition 3.4 A tournament solution S is composition-consistent if for all tour-

naments T , T1, . . . , Tk, and T̃ such that T =
∏

(T̃, T1, . . . , Tk),

S(T ) =
⋃

i∈S(T̃ )

S(Ti).

Consider again the tournament given in Figure 3.2. Non-emptiness and neutrality

imply that every tournament solution has to select all alternatives in a 3-cycle. It

follows that every composition-consistent tournament solution has to select all five

alternatives in this tournament.

Besides its normative appeal, composition-consistency can be exploited to speed

up the computation of tournament solutions. Brandt et al. (2011) introduced the

decomposition degree of a tournament as a parameter that reflects its decomposabil-

ity and showed that computing any composition-consistent tournament solution is

3 We refer to Monjardet (2008) for a more thorough discussion of the origins of this condition.
4 Tournament solutions that fail to satisfy idempotency (such as the uncovered set) can be made

idempotent by iteratively applying the tournament solution to the resulting choice sets until no
further refinement is possible. The corresponding tournament solutions, however, often violate
monotonicity.
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fixed-parameter tractable with respect to the decomposition degree. Since comput-

ing the minimal decomposition requires only linear time, decomposing a tournament

never hurts, and often helps.5

A weaker notion of composition-consistency, called weak composition-consistency ,

requires that for every pair of tournaments T = (A,�) and T ′ = (A,�′) that only

differ with respect to the dominance relation on some component Y of T , both

(i) S(T ) \ Y = S(T ′) \ Y , and (ii) S(T ) ∩ Y 6= ∅ if and only if S(T ′) ∩ Y 6= ∅.

3.3 Common Tournament Solutions

In this section we review some of the most common tournament solutions. On top of

the axiomatic properties defined in the previous section, particular attention will be

paid to whether and how a tournament solution can be computed efficiently. When-

ever a tournament solution is computationally intractable, we state NP-hardness

of the decision problem of whether a given alternative belongs to the choice set of

a given tournament. This implies hardness of computing the choice set. By virtue

of the construction in the proof of Theorem 3.1, it is irrelevant whether the input

for this problem is a tournament or a preference profile.

Let us start with two extremely simple tournament solutions. The trivial tour-

nament solution TRIV always selects all alternatives from any given tournament.

While TRIV does not discriminate between alternatives at all and as such is unsuit-

able as a tournament solution, it is easily verified that it satisfies monotonicity, sta-

bility, and composition-consistency, and, of course, can be “computed” efficiently.6

One of the largest non-trivial tournament solutions is the set of Condorcet non-

losers (CNL). A Condorcet loser is a (unique) alternative a such that A\{a} � {a}.
In tournaments of order two or more, CNL selects all alternatives except Condorcet

losers. CNL is barely more discriminating than TRIV , yet already fails to satisfy

stability and composition-consistency (monotonicity is satisfied).

All tournament solutions defined in the following generalize the concept of a

Condorcet winner in one way or another.

3.3.1 Solutions Based on Scores

In this section, we introduce four tournament solutions that are defined via various

methods of assigning scores to alternatives: the Copeland set, the Slater set, the

Markov set, and the bipartisan set.

5 Since the representation of a tournament of order m has size Θ(m2), the asymptotic running time
of a linear time algorithm is in O(m2).

6 Many axiomatizations of tournament solutions only require inclusive properties (i.e., properties
which demand that alternatives ought to be included in the choice set under certain circumstances)
and inclusion-minimality (see, e.g., Brandt et al., 2013a, pp. 224–226).
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Copeland Set

The Copeland set is perhaps the first idea that comes to mind when thinking about

tournament solutions. While a Condorcet winner is an alternative that dominates

all other alternatives, Copeland’s rule selects those alternatives that dominate the

most alternatives (see, e.g., Copeland, 1951). Formally, the Copeland set CO(T ) of

a tournament T consists of all alternatives whose dominion is of maximal size, i.e.,

CO(T ) = arg max
a∈A
|D(a)|.

|D(a)| is also called the Copeland score of a. In graph-theoretic terms, |D(a)| is the

outdegree of vertex a.

In the example tournament given in Figure 3.3, CO(T ) = {a, b}, since both a

and b have a Copeland score of 2, whereas the Copeland score of both c and d is 1.

a b c d

Figure 3.3 Tournament T with MA(T ) = SL(T ) = {a}, CO(T ) = {a, b}, UC (T ) =
{a, b, d}, and TRIV (T ) = CNL(T ) = TC (T ) = {a, b, c, d}. All other tournament solutions
considered in this chapter coincide with UC . All omitted edges are assumed to point
rightwards, i.e., a � b, a � c, b � c, b � d, and c � d.

It is straightforward to check that CO satisfies monotonicity. On the other hand,

stability and composition-consistency do not hold. This can be seen by again exam-

ining the tournament in Figure 3.3. Since CO(CO(T )) = {a} 6= {a, b} = CO(T ),

CO violates idempotency and thus stability. Moreover, as {{a}, {b, c}, {d}} is a de-

composition of T , composition-consistency would require that d ∈ CO(T ), which

is not the case. A similar example shows that CO even violates weak composition-

consistency. An axiomatic characterization of CO was provided by Henriet (1985).

CO can be easily computed in linear time by determining all Copeland scores

and choosing the alternatives with maximum Copeland score.7

Theorem 3.5 The Copeland set can be computed in linear time.

It is possible to define “second-order” Copeland scores by adding the Copeland

scores of all alternatives within the dominion of a given alternative. The process

of iteratively computing these scores is guaranteed to converge (due to the Perron-

Frobenius Theorem) and leads to a tournament solution, which is sometimes re-

ferred to as the Kendall-Wei method (see, e.g., Moon, 1968, Ch. 15; Laslier, 1997,

pp. 54–56). Kendall-Wei scores can be computed in polynomial time by finding the

eigenvector associated with the largest positive eigenvalue of the adjacency matrix.

7 Brandt et al. (2009) have shown that deciding whether an alternative is contained in CO(T ) is
TC0-complete and therefore not expressible in first-order logic.
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Slater Set

Although the dominance relation � of a tournament may fail to be a strict linear

order, it can be linearized by inverting edges in the tournament graph. The intuition

behind Slater’s rule is to select from a tournament (A,�) those alternatives that

are maximal elements (i.e., Condorcet winners) in those strict linear orders that can

be obtained from � by inverting as few edges as possible, i.e., in those strict linear

orders that have as many edges in common with � as possible (Slater, 1961).8 Thus,

Slater’s rule can be seen as the unweighted analogue of Kemeny’s social preference

function (see Chapter 2 (Zwicker, 2016) and Chapter 4 (Fischer et al., 2016)).

Denote the maximal element of A according to a strict linear order > by max(>).

The Slater score of a strict linear order > over the alternatives in A with respect

to tournament T = (A,�) is |> ∩ �|. A strict linear order is a Slater order if it

has maximal Slater score. Then, the Slater set SL is defined as

SL(T ) = {max(>) : > is a Slater order for T}.

In the example in Figure 3.3, SL(T ) = {a} because a > b > c > d is the only Slater

order. SL satisfies monotonicity, but violates stability and composition-consistency.

Finding Slater orders is equivalent to solving an instance of the minimum feedback

arc set problem, which is known to be NP-hard, even in tournaments.9 Therefore,

checking membership in SL is NP-hard as well.

Theorem 3.6 (Alon, 2006; Charbit et al., 2007; Conitzer, 2006) Deciding whether

an alternative is contained in the Slater set is NP-hard.

It is unknown whether the membership problem is contained in NP. The best

known upper bound for this problem is the complexity class Θp
2, and Hudry (2010)

conjectured that the problem is complete for this class. For a more detailed dis-

cussion of the computational complexity of Slater’s solution, see Hudry (2010) and

Charon and Hudry (2006, 2010). Bachmeier et al. (2019) have shown that deciding

membership in the Slater set remains NP-hard even when there are only 13 voters.

Although SL is not composition-consistent, it satisfies weak composition-

consistency. Interestingly, decompositions of the tournament can be exploited to

identify a subset of the Slater orders (see Laslier (1997, p. 66) and Conitzer (2006)).

Markov Set

Based on ideas that date back at least to Daniels (1969) and Moon and Pullman

(1970), Laslier (1997) defines a tournament solution via a Markov chain. The intu-

8 When inverting as few edges as possible in order to obtain a Condorcet winner (rather than a strict
linear order), we get the Copeland set.

9 Whether the minimum feedback arc set problem is NP-hard in tournaments was a long-standing
open problem that was solved independently by Alon (2006), Charbit et al. (2007), and Conitzer
(2006). The minimum feedback arc set problem is APX-hard (Kann, 1992) and thus does not admit
a polynomial-time approximation scheme (PTAS) unless P = NP. For tournaments, however, there
exists a PTAS (Kenyon-Mathieu and Schudy, 2007).
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ition given by Laslier is that of a table tennis tournament in which the alternatives

are players who compete in a series of pairwise comparisons. If a player wins, he

will stay at the table and compete in the next match. If he loses, he will be replaced

with a new random player. The goal is to identify those players who, in expectation,

will win most matches.

The states of the Markov chain are the alternatives and the transition probabil-

ities are determined by the dominance relation: in every step, stay in the current

state a with probability |D(a)|
|T |−1 , and move to state b with probability 1

|T |−1 for all

b ∈ D(a). The Markov set consists of those alternatives that have maximum proba-

bility in the chain’s unique stationary distribution. Formally, the transition matrix

of the Markov chain is defined as

Q =
1

|T | − 1
· (M(T ) + diag(CO)),

where M(T ) is the adjacency matrix and diag(CO) is the diagonal matrix of the

Copeland scores. Let ∆(A) be the set of all probability distributions over A. The

Markov set MA(T ) of a tournament T is then given by

MA(T ) = arg max
a∈A
{p(a) : p ∈ ∆(A) and Qp = p} .

MA tends to select significantly smaller choice sets than most other tournament

solutions. In the example in Figure 3.3, MA(T ) = {a} because the stationary dis-

tribution is 4
10a + 3

10b + 1
10c + 2

10d. The Markov solution is also closely related to

Google’s PageRank algorithm for ranking websites (see Brandt and Fischer, 2007).

It satisfies monotonicity, but violates stability and weak composition-consistency.

Computing p as the eigenvector of Q associated with the eigenvalue 1 is straight-

forward. Accordingly, deciding whether an alternative is in MA can be achieved in

polynomial time.

Theorem 3.7 The Markov set can be computed in polynomial time.

Moreover, Hudry (2009) has pointed out that computing MA has the same asymp-

totic complexity as matrix multiplication, for which the fastest known algorithm to

date runs in O(m2.38).

Bipartisan Set

The last tournament solution considered in this section generalizes the notion of a

Condorcet winner to lotteries over alternatives. Laffond et al. (1993a) and Fisher

and Ryan (1995) have shown independently that every tournament T admits a

unique maximal lottery,10 i.e., a probability distribution p ∈ ∆(A) such that for

10 Maximal lotteries were first considered by Kreweras (1965) and studied in detail by Fishburn
(1984). The existence of maximal lotteries follows from the Minimax Theorem.
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G(T ) = (gab)a,b∈A, ∑
a,b∈A

p(a)q(b)gab ≥ 0 for all q ∈ ∆(A).

Let pT denote the unique maximal lottery for a tournament T . Laffond et al. (1993a)

define the bipartisan set BP(T ) of T as the support of pT , i.e.,

BP(T ) = {a ∈ A : pT (a) > 0}.

For the tournament in Figure 3.4, we have pT = 1
3a+ 1

3b+ 1
3d and thus BP(T ) =

{a, b, d}. It is important to realize that the probabilities do not necessarily represent

the strengths of alternatives and, that, in contrast to other score-based tournament

solutions, just selecting those alternatives with maximal probabilities results in a

tournament solution that violates monotonicity (see Laslier, 1997, pp. 145–146).

To appreciate this definition, it might be illustrative to interpret the skew-

adjacency matrix G(T ) of T as a symmetric zero-sum game in which there are

two players, one choosing rows and the other choosing columns, and in which the

matrix entries are the payoffs of the row player. Then, if the players respectively

randomize over rows and columns according to pT this corresponds to the unique

mixed Nash equilibrium of this game. An axiomatization of BP and an interpre-

tation of mixed strategies in the context of electoral competition were provided by

Laslier (1997, pp. 151–153) and Laslier (2000), respectively.

BP satisfies monotonicity, stability, and composition-consistency. Moreover, BP

can be computed in polynomial time by solving a linear feasibility problem (Brandt

and Fischer, 2008).

Theorem 3.8 The bipartisan set can be computed in polynomial time.

In weak tournaments—i.e., generalizations of tournaments where the dominance

relation is not required to be antisymmetric (see Section 3.5)—deciding whether

an alternative is contained in the bipartisan set is P-complete (Brandt and Fischer,

2008). Whether P-hardness also holds for tournaments is open.

3.3.2 Uncovered Set and Banks Set

If dominance relations were transitive in general, every tournament (and all of

its subtournaments) would admit a Condorcet winner. The uncovered set and the

Banks set address the lack of transitivity in two different but equally natural ways.

The uncovered set takes into account a particular transitive subrelation of the

dominance relation, called the covering relation, and selects the maximal alterna-

tives thereof, whereas the Banks set consists of maximal alternatives of inclusion-

maximal transitive subtournaments.11

11 As Brandt (2011) notes, the uncovered set contains exactly those alternatives that are Condorcet
winners in inclusion-maximal subtournaments that admit a Condorcet winner.
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Uncovered Set

An alternative a is said to cover alternative b whenever every alternative dominated

by b is also dominated by a. Formally, given a tournament T = (A,�), the covering

relation C is defined as a binary relation over A such that for all distinct a, b ∈ A,

a C b if and only if D(b) ⊆ D(a).

Observe that a C b implies that a � b and is equivalent to D(a) ⊆ D(b). It is easily

verified that the covering relation C is transitive and irreflexive, but not necessarily

connex. The uncovered set UC (T ) of a tournament T = (A,�) is then given by the

set of maximal elements of the covering relation, i.e.,

UC (T ) = {a ∈ A : b C a for no b ∈ A}.

UC was independently proposed by Fishburn (1977) and Miller (1980) and goes

back to a game-theoretic notion used by Gillies (1959).

a b c d e

a b c d e

a


0 1 1 −1 1


b −1 0 1 1 −1

c −1 −1 0 1 1

d 1 −1 −1 0 1

e −1 1 −1 −1 0

Figure 3.4 Tournament T and its skew-adjacency matrix G(T ). CO(T ) = SL(T ) =
MA(T ) = {a}, BP = {a, b, d}, UC (T ) = BA(T ) = {a, b, c, d}, and TRIV (T ) = CNL(T ) =
TC (T ) = {a, b, c, d, e}. All other tournament solutions considered in this chapter coincide
with BP . Omitted edges point rightwards.

In the example in Figure 3.4, a covers e, as D(e) = {b} and D(a) = {b, c, e}.
As this is not the case for any other two alternatives, UC (T ) = {a, b, c, d}. UC

satisfies monotonicity and composition-consistency, but violates stability. In fact,

it does not even satisfy idempotency. An appealing axiomatic characterization of

UC was given by Moulin (1986).

Interestingly, UC consists precisely of those alternatives that reach every other

alternative on a domination path of length at most two (Shepsle and Weingast,

1984).12 This equivalence can be easily seen by realizing that

a ∈ UC (T ) if and only if there is no b ∈ A such that b C a

if and only if for all b ∈ D(a) there is some c ∈ D(a) such that c � b
if and only if a reaches all b ∈ A \ {a} in at most two steps.

This characterization can be leveraged to compute UC via matrix multiplication

12 In graph theory, these alternatives are called the kings of a tournament, and they constitute the
center of the tournament graph.
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because

a ∈ UC (T ) if and only if (M(T )2 +M(T ) + I)ab 6= 0 for all b ∈ A,

where I is the n×n identity matrix (Hudry, 2009). Hence, the asymptotic running

time is O(n2.38).13

Theorem 3.9 The uncovered set can be computed in polynomial time.

As mentioned in Chapter 2 (Zwicker, 2016), an alternative is Pareto-optimal

if there exists no other alternative such that all voters prefer the latter to the

former. A tournament solution is Pareto-optimal if its associated SCF only returns

Pareto-optimal alternatives. Brandt and Geist (2014) have shown that UC is the

coarsest Pareto-optimal tournament solution (see also Brandt et al., 2016a). As a

consequence, a tournament solution is Pareto-optimal if and only if it is a refinement

of UC .

Banks set

The Banks set selects the maximal elements of all maximal transitive subtourna-

ments. Formally, a transitive subtournament (B,�B) of tournament T is said to be

maximal if there is no other transitive subtournament (C,�C) of T with B ⊂ C.

The Banks set BA(T ) of a tournament is then defined as

BA(T ) = {max(�B) : (B,�B) is a maximal transitive subtournament of T}.

a

b

c

d

e

f

g

x D(x) TC (D(x))

a {c, e} {c}
b {a, f} {a}
c {b, g} {b}
d {a, b, c} {a, b, c}
e {b, c, d, g} {b}
f {a, c, d, e} {c}
g {a, b, d, f} {a}

Figure 3.5 Tournament T and its dominator sets. BA(T ) = {a, b, c}, UC (T ) = {a, b, c, d},
and TRIV (T ) = CNL(T ) = TC (T ) = {a, b, c, d, e, f, g}. All other tournament solutions
considered in this chapter coincide with BA. Omitted edges point rightwards.

The tournament in Figure 3.5 has nine maximal transitive subtournaments, in-

duced by the following subsets of A: {a, b, d, g}, {a, d, f, g}, {a, f, b, g}, {b, c, d, e},
{b, d, g, e}, {b, g, c, e}, {c, a, d, f}, {c, d, e, f}, and {c, e, a, f}. Hence, BA(T ) =

13 Brandt and Fischer (2008) proved that the problem of computing UC is contained in the complexity
class AC0 by exploiting that computing the covering relation can be highly parallelized. This is
interesting insofar as deciding whether an alternative lies within UC is computationally easier (in
AC0) than checking whether it is contained in CO (TC0-complete), despite the fact that the fastest
known algorithm for computing UC is asymptotically slower than the fastest algorithm for CO.
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{a, b, c}. Like UC , BA satisfies monotonicity and composition-consistency, but vio-

lates stability. BA was originally defined as the set of sophisticated outcomes under

the amendment agenda (Banks, 1985). For more details see Section 3.4. An alter-

native axiomatization of the Banks set was given by Brandt (2011).

BA cannot be computed in polynomial time unless P equals NP.

Theorem 3.10 (Woeginger, 2003) Deciding whether an alternative is contained

in the Banks set is NP-complete.

Proof Membership in NP is straightforward. Given a tournament T = (A,�)

and an alternative a ∈ A, simply guess a subset B of A and verify that (B,�B)

is a transitive subtournament of T with a = max(�B). Then, check (B,�B) for

maximality.

For NP-hardness, we give the reduction from 3SAT by Brandt et al. (2010).

Let ϕ = (x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m) be a propositional formula in 3-

conjunctive normal form (3CNF). For literals x we have x̄ = ¬p if x = p, and x̄ = p

if x = ¬p, where p is a propositional variable. We may assume that x and x̄ do not

occur in the same clause.

We now construct a tournament Tϕ = (A,�) with

A = {c1, . . . , c2m−1} ∪ {d} ∪ U1 ∪ · · · ∪ U2m−1,

where for 1 ≤ k ≤ 2m− 1, the set Uk is defined as follows. If k is odd, let i = k+1
2

and define Uk = {x1
i , x

2
i , x

3
i }. If k is even, let Uk = {uk}.

The dominance relation is defined such that x1
i � x2

i � x3
i � x1

i . Moreover, for

literals x`i and x`
′

j (1 ≤ `, `′ ≤ 3) with i < j we have x`i � x`
′

j , unless x`i = x̄`
′

j , in

which case x`
′

j � x`i . For the dominance relation on the remaining alternatives the

reader is referred to Figure 3.6.

Observe that for every maximal transitive subtournament (B,�B) of Tϕ with

max(�B) = d it holds that:

(i) B contains an alternative from each Uk with 1 ≤ k ≤ 2m− 1, and

(ii) for no literal x, the set B contains both x and x̄.

For (i), assume that B ∩ Uk = ∅. Since max(�B) = d and cj � d for all 1 ≤ j ≤
2m − 1, we have B ∩ {c1, . . . , c2m−1} = ∅. It follows that (B ∪ {ck},�B∪{ck}) is

transitive (ck � b for all b ∈ B), contradicting maximality of (B,�B). For (ii),

assume both x, x̄ ∈ B. By a previous assumption then x ∈ Uk and x̄ ∈ Uk′ for

odd k and k′ with k 6= k′. Without loss of generality assume that k < k′. By (i),

uk+1 ∈ B. Then, however, x � uk+1 � x̄ � x, contradicting transitivity of (B,�B).

We now prove that

ϕ is satisfiable if and only if d ∈ BA(Tϕ).

First assume that d ∈ BA(Tϕ), i.e., d = max(�B) for some maximal transitive

subtournament (B,�B) of Tϕ. Define assignment v such that it sets propositional
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p q ¬r

p s r

¬p s q

u4

u2

d

c1

c3

c5

c2

c4

Figure 3.6 Tournament Tϕ for the 3CNF formula ϕ = (¬p∨s∨q)∧(p∨s∨r)∧(p∨q∨¬r).
Omitted edges point downwards.

variable p to true if p ∈ B and to false if ¬p ∈ B. By virtue of (ii), assignment v is

well-defined and with (i) it follows that v satisfies ϕ.

For the opposite direction, assume that ϕ is satisfiable. Then, there are an assign-

ment v and literals x1, . . . , xm from the clauses (x1
1 ∨ x2

1 ∨ x3
1), . . . , (x1

m ∨ x2
m ∨ x3

m),

respectively, such that v satisfies each of x1, . . . , xm. Define

B = {d} ∪ {x1, . . . , xm} ∪ {u2, u4, . . . , u2m−2}.

It is easily seen that (B,�B) is transitive and that max(�B) = d. Observe that B

contains an alternative uk from each Uk with 1 ≤ k ≤ 2m − 1. Hence, for each

ck ∈ C, we have ck � d � uk � ck and, thus, (B ∪ {ck},�B∪{ck}) is not transitive.

It follows that d = max(�B′) for some maximal transitive subtournament (B′,�B′)

with B ⊆ B′, i.e., d ∈ BA(Tϕ).

By modifying the construction only slightly and using a variant of 3SAT, Bach-

meier et al. (2019) have shown that this problem remains NP-complete even when

there are only 5 voters. Interestingly, finding some alternative in BA(A,�) can be

achieved in linear time using the following simple procedure (Hudry, 2004). Label

the alternatives in A as a1, . . . , am and initialize X as the empty set. Then, starting

with k = 1, successively add alternative ak to X if and only if ak dominates all

alternatives in X. After m steps, this process terminates and the last alternative

added to X can easily be seen to be a member of the Banks set. The difficulty of

computing the whole Banks set is rooted in the potentially exponential number of

maximal transitive subtournaments.
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3.3.3 Solutions Based on Stability

Generalizing an idea by Dutta (1988), Brandt (2011) proposed a method for refining

any tournament solution S by defining minimal sets that satisfy a natural stability

criterion with respect to S. Given a tournament solution S and a tournament T , a

subset of alternatives B ⊆ A is called S-stable in T if, for all a ∈ A \B,

a /∈ S(B ∪ {a}).

An S-stable set B is said to be minimal if there is no other S-stable set C in T such

that C ⊂ B. Since the set of all alternatives is finite and trivially S-stable, minimal

S-stable sets are guaranteed to exist. Now for each tournament solution S, there is

a new tournament solution Ŝ, which returns the union of all minimal S-stable sets

in a tournament T = (A,�), i.e.,

Ŝ(T ) =
⋃
{B ⊆ A : B is a minimal S-stable set in T}.

A crucial issue in this context is whether S admits a unique minimal stable set in

every tournament because this is necessary for Ŝ to satisfy stability (Brandt et al.,

2016b).

In the following, we will define three tournament solutions using the notion of

stable sets: the top cycle, the minimal covering set, and the minimal extending set.

Top Cycle

The top cycle TC can be defined as the unique minimal stable set with respect

to CNL, the set of Condorcet non-losers, i.e.,

TC = ĈNL.

Alternatively, TC can be defined via the notion of a dominant set. A nonempty sub-

set of alternatives B ⊆ A is called dominant in tournament T = (A,�) if B � A\B,

i.e., if each alternative in B dominates all alternatives not in B. Dominant sets are

linearly ordered via set inclusion and TC returns the unique smallest dominant set.

In yet another equivalent definition, TC is defined as the set of maximal elements

of the transitive and reflexive closure of the dominance relation �. TC is a very

elementary tournament solution and, in a slightly more general context (see Sec-

tion 3.5), is also known as weak closure maximality, GETCHA, or the Smith set

(Good, 1971; Smith, 1973; Schwartz, 1986). An appealing axiomatic characteriza-

tion of the top cycle was given by Bordes (1976).

TC tends to select rather large choice sets and may even contain Pareto-

dominated alternatives. In the example tournaments given in Figures 3.3, 3.4,

and 3.5, TC selects the set of all alternatives because it is the only dominant set.

TC satisfies monotonicity, stability, and weak composition-consistency, but violates

the stronger notion of composition-consistency (see, e.g., Figure 3.3).
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Since each alternative outside TC only dominates alternatives that are also out-

side TC and every alternative in TC dominates all alternatives outside TC , it can

easily be appreciated that each alternative in TC has a strictly greater Copeland

score than each alternative outside TC . Hence, CO ⊆ TC .

Exploiting this insight, TC (T ) can be computed in linear time by starting

with CO(T ) and then iteratively adding alternatives that are not dominated by the

current set. Alternatively, one can employ an algorithm, e.g., the Kosaraju-Sharir

algorithm or Tarjan’s algorithm, for finding the strongly connected components of T

and then output the unique strongly connected component that dominates all other

strongly connected components.14

Theorem 3.11 The top cycle can be computed in linear time.

Minimal Covering Set

A subset B of alternatives is called a covering set if it is UC -stable, i.e., if every

a ∈ A\B is covered in the subtournament (B∪{a},�B∪{a}). The minimal covering

set MC is defined as

MC = ÛC .

Dutta (1988) has shown that every tournament admits a unique minimal UC -

stable set and that MC ⊆ UC . In the example in Figure 3.4, MC (T ) = {a, b, d},
and hence MC is a strict refinement of UC . Observe that, for instance, {a, b, c}
is not UC -stable, as d ∈ UC ({a, b, c, d}). MC satisfies monotonicity, stability, and

composition-consistency. Dutta also provided an axiomatic characterization of MC ,

which was later improved by Laslier (1997, pp. 117–120).

Laffond et al. (1993a) have shown that BP ⊆ MC . By virtue of Theorem 3.8, we

can therefore efficiently compute a nonempty subset of MC . This fact can be used

to compute MC by leveraging the following lemma.

Lemma 3.12 Let T = (A,�) be a tournament and B ⊆ MC (A). Define C =

{a ∈ A \B : a ∈ UC (B ∪ {a})}. Then, MC (C) ⊆ MC (A).

MC (T ) can then be computed by first computing the bipartisan set BP(T ) and

then iteratively adding a specific subset of alternatives that lie outside the current

set but do belong to MC (T ). Lemma 3.12 tells us how this subset can be found at

each stage (see Algorithm 1).15

Theorem 3.13 (Brandt and Fischer, 2008) The minimal covering set can be

computed in polynomial time.

14 Brandt et al. (2009) have shown that the problem of deciding whether an alternative is contained in
the top cycle of a tournament is in the complexity class AC0.

15 Lemma 3.12 can also be used to construct a recursive algorithm for computing MC without making
reference to BP . However, such an algorithm has exponential worst-case running time.
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Algorithm 1 Minimal covering set

procedure MC (A,�)

B ← BP(A)

loop

C ← {a ∈ A \B : a ∈ UC (B ∪ {a}}
if C = ∅ then return B end if

B ← B ∪ BP(C)

end loop

Minimal Extending Set

A subset of alternatives is called an extending set if it is BA-stable. Brandt (2011)

defined the minimal extending set ME (T ) as the union of all minimal extending

sets of a tournament T , i.e.,

ME = B̂A.

In the tournament in Figure 3.4, we find that ME (T ) = {a, b, d}. Brandt et al.

(2014b) showed that ME ⊆ BA and that computing ME is computationally in-

tractable by using a construction similar to that of the proof of Theorem 3.10.

Theorem 3.14 (Brandt et al., 2014b) Deciding whether an alternative is con-

tained in a minimal extending set is NP-hard.

The best known upper bound for this decision problem is the complexity class Σp3.

Bachmeier et al. (2019) have shown that the problem remains NP-hard even when

there are only 7 voters. A relation-algebraic specification of minimal extending sets,

which can be used to compute ME on small instances, was proposed by Berghammer

(2014).

Brandt (2011) proved that ME satisfies composition-consistency, and conjectured

that every tournament contains a unique minimal extending set. Even though this

conjecture was later disproved, which implies that ME violates monotonicity and

stability, it is unclear whether this seriously impairs the usefulness of ME (Brandt

et al., 2013b, 2014b). The counterexample found by Brandt et al. consists of about

10136 alternatives and concrete tournaments for which ME violates any of these

properties have never been encountered (even when resorting to extensive computer

experiments).

3.3.4 Solutions Based on Retentiveness

Finally, we consider an operator on tournament solutions which bears some resem-

blance to the notion of minimal stable sets as introduced in the previous section.

The underlying idea of retentiveness was first proposed by Schwartz (1990) and

studied more generally by Brandt et al. (2014c).
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For a given tournament solution S, we say that an alternative a is S-dominated

by alternative b if b is chosen among a’s dominators by S. Similarly, a nonempty set

of alternatives is called S-retentive if none of its elements is S-dominated by some

alternative outside the set. Formally, for a tournament solution S and a tournament

T = (A,�), a nonempty subset B ⊆ A is S-retentive in T if for all b ∈ B such that

D(b) 6= ∅,
S(D(b)) ⊆ B.

An S-retentive set B in T is said to be minimal if there is no other S-retentive

set C in T with C ⊂ B. As in the case of S-stable sets, minimal S-retentive sets

are guaranteed to exist because the set of all alternatives is trivially S-retentive.

Thus we can define S̊ as the tournament solution yielding the union of minimal S-

retentive sets, i.e., for all tournaments T = (A,�),

S̊(T ) =
⋃
{B ⊆ A : B is a minimal S-retentive set in T}.

As with minimal stable sets, it is important for the axiomatic properties of S̊

whether S admits a unique minimal retentive set in every tournament. It is easily

verified that there always exists a unique minimal TRIV -retentive set, and that in

fact ˚TRIV = TC .

The Minimal TC -Retentive Set

Brandt et al. (2014c) have shown that S̊ inherits several desirable properties

from S—including monotonicity and stability—whenever a unique minimal S-

retentive set is guaranteed to exist. They went on to show that every tournament

admits a unique TC -retentive set. As a consequence, the tournament solution T̊C —

which can also be written as
˚̊

TRIV —is monotonic and stable. Also, T̊C inherits

efficient computability from TC and satisfies weak composition-consistency.

Theorem 3.15 (Brandt et al., 2014c) The minimal TC -retentive set can be com-

puted in polynomial time.

In the tournament in Figure 3.5, the set {a, b, c} and each of its supersets is

TC -retentive. Therefore, T̊C (T ) = {a, b, c}.

Tournament Equilibrium Set

Schwartz (1990) defined the tournament equilibrium set (TEQ) recursively as the

union of all minimal TEQ-retentive sets,

TEQ = ˚TEQ .

This recursion is well-defined because the order of the dominator set of any alter-

native is strictly smaller than the order of the original tournament. In the example

in Figure 3.5, TEQ(T ) = T̊C (T ) = {a, b, c}, because TEQ and TC coincide on all

dominator sets.
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TEQ is the only tournament solution defined via retentiveness that satisfies

composition-consistency. Schwartz conjectured that every tournament contains a

unique minimal TEQ-retentive set. As was shown by Laffond et al. (1993b) and

Houy (2009b,a), TEQ satisfies any one of a number of important properties in-

cluding monotonicity and stability if and only if Schwartz’s conjecture holds.

Brandt et al. (2013b) showed that Schwartz’s conjecture does not hold by non-

constructively disproving a related weaker conjecture surrounding ME .16 As a con-

sequence, TEQ violates monotonicity and stability. However, counterexamples to

Schwartz’s conjecture appear to be extremely rare and it may be argued that TEQ

satisfies the properties for all practical purposes.

Using a construction similar to that of the proof of Theorem 3.10, it can be shown

that computing TEQ is intractable.17

Theorem 3.16 (Brandt et al., 2010) Deciding whether an alternative is contained

in the tournament equilibrium set is NP-hard.

There is no obvious reason why checking membership in TEQ should be in NP.

The best known upper bound for this problem is the complexity class PSPACE.

Bachmeier et al. (2019) have shown that this problem remains NP-hard even when

there are only 7 voters. Brandt et al. (2010, 2011) devised practical algorithms for

TEQ that run reasonably well on moderately-sized instances, even though their

worst-case complexity is, of course, still exponential.

3.3.5 Summary

Table 3.1 summarizes the axiomatic as well as computational properties of the

considered tournament solutions. There are linear-time algorithms for CO and TC .

Moreover, a single element of BA can be found in linear time. Computing BA, TEQ ,

and SL is intractable unless P equals NP. Apparently, MC and BP fare particularly

well in terms of axiomatic properties as well as efficient computability.18

Figure 3.7 provides a graphical overview of the set-theoretic relationships between

tournament solutions. It is known that BA and MC (and by the known inclusions

also UC and TC ) almost always select all alternatives when tournaments are drawn

uniformly at random (Fey, 2008; Scott and Fey, 2012). Experimental results suggest

that the same is true for TEQ . Interestingly, despite satisfying strong inclusive

16 A significantly smaller counterexample for Schwartz’s conjecture, consisting of only 24 alternatives,
was found by Brandt and Seedig (2013). However, this smaller counterexample does not disprove
the corresponding conjecture for ME .

17 The proof of Theorem 3.16 actually shows that the membership decision problem for any
tournament solution that is sandwiched between BA and TEQ, i.e., computing any tournament
solution S with TEQ ⊆ S ⊆ BA, is NP-hard.

18 Berghammer et al. (2013) have formalized the definitions of most of the considered tournament
solutions using a computer algebra system, which can then be used to compute and visualize these
functions. These general-purpose algorithms are however outperformed by tailor-made algorithms
using matrix multiplication, linear programming, or eigenvalue decomposition (see, e.g., Seedig,
2015).
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Monotonicity Stability
Composition-

Computational Complexity
consistency

CO + – – in P

SL + – weak NP-hard, in Θp
2

MA + – – in P

BP + + + in P

UC + – + in P

BA + – + NP-complete

TC + + weak in P

MC + + + in P

ME – – + NP-hard, in Σp
3

T̊C + + weak in P

TEQ – – + NP-hard, in PSPACE

Table 3.1 Axiomatic and computational properties of tournament solutions. All

hardness results hold even for a constant number of voters. Computing UC and

TC has been shown to be in AC0 while computing CO is TC0-complete.

axiomatic properties such as stability and composition-consistency, BP is much

more discriminative: For every integer m > 1, the average number of alternatives

that BP selects in a labelled tournament of order m is m
2 (Fisher and Reeves,

1995; Scott and Fey, 2012).19 Analytic results concerning the uniform distribution

stand in sharp contrast to empirical observations that Condorcet winners are likely

to exist in real-world settings, which implies that tournament solutions are much

more discriminative than these analytical results suggest (Brandt and Seedig, 2016).

3.4 Strategyproofness and Agenda Implementation

It is well-known from the Gibbard-Satterthwaite Theorem (see Chapter 2 (Zwicker,

2016)) that only trivial resolute SCFs are strategyproof, i.e., immune against the

strategic misrepresentation of preferences. Tournament solutions are irresolute by

definition (think of a 3-cycle) and therefore the Gibbard-Satterthwaite Theorem

does not apply directly.20

There are two ways to obtain weak forms of strategyproofness that are partic-

19 Brandt et al. (2016b) have shown that there is no more discriminative stable tournament solution
than BP . In particular, there is no stable refinement of BP .

20 However, the Gibbard-Satterthwaite Theorem does imply that no resolute refinement of any of the
tournament solutions discussed in this chapter—except TRIV —is strategyproof. There are
important extensions of the Gibbard-Satterthwaite Theorem to irresolute SCFs such as the
Duggan-Schwartz Theorem (see Chapter 2 (Zwicker, 2016)). We will focus on more positive results
for tournament solutions in this chapter.
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TC

UC

BA

MC

ME

TEQ

BPSL MA

CO

Figure 3.7 The set-theoretic relationships between tournament solutions are depicted in
this Venn-like diagram. If the ellipses of two tournament solutions S and S′ intersect, then
S(T ) ∩ S′(T ) 6= ∅ for all tournaments T . If the ellipses for S an S′ are disjoint, however,
this signifies that S(T ) ∩ S′(T ) = ∅ for some tournament T . Thus, BA and MC are not
included in each other, but they always have a nonempty intersection (see, e.g., Laslier,
1997). CO , MA, and SL are contained in UC but may be disjoint from MC and BA. The
exact location of BP in this diagram is unknown but it intersects with TEQ in all known
instances and is contained in MC . TEQ and ME are contained in BA, but their inclusion
in MC is uncertain. Hence, the ellipses for TEQ , ME , and BP are dashed. T̊C is omitted
in this figure because very little is known apart from the inclusion in TC (see Brandt
et al., 2015, for more details).

ularly well-suited for tournament solutions. The first one concerns the traditional

notion of strategyproofness with respect to weakly dominant strategies, but incom-

plete preference relations over sets of alternatives, and the second one deals with

the implementation of tournament solutions by means of sequential binary agendas

and subgame-perfect Nash equilibrium. Each of these methods allows for rather

positive results, but also comes at a cost: the first one requires a high degree of

uncertainty among the voters as to how ties are broken, whereas the second one

requires common knowledge of all preferences and may result in impractical voting

procedures.

3.4.1 Strategyproofness

A proper definition of strategyproofness for irresolute SCFs requires the specifica-

tion of preferences over sets of alternatives. One way to obtain such preferences is

to extend the preferences that voters have over individual alternatives to (not nec-

essarily complete) preference relations over sets. A function that yields a preference
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relation over subsets of alternatives when given a preference relation over single

alternatives is called a set extension. Of course, there are various set extensions,

each of which leads to a different class of strategyproof SCFs (see, e.g., Gärdenfors,

1979; Barberà et al., 2004; Taylor, 2005; Brandt, 2015; Brandt and Brill, 2011).

Here, we will concentrate on two natural and well-studied set extensions due to

Kelly (1977) and Fishburn (1972), respectively.21 Let %i be the preference relation

of voter i and let B and C be two nonempty sets of alternatives. Then, Kelly’s

extension is defined by letting

B %Ki C if and only if b %i c for all b ∈ B and c ∈ C.

One interpretation of this extension is that voters are completely unaware of the

tiebreaking mechanism (for example, a lottery) that will be used to pick the winning

alternative.

Fishburn’s extension is defined by letting

B %Fi C if and only if b %i c for all b ∈ B and c ∈ C \B and

b %i c for all b ∈ B \ C and c ∈ C.

One interpretation of this extension is that ties are broken according to some

unknown linear order (e.g., the preferences of a chairman). It is easily seen that

B %Ki C implies B %Fi C.

Each set extension induces a corresponding notion of strategyproofness. An

SCF f is Kelly-strategyproof if there is no voter i and no pair of preference pro-

files R and R′ with %j=%′j for all j 6= i such that f(R′) �Ki f(R). If such profiles

exist, we say that voter i can manipulate f . Fishburn-strategyproofness is defined

analogously. Note that in this definition of strategyproofness, set extensions are

interpreted as fully specified preference relations according to which many choice

sets are incomparable (and changing the outcome to an incomparable choice set

does not constitute a manipulation). Clearly, since B %Ki C implies B %Fi C,

Fishburn-strategyproofness is stronger than Kelly-strategyproofness.

Kelly-strategyproofness may seem like an extremely weak notion of strategyproof-

ness as only few pairs of sets can actually be compared. Nevertheless, almost all

common SCFs fail to satisfy Kelly-strategyproofness because they can already be

manipulated on profiles where these functions are resolute (Taylor, 2005, pp. 44–

51). Brandt (2015) has shown that stability and monotonicity are sufficient for

Kelly-strategyproofness. Virtually all SCFs of interest that satisfy these conditions

are tournament solutions (or weighted tournament solutions). We therefore only

state the result for tournament solutions rather than for SCFs.

Theorem 3.17 (Brandt, 2015) Every monotonic and stable tournament solution

21 Gärdenfors (1979) attributed the second extension to Fishburn because it is the coarsest extension
that satisfies a certain set of axioms proposed by Fishburn (1972).
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is Kelly-strategyproof. Moreover, every Condorcet-consistent coarsening of a Kelly-

strategyproof tournament solution is Kelly-strategyproof.

As a consequence, BP , each of its Condorcet-consistent coarsenings (such as

MC , UC , and TC ), and T̊C are Kelly-strategyproof.22 On the other hand, it can

be shown that every Condorcet-consistent tournament solution that may return a

single alternative in the absence of a Condorcet winner is Kelly-manipulable. It fol-

lows that CO , SL, and MA fail to be Kelly-strategyproof. More involved arguments

can be used to show that ME and TEQ are not Kelly-strategyproof.

The results for Fishburn-strategyproofness are less encouraging. While it is known

that TC is Fishburn-strategyproof (Brandt and Brill, 2011; Sanver and Zwicker,

2012), a computer-aided proof has shown that no refinement of UC is Fishburn-

strategyproof. Since UC is the coarsest Pareto-optimal tournament solution, we

have the following theorem.

Theorem 3.18 (Brandt and Geist, 2014) There is no Pareto-optimal Fishburn-

strategyproof tournament solution.

As a consequence of this theorem, the set-theoretic relationships depicted in Fig-

ure 3.7, and other observations (Brandt and Brill, 2011), TC is the finest Fishburn-

strategyproof tournament solution considered in this chapter.

3.4.2 Agenda Implementation

An important question—which has enjoyed considerable attention from social

choice theorists and political scientists since the work of Black (1958) and Far-

quharson (1969)—is whether simple procedures exists that implement a particular

tournament solution. This in particular concerns procedures that are based on a

series of binary choices and eventually lead to the election of a single alternative.

The binary choices may depend on one another and need not exclusively be be-

tween two alternatives. Such procedures are in wide use by actual committees and

institutions at various levels of democratic decision-making. The most prominent

among these are the simple agenda (or successive procedure) and the amendment

procedure, both of which were initially studied in their own right by political sci-

entists. The former is prevalent in civil law or Euro-Latin legal systems, whereas

the latter is more firmly entrenched in the common law or Anglo-American legal

tradition (see, e.g., Apesteguia et al., 2014).

With the simple agenda, the alternatives are ordered in a sequence a1, . . . , am
and subsequently successively being voted up or down by majority voting: First

alternative a1 is brought up for consideration; if a1 is carried by a majority, it is

22 In fact, the proof even shows that these functions are group-strategyproof with respect to Kelly’s
extension.
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accepted as the final decision; otherwise, a1 is rejected and a2 is brought up for

consideration, etc.

With the amendment agenda, the alternatives are again ordered in a se-

quence a1, . . . , am and voting then takes place in m−1 rounds. In the first round, a

majority comparison is made between a1, the status quo, and a2, the amendment.

The winner then goes through to the next round as the new status quo and is put

in a majority contest with a3, and so on. Figure 3.8 illustrates how these procedures

can be depicted as binary trees, the leaves of which are associated with alternatives.

Simple agenda

a1?

a2?

a3?

a4a3

a3 not-a3

a2

a2 not a2

a1

a1 not a1

Amendment agenda

a1 or a2?

a2 or a3?

a3 or a4?

a4a3

a3 a4

a2 or a4?

a4a2

a2 a4

a2 a3

a1 or a3?

a3 or a4?

a4a3

a3 a4

a1 or a4?

a4a1

a1 a4

a1 a3

a1 a2

Figure 3.8 The simple agenda and the amendment agenda for four alternatives ordered
as a1, a2, a3, a4.

More generally, every binary tree with alternatives at its leaves could be seen as

defining a multi-stage voting procedure. Formally, an agenda of order m is defined

as a binary tree whose leaves are labelled by an index set I. A seeding of a set of

alternatives A of size |I| is a surjective function from A to I.

For the analysis of voting procedures defined by such agendas and seedings,

voters can either be sincere or sophisticated . Sincere voters myopically and non-

strategically vote “directly according to their preferences” whenever the agenda

calls for a binary decision. If these choices are invariably between two alternatives,

as in the amendment procedure, sincere voting simply comes down to voting for

the more preferred alternative at each stage. We refer to Chapter 19 (Vassilevska-

Williams, 2016) on knockout tournaments for this setting.

By contrast, sophisticated voters are forward looking and vote strategically.

Hence, a more game-theoretic approach and ‘backward inductive’ reasoning is ap-

propriate. For the remainder of this section, we assume voters to adopt sophisticated

voting strategies, meaning that the binary tree can be “solved” by successively prop-

agating the majority winner among two siblings to their parent, starting at the

leaves and going upwards. Multi-stage sophisticated voting yields the same out-

come as the one obtained by solving the extensive-form game as defined by the

agenda using backwards induction (McKelvey and Niemi, 1978), in an important

sense leveraging the strategyproofness of majority rule in settings with more than
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two alternatives. Similarly, the sophisticated outcome is the alternative that sur-

vives iterated elimination of weakly dominated strategies in the strategic form game

induced by the agenda (Farquharson, 1969; Moulin, 1979).

In order to define agenda-implementability, one defines a class of agendas (one

for each order m) and considers all possible seedings for each agenda. A tournament

solution S is then said to be agenda-implementable if there exists a class of agendas

such that for every tournament T , a ∈ S(T ) if and only if there is a seeding for the

agenda of size |T | such that its sophisticated outcome is a.

Early results on agenda implementation demonstrated that the class of sim-

ple agendas implements TC and the class of amendment agendas implements BA

(Miller, 1977, 1980; Banks, 1985; Moulin, 1986). Moulin (1986), moreover, showed

that agenda-implementable tournament solutions have to be weakly composition-

consistent refinements of TC . As a consequence, CO and MA are not agenda-

implementable. A complete characterization of agenda-implementable tournament

solutions, however, had long remained elusive before Horan (2013) obtained suffi-

cient conditions for agenda-implementability that cover a wide range of tournament

solutions and almost match Moulin’s necessary conditions.23

Theorem 3.19 (Horan, 2013) Every weakly composition-consistent tournament

solutions that chooses from among the top cycle of every component is agenda-

implementable.

As a corollary to this result it follows that—besides TC and BA—also SL, UC ,

MC , ME , BP , and TEQ are agenda-implementable. It should be observed, how-

ever, that the agendas actually implementing these tournament solutions may be

extremely large. The size of the amendment agenda, for instance, is already expo-

nential in the number of alternatives.24 Moreover, Horan’s proof is non-constructive

and no concrete classes of agendas that implement any of the tournament solutions

considered in this chapter—except the simple agenda and the amendment agenda—

are known.

The fact that CO fails to be agenda-implementable has sparked some research on

approximating Copeland winners via binary agendas. Fischer et al. (2011) showed

that agenda-implementability is unachievable for any tournament solution that,

from tournaments of order m, only chooses alternatives with a Copeland score at

least as high as 3
4 +O( 1

m ) of the maximum Copeland score. Horan (2013) demon-

strated the existence of agenda-implementable tournament solutions that only select

alternatives whose Copeland score is at least 2
3 of the maximum Copeland score,

improving previous results by Fischer et al. (2011).

23 A weaker version of Theorem 3.19 simply states that every composition-consistent refinement of TC
is agenda-implementable.

24 As an extreme case consider the agendas that Coughlan and Le Breton (1999) introduced to
implement a refinement of the iterated Banks set (see also Laslier, 1997). The corresponding agenda

of order 6 has already 2720! − 1 nodes!
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Kelly- Fishburn- Agenda-

strategyproofness strategyproofness implementability

CO – – –

SL – – +

MA – – –

BP + – +

UC + – +

BA ? – + (amendment)

TC + + + (simple)

MC + – +

ME – – +

T̊C + – ?

TEQ – – +

Table 3.2 Strategic properties of tournament solutions. It is unknown whether BA

is Kelly-strategyproof and whether T̊C is agenda-implementable. Interestingly, T̊C

falls exactly between the necessary and sufficient conditions given by Moulin

(1986) and Horan (2013).

3.4.3 Summary

Table 3.2 summarizes which of the considered tournament solutions are Kelly-

strategyproof, Fishburn-strategyproof, and agenda-implementable, respectively.

Again, it turns out that BP represents a decent compromise between discriminative

power and attractive axiomatic properties.

3.5 Generalizations to Weak Tournaments

So far, we assumed the majority relation to be antisymmetric, which can be justi-

fied, for instance, by assuming that there is an odd number of voters. In general,

however, there may be majority ties. These can be accounted for by considering

weak tournaments (A,%), i.e., directed graphs that represent the complete, but not

necessarily antisymmetric, majority relation.25

For most of the tournament solutions defined in Section 3.3, generalizations or ex-

tensions to weak tournaments have been proposed. Often, it turns out that there are

several sensible ways to generalize a tournament solution and it is unclear whether

there exists a unique “correct” generalization. A natural criterion for evaluating the

25 Alternatively, one can consider the strict part of the majority relation �, which is asymmetric, but
not necessarily connex.
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different proposals is whether the extension satisfies (appropriate generalizations of)

the axiomatic properties that the original tournament solution satisfies.

3.5.1 The Conservative Extension

A generic way to generalize any given tournament solution S to weak tournaments

is by selecting all alternatives that are chosen by S in some orientation of the

weak tournament. Formally, a tournament T = (A,�) is an orientation of a weak

tournament W = (A,%′) if a � b implies a %′ b for all a, b ∈ A. The conservative

extension of S, denoted [S], is defined such that, for every weak tournament W ,

[S](W ) =
⋃

T∈[W ]

S(T ),

where [W ] denotes the set of all orientations of W . Brandt et al. (2014a) have

shown that [S] inherits several natural properties from S, including monotonicity,

stability, and composition-consistency.

An alternative interpretation of weak tournaments is in terms of a partial infor-

mation setting, where the symmetric and irreflexive part of the dominance relation

represents unknown comparisons rather than actual ties (see Chapter 10 (Boutilier

and Rosenschein, 2016)). In this setting, the set of winners according to the conser-

vative extension exactly corresponds to the set of possible winners of the partially

specified tournament. The computational complexity of possible and necessary win-

ners of partially specified tournaments has been studied by Aziz et al. (2012), who

showed that for a number of tractable tournament solutions (such as CO , UC , and

TC ), possible winners—and thus the conservative extension—can be computed ef-

ficiently.

3.5.2 Extensions of Common Tournament Solutions

For many tournament solutions, ad hoc extensions have been proposed in the lit-

erature. In this section, we give an overview of these extensions and compare them

to the conservative extension.

The Copeland set CO gives rise to a whole class of extensions that is parame-

terized by a number α between 0 and 1. The solution COα selects all alternatives

that maximize the variant of the Copeland score in which each tie contributes α

points to an alternative’s score (see, e.g., Faliszewski et al., 2009). Henriet (1985)

axiomatically characterized CO
1
2 , arguably the most natural variant in this class.

The conservative extension [CO ] does not coincide with any of these solutions. Fur-

thermore, [CO ] 6⊆ COα for all α ∈ [0, 1] and COα ⊆ [CO ] if and only if 1
2 ≤ α ≤ 1.

When moving from tournaments to weak tournaments, maximal lotteries are no

longer unique. Dutta and Laslier (1999) have shown that the appropriate general-

ization of the bipartisan set BP is the essential set ES , which is given by the set
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of all alternatives that are contained in the support of some maximal lottery. The

essential set coincides with the support of any quasi-strict Nash equilibrium of the

game defined by the skew-adjacency matrix. It is easy to construct tournaments

where ES is strictly smaller than [BP ], and there are also weak tournaments in

which [BP ] is strictly contained in ES .

Duggan (2013) surveyed several extensions of the covering relation to weak tour-

naments. Any such relation induces a generalization of the uncovered set UC . The

so-called deep covering and McKelvey covering relations are particularly interest-

ing extensions. Duggan showed that for all other generalizations of the covering

relation he considered, the corresponding uncovered set is a refinement of the deep

uncovered set UCD . Another interesting property of UCD is that it coincides with

the conservative extension of UC . It follows that all other UC generalizations con-

sidered by Duggan are refinements of [UC ].

Banks and Bordes (1988) discussed four different generalizations of the Banks

set BA to weak tournaments. Each of these generalizations is a refinement of the

conservative extension [BA].

For the top cycle TC , Schwartz (1972; 1986) defined two different generalizations

(see also Sen, 1986). GETCHA (or the Smith set) contains the maximal elements

of the transitive closure of %, whereas GOCHA (or the Schwartz set) contains the

maximal elements of the transitive closure of �. GOCHA is always contained in

GETCHA, and the latter coincides with [TC ]. A game-theoretical interpretation of

TC gives rise to a further generalization. Duggan and Le Breton (2001) observed

that the top cycle of a tournament T coincides with the unique mixed saddle MS (T )

of the game G(T ), and showed that the mixed saddle is still unique for games cor-

responding to weak tournaments. The solution MS is nested between GOCHA and

GETCHA. The computational complexity of GETCHA and GOCHA was analyzed

by Brandt et al. (2009), and the complexity of mixed saddles was studied by Brandt

and Brill (2012).

Generalizations of the minimal covering set MC using the McKelvey covering

relation and the deep covering relation are known to satisfy stability. There exist

weak tournaments in which [MC ] is strictly contained in both the McKelvey min-

imal covering set MCM and the deep minimal covering set MCD . There are also

weak tournaments in which MCM is strictly contained in [MC ]. Computational

aspects of generalized minimal covering sets have been analyzed by Brandt and

Fischer (2008) and Baumeister et al. (2013).

Schwartz (1990) suggested six ways to extend the tournament equilibrium set

TEQ—and the notion of retentiveness in general—to weak tournaments. However,

all of those variants can easily be shown to lead to disjoint minimal retentive sets

even in very small tournaments, and none of the variants coincides with [TEQ ].

It is noteworthy that, in contrast to the conservative extension, some of the exten-

sions discussed above fail to inherit properties from their corresponding tournament

solutions. For instance, GOCHA violates stability.
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A further generalization of tournaments (and weak tournaments) are weighted

tournaments, which take the size of pairwise majorities into account. Weighted tour-

nament solutions are studied in detail in Chapter 4 (Fischer et al., 2016). Dutta and

Laslier (1999) have generalized several common tournament solutions to weighted

tournaments.

3.6 Further Reading

The monograph by Moon (1968) provides an excellent, but slightly outdated,

overview of mathematical results about tournaments, which is nicely complemented

by more recent book chapters on tournament graphs (Reid and Beineke, 1978; Reid,

2004).

The formal study of tournament solutions in the context of social choice was initi-

ated by Moulin (1986) and sparked a large number of research papers, culminating

in the definitive monograph by Laslier (1997). More recent overviews of tourna-

ment solutions, which also focus on their computational properties, were given by

Brandt (2009) and Hudry (2009). There are also comprehensive studies that exclu-

sively deal with tournament solutions based on covering (Duggan, 2013), stability

(Brandt, 2011; Brandt and Harrenstein, 2011; Brandt et al., 2016b), and retentive-

ness (Brandt et al., 2014c), respectively. For some tournament solutions, continuous

generalizations to the general spatial model are available (see, e.g., Banks et al.,

2006; Duggan, 2013).

For a more extensive introduction to the vast literature on agenda-

implementability, the reader is referred to Moulin (1988, Chapter 9), Laslier (1997,

Chapter 8), Austen-Smith and Banks (2005, Chapter 4), and Horan (2013). For an

overview of the literature on and a discussion of simple and amendment procedures,

see, e.g., Apesteguia et al. (2014).

This chapter focusses on choosing from a tournament. For the related—but

different—problem of ranking alternatives in a tournament, finding a ranking that

agrees with as many pairwise comparisons as possible (i.e., Slater’s rule) has en-

joyed widespread acceptance (see, e.g., Charon and Hudry, 2010). Clearly, score-

based tournament solutions such as CO and MA can easily be turned into ranking

functions. Bouyssou (2004) has studied ranking functions that are defined via the

successive application of tournament solutions and found that monotonic and stable

tournament solutions yield particularly attractive ranking functions.
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