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ABSTRACT

A central problem in multiagent systems is the fair assignment of
objects to agents. In this paper, we initiate the analysis of classic
majoritarian social choice functions in assignment. Exploiting the
special structure of the assignment domain, we show a number of
surprising results with no counterparts in general social choice. In
particular, we establish a near one-to-one correspondence between
preference profiles and majority graphs. This correspondence im-
plies that key properties of assignments—such as Pareto-optimality,
least unpopularity, and mixed popularity—can be determined solely
by the associated majority graph. We further show that all Pareto-
optimal assignments are semi-popular and belong to the top cycle.
Elements of the top cycle can thus easily be found via serial dicta-
torships. Our main result is a complete characterization of the top
cycle, which implies the top cycle can only consist of one, two, all
but two, all but one, or all assignments. By contrast, we find that
the uncovered set contains only very few assignments.
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1 INTRODUCTION

Assigning objects to individual agents is a fundamental problem
that has received considerable attention by computer scientists
as well as economists [e.g., 7, 17, 34, 41]. The problem is known
as the assignment problem, the house allocation problem, or two-
sided matching with one-sided preferences. In its simplest form, there
are n agents, n houses, and each house needs to be allocated to
exactly one agent based on the strict preferences of each agent over
the houses. Applications are diverse and include assigning jobs to
applicants, apartments to tenants, and offices to employees.
House allocation can be viewed as a special case of social choice,
where agents have preferences over an abstract set of alternatives
and a social choice function (SCF) returns the “best” alternative
based on these preferences. When letting the set of alternatives be
the set of all possible allocations of houses to agents and postulating
that agents are indifferent between all allocations in which they
receive the same house, house allocation is reduced to a restricted
domain of general social choice. This perspective opens the door
to transferring concepts from social choice theory to the domain
of house allocation. For example, a natural way to compare two
assignments p and A is to check whether a majority of agents prefer
the house they receive under y to the one they receive under A.

Munich, Germany
alexander.schlenga@tum.de

Gardenfors [26] pointed out that the resulting majority relation may
be cyclic, demonstrating that a well-known issue in social choice—
the Condorcet paradox—can also occur in the domain of assignment.
Gérdenfors also introduced the notion of a popular assignment
as an assignment, for which there is no other assignment that is
preferred by a majority of the agents.! Popular assignments thus
correspond to the well-studied notion of (weak) Condorcet winners
in social choice theory and may fail to exist, just like in social
choice. Popularity has been studied extensively and became an
established concept in assignment [see, e.g., 2, 3, 9, 14, 18, 19, 36].
As majority cycles are even more frequent in assignment than they
are in social choice, a crucial question is which assignment should
be selected in the absence of popular assignments.? This has led to
the definition of concepts such as least unpopular or mixed popular
assignments [31, 35]. Interestingly, these assignment rules are also
related to corresponding concepts studied in social choice theory:
the maximin voting rule and maximal lotteries.

In this paper, we consider classic majoritarian SCFs in the context
of assignment. An SCF is majoritarian if, like popularity, it is solely
based on the majority relation, often viewed as a majority graph.
Typical examples are Copeland’s rule, the top cycle, the uncovered
set, and the bipartisan set. The definitions of most of these functions
are equally natural in assignment as they are in social choice. The
top cycle, for example, returns all assignments that are maximal
elements of the transitive closure of the majority relation. Similarly,
the known set-theoretic relationships between these SCFs also hold
in the assignment domain. Computational properties, on the other
hand, do not carry over from social choice to assignment. When
viewing house allocation as a subdomain of social choice, the num-
ber of alternatives is exponential, and the individual preferences
are concisely represented as each agent merely cares about her
own house. This has serious algorithmic repercussions, and the
computational complexity of even the simplest concepts needs to be
reevaluated. For instance, identifying weak Condorcet winners is
straightforward in social choice, but finding a popular assignment
already requires clever algorithmic techniques [2].

Contribution

We gain several insights that clarify the unique structure of the
assignment domain, resulting in surprising outcomes that have no
parallels in the broader social choice domain. We first characterize

!Girdenfors [26] referred to popular assignments as “majority assignments”.
2This can, for example, be seen by comparing the proportions of profiles that admit
Condorcet winners and popular assignments, respectively [2, 27, Tables 1 and 4.2].



all sets of preference profiles that admit the same majority graph.
This characterization is based on an efficient algorithm that recon-
structs all profiles that induce a given majority graph. It turns out
that almost all majority graphs are induced by a single preference
profile. As a consequence, the rules that return all Pareto-optimal
assignments, all least unpopular assignments, and all mixed popular
assignments, respectively, are majoritarian. Moreover, all Pareto-
optimal assignments are contained in the top cycle, which means
that elements of the top cycle can be found via serial dictator-
ships. Furthermore, Pareto-optimal assignments have non-negative
Copeland score and are thus semi-popular. None of these results
holds in the general social choice domain. We also show that the
rule returning all rank-maximal assignments is not majoritarian.

Our main result is a complete characterization of the top cycle in
assignment when there are n > 5 agents and houses. This charac-
terization shows that the cardinality of the top cycle may only take
one of five values (1, 2, n! — 2, n! — 1, or n!) and leads to a simple
sublinear-time algorithm that returns a concise representation of
all assignments in the top cycle. This characterization has no analog
in the more general social choice domain, where the top cycle can
consist of any number of alternatives, even when there are at most
three agents.

Lastly, we investigate the three most common variants of the
uncovered set, all of which refine the top cycle. We compute the
number of assignments contained in the uncovered set forn =5
(by exhaustive enumeration) and for n = 6 and n = 7 (by sampling
preference profiles). Somewhat surprisingly, in all these settings,
most profiles only admit two uncovered assignments, suggesting
that the uncovered set is much more discriminating in assignment
than it is in social choice [cf. 16, 22].

Related Work

The study of matching under preferences was initiated by Gale
and Shapley [25]. In their model (nowadays often referred to as
marriage markets), there are two types of agents who have strict
preferences over each other. Gale and Shapley showed that a so-
called stable matching always exists and can be found by a simple,
efficient algorithm. Gérdenfors [26] showed that stable matchings
are no longer guaranteed to exist when agents may be indifferent
between other agents. He proposed to consider majority compar-
isons between matchings and introduced the notion of a popular
matching, i.e., a matching such that there is another matching that
a majority of the agents prefer. Popular matchings correspond to
weak Condorcet winners in social choice theory. When individual
preferences are strict, popularity is weaker than stability. However,
popular matchings may not exist for weak preferences. This issue
persists in the important special case where agents of one type
are completely indifferent between all agents of the other type
(these agents can then be seen as objects) and all other agents have
strict preferences. This variant, which goes back to Gale [24], is
known as assignment, house allocation, or two-sided matching
with one-sided preferences. Abraham et al. [2] provided an efficient
algorithm for finding a popular assignment or returning that none
exists.

The definition of popularity has been relaxed in various ways
to restore existence. McCutchen [35] proposed the unpopularity

margin as a qualitative relaxation of popularity. A least unpopular
matching in this sense always exists, but is NP-hard to compute.
Kavitha et al. [31] introduced mixed popular assignments, whose
existence is guaranteed by the minimax theorem, and provided
an efficient algorithm for computing them. Kavitha and Vaish [32]
transferred the notion of Copeland winners from social choice to so-
called roommate markets, which generalize the assignment setting.
They showed that computing a Copeland winner is NP-hard. It
is open whether hardness also holds in assignment. Kavitha and
Vaish also give a fully polynomial-time randomized approximation
scheme for identifying semi-popular matchings, another relaxation
of popularity, in roommate markets. Semi-popular matchings are
matchings that lose at most half of their majority comparisons [30].
Proposition 1 entails that semi-popular assignments can easily be
found via serial dictatorships.

2 PRELIMINARIES

Let n € N be given. We denote by N = {1,...,n} a set of agents
and by H = {a,b,c,...} a set of n houses (or distinct indivisible
objects in general). Each agent x € N reports a preference relation
>x, which is formally a linear order over H. Intuitively a >x b
means that agent x prefers house a to house b. Note that we require
each agent to rank all houses (without indifference) and that there
are as many houses as agents. A preference profile P = (>1,...,>p)
is the collection of the preference relations of all agents.

Given a preference profile, our goal is to assign one house to
each agent. To formalize this, we define assignments as bijective
functions mapping agents in N to houses in H. Thus, u(x) is the
house given to agent x under assignment y. We define by M the
set of all possible assignments from N to H. Further, we write an
assignment p in which agents 1,2,3,... obtain houses a,b,¢c, ...,
respectively, as u = (a, b, c, . ..). Throughout the paper, we assume
that agents compare assignments only based on the houses they
receive: an agent x € N (weakly) prefers an assignment y to another
assignment A, denoted by u =x A, if u(x) >x A(x) or p(x) = A(x).
Moreover, an agent x € N strictly prefers an assignment y to an
assignment A, written as p > A, if p(x) >x A(x) and p(x) # A(x).

An assignment rule F maps every preference profile P to a non-
empty set of assignments F(P). The idea is that an assignment rule
returns a set of “good” assignments, from which a single assignment
will eventually be picked.

Most of the rules considered in this paper are symmetric. This
is a basic fairness notion, which demands that all agents and all
houses are treated equally, respectively. More formally, relabeling
the agents in the preference profile should correspond to relabeling
the agents in the returned assignments, and relabeling the houses
in all agents’ rankings should correspond to relabeling the houses
in the returned assignments. When n > 2, no single-valued assign-
ment rule can be symmetric. We, therefore, consider set-valued
rules. To nonetheless distinguish more from less discriminating
rules, we say that a rule F is a refinement of a rule G and write
F C G, if F(P) C G(P) for all profiles P.

Lastly, we discuss a standard property of assignments called
Pareto-optimality. Intuitively, this notion requires that there is no
assignment that makes one agent strictly better off without making
another one worse off. To formalize this idea, we say an assignment



i Pareto-dominates another assignment A in a profile P if all agents
weakly prefer y to A and this preference is strict for at least one
agent, i.e.,, u =x A for all agents x € N and y >, A for at least
one agent x € N. Further, an assignment is Pareto-optimal if it is
not Pareto-dominated by any other assignment. The set of Pareto-
optimal assignments in a profile P is denoted by PO(P). The set
of Pareto-optimal assignments is closely connected to the family
of serial dictatorships. Such serial dictatorships are defined by a
priority order o = (x1, ..., x,) over the agents, and agents simply
pick their favorite house that has not been taken yet in the order
given by o. It has been shown that an assignment is Pareto-optimal
if and only if it is returned by a serial dictatorship for the given
profile [1]. Pareto-optimality is much more restrictive in assignment
than in the general social choice domain: there are always Pareto-
dominated assignments unless all agents have the same preferences.
More generally, for every pair of agents x, y and every pair of houses
a,bsuchthata ~x bandb >~ a, there are (n—2)! Pareto-dominated
assignments where x obtains b and y obtains a.

3 THE STRUCTURE OF MAJORITY GRAPHS

A fundamental way to compare two assignments to each other is
to postulate that one assignment is socially preferred to another
if a majority of the agents prefer the former to the latter. To this
end, let N, = {x € N |y =x A} denote the set of agents who
weakly prefer u to A. An assignment p weakly majority dominates
assignment A if at least as many agents prefer y to A than vice versa,
ie, px Aif N2l 2 [Nyl Similarly, an assignment p (strictly)
majority dominates another assignment A if strictly more agents
prefer p to A than vice versa, i.e., p = Aif [Ny 3| > [Ny |-

This naturally leads to the analysis of majority graphs, which
have been extensively studied in social choice theory [see, e.g.,
8, 33]. Each profile P induces a directed graph Gp = (M, {(p, 1) €
M2 U % A}), which has all possible assignments as its vertices and
there is an edge from an assignment p to another assignment A if y
weakly majority dominates A.

Example 1. Consider the following profile P with N = {1,2,3}
and H = {a, b, c}, and the corresponding majority graph. An arrow
from p to A indicates that p strictly majority dominates A, and the
absence of an arrow indicates a majority tie.

(a,b,c)—>(b,c,a)—»(c,a,b)
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(¢,b,a)—>(a,c,b)—>(b,a,c)

Note that we can obtain the same majority graph from other profiles,
too. Specifically, if all three agents x rank b >}, ¢ >} a in profile P/,
or all agents rank ¢ > a >% b in profile P/, then Gp = Gp = Gp».

While every directed graph is induced by some preference profile
in social choice [37], Brandt et al. [14] pointed out that this is not the
case in assignment, where only a small fraction of majority graphs
can actually be realized by preference profiles. Moreover, Brandt
et al. gave an efficiently testable, necessary, and sufficient condition
for two profiles yielding the same weighted majority graph, where
each edge (4, 1) of the majority graph is weighted by the margin
N3l = [Ny 2| of the majority comparison. In this section, we will

generalize this result to unweighted majority graphs, showing that
almost all majority graphs are induced by a unique profile.

To this end, we first recall some terminology by Brandt et al..
Let P be a profile and let (Hy, ..., Hi) be an ordered partition of H,
where we call each H; a component. We say that (H;); is a de-
composition of this profile, if all agents rank all houses in H; over
all houses in Hz and so on. Formally, for all j < £ < k and all
p € Hj,q € Hp, and x € N, it holds that p > g. Two profiles P, P’
are called rotation equivalent, if the preferences on P and P’ coincide
within each component, and one ordering of the components is ob-
tained by shifting the other. Formally, consider any decomposition
(Hy,...,Hy) of P. Then, for all j < k, p,q € Hj, and x € N, it has
to hold that p >, g if and only if p >} g, and there exists some
r < k such that (Hy4r, ..., Hiy,) is a decomposition of P’ (where
we set Hjr = Hjp g if j+7 > k).

Example 2. To illustrate rotation equivalence, consider the follow-
ing profiles P, Pwith N = {1,2,3,4}, H = {a, b, ¢,d}, and decompo-
sition (Hy = {a}, Hy = {b}, H3 = {c, d}).

1: a b, ¢ d 1: a b, ¢ d
.~ 2: a b, oc d =_2: a b d c
p= 3: a b, d ¢ p= 3: a b d c
4: a, b, d, c 4: a, b, d, c

The profile P is not rotation equivalent to P, as ¢ >3 d and
d =7 c even though c and d belong to the same component Hs.
Moreover, rotation equivalence can also be violated when, within
each component, the preferences of the agents are coherent. For
this, consider the profile P from Example 1 and let P’”/ be the
profile, where all agents x report a >%’ ¢ =%’ b. Then, P’ is
not rotation equivalent to P, as the decomposition ({a}, {b}, {c})
cannot be rotated to ({a}, {c}, {b}). However, ({b},{c},{a}) and
({c},{a}, {b}) are valid rotations. Hence, the profiles P’ and P”’
described in Example 1 are rotation equivalent to P.

Brandt et al. [14] showed that rotation equivalence character-
izes the profiles that induce the same weighted majority graph.
We are able to strengthen this result by showing that the margins
are not required: rotation equivalence, in fact, characterizes the
profiles inducing the same (unweighted) majority graph! As a con-
sequence, given any assignment-induced majority graph, we can
reconstruct the margins of all majority edges. Moreover, let a house
“Pareto-dominate” another house if all agents rank the former above
the latter. Whenever there are no Pareto-dominated houses in a
profile P, our result implies that this profile has a unique major-
ity graph Gp. Even in the presence of Pareto-dominated houses,
we can deduce all agent preferences except for the direction of
some Pareto-dominations. The full proof of the following result is
deferred to Appendix A.

Theorem 1. Two profiles induce the same majority graph if and
only if they are rotation equivalent.

PRrROOF SsKETCH. It is easy to verify that rotation equivalent pro-
files indeed induce the same majority graph, so we focus on the
remaining implication. Let Gp- be a majority graph that is induced
by some profile P*. Our goal is to find all profiles P such that
Gp = Gp:. As a first step, we consider a pair of houses p, q. We
iterate over pairs of agents x, y and instantiate an assignment y in



which x obtains p and y obtains q. We compare i to the assignment
A in which x and y swap houses. If the two assignments create a
majority tie, then x and y have identical preferences over p, q. How-
ever, if, e.g., p is strictly majority-preferred to A, then this means
that p > q and q >y p for any profile P with Gp = Gp-+. In other
words, for each pair of distinct houses p and g, we can determine
whether one Pareto-dominates the other (without knowing which
one) for all profiles P with Gp = Gp-. If this is not the case, then
we can determine for each agent whether she ranks p over ¢ in all
such profiles P or vice versa.

Next, we instantiate a graph with the houses being the nodes.
An edge between two houses p, q is added whenever not all agents
prefer p to g or vice versa. By the insights of the previous para-
graph, this means that we can determine for each agent which
of the houses she prefers more. This graph partitions the set of
houses into connected components Hi, . . ., Hi. We then show that
within each component H;, we can determine the relative ordering
between all pairs of houses by querying appropriate majority com-
parisons, and that each agent ranks the houses of each component
contiguously. Finally, we re-order the components and prove that P
can be decomposed as (Hy, ..., Hy) or a rotation (Hi4r, ..., Hyr)
thereof. |

Remark 1. The proof of Theorem 1 yields an efficient algorithm for
reconstructing all profiles inducing a given majority graph in time
polynomial in n. Moreover, the majority graph uniquely determines
the majority margins, which can also be deduced algorithmically.
On the other hand, to verify whether a given directed graph is the
majority graph of a profile, one needs to check all ~(n!)? edges of
the graph.

Remark 2. Unless n is small, only very few profiles admit a non-
trivial decomposition, implying that they can be fully reconstructed
from their majority graph. As a matter of fact, almost all majority
graphs are induced by a single preference profile. Calculations by
Brandt et al. [14] demonstrate that more than 99% of all majority
graphs are induced by a single profile as soon as n > 4.

4 MAJORITARIAN ASSIGNMENT RULES

The concept of majority graphs has given rise to numerous influ-
ential solution concepts in social choice theory, such as Condorcet
winners, Copeland’s rule, the top cycle, and the uncovered set [see,
e.g., 8, 33]. In particular, all of these concepts are majoritarian,
i.e., they can be computed solely based on the majority graph of
a profile. As a consequence, the definitions of these concepts di-
rectly carry over to the assignment domain while preserving their
natural appeal. Weak Condorcet winners, for example, are known
as popular assignments in house allocation. An assignment y is
popular if pp = A for all A € M. Example 1 shows that popular assign-
ments need not exist. In the following, we investigate majoritarian
assignment rules, i.e., assignment rules that only depend on the
majority graph. Formally, an assignment rule F is majoritarian if
F(P) = F(P’) for all profiles P and P’ with Gp = Gp-.

While our main focus is the study of established majoritarian
voting rules in the context of assignment, Theorem 1 implies that
several well-known assignment concepts are actually majoritarian.

Specifically, this result entails that an assignment rule is majoritar-
ian if and only if it is invariant with respect to rotation equivalence.
We use this fact to prove that Pareto-optimality, least unpopularity,
and mixed popularity are majoritarian. By least unpopularity, we
denote the rule that returns all assighments minimizing the margin
of their worst majority defeat. By mixed popularity, we denote the
rule that returns all assignments which are part of the support of
some mixed popular matching. Formal definitions of these con-
cepts can, for example, be found in the papers by McCutchen [35],
Kavitha et al. [31], and Brandt and Bullinger [9].

Corollary 1. PO, least unpopularity, and mixed popularity are ma-
Jjoritarian.

Proor. Let P and P’ be two rotation equivalent profiles w.r.t.
some decomposition (Hy,...,Hy) and a shiftby r € {1,...,k — 1}.

PO: Let i € PO(P) be a Pareto-optimal assignment. By a charac-
terization due to Abdulkadiroglu and Sénmez [1], there is an order
over the agents o = (x1,...,xp) such that y is chosen by the serial
dictatorship SD induced by o, ie., u = SDs(P). Note that the
agents choose houses from Hj, ..., Hy in this order because, for all
i,j€{1,...,k} with i < j, it holds that every agent prefers every
house h € H; to every house b’ € H;. Next, we partition the agents
x € N into the sets N; = {x € N: u(x) € H;} fori € {1,...,k}. Let
o’ denote the order of agents such that (i) for all i, j € {1,...,k}
with i < j, all agents in Nj, are ranked before all agents in N},
and (ii) within each set Nj, the agents are ordered the same as in
0. Under the serial dictatorship SD,s induced by this sequence,
the agents from Ny4, first get to choose their houses. Since P’ is
achieved by rotating P with a shift of r, these agents obtain pre-
cisely the same houses from Hi4, as in p. Inductively, the agents
in Nj;, obtain precisely the houses from Hj,, under this shifted
picking sequence in the profile P/, and the obtained assignment is
hence p. This proves that y € PO(P”). Reversing the roles of P and
P’, we obtain that PO chooses the same set of assignments on both
profiles.

Least unpopularity and mixed popularity: In the proof of
Theorem 1, we show that we can infer the precise margin of each
majority comparison from the majority graph. Since least popular-
ity and mixed popularity only depend on these margins, they are
majoritarian. O

By contrast, we show next via an example that the rule that
returns all rank-maximal assignments [29] is not majoritarian. To
introduce rank-maximality, we define the rank of a house p in a
preference relation > by r(>,p) = 1+ |{q € H | ¢ > p}l, ie,
an agent’s favorite house has rank 1, his second favorite house
has rank 2, etc. Further, the rank vector of an assignment y for a
profile P contains the ranks r(>y, u(x)) of each agent x € N for
her assigned house in increasing order. Then, an assignment y is
rank-maximal if its rank vector is lexicographically optimal, i.e.,
the assignment maximizes the number of agents who obtain their
favorite house, subject to this it maximizes the number of agents
who obtain their second-ranked house, and so on.



Example 3. Consider the following two profiles P and P/, which
are rotation equivalent and thus induce the same majority graph.

1: a, b ¢ d, e f 1:d, e, f, a b, ¢
2: a, ¢ b d f, e 2:d, f, e, a, ¢, b
P 3: b, a ¢ e d f P 3:e,d, f, b, a ¢
4: a, b, ¢, d, e f 4:d, e, f, a, b, ¢
5: a, b, ¢, d, e f 5:d, e, f, a b, ¢
6: a b oc d e f 6:d, e, f, a b c

The assignment p = (a, ¢, b, d, e, f) marked in blue is rank max-
imal in P, but not in P’, as the assignment A = (d, f,e,a,b,¢) in
red assigns two agents their top choice. To see that y indeed is
rank-maximal in P, note that any assignment can give at most two
agents their top choices. Agent 3 has to obtain b, and since 1,4,5,6
all have the same preferences, we can assign a to agent 1. Among
the remaining agents, only 2 can still obtain her second-favorite
house, c. Among 4, 5, 6, it then does not matter how we assign d, e, f
for rank-maximality.

We conclude this section by proving a surprising relationship
between two majoritarian assignment rules that does not hold in the
social choice domain. Specifically, we show that all Pareto-optimal
assignments are semi-popular. Semi-popularity is a weakening of
popularity, which requires that an assignment is majority preferred
to at least half of all assignments. Let a profile P be given. More
formally, an assignment is semi-popular if [{A € M | p % A}| > %
[32]. By SP(P), we denote the set of all semi-popular assignments.

Proposition 1. PO C SP.

Proor. For our proof, we first introduce permutations on as-
signments. Given a permutation 7 on N, define 7’: (N — H) —
(N — H) such that for any assignment y: N — H and agent
x € N, we have 7’ (i) (x) = p(n(x)). Intuitively, the assignment
p' = 7’ (y) is obtained from p by assigning to agent x the house that
is given to agent z(x) in p. For the sake of simplicity, we slightly
abuse notation and refer to n’ as 7 too.

Now, fix an arbitrary preference profile P and an assignment
p € PO(P). We consider an arbitrary permutation 7 and show
that 7 (u) > p implies that y > 7~ 1(y). For simplicity, we name
7(p) = nand 771 (g) =: A Let y denote an arbitrary agent who
strictly prefers n to p, i.e., n(y) >y p(y). Further, let x = L (n(y)
be the agent who gets n(y) in p. Note that x # y. Since y is Pareto-
optimal, it cannot be that u(y) >x p(x), as otherwise swapping the
houses of x and y would be a Pareto-improvement over y. Therefore,
1(x) =x p(y) = A(x) and p >4 A. Since y was chosen arbitrarily,
we see that for every agent strictly preferring n to y, we have one
other strictly preferring p to A. Moreover, if p(x) = n(x), then
7(x) = x, which implies also that p(x) = A(x). Hence, if a majority
of agents prefer n to y, a majority of agents prefer y to A. We lastly
note that every assignment 5 can be obtained by permuting g, i.e.,
there is some permutation s such that n = z(y). Hence, it follows
that [{Ae M | px A} > @ so i is semi-popular. ]

The proof of Proposition 1, in fact, shows a stronger statement:
each Pareto-optimal assignment has at least as many outgoing
(strict) majority edges as ingoing ones.

4.1 The Top Cycle

We next turn to the top cycle, one of the most prominent majori-
tarian rules in the social choice domain [e.g., 4, 15, 28, 39, 40]. The
underlying idea is very natural: popular assignments do not always
exist because the majority relation x fails to be transitive (see Exam-
ple 1). Instead, one can consider %", the transitive closure of %, and
simply return the maximal elements according to this relation. For-
mally, TC(P) = {y € M: VA € M : i * A}.3 Or, in other words, the
top cycle returns all assignments that reach every other assignment
on some path in the majority graph.

As a first step towards understanding the top cycle in the assign-
ment domain, we prove that it always contains all Pareto-optimal
assignments. This is not true in the social choice domain. We defer
the proof of the following result to Appendix B.1.

Proposition 2. PO C TC.

Using Proposition 2 as a stepping stone, we obtain a much
stronger structural result about majority graphs in assignment:
the top cycle can only contain one, two, all but one, all but two, all
but three, or all assignments. The full proof of this result is given
in Appendix B.

Theorem 2. Let P be any profile with n > 5 agents and houses.
Then, |TC(P)| € {1,2,n! — 2,n! — 1, n!}. More precisely, we have
(i) |TC(P)| = 1 if all agents have distinct top choices,

(it) |TC(P)| = 2 if all but two agents have distinct top choices.
Further, these two also share the same second choice, which is
not top-ranked by any other agent either,

(iii) |TC(P)| = n! — 2 if (i) and (ii) do not hold, and all but two
agents have distinct bottom choices. Further, these two also
share the same second-to-bottom choice, which is not last-
ranked by any other agent either,

(iv) |TC(P)| = n! — 1 if (i) and (ii) do not hold, and all agents
have distinct bottom choices, and

(v) |TC(P)| = n! if none of the above cases holds.

PROOF SKETCH OF THEOREM 2. First, the cases (i) and (ii) follow
relatively easy from Proposition 2: we get under the corresponding
assumptions that there are 1 or 2 Pareto-optimal assignments, and
it is easy to show that these are the only ones in the top cycle. More-
over, if the corresponding assumptions are not true, we can show
that there are more than 1 (resp. 2) Pareto-optimal assignments.

For cases (iii) through (v), we first prove via a computer-aided
approach that our result holds when there are n = 5 agents and
houses. Specifically, we let the computer enumerate all profiles
for n = 5 (up to symmetries) and verify that our theorem is true.
Based on this insight, we then tackle the remaining cases when
n > 6. For case (v), we introduce the concept of the bottom cycle,
which contains all assignments that can be reached from every
other assignment via a path in the majority graph. Using our base
case for n = 5, we prove case (v) for n > 6 by carefully constructing
30ne can also consider >*, the transitive closure of the strict part of the majority
relation and return its maximal elements. The resulting SCF is known as the Schwartz
set or GOCHA [39].

The top cycle is unrelated to the Top Trading Cycle (TTC), an assignment algorithm for
settings with initial endowments.
“This case corresponds to the profiles admitting a strongly popular assignment, which

strictly majority dominate every other assignment. These are known as (strict) Con-
dorcet winners in social choice.



an assignment y from the top cycle and an assignment A from the
bottom cycle such that A x* p. This implies that the top cycle
contains every assignment since every assignment has a path to
every other assignment in the majority graph via A and p.

Lastly, we turn to the cases (iii) and (iv). For these cases, we
can assume that the profile takes one of the following forms as
otherwise case (i) or (ii) would apply.

1: a 1 a, c 1 a b

2: A 2: a ¢ 2 a,
P=3 a ... PP=3 b d P’'=3 b,

4: 4 b, d 4

5: 5 5

We will exemplarily discuss our proof idea for the profile P””. Con-
trary to the proof of case (v), we have no choice but to start from
an arbitrary assignment A* not contained in the bottom cycle. For
this assignment, we show that there is a trading cycle in which all
agents involved get worse off. For example, the trading cycle may
be of length two involving agents 4,5 and houses c, d. Since all the
agents in this trading cycle are worse off, we can let agent 1 swap
her house with whoever currently holds house a. This yields an
assignment A with A* =* 1 and A(1) = a. We illustrate this step
with the subsequent profile, where A is the blue assignment and A*
the red one.

1: a b,

2: a,
P’=3:. b ... a

4: c d

5: d ¢

Take now any Pareto-optimal assignment y* with p* (1) = a and
1*(3) = b. We will define a sequence of assignments A°, . . ., A¥ such
that A° = A, Ak = u*, and A0 s Al e* % 3K Aga first step, we
will construct an assignment A! such that A'(1) = a and A1(3) = b.
Let N’ be the set of 5 agents containing agents 1, 2, 3, the agent
x with A%(x) = b, and an arbitrary fifth agent y. Moreover, let H’
be the houses assigned to these agents in A°. We define A! as the
assignment obtained from A° by letting agents 3 and x swap their
houses. When considering the restriction of P”” to N’ and H’, we
see that case (iii), (iv), or (v) apply to this 5-agent instance. From
this, we infer that there is a path in the majority graph from A°
to AL,

Finally, starting from A!, we can repeatedly identify pairs of
agents x and y such that agent y obtains in the current assignment
Al the house y*(x). Then, we obtain the next assignment A**! by
letting agents x and y swap their assigned houses. By restricting the
profile P’ to the agents {1, 2,3, x, y} and their currently assigned
houses, we can again use the insights of the 5-agent case to deduce
that there is a path from A’ to A**1. Finally, by repeatedly applying
this argument, we get that there is a path from A* to y* in the
majority graph, which shows that A* is in the top cycle. O

Theorem 2 shows that deterministic assignments are highly un-
stable with respect to majority deviations. One can almost always,
given a starting assignment and a target assignment, convince the
agents to transition from one to the other by presenting intermedi-
ate assignments that are preferred by a weak majority of agents. To

illustrate this point, consider the following poor assignment that
reaches every other assignment via some majority path.

Example 4. In P, the assignment y marked in red is obviously
not a desirable assignment. It fails to be Pareto-optimal, and many
agents even receive their last-preferred house. Nevertheless, it is
contained in the top cycle. A path of dominations via which p
reaches a serial dictatorship (and by virtue of Proposition 2 the
entire top cycle) is given in Appendix C. The rough idea is to
reassign to some agents slightly worse houses while improving
other agents’ assignments significantly. This creates majority ties
with better and better assignments. For example, we can make
agents 4, 5 worse by assigning c, a to them, respectively. However,
this frees houses d, e, which we assign to agents 2 and 7. These are
now significantly happier.

1: f, b, d e ¢ a ¢
2: d, f, g a b e c
3: d, a ¢ g e b f
P=4: a d b f, g e c
5: ¢ g, e b f, d a
6: ,a e d g ¢ b
7: ¢ d, e b, g f, a

Remark 3. For completeness, we also consider the cases n < 5 for
Theorem 2. Clearly, there exists only one assignment for n = 1, and
two assignments for n = 2. For n = 3, we have found via a computer-
aided approach that the top cycle has size either 1, 2, n! — 2 = 4, or
n! = 6. However, in contrast to case (iv) of Theorem 2, it is possible
that the top cycle contains n! —2 assignments even though all agents
have pairwise distinct bottom choices. This happens, for example
in the following profile, where p = (b, ¢, a) (in red) and A = (¢, b, a)
do not belong to the top cycle.

1: a b, ¢
P=2: a ¢ b
3: ¢, b, a

Lastly, for n = 4, we found via our computer-aided approach that the
top cycle can, in addition to the five sizes described in Theorem 2,
also have a size of n! — 3. Up to symmetries, this happens precisely
in the following two profiles P and P’, where the assignments
1= (c,d, b,a) (markedinred), A = (d,c,a,b),and n = (d, ¢, b, a) are
respectively not contained in the top cycle.
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Remark 4. Theorem 2 stands in stark contrast to classic social
choice, where the top cycle has virtually no cardinality restrictions.
In social choice, the top cycle may have any number of elements,
even when there are at most three agents. Further, in social choice
theory, TC can be computed in linear time in the size of the profile (8,
12]. Theorem 2 implies that in assignment, computing and returning
a concise representation of the (possibly exponentially large) top
cycle is possible in sub-linear time.



4.2 Uncovered Sets

We now proceed to another technique addressing the non-
transitivity of the majority relation: uncovered sets. These sets
are based on covering relations, which are natural transitive subre-
lations of the majority relation. Just as in the definition of the top
cycle, we can take the maximal elements for each of these relations,
defining an uncovered set that refines the top cycle. Uncovered
sets have been extensively studied in social choice theory [see, e.g.,
5,6, 11, 20].

The presence of majority ties in the assignment domain allows
for multiple definitions of covering relations and uncovered sets,
and we will subsequently define the three most common ones.
Given a profile P, an assignment y Bordes covers another assignment
A, if p > A, and for every third assignment 5, we have that 1 >
n implies p > 5. Similarly, p Gillies covers A, if p > A, and for
every 1, we have that 5 > p implies n > A. Finally, p McKelvey
covers A if it Bordes and Gillies covers it. Each of the three covering
relations gives rise to a corresponding uncovered set (UC). It returns
the maximal assignments of the covering relation, i.e., UC(P) =
{y € M: no A € M covers u }. Whenever we refer to covering or
UC without further specification, we mean McKelvey covering. All
three uncovered sets can be characterized as assignments that reach
all other assignments via some majority path of length at most 2.
For Bordes, the first segment of any path of length 2 must be strict;
for Gillies, the second segment must be strict; and for McKelvey,
one of the two segments must be strict. This immediately implies
that all uncovered sets are contained in the top cycle. Moreover,
both the Bordes and the Gillies uncovered set are refinements of
the McKelvey uncovered set.

From the general social choice setting, we know that UC € PO
[23]. This inherits to assignment, and we can easily prove that the
inclusion is strict on this domain, too.

Example 5. In the following profile, the assignment y = (c, a,b)
in blue McKelvey-covers the assignment in red A = (a, b, c), even
though A is Pareto-optimal.

1: a, ¢ b
P=2: a b, ¢
3: b, oa c

Recall that all serial dictatorships are Pareto-optimal. Hence, this
example illustrates that PO fails to distinguish between “good” pick-
ing sequences and “bad” ones in which the agents take away each
other’s favorite houses in unfortunate ways. This effect occurs for
arbitrarily large numbers of agents. Thus, the uncovered assign-
ments set can be seen as particularly attractive among the set of
Pareto-optimal assignments.

To see how decisive UC is, we computed its choice sets and
tracked the occurring cardinalities while iterating over all prefer-
ence profiles up to symmetry for n = 5 exhaustively. The resulting
graph is depicted in Figure 1. Further, we sampled profiles for
n = 7 agents drawing each agents preferences uniformly at ran-
dom, depicted in Figure 2. It turns out that the Bordes-UC is almost
indistinguishable from the McKelvey-UC, while the Gillies-UC is,
on average, the most discriminating one. This can be explained
as follows: Under the Gillies-UC, for an assignment A to not be
covered despite y > A, there needs to exist another assignment 5

o)
Eﬂ 50 - 10 — McKelvey
g 40 - 8 — Bordes
= 6 — Gillies
o
30 - — Pareto
2} 4
S
> 20 - 2
Q
5 0
= 10
& T 5 0 15 0
-
= 0-
25 50 75 100

Cardinality

Figure 1: Size distributions of UCs for n = 5. The high peak is
at size 2 for all of them. In total, there are 9078630 profiles (up
to symmetries) and there are 5! = 120 different assignments.
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Figure 2: Size distributions of UCs for n = 7 in 1000 profiles
sampled via the impartial culture model. The high peak is
at size 2 for McKelvey and Bordes. Gillies-UC has an even
higher peak at size 4.

such that A % > p. However, for small numbers of agents, there
are many profiles admitting popular assignments. If y is such a
popular assignment, then there exists no n with > y, and hence y
automatically Gillies-covers all A with p > A. Most notably, many
profiles in both simulations admitted an uncovered set of size two.
This finding suggests that UC is much more discriminative in as-
signment than in general social choice. However, can this already
be explained by PO being more discriminative in assignment than
in social choice?

To investigate how much UC differs from PO, we exhaustively
studied the case when n = 5. For this, we utilize that the rules
are symmetric with respect to permuting agents and houses. We
therefore fix the preferences of agent 1, and further demand that
the preferences of agents 2 through 5 are ordered lexicographically.
This results in roughly 9 million profiles to be checked, which can

be done within a few days on a computer. In Figure 3, we depict
|UC(P)|
|[PO(P)|
x € [0, 1], as a function of x. The results suggest that, indeed, UC is

significantly more discriminative than PO. Hence, this consolidates
that UC is an interesting refinement of PO, and it seems worthwhile
to further investigate the properties of UC.

is at most

the percentage of profiles P for which the ratio

Remark 5. In social choice, UC can be computed in polynomial
time via matrix multiplication [8, 12]. In assignment, the uncovered
set can be exponentially large. Unless a structural result such as
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Figure 3: Cumulative distributions of the ratio of UC and PO sizes for n = 5. The plot shows the relative difference, i.e., the ratio,
as percentage. In total, there are 9078630 profiles because we considered them up to symmetry. Note that the plots for McKelvey

and Bordes almost perfectly align.

Theorem 2 also holds for UC, it seems unlikely that the uncovered
set can be returned in polynomial time. Instead, the two interesting
questions are (i) whether, given a profile, one can efficiently find
an uncovered assignment, and (ii) whether, given a profile and
an assignment, the assignment is uncovered. The computational
complexity of both problems remains open.

Remark 6. Our experiments suggest that, at least for small n, all
rank-maximal assignments are contained in the uncovered set. We
have verified this through exhaustive search for all profiles with
n < 5. If this were true in general, we could obtain an element of
the uncovered set by computing a rank-maximal assignment, which
is possible in polynomial time. A set inclusion between the two
rules would be interesting, as then UC would be a natural rule that
is relatively decisive, yet contains all rank-maximal and all popular
assignments.

Remark 7. Generous assignments [34, 38] are a dual version of
rank maximal assignments: we compare assignments again based
on their rank vector, but we now lexicographically optimize for the
worst-off agents. While generous and rank-maximal assignments
have very similar definitions, UC indicates that rank-maximal as-
signments may be preferable, as there are simple instances where
no generous assignment is in the UC. For example, consider the
following profile P

1: ¢ faebgd
2: bcgeadf
3: g fadechbh
P=4: gbecafd
S:Edabcfg
6: abdgfec
7. fbdecag

The only two uncovered assignments for P are the underlined
u=(cbdgea,f)and the blue A = (¢,b,g,d, e, a, f). However,
neither of these is generous, as we can modify y by giving agent
3 house a and agent 6 house d. This modified assignment p’ gives
all agents houses within their top three, while both y and A give
some agent her fourth-best house or worse. Hence, no generous
assignment in this profile is uncovered.

5 CONCLUSION AND FUTURE WORK

In this paper, we initiate a systematic study of majoritarian assign-
ment rules—set-valued assignment rules that rely solely on the
pairwise majority relation. Prior work on majoritarian concepts in
the context of assignment was restricted to popularity, correspond-
ing to weak Condorcet winners in social choice theory.’. However,
just like weak Condorcet winners, popular assignments rarely ex-
ist. To circumvent this issue, social choice theory has developed
a range of majoritarian functions that return sets of “good” alter-
natives in the absence of Condorcet winners. We have transferred
two of the most prominent such functions—the top cycle and the
uncovered set—to the subdomain of assignment. These rules are
symmetric, treating all agents and houses equally, and they help to
narrow down the set of acceptable assignments, from which a final
selection (e.g., by randomization) can be made.

We proved a structural result about assignment-induced ma-
jority graphs, which, somewhat surprisingly, revealed that some
well-known assignment rules are in fact majoritarian. We then
gave a complete and efficiently checkable characterization of the as-
signments contained in the top cycle. This characterization reveals
that the top cycle not only contains all Pareto-optimal assignments
(which does not hold in the more general social choice domain)
but also some rather unattractive ones. The top cycle is too coarse
to exclude these undesirable assignments. By contrast, the three
variants of the uncovered set we studied are much more selective.
In fact, each of them contains a (symmetric) subset of all Pareto-
optimal assignments and thus offers a promising foundation for
new, appealing assignment rules.

Our findings pave the way for the exploration of further ap-
pealing refinements of the McKelvey uncovered set, such as the
minimal covering set and the bipartisan set (aka sign-essential set)
[see, e.g., 8, 10, 21]. Both of these rules can be computed efficiently
in social choice theory. Whether this is also true in assignment
is wide open. Indeed, even seemingly simpler problems—such as
finding an assignment in the uncovered set or the Copeland set,
or deciding whether a given assignment belongs to any of these
sets—remain unresolved. In particular, it would be interesting to

SKavitha and Vaish [32] have studied semi-popularity and Copeland winners in the
more general setting of roommate markets.



investigate whether—in contrast to general social choice—the sup-
port of mixed popular assignments is contained in the uncovered

set.

Other avenues for future research include relaxations of the
model that allow for different numbers of agents and houses, ties in
the preferences, and pairwise matchings of agents. These general-
izations would broaden the applicability of majoritarian assignment
rules and deepen our understanding of their structural and compu-
tational properties.
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A PROOF OF THEOREM 1

In this appendix, we present the proof of Theorem 1, which we
break down into the following lemmas.

Lemma 1. Letx,y € N and p,q € H be pairwise distinct. Consider
any p with u(x) = p, p(y) = q. Consider the matching A which only
differs from p in A(x) = q and A(y) = p. Then, the following holds:

o > Aiffp-x qandq -y p,

o n=<Aiffqx pandp =y q, and

o i~ Aiffx,y have the same preferences over p, q (i.e., either

prxqandp =y qorqg-x pandq >y p)

Proor. Since pi(z) = A(z) for all agents z € N \ {x, y}, the ma-
jority comparison only depends on the preferences of x, y between
p, q. Going through all three cases, we see that the statement clearly
holds. As aid, we visualize the assignments y and A in blue and red,
respectively, for all three cases.

e x prefers p to g but y does not (hence p > A):

_ X pq
y- q p
o x prefers g to p, but y does not (hence p < A):
pro X 4P
y: o q

o x,y have the same preferences over p, q (hence i ~ 1):

y- ¢ p y- b q

P’ = xX: g, p P — xX: p,q

]

Fix any p,q € H. We apply Lemma 1 for the agent pair 1, 2,
then 2, 3, and so on. Either, all agents have the same preferences
over the pair p, g, or for some pair x, x + 1 we can determine the
preferences of these two agents over p, g and hence obtain these
pairwise preferences of all agents.

We build a graph with the houses as nodes and edges between
two assignments if we were able to fully determine the pairwise
agent preferences between this pair. Name the connected compo-
nents of this graph Hj, . .., H. Next, we focus on each connected
component H;. We are able to fully determine the preferences within
each component by virtue of the following lemma.

Lemma 2. Let p,q,r € H be distinct such that for all agents, we
know their preferences between p and q, as well as between q and r.
Then, we also know all agents’ preferences between p and r.

Proor. Ifnotall agentsrank p over r or not all agents rank r over
p, we can apply Lemma 1 to obtain all agent preferences between
p and r. Hence, let all agents rank p over r, or let all agents rank r
over p. It now suffices to determine the preferences of a single agent.
If there is an agent x such that p >y q >x r orr >x q >x p, then
by transitivity we know p > r or r >x p, respectively. Otherwise,
all agents x rank q either first or last among {q, p,r} (i.e., either
q >x p.ror p,r >y q). Because the case n < 2 is trivial, consider
n > 3. By the pigeonhole principle, there are at least two agents x
and y of the same type. We only consider the case where q >y p,r
and q >y p,r. The other case is symmetric and follows from the
same arguments. Now, take any third agent z € N and consider the
two assignments p and A which we first visualize.

X: q, pr
P=y: gq pr
z: pr

Formally, we take any p € M with p(x) = ¢, u(y) = p, and
u(z) = r. We obtain A by altering p in A(x) = r,A(y) = g, and
A(z) = p. Since p(w) = A(w) for all w € N \ {x, y, z}, the majority
comparison only depends on the agents x, y, z. Clearly, x prefers
i to A, and y prefers A to p. Hence, there are two possibilities. If
p > A, thenr >; p. Otherwise p < A, due to r <; p. We have thus
determined the preferences of agent z regarding houses p and r.
This concludes the proof. O

Based on the last two lemmas, we can now identify sets of houses
Hi, ..., Hy for which we can fully specify the agents’ preferences.
To this end, consider the following graph G, whose vertices are
the houses H, and there is an edge between two houses p and q if
applying Lemma 1 for all agent pairs allows us to infer the agents’
preferences over p and g. Then, the sets Hj, . .., H correspond to
the connected components of this graph. In particular, for any two
houses p, g that are connected in this graph, there is a sequence of
houses p1 = p,...,pr = g such that p; is a neighbor of p;;; in G.
By repeatedly applying Lemma 2 along this path, we can infer the
preferences of all agents between p and q.

Moreover, we claim that the houses in each set H; must be ranked
contiguously by each agent, i.e., for all H;, agents x € N, and houses
p,q € Hj, there is no house r ¢ H; such that p >, r >x q. Assume
for contradiction that this is not true, which means that there is a
connected component H; of G, an agent x, and houses p,q € Hj,
r ¢ H; such that p >y r >x q. Further, we partition H; into the
sets Hf = {p’ € H;: p’ »x r} and H; = {q’ € H;: r >« ¢'}. Since
r ¢ H;, we know that there is no edge from r to any house h € H;
in G. This means all agents agree on the preference between r and
the houses in Hj, i.e., it holds for all y € N that p’ —y T for all
p’ € Hf andr > ¢ for all ¢’ € H; . However, by the transitivity
of the agents’ preferences, this means that p” >, ¢’ forally € N,
p’ € Hf,and ¢’ € H; . In turn, this implies that there is no edge
between houses in Hl*' and H; in G, which contradicts that H; is a
connected component in this graph. Note that contiguity of each
component H; is only required for correctness of the algorithm, not
for the algorithm itself.

We note that it follows from the last paragraph also that, for all
components Hj, Hj, it either holds that p >, gforallx € N, q € H;,
p € Hj,orq =x pforallx € N, q € H;, p € Hj. The reason for
this is that all agents rank the houses in H; and H; contiguously.
Moreover, if there were two agents x and y such that p >, g and
q =y p for all p € Hj, g € Hj, then H; and H; would be placed in
the same connected component. From this, we infer that the sets
Hi, ..., Hy can be ordered to form a valid decomposition of P.

By our analysis so far, we get that every profile that induces Gp+
can only differ in the order of the components Hy, ..., Hy in the
agents’ preferences. To complete the proof, we need to show that
the only cyclic shifts of the components lead to the same majority
graph. This last step can be inferred analogously to Lemma 4 of
Brandt et al. [13]. The idea is that, for each three distinct houses
p,q, 1, a linear preference relation either agrees with two out of
three of the following comparisons p >cyc ¢.q =cyc 7.7 >cyc s



or it agrees with two out of three of the following comparisons
P Heye 1T =eye G 4 ~eye P- We can use this as follows:

Lemma 3. Let p,q,r be houses such that agents 1,2,3 satisfy
=1 |p,q,r = > |p,q,r = >3 |p,q,r. Then, from the majority graph,
we can determine the “direction” in which these three are ordered.

Proor. Consider any p with p(1) = p, p(2) = q, p(3) =r,and A
which differs from g only in A(1) = g, A(2) = r, A(3) = p. Then, it
holds that u > Aor A > p, depending on whether the preferences are
of type p =(ye I T =iye 49 Fiye P OT P =cye 4.9 =eye Ih T =eye 4.
respectively. O

For each three distinct components, we can take p € H;, q € Hj,
r € Hy and apply Lemma 3. Since each component is contiguous
in all preference relations, this gives us the “cycle type” of how
the three components are ordered in the entire profile. Now, one
can prove that any cyclic permutation of the components does not
change the “cycle type” of any three distinct components. However,
any non-cyclic permutation of the components yields three distinct
components Hj, Hj, H, such that their cycle type is changed. By
choosing p € H;,q € Hj,r € Hy, we can use the assignment in
Lemma 3 to obtain y and A for which the majority comparison does
not coincide with the respective one in Gp:.

B PROOF OF THEOREM 2

In this section, we present the proof of Theorem 2 in two steps.
First, we introduce Pareto-pessimality and the bottom cycle, which
are dual concepts to Pareto-optimality and the top cycle. Then, we
prove that all Pareto-optimal assignments are contained in the top
cycle and characterize the cases in which the top cycle is of size
at most two. We obtain analogous statements for the bottom cycle.
Then, in step two, we show that the top cycle and bottom cycle
coincide whenever they are not of size one or two. This requires
a proof by induction. We prove the base case for five agents by
computer, whereas the induction step is shown by hand.

For the proof of Theorem 2, we have to consider concepts for
assignments that are particularly “bad”. Given a profile P, by P71,
we denote the profile where all agent preferences > are inverted
to ~¢!,ie, p =x qifand only if ¢ =7 p. The majority relation
induced by P~! is precisely the inverse of the majority relation
of P, and we hence denote it by =1

As a dual concept to a serial dictatorship, a serial antidictatorship
works exactly the other way around. The agents pick their least
preferred houses that is available yet in order of o.

Analogously to the TC, the bottom cycle consists of all as-
signments which are minimal elements in the transitive clo-
sure of the weak dominance relation. Formally, BC(P) =
{,u eEMng:Vv:ivyg® ,u}. An assignment is Pareto-pessimal if it
does not Pareto-dominate any other assignment. By PP(P) =
PO(P~1), we denote the set of all Pareto-pessimal assignments
in P. It holds that an assignment is Pareto-pessimal if and only if it
can be obtained as a serial antidictatorship.

Lemma 4. For all profiles P, we have TC(P) = BC(P~!). (Note that
this directly implies BC(P) = BC((P~Y) ") = TC(P71).)

Proor. Note that the majority relation over the assignments
induced by P is precisely inverse to the majority relation induced

by P~!, and hence so is the transitive closure over it. Thus, u x* A
for all assignments A if and only if A (k‘l)* u for all assignments
A. This proves the claim. O

For example, Lemma 4 implies that each Pareto-pessimal assign-
ment belongs to the bottom cycle, as Pareto-pessimal assignments
of a profile P are Pareto-optimal assignments of P71,

B.1 Step 1: Understanding Small TC sizes

We first characterize all profiles in which TC chooses at most two
assignments. For this, we prove a strengthening of Proposition 2.

Proposition 3. All Pareto-optimal assignments are in the top cycle.
PO C TC
Conversely, all Pareto-pessimal assignments are in the bottom cycle.

PP C BC

Proor. It suffices to show PO C TC, as the proof for PP C
BC then follows from Lemma 4. For this, we will prove that, for
every profile P, each Pareto-optimal assignment can reach each
other Pareto-optimal assignment via a path in the majority graph.
This shows that PO(P) € TC(P) because each assignment that is
not Pareto-optimal is Pareto-dominated (and thus also majority
dominated) by an assignment in PO(P). To prove this claim, we
will rely on the characterization of Pareto-optimal assignments by
Abdulkadiroglu and Sénmez [1], which states that an assignment p
is in PO(P) if and only if there is a priority order o over the agents
such that p is the outcome of the corresponding serial dictatorship.

Before showing that all Pareto-optimal assignments are con-
nected by paths in the majority graph, we prove an auxiliary state-
ment: when modifying a picking sequence ¢ by improving the
position of the last agent, the outcome of the serial dictatorship
for the original sequence weakly majority dominates the outcome
of the serial dictatorship for the modified sequence. To make this
more formal, fix an order o = (x1,...,xp) over the agents and let
o’ = (X1, ., Xk—1>Xn> Xfes - - - » Xn—1) for some k € {1,...,n — 1}.
Moreover, let ;1 denote the assignment picked by the serial dictator-
ship induced by ¢ and A the one picked by the serial dictatorship
induced by o’. We will show that i = A.

To prove this, let X; and Xl.' denote the houses that are available
when agent x; gets to pick her house under o and ¢’, respectively.
We claim that X; D Xl.’ foralli € {1,...,n— 1}. First, for the agents
xi € {x1,...,Xk_1}, it holds even that X; = Xl.' because ¢ and ¢’
agree on the first k—1 agents. Next, we have that Xj = X,g U{A(xn)}
because agent x; gets to pick before x, in 0. Now, inductively

assume that X; 2 X/ for some i € {k,...,n — 2}. We will show
that X;41 2 X/, . For this, we note that |X;| = |X/| + 1 because the
agents x1, . . ., xj—1 pick before x; under o, whereas x, additionally

gets to choose before x; under ¢’. By our induction assumption, we
thus conclude that there is a single house p such that X; = X/ U {p}.
Since A(x;) is agent x;’s favorite house in X/, this means that agent
x; either picks p or A(x;) from X;. Consequently, X1 = Xl./ if agent
x; picks p, or Xj41 = X/, | U {p} if she picks A(x;). In both cases, it
holds that X;41 2 X], ;, thus proving the induction step.

By the definition of serial dictatorships, the fact that X; 2 X]
for all x; € {x1,...,xn—1} implies that y >, A for all these agents.
If one of these agents strictly prefers u to A, we have that p = A4



as only agent x, may prefer A to . On the other hand, if no x; €
{x1,...,xp—1} strictly prefers yi to A, then p(x;) = A(x;) for all these
agents, which implies that 4 = A and thus again y  A.

Based on our auxiliary claim, we will now complete the proof
of this lemma. To this end, we fix two distinct assignments
A € PO(P) and consider two orders ¢ = (x1,...,x,) and
o’ = (x{,...,x;,) such that the corresponding serial dictatorship
choose p and A for P. We will iteratively transform o into ¢’. To
this end, let i denote the smallest index such that x; # xlf and let
Jj > idenote the index such that x; = x;. Now, consider the priority
order o1 derived from o by placing the currently last-ranked agent
directly before x, and let 71 be the assignment chosen by the corre-
sponding serial dictatorship. By our auxiliary claim, we have u x 1.
Further, we can repeat this step until we have a priority order oy
where x = x; is in the last position, and our auxiliary claim shows
that p =* 5 for the assignment 12 chosen by the corresponding
assignment. Next, let o3 be the priority order derived from o3 by
moving x; directly before x;. Again using our auxiliary claim, the
assignment 13 chosen by the corresponding serial dictatorship sat-
isfies that 52 = 113, so we have p =* ns3. Lastly, we observe that the
priority orders o3 and ¢’ agree on the first i positions. Hence, by
repeating our argument at most n times, we transform oy into o3
while constructing a path from p to A in the majority graph. O

In the remainder of this subsection, we use Proposition 3 to ana-
lyze cases (i) and (ii) of Theorem 2, as well as analogous statements
regarding the bottom cycle.

We next use Proposition 3 to analyze profiles where all agents
have distinct top choices (or bottom choices).

Lemma 5. |TC(P)| = 1 if and only if all agents have distinct top
choices.

Analogously, |BC(P)| = 1 if and only if all agents have distinct
bottom choices.

Proor. Let P be a profile where all agents have distinct top
choices. Let p be the assignment that assigns to each agent her top
choice. For all other assignments A, there is at least one agent who
does not obtain their top choice. These agents strictly prefer y to A,
while all other agents weakly prefer u to A. Thus, we have p > A
for all assignments A # p, which implies TC(P) = {u}.

We prove the other implication for TC by contraposition. Let P
be a profile where two agents x # y have the same favorite house
p. By Proposition 3, we know that all assignments obtained via
serial dictatorships are contained in the top cycle. Since the serial
dictatorship where x chooses first and y second yields a different
assignment than the serial dictatorship where y chooses first and
then x chooses, there are at least two assignments in the top cycle.
This proves the statement for the top cycle.

For the bottom cycle, the statement follows from Lemma 4. This
concludes the proof. O

The first part of Lemma 5 follows from existing literature (e.g., 34,
Proposition 7.24.). For the sake of completeness, we provided a proof
nevertheless. We further note that Lemma 5 directly proves case (i)
of Theorem 2 and will be useful for the proof of case (iv).

Next, we describe all cases in which the top cycle has cardinality
two. We analogously obtain a similar statement for bottom cycle.

Lemma 6. |TC(P)| = 2 if and only if all but two agents have distinct
top choices and the two agents who have the same top choice also
share the same second best choice, which is not top-ranked by any
agent.

Analogously, |BC(P)| = 2 if and only if all but two agents have
distinct bottom choices and the two agents who have the same bottom
choice also share the same second worst choice, which is not bottom-
ranked by any agent.

ProOF. Let P be a profile where two distinct agents x*, y* share
the same top choice p and second choice g, and all other agents have
unique favorite houses in H \ {p, q}. Consider the two assignments
Ly, where all agents but x* obtain their favorite house and x*
obtains g, and p,+, where all agents but y* obtain their favorite
houses and y* obtains g. Clearly, ji+ ~ . Further, we note that in
every other assignment A € M\{p+, i}, at least one agent among x*
and y* cannot obtain their favp. Without loss of generality, let that
agent be x*. Then, every agent weakly prefers yi,+ to A. Moreover,
since A & {fix+, j1y }, there is at least one agent x € N'\ {x*, y*} with
A(x) # px (x). Indeed, if A would agree with pi+ on all agents in
N\ {x*,y*}, then either x* gets p and y* gets g and A = y1y, or x*
gets g and y* gets p and A = px+. This agent x strictly prefers pi,+ to
A, 50 pixr > A. Further, we compare A to p1y+. If A(y*) # p, we have
that iy =x Aforall x € N, so we immediately get that yiy+ > A. On
the other hand, if A(y*) = p, then = (x*) = p =5+ A(x™). Further,
since there is another agent x ¢ {x*, y*} with Py =x A, there are
at least two agents strictly preferring yiy+ to A, proving that y» > A.
This concludes the proof that TC(P) has cardinality two.

For the other direction of the TC statement, let P not be of the
above form. Then, we distinguish between three cases.

(1) The top choices of the agents are all pairwise different.

(2) There are three agents who share the same top choice.

(3) Allagentsbut x* and y* have disjoint top choices, but agents
x* and y* have different second choices.

(4) There are two pairs of agents x, y and z, w with coinciding
top choices.

In Case (i), Lemma 5 directly implies that the cardinality of TC is
not equal to two. In Case (ii), we consider three serial dictatorships,
where one of these agents chooses their house first, respectively.
Since the three serial dictatorships yield different outcomes, we
otbain by Proposition 3 that the top cycle contains at least three as-
signments. In Case (iii), we again consider three serial dictatorships.
By pigeon hole principle, the second choice of one of the two agents
x*,y* coincides with the top choice of some agent z. Without loss
of generality, we assume that the favorite house of agent z is the
second-ranked house of agent y*. In the first serial dictatorship, y*
chooses before x* before z*. In the second, the roles of x* and y* are
reversed. In the third, z chooses first, x* second, and y* third. The
resulting three assignments do not coincide as agent y* obtains her
first-ranked (resp. second-ranked or third-ranked) house in the first
(resp. second or third) serial dictatorship. Hence, in Case (iii) there
are at least three assignments in the top cycle by Proposition 3.
Finally, in Case (iv), we can consider all serial dictatorships which
vary the picking order between agents x, y, z, and w. This results in
at least four assignments that are serial dictatorships and hence in
the top cycle. This concludes the proof of the top cycle statement.



Note that the bottom cycle statement follows from Lemma 4 and
the proven statement about the top cycle. O

Lemma 6 directly proves case (ii) of Theorem 2. It will further
be helpful in proving case (iii).

We will make case analyses based on the structure of the profile.
For often-recurring structures, we introduce shorthand notation.
Let PPPP denote the set of profiles where three distinct agents
have p as their top-ranked house. We use concatenation to describe
further ranks of agents, i.e., PP%P1 denotes the set of profiles where
two distinct agents have p as their top-ranked house and g as their
second choice. Similarly, $,, denotes the set of profiles where two
distinct agents have p as their last-ranked house, and $pq pq means
that these two agents also have q as their second-to-last choice.
Now that we understand when top cycle and bottom cycle have
size one or two, we summarize and slightly reformulate Lemma 5
and Lemma 6 using our new notation.

Lemma 7. Let P be given. The following equivalences hold:
o |TC(P)|=1 & Bp:PecPP?
o [TC(P)|=2 & TpeH:Yq+re€H:PePPP\
{quq;q U Prernry qu,q,r}
e |TC(P)| > 2 & 3dp,qe€ H:P e PPPPy PPPIIyY
PPIDY

Analogously,
* [BC(P)|=1 & PBpeH:PePy,
e [BC(P)] =2 < 3Ipe€H:VYqr € H:P e Ppp\
{Pgqq Y PagrrVPorgr}
° |BC(P)| > 2 = Elp,q €eH:Pe€ Pp’p’p U Pp,p,q,q U
Prapa
Note that for |TC(P)| > 2, a finer case analysis of the different
structures is: P € PPPP Y PPELA Y PPHLRISIS for some pairwise
disjoint p, q,r,s € H. (Analogous cases for the bottom cycle hold.)

Proor. By Lemma 4, it suffices to prove the TC statements.

Clearly, all top choices being distinct is equivalent to no house be-
ing top-ranked twice, and hence the | TC(P)| = 1 statement follows
directly from Lemma 5.

For the |TC(P)| = 2 statement, we prove both implications. Let
any P be given where TC has cardinality two. Lemma 6 states that,
then, (a) all agents but two have distinct top choices. Further, (b)
these two agents have the same second rank house, which no agent
ranks as their top. Clearly, this implies that no three agents have the
same top choice and there are not two distinct houses top-ranked by
two agents each. Further, if there are two agents who top rank some
house g and one of these ranks some house r second, then both of
these agents rank r second. Hence, no other agent may top rank
the second-ranked house r of these two agents, and P ¢ PI-%".

For the other implication, let P be given such that the top cycle
has a cardinality not equal to two. Then, we can negate the structure
described in Lemma 6. If (a) is false, then the first case is that there
are only distinct top choices, and hence P ¢ PP for any house p.
Otherwise, at least three agents top-ranking the same house p, or
there exist at least two distinct houses that are top-ranked twice
each. In this case, P € P49 U P%"" for some houses g # r. If (a)
is true but (b) is false, then the two agents sharing some top choice
q either have the same second-ranked house r which is top-ranked

by some other agent—in which case we directly have P € PI-%"—
or they have distinct second-ranked houses r,s. There are n — 2
other agents, but only n — 3 houses not top or second-ranked by
the two agents. The pigeonhole principle implies that one of these
second-ranked houses, w.l.o.g. say r, is top-ranked by some agent.
Hence, P € PI9".

For the |TC(P)| > 2 statement, we once more prove both direc-
tions. Note that if P is such a profile, then TC neither has cardinality
one nor two. Hence, by our previously proven equivalences, there
is some p’ such that P € PPP" Further, for this p’, there exist ¢’, r’
such that P € P9-0-4 ypd-4-r"-"' ypqr.4-r" By setting p = ¢’ and
q =r’, we hence obtain P € PPPLUYPPLG9yPPEP9. For the other
implication, let P be a profile such that P € PPPPUPPLEIYPPLPA,
Then, by definition of the three structures, P € PPP, proving that
TC does not have cardinality one. Further, by setting ¢’ = p and
r’ = g, we obtain that P € pqq.qd ypd-d.rr ypdrd T and
hence TC does not have cardinality two either.

Finally, note that if P € P%%"" \ PIS95 for some p # g € H
and all s # t € H, then the first and second ranks of these four
agents contain at least five houses. By the pigeon-hole principle,
a fifth agent must top-rank a house which is among these four. If
this house is g or r, then wlo.g. P € £%%9. Otherwise, the house
is the second rank s of some agent top ranking g or r, hence w.l.o.g.
P € P%%%. This concludes the proof. o

Given Lemma 7, we call TC(P) (BC(P)) isolated iff |TC(P)| < 2
(IBC(P)| < 2). Given a profile P and an assignment y, we say that y
is not in an isolated top cycle, if TC(P) is not isolated or if the top
cycle is isolated and p ¢ TC(P).

B.2 Step 2: Understanding Large TC Sizes

By using Lemma 7, we can check for a given instance whether
the top or bottom cycle are of size one or two. In contrast, at this
moment of the proof, we know little about the exact size of the
top cycle when it exceeds two. It will turn out that, if the top cycle
contains more than two assignments, the transitive closure of the
majority relation forms at most two equivalence classes: the top
cycle and the bottom cycle. For now, we focus on the five-agent
case, which will be very useful for later arguments.

Fact 1. For any profile P with n = 5, the following statements hold.

(1) |TC(P)| > 2 <= M\ PP(P) C TC(P).

(2) |BC(P)| > 2 &= M\ PO(P) C BC(P).

(3) |TC(P)| > 2 and |BC(P)| > 2 < TC(P)=M

(4) If |TC(P)| < 2 and |BC(P)| < 2, then for all y,A € M\
(TC(P) U BC(P)) we have i =* A.

In words, if the top cycle (bottom cycle) contains more than two
assignments, then it contains all assignments that are not serial anti-
dictatorships (serial dictatorships). Further, if both contain at least
three assignments, TC chooses all assignments. Vice versa, if both the
top and bottom cycle contain two or fewer assignments, respectively,
there is precisely one equivalence class sandwiched between the two.

Proor. For n = 5, the number of possible instances is man-
ageable: up to symmetry, there are about nine million preference
profiles. Using Lemma 7, we are able to verify Fact 1 by brute forcing



through all possible profiles with the help of a household computer
in two days. The code is in the supplementary material. O

Fact 1 implies a very helpful lemma for general n. We first intro-
duce corresponding terminology.

Restricted feasible sets. We now consider an arbitrary number
of agents and require notation for restricted feasible sets. Recall
that N, H induce a corresponding set of assignments M. Let My~ g/
denote the set of all assignments on the agent set N’ C N and house
set H" C H. Some assignments p € M also obtain a corresponding
restriction pn g7, with domain N’ and image H’. Note that we
only use this notation if indeed p(N’) = H’ is a bijection, and the
restricted matching is hence well-defined on N’ and H’. Similarly,
for a profile P for agent set N and house set H, let PNv g denote the
profile restricted to agent set N” and house set H'. The restricted
profile Py g induces a majority relation on My g. This relation
is denoted via x N7 p. Note that we will only use this notation
and compare two assignments w.r.t. xnv g if they both belong to
M N’.H'-

Lemma 8 (Non-isolation). Let y,A € M such that for some N’ of
size 5, p(N’) = A(N’) =: H'. If uyn» g is not part of an isolated top
cycle wrt. Mnv g7, and Anv g is not part of an isolated bottom cycle
w.rt. M g7, then ANy g kT\I’,H’ UN |- Moreover, if ji(x) = A(x)
forallx € N\ N’, we have A * p.

Proor. If TC(Pn',g) is not isolated and BC(Pn g) is nei-
ther, then TC(PN'g/) = My by Claim (3) of Fact 1 and
the statement follows trivially. If TC(Pn- g) is not isolated but
BC(PN/’HI) is, then TC(PN/’H/) = MN’,H’ \ BC(PN/!H/). In more
detail, our assumptions mean that TC(Pn'p’) # BC(Pn'H'),
Claim (1) of Fact 1 shows that M \ PP(Pnvp) C TC(Pn' /),
and Proposition 3 that PP(PN’ i) € BC(PN’.p), which implies
that TC(PN i) = M’ g \ BC(PNv,g7). Since A is not in the
isolated BC, A € TC(Pn’p’) and the lemma follows. Thirdly,
assume that TC(Pn g) is isolated but BC(Pn’ g) is not. Then,
we can infer from Claim (2) of Fact 1 and Proposition 3 that
TC(PN' f’) = MN7 j1 \ BC(PN7 ). Since pin g is not in the iso-
lated top cycle, unv 77 € BC(Pnv,g) and the statement follows in
this case. Finally, if TC(Pn- g) is isolated and BC(Pn ) is too,
then all assignments in My g+ \ (TC(Pn7,p7) U BC(PN» g7)) are
connected via E]kxl’,H’ by Claim (4) of Fact 1. Since pn» g is not
in the isolated top cycle and An g is not in the isolated bottom
cycle, we have HUN'.H' € BC(PN/!HI), or AN’,H' € TC(PN',H/), or
both belonging to the connected set of assignments. In all three
cases, the statement follows directly. O

Using Fact 1 and Lemma 8, we show in several steps that, when-
ever both top cycle and bottom cycle contain strictly more than two
assignments, the two cycles coincide and contain all assignments.

Proposition 4. Let P be any profile withn > 5. Then, |TC(P)| > 2
and |BC(P)| > 2 < TC(P) = M = BC(P).

Proor. First, we quickly handle some easy cases. The direction
from right to left is trivial as n! > 2. For n = 5, we obtain the
direction from left to right directly from Fact 1. Now, let n > 5
and consider direction from left to right. Let any profile P be given
such that TC(P) and BC(P) contain at least three assignments each.

In order to show TC(P) = BC(P) = M, it suffices to show that
A* 2* p* for some assignments p* € TC(P) and A* € BC(P). To
define these, we consider the structure of the profile.

Defining y* and A*. By Lemma 7, there are agents x,y,z,w € N
and distinct houses p, ¢, 7, s € H such that P has one of the following
three structures.

Structure p—p—p: x,y, z are distinct and rank p first (set w = z),
or

Structure pg-p—q: x,y, z are distinct, x, y rank p first, x ranks ¢
second, and z ranks q first (set w = z), or

Structure pr—-pr—gs—gs: x,y, z, w are distinct, x, y rank p first and
r second, and z, w rank q first and s second.

Clearly, the profile Py g still contains the respective structure
for all N’ 2 {x,y,z, w}. To formally talk about the rank at which
agents rank their houses, we define A (i) to be the ith favorite
house of agent x.

We aim to choose p* € M with

o u* € TC(P).
o pf(x)=p.
e Under Structure pr—pr—gs—gs, we require p* (y) # hy(2).

Under Structure p—p-p and pq—p-gq, this is achieved by letting
u* € PO with x picking first. Under Structure pr—pr—gs—gs, we first
let p be a serial dictatorship with priority order o = (y,x,z,...).
Then, p(x) = r,u(y) = p,p(z) = q. We now permute to create
1 Let g (x) = poi”(y) = q p°(2) = r and g*(0) = (o) for all
v € N\ {x,y, z}. Restricted to N’ 2 {x,y,z, w} of size 5, p and p*
are not part of an isolated top or bottom cycle, respectively. By
Lemma 8, u 3* p*, hence p* € TC(P). We can hence choose u* as
desired.

Analogously, since the bottom cycle contains more than two
assignments, there are x’, y’, 2/, w’ € N and distinct p’, ¢, r’,s" €
H such that

Structure p’—p’—p’:  x’,y’,7z’ are distinct and rank p’ last (set
w’ =2"), or

Structure p’q’—p’—q’: x’,y’, 7’ are distinct, x”, y’ rank p’ last, x’
ranks q’ second-to-last, and z’ ranks ¢’ last (set w’ = z’), or

Structure p'r’-p’r’'-q's'-q's’: x’,y’,z’,w’ are distinct, x’,y’
rank p’ last and r’ second-to-last, and z’, w’ rank ¢’ last
and s’ second-to-last.

For choosing A* € BC(P) and connecting it to p*, it will become
relevant that among x’,y’, z’, and y, enough agents obtain a “bad”
house. Under Structure p’—p’-p’ and p’q’-p’—q’, we take 1* €
PP(P) with the first three picking agents being x’,y’, and z’ (in this
order). If y is not equal to x’, y’, or z’, we let her choose as fourth.
Lastly, let x, denote the agent that will receive house p in A*. Then,
summarized, under these two structures, 1* satisfies:

e A* € BC(P).

o« I(x)=p".

e y obtains at best her fourth-least favorite house from H.

e Under 1%, at least one agent in {x",y’,2z’} \ {x,xp} ob-
tains their third-least favorite house from H at best (due to
x’,y’, 2" all picking first).



Under Structure p’r’-p’r’-q’s’-q’s’, we have the same goal but
require an in-between step. We first want to use the inherent sym-
metry to relabel the agents, and then choose some A € PP(P) as
follows:

e If x € {x’,y/,z/,w’}, then ensure x = w’ by renaming
agents.

o Ify e {x',y/,z/,w'}, then ensure y € {x’,z’} by renaming

agents.

AMz) =5

My =p".

Aw)=¢q'.

Ify ¢ {x’,y’, 2, w'}, then y obtains her fourth-least favorite

house at best under A.

Considering x, we can clearly relabel the sets {x’, 3’} and {2, w'}
such that x ¢ {x,y'}. f x € {z/,w’}, then by symmetry of z’
and w’, we can relabel agents such that x # z’. Considering y, we
are interested in the situation y € {x’,y’, 2, w'}. The first case is
y € {x’,y’}. Here, by symmetry of x” and y’ we relabel such that
y = x’. The second case is y € {z’,w’}. Here, if x = w’, theny = 2’.
Otherwise, x ¢ {x’,y’,z’,w’}. Then, by symmetry of z’ and w’,
we can relabel such that y = z’. This concludes the relabeling of
Xy, 2, and w'. Ify € {x’,y’,2',w’}, we choose A € PP(P) via
the picking order such that y’ obtains p’, w’ obtains ¢, z’obtains
s’, and then x’ obtains r’. This order guarantees that A(w’) = ¢,
AMy’) = p’ and A(z’) = s’. Otherwise, y ¢ {x,y’,z’,w’}. If y has p’,
q’, 7', and s” as her four least favorite houses, we sacrifice x” and
let y pick before her: y’ gets p’, w’ gets ¢’, z’ gets s’, y gets r’, and
x" gets whatever. Otherwise, y has one house not in {p’,¢’,r’, s’}
among her four least favorite houses. Then, y can pick as fifth and
obtain her fourth least favorite house at best. Also, A(y’) = p’,
A(w") =¢q’,and A(z") = s’ is guaranteed. This proves that we can
choose A as desired in all cases.

We now “rotate” A over x’,y’,w’ and define A*(x) = p’,
@) = q # y,_, A*(W) = Ax'), and 1*(v) = A(v) for
allo € N\ {x,y/,w'} (including 1*(z’) = s’). By our invari-
ant, if y ¢ {x",y,2,w’'}, 1*(y) = A(y) and she still obtains her
fourth-least favorite house at best. Otherwise, y € {x’,z’}. Since
A (x") = p’, A*(2’) = 5/, y obtains her second-least favorite house
at best. To prove that A* 3* A, take any N’ 2 {x’,y’,z’, w’} of size
5and let H = A(N’). ANv v does not belong to an isolated bottom
cycle due to x’,y’,z’,w’ € N’. 1* does not belong to an isolated
top cycle, as we have A*(x’) = p’ and p’ is x”’s least preferred
house. We call Lemma 8, and obtain the desired claim. In total,
under Structure p’r’-p’r’-q's’-q’s’, we again constructed A* € M
such that:

e A* € BC(P).

o I'(x)=p".

e Under A%, y obtains her fourth-least favorite house from H
at best.

o Under 1%, at least one agent in {x’,y’,2"} \ {x,x,} obtains
their third-least favorite house from H at best (due to our
relabeling ensuring x # x’,z” and both x” and 2z’ obtaining
their second-least favorite house at best).

o Additionally, A*(y') # hy (n—1).

Moving from u* to A*. Roughly speaking, the following claim
states that, starting from the chosen p* € TC(P), we can perform
arbitrary swaps between all agents not equal to x or xp.

Claim: Let p € M with p(x) = p and, under Structure pr-pr-gs-
gs, u(y) # hy(2). Forany u,0 € H\ {x,xp} let yt5y € M such that
[ = lyesp, except for p(u) = pyeo(0) and p(v) = pyoo(u). Then,
B3 fueso.

To prove this claim, let N’ 2 {x,y,z u,v} be of size 5 (v may
coincide with y or z. Fill up arbitrarily, then). Let H' = u(N’) and
denote for brevity A = 0. Note that u(N”) = A(N’). Further,
note that yn- g is not part of an isolated top cycle, since by design
y obtains her third-best house at best under Structure pr—pr—gs—
gs. Similarly, since x € N’ and A(x) = p is her top choice (in H
and thus also in H’), ANv g is not part of an isolated bottom cycle.
Hence, by Lemma 8, 1 3* A. This concludes the proof of the claim.

Now, start by setting u® = p* and i = 0. Iterate over each
u € H\ {x,xp}. Check if 4 (u) = 2*(u). If yes, there is nothing to
do and we proceed with the next u. Otherwise, identify v # u with
' (v) = A*(u). By the proven claim, y* 3* p,,,. By construction,
we still have y;(_,u(x) = p, and it coincides with A* in more agents
than pf. Set y*! =yl then increment i < i+1. Note that under
Structure pr—-pr-gs—gs, repeatedly applying the claim requires that
pi(y) # hy(2) for all i < k. For this, first note that A* (y) # hy(2),
as it is y’s fourth-least favorite house in H at best and n > 6.
Hence, we can in the first step pick u = y if needed, and obtain
1 (y) = A*(y). Afterwards, it will not reappear in the procedure as
some v: Observe that in step i + 1, the chosen v with p!(v) = 1*(u)
satisfies p!(v) = A*(u) # A*(0). For i = 1, clearly p!(y) = 1*(y),
and v # y. Inductively, 1 (y) = i (y) = A*(y) for all i, as desired.
In at most n — 2 steps, we arrive at some p% € M with p* 3* p¥,
¥ (x) = 2*(x) forall x € H \ {x, xp}.

Finally, we prove p¥ <* A*. To this end, consider N’ =
{x,xp,x", vy, 2’} and H" = 1% (N”). We know ;¥ coincides with
A on{x",y’, 2’} \ {x,xp}. Hence, ,u}’i],)H, is not part of an isolated
top cycle, as at least one agent in N’ obtains their third-least fa-
vorite house at best. Further, x’,3’,z" € N’ and under structures
p'—p’-p’ and p’q’-p’—¢’, there are no isolated bottom cycles. Fi-
nally, regarding structure p’r’—p’r’-q’s’—q’s’, recall that we chose
A* such that *(y’) # hy (n - 1). It follows that A?V’,H/ is not part
of an isolated bottom cycle. Calling Lemma 8 on N’, H’ to obtain
1% <* 1* concludes the proof.

o

Proposition 5. Let P be any profile withn > 5. Then, |TC(P)| > 2
and |BC(P)| < 2 implies TC(P) = M \ BC(P).
Some lemmas before the main proof are required.

Lemma 9. Let A! be an assignment such that x, y, or z obtains one
of her three most preferred houses, say t, under Structure p—p—p or
Structure pg—p—q. Then, there is A with A' =* X and A(x) = p.

Proor. Consider

x: P, hx(2), hx(3), ...
P=y: p, hy(2), hy(3), ...
z: p, hz(2), hz(3),



) Xt p ¢ ...
P'=y: p, hy(2), ...
z: q hg(2), ...
Our goal is to show that we can keep each structure intact on a
subprofile with five agents and five houses.

For P: Addv € N with A! (v) = p to x,y,zand fill x, y, z, v up until
it is a set N’ of size 5. Then, A'(N”) 2 {p, t}.
For P’: Add v,w € N with A1(v) = p and A} (w) = g to x,y,z and
fill x, y, z, v, w up until it is a set N’ of size 5 if needed. Then,
AN 2 {pg.t}.
Clearly, the structure remains intact on N’, H’, so there is no iso-
lated top cycle on My . Further, A! is not part of an isolated
bottom cycle, as some agent obtains t as their third favorite house
or better. It follows by Lemma 8 that A! can reach every assignment
A with A(N”) = H’, in particular one with A(x) = p. O

Lemma 10. Let A! be an assignment such that one of x,y,z, w
obtains one of her two most preferred houses, say t, under Structure

pr—pr—qs—qs. Then, there is A with A! =* A and A(x) = p.

Proor. Consider

X: o p, T, ...
P’ = y: p,r,

z: q, s,

w: g S,

W.lo.g., let w obtain ¢, one of her top two houses. Let v € N with
M (v) = p. Then, if needed, fill up x, y, z, w, v to some set N’ of size
5. Since AI(N’) 2 {p.,t}, the four agents x,y, z, w top-rank two
houses twice, and there is no isolated top cycle in My g. Further,
Al is not in an isolated bottom cycle, as an agent obtains her second-
best house or better. Hence, define A by letting x and v swap houses
from Al. Lemma 8 yields A1 2* A. O

PROOF OF PROPOSITION 5. Now, consider any assignment 1* ¢
BC(P).
The following is our Claim: 1* =* A! for some A! with A!(x) =
p-
If 1*(x) = p, we are done immediately by A! = 1*. Otherwise,
since A* is not Pareto-pessimal, there exists a swap cycle of houses
such that all agents on this cycle will be worse off after applying
it to A*. Our overall approach is to swap houses in a way that x
receives p (getting better off) while still enough agents are worse off,
so that the assignment after the swap (A!) is still weakly majority-
dominated by A*. To this end, we make use of the just mentioned
possible swap which is a Pareto-worsening. We now distinguish
several cases depending on the structure. Recall that P has one of
the following three forms

Xt p he(2), hx(3), ...
Pl=y: p, hy(2), hy(3), ...
zi p, hy(2), h(3), ...

X p,q ...
op hy(2), ..
z: g hi(2), ...

P,
b
q,
q,

P =

T N R
U)V:“!\

For Pl: If A* assigns p to x, y, or z, then we can w.l.o.g. rename
the agents such that 1*(x) = p. Otherwise, consider the
swap cycle: if it is of length 2, at least one agent among
X, Y,z is untouched by it, say x. Further, one of x’s top
three houses t is not affected by it, and since two agents
are worse off by the cycle we can find the agent w with
A*(w) = t and create A! by letting x and w swap their
houses simultaneously with the two agents getting worse
houses by the cycle. Then, as at most 2 agents improve by
letting x and w swap their houses (and they are disjoint
from the two agents being worse off), we have 1* % AL
Using Lemma 9, we obtain A! =* 11> with A3 being some
assignment satisfying A1 (x) = p. If the swap cycle is of
length at least 3, it again can either not contain p or none
of the three agents x, y, z. If it doesn’t contain p, simply let
w be the agent such that 1*(w) = p, and force swap the
houses of w and x after performing the Pareto-worsening
swap cycle, to obtain A!. Agent x improves, and at most one
agent from the cycle improves. Hence, at least two agents
from the cycle are still worse off, yielding A* % A!. Similarly,
if it does not contain w.l.o.g. x, force swap p to x with the
same argument.

For P2: We can clearly force swap a top three house ¢ to one of
the three agents x, y, z: If the Pareto-worsening swap cy-
cle is of length 2, we can use the pigeon hole principle
because one of the three agents, w.l.o.g. x, and one of her
top three houses t are not affected by the swap cycle. De-
fine A! by identifying the agent currently holding house ¢
and letting her swap houses with x after performing the
Pareto-worsening swap cycle. This yields 1* & AL, Then,
apply Lemma 9 to obtain A'°, in which A1%(x) = p. If
the Pareto-worsening swap cycle is of length 3, it either
does not involve one of x,y, z or one of p,q. If, e.g., the
cycle does not contain x, we define A! by letting x swap
her house with the agent who holds p after performing
the Pareto-worsening swap cycle. If the Pareto-worsening
swap cycle is of length at least 4, just give agent x house p
after performing the Pareto-worsening swap cycle.

For P? Again, we perform a case analysis based on the length of
the Pareto-worsening swap cycle.

— Consider first the case where the cycle has length 2.

* It could be that houses p, r and agents z, w form
this swap cycle. This is the most annoying case,
as our improving swap can neither contain p
or r, nor can we directly swap s to z or w. Ef-
fectively, this prevents all four agents x, y,z, w
from obtaining one of their top 2 houses directly
by means of executing a swap directly after the
worsening swap. We are forced to take a detour
by defining A! from A* by first applying the wors-
ening swap cycle and then letting x obtain her
third-best house by swapping with some other



agent (which cannot be z, w, as they hold p, r).
Al is well defined, and A* x Al. Annoyingly, A!
is too weak to call Lemma 10. We hence resort to
Lemma 8 to swap p to x or y: Let v be the agent
with A1(v) =s. Considering N’ = {x,y,z, w, v},
we see that H' = A1(N’) contains s. Further, by
assumption on the Pareto-worsening swap cy-
cle, z, w hold p and r! Hence, the on P 7, the
structure with two pairs of agents sharing the
same top choice is intact, meaning My g con-
tains no isolated top cycle. As A! gives agent x
his third ranked house, it is not in an isolated bot-
tom cycle in My g7 Using Lemma 8, it reaches
all assignments with A(N”) = H’ on the major-
ity graph, in particular A!-> which assigns p to
X.

# If one of p or r is not affected by the Pareto wors-
ening swap cycle, we proceed by a further case
analysis. The first case is that the cycle does not
affect at least one agent of x and y. The second
case is that the cycle is between x and y. In the
first case, force swap p or r (whichever one of
them is not affected by the Pareto-worsening
swap cycle) to x or y (whichever one of them
is not affected by the Pareto-worsening swap
cycle) after performing the Pareto-worsening
swap cycle, to obtain A!. In the second case, we
can assume that one of g or s is unaffected by the
cycle because this situation would be identical
to the case where the cycle lets w and z swap
houses p and r up to renaming. We hence force
swap q or s to z after performing the Pareto-
worsening swap cycle to obtain A'. We make
use of Lemma 10, which yields AL =% A3 for
some A'1.5 with 113 (x) = p.

* Finally, consider the case when at least of the
agents w or z is not affected by the Pareto-
worsening swap cycle, say w.l.o.g. w. We know
that, since we are not in the previous case, the
two houses being swapped by the cycle are p
and r. This means we can simultaneously per-
form two swaps: Let w swap with the agent who
gets g in A, and let the two agents getting p and
r swap their houses. The result of these two si-
multaneous swaps is A and we have 1* = AL
By Lemma 10, we can reach a A1, giving x to p.

- If the cycle is of length 3: Either some agent among
X, Y, z, w already obtained one of her top 2 choices or
there is an easy force swap to achieve this. Call again
Lemma 10.

— If the cycle is of length 4 or larger: Force swap p to x
after performing the Pareto-worsening swap cycle.

In all cases, we obtain an assignment, overwrite A!, with A1 (x) = p.
This proves the claim.

With this claim, the proof becomes significantly easier. Take any
Pareto-optimal assignment p* with p*(x) = p and, if applicable,

1*(z) = q. We again perform a case analysis based on the profile
structure.

e For P!, we start from A!, and always consider x, y, z. We
add some w on which A’ does not coincide with y*, and the
o which holds p* (w) under A’. Force swap to obtain A1,
as A is not in an isolated bottom cycle and by p € H’ and
Al(x) = p there is no isolated top cycle.

e For P?, we first start by swapping q to z (with the same
connectedness argument) to obtain A%. From that point
on, any N’ 2 {x,y,z} contains the structure pq—p—q with
H’ = A'N’. We keep adding w, v to A? as in the item before.

e For P3, we can swap g to z in the first step (with the same
connectedness argument). This case is rather tricky as we
need all five agents x, y, z, w, v with M) = q. From this
point on, the double double top is intact whenever x and z
are present in AL Since x, y, z, w do not allow for the addi-
tion of two new agents u, v, we need to swap in two steps.
First, we identify some v for which A! assigns a different
house than p*, and find the agent u holding it. Then, we
let u and y swap. Then, we let y and v swap. We can do
this until all agents v # x, y, z, w except for one last u are
satisfied. The last five agents x, y, z, w, u we easily deal with
at once.

This concludes the proof, as we have shown that from any as-
signment not in an isolated bottom cycle, we can reach a serial
dictatorship on the majority graph.

m}

C PATHFOR EXAMPLE 4

Here, we provide a concrete path from the assignment y in Exam-
ple 4 to a serial dictatorship A in the majority graph. What follows, is
a sequence of pairs of assignments with the red assignment weakly
dominating the other one (which is marked in blue for the agents
receiving a different house). The profile P of course remains the
same. In the first illustration, the red assignment is p. In the last
illustration, the blue assignment is A.

1: f, b, d e ¢ a g
2: d, f, g a b e c
3: d, a ¢ g e b f
P=4: a d b f, g e c
5: ¢ g, e b f, d a
6: f, a e d, g ¢ b
7: ¢ d, e b, g f, a
1: f, b, d e ¢ a g
2: d, f, g a b e c
3: d, a ¢ g e b f
P=4: a d b f, g e c
5: ¢ g, e b f, d a
6: f, a e d, g ¢ b
7: ¢ d, e, b, g f, a
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The assignment A is a serial dicatorship, e.g., with the picking order

3,4,6,7,1,5,2.
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