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ABSTRACT
A central problem in multiagent systems is the fair assignment of

objects to agents. In this paper, we initiate the analysis of classic

majoritarian social choice functions in assignment. Exploiting the

special structure of the assignment domain, we show a number of

surprising results with no counterparts in general social choice. In

particular, we establish a near one-to-one correspondence between

preference profiles and majority graphs. This correspondence im-

plies that key properties of assignments—such as Pareto-optimality,

least unpopularity, and mixed popularity—can be determined solely

by the associated majority graph. We further show that all Pareto-

optimal assignments are semi-popular and belong to the top cycle.

Elements of the top cycle can thus easily be found via serial dicta-

torships. Our main result is a complete characterization of the top

cycle, which implies the top cycle can only consist of one, two, all

but two, all but one, or all assignments. By contrast, we find that

the uncovered set contains only very few assignments.
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1 INTRODUCTION
Assigning objects to individual agents is a fundamental problem

that has received considerable attention by computer scientists

as well as economists [e.g., 7, 17, 34, 41]. The problem is known

as the assignment problem, the house allocation problem, or two-
sided matching with one-sided preferences. In its simplest form, there

are 𝑛 agents, 𝑛 houses, and each house needs to be allocated to

exactly one agent based on the strict preferences of each agent over

the houses. Applications are diverse and include assigning jobs to

applicants, apartments to tenants, and offices to employees.

House allocation can be viewed as a special case of social choice,
where agents have preferences over an abstract set of alternatives

and a social choice function (SCF) returns the “best” alternative

based on these preferences. When letting the set of alternatives be

the set of all possible allocations of houses to agents and postulating

that agents are indifferent between all allocations in which they

receive the same house, house allocation is reduced to a restricted

domain of general social choice. This perspective opens the door

to transferring concepts from social choice theory to the domain

of house allocation. For example, a natural way to compare two

assignments 𝜇 and 𝜆 is to check whether a majority of agents prefer

the house they receive under 𝜇 to the one they receive under 𝜆.

Gärdenfors [26] pointed out that the resultingmajority relationmay

be cyclic, demonstrating that a well-known issue in social choice—

the Condorcet paradox—can also occur in the domain of assignment.

Gärdenfors also introduced the notion of a popular assignment

as an assignment, for which there is no other assignment that is

preferred by a majority of the agents.
1
Popular assignments thus

correspond to the well-studied notion of (weak) Condorcet winners

in social choice theory and may fail to exist, just like in social

choice. Popularity has been studied extensively and became an

established concept in assignment [see, e.g., 2, 3, 9, 14, 18, 19, 36].

As majority cycles are even more frequent in assignment than they

are in social choice, a crucial question is which assignment should

be selected in the absence of popular assignments.
2
This has led to

the definition of concepts such as least unpopular or mixed popular
assignments [31, 35]. Interestingly, these assignment rules are also

related to corresponding concepts studied in social choice theory:

the maximin voting rule and maximal lotteries.
In this paper, we consider classic majoritarian SCFs in the context

of assignment. An SCF is majoritarian if, like popularity, it is solely

based on the majority relation, often viewed as a majority graph.
Typical examples are Copeland’s rule, the top cycle, the uncovered

set, and the bipartisan set. The definitions of most of these functions

are equally natural in assignment as they are in social choice. The

top cycle, for example, returns all assignments that are maximal

elements of the transitive closure of the majority relation. Similarly,

the known set-theoretic relationships between these SCFs also hold

in the assignment domain. Computational properties, on the other

hand, do not carry over from social choice to assignment. When

viewing house allocation as a subdomain of social choice, the num-

ber of alternatives is exponential, and the individual preferences

are concisely represented as each agent merely cares about her

own house. This has serious algorithmic repercussions, and the

computational complexity of even the simplest concepts needs to be

reevaluated. For instance, identifying weak Condorcet winners is

straightforward in social choice, but finding a popular assignment

already requires clever algorithmic techniques [2].

Contribution
We gain several insights that clarify the unique structure of the

assignment domain, resulting in surprising outcomes that have no

parallels in the broader social choice domain. We first characterize

1
Gärdenfors [26] referred to popular assignments as “majority assignments”.

2
This can, for example, be seen by comparing the proportions of profiles that admit

Condorcet winners and popular assignments, respectively [2, 27, Tables 1 and 4.2].



all sets of preference profiles that admit the same majority graph.

This characterization is based on an efficient algorithm that recon-

structs all profiles that induce a given majority graph. It turns out

that almost all majority graphs are induced by a single preference
profile. As a consequence, the rules that return all Pareto-optimal

assignments, all least unpopular assignments, and all mixed popular

assignments, respectively, are majoritarian. Moreover, all Pareto-

optimal assignments are contained in the top cycle, which means

that elements of the top cycle can be found via serial dictator-

ships. Furthermore, Pareto-optimal assignments have non-negative

Copeland score and are thus semi-popular. None of these results

holds in the general social choice domain. We also show that the

rule returning all rank-maximal assignments is not majoritarian.

Our main result is a complete characterization of the top cycle in

assignment when there are 𝑛 ≥ 5 agents and houses. This charac-

terization shows that the cardinality of the top cycle may only take

one of five values (1, 2, 𝑛! − 2, 𝑛! − 1, or 𝑛!) and leads to a simple

sublinear-time algorithm that returns a concise representation of

all assignments in the top cycle. This characterization has no analog

in the more general social choice domain, where the top cycle can

consist of any number of alternatives, even when there are at most

three agents.

Lastly, we investigate the three most common variants of the

uncovered set, all of which refine the top cycle. We compute the

number of assignments contained in the uncovered set for 𝑛 = 5

(by exhaustive enumeration) and for 𝑛 = 6 and 𝑛 = 7 (by sampling

preference profiles). Somewhat surprisingly, in all these settings,

most profiles only admit two uncovered assignments, suggesting

that the uncovered set is much more discriminating in assignment

than it is in social choice [cf. 16, 22].

Related Work
The study of matching under preferences was initiated by Gale

and Shapley [25]. In their model (nowadays often referred to as

marriage markets), there are two types of agents who have strict

preferences over each other. Gale and Shapley showed that a so-

called stable matching always exists and can be found by a simple,

efficient algorithm. Gärdenfors [26] showed that stable matchings

are no longer guaranteed to exist when agents may be indifferent

between other agents. He proposed to consider majority compar-

isons between matchings and introduced the notion of a popular

matching, i.e., a matching such that there is another matching that

a majority of the agents prefer. Popular matchings correspond to

weak Condorcet winners in social choice theory. When individual

preferences are strict, popularity is weaker than stability. However,

popular matchings may not exist for weak preferences. This issue

persists in the important special case where agents of one type

are completely indifferent between all agents of the other type

(these agents can then be seen as objects) and all other agents have

strict preferences. This variant, which goes back to Gale [24], is

known as assignment, house allocation, or two-sided matching

with one-sided preferences. Abraham et al. [2] provided an efficient

algorithm for finding a popular assignment or returning that none

exists.

The definition of popularity has been relaxed in various ways

to restore existence. McCutchen [35] proposed the unpopularity

margin as a qualitative relaxation of popularity. A least unpopular

matching in this sense always exists, but is NP-hard to compute.

Kavitha et al. [31] introduced mixed popular assignments, whose

existence is guaranteed by the minimax theorem, and provided

an efficient algorithm for computing them. Kavitha and Vaish [32]

transferred the notion of Copeland winners from social choice to so-

called roommate markets, which generalize the assignment setting.

They showed that computing a Copeland winner is NP-hard. It

is open whether hardness also holds in assignment. Kavitha and

Vaish also give a fully polynomial-time randomized approximation

scheme for identifying semi-popular matchings, another relaxation

of popularity, in roommate markets. Semi-popular matchings are

matchings that lose at most half of their majority comparisons [30].

Proposition 1 entails that semi-popular assignments can easily be

found via serial dictatorships.

2 PRELIMINARIES
Let 𝑛 ∈ N be given. We denote by 𝑁 = {1, . . . , 𝑛} a set of agents
and by 𝐻 = {𝑎, 𝑏, 𝑐, . . . } a set of 𝑛 houses (or distinct indivisible
objects in general). Each agent 𝑥 ∈ 𝑁 reports a preference relation
≻𝑥 , which is formally a linear order over 𝐻 . Intuitively 𝑎 ≻𝑥 𝑏

means that agent 𝑥 prefers house 𝑎 to house 𝑏. Note that we require

each agent to rank all houses (without indifference) and that there

are as many houses as agents. A preference profile 𝑃 = (≻1, . . . , ≻𝑛)
is the collection of the preference relations of all agents.

Given a preference profile, our goal is to assign one house to

each agent. To formalize this, we define assignments as bijective
functions mapping agents in 𝑁 to houses in 𝐻 . Thus, 𝜇 (𝑥) is the
house given to agent 𝑥 under assignment 𝜇. We define by 𝑀 the

set of all possible assignments from 𝑁 to 𝐻 . Further, we write an

assignment 𝜇 in which agents 1, 2, 3, . . . obtain houses 𝑎, 𝑏, 𝑐, . . . ,

respectively, as 𝜇 = (𝑎, 𝑏, 𝑐, . . . ). Throughout the paper, we assume

that agents compare assignments only based on the houses they

receive: an agent 𝑥 ∈ 𝑁 (weakly) prefers an assignment 𝜇 to another

assignment 𝜆, denoted by 𝜇 ⪰𝑥 𝜆, if 𝜇 (𝑥) ≻𝑥 𝜆(𝑥) or 𝜇 (𝑥) = 𝜆(𝑥).
Moreover, an agent 𝑥 ∈ 𝑁 strictly prefers an assignment 𝜇 to an

assignment 𝜆, written as 𝜇 ≻𝑥 𝜆, if 𝜇 (𝑥) ≻𝑥 𝜆(𝑥) and 𝜇 (𝑥) ≠ 𝜆(𝑥).
An assignment rule 𝐹 maps every preference profile 𝑃 to a non-

empty set of assignments 𝐹 (𝑃). The idea is that an assignment rule

returns a set of “good” assignments, fromwhich a single assignment

will eventually be picked.

Most of the rules considered in this paper are symmetric. This
is a basic fairness notion, which demands that all agents and all

houses are treated equally, respectively. More formally, relabeling

the agents in the preference profile should correspond to relabeling

the agents in the returned assignments, and relabeling the houses

in all agents’ rankings should correspond to relabeling the houses

in the returned assignments. When 𝑛 ≥ 2, no single-valued assign-

ment rule can be symmetric. We, therefore, consider set-valued

rules. To nonetheless distinguish more from less discriminating

rules, we say that a rule 𝐹 is a refinement of a rule 𝐺 and write

𝐹 ⊆ 𝐺 , if 𝐹 (𝑃) ⊆ 𝐺 (𝑃) for all profiles 𝑃 .
Lastly, we discuss a standard property of assignments called

Pareto-optimality. Intuitively, this notion requires that there is no

assignment that makes one agent strictly better off without making

another one worse off. To formalize this idea, we say an assignment



𝜇 Pareto-dominates another assignment 𝜆 in a profile 𝑃 if all agents

weakly prefer 𝜇 to 𝜆 and this preference is strict for at least one

agent, i.e., 𝜇 ⪰𝑥 𝜆 for all agents 𝑥 ∈ 𝑁 and 𝜇 ≻𝑥 𝜆 for at least

one agent 𝑥 ∈ 𝑁 . Further, an assignment is Pareto-optimal if it is
not Pareto-dominated by any other assignment. The set of Pareto-

optimal assignments in a profile 𝑃 is denoted by PO(𝑃). The set
of Pareto-optimal assignments is closely connected to the family

of serial dictatorships. Such serial dictatorships are defined by a

priority order 𝜎 = (𝑥1, . . . , 𝑥𝑛) over the agents, and agents simply

pick their favorite house that has not been taken yet in the order

given by 𝜎 . It has been shown that an assignment is Pareto-optimal

if and only if it is returned by a serial dictatorship for the given

profile [1]. Pareto-optimality is muchmore restrictive in assignment

than in the general social choice domain: there are always Pareto-
dominated assignments unless all agents have the same preferences.

More generally, for every pair of agents 𝑥,𝑦 and every pair of houses

𝑎, 𝑏 such that 𝑎 ≻𝑥 𝑏 and𝑏 ≻𝑦 𝑎, there are (𝑛−2)! Pareto-dominated

assignments where 𝑥 obtains 𝑏 and 𝑦 obtains 𝑎.

3 THE STRUCTURE OF MAJORITY GRAPHS
A fundamental way to compare two assignments to each other is

to postulate that one assignment is socially preferred to another

if a majority of the agents prefer the former to the latter. To this

end, let 𝑁𝜇,𝜆 = {𝑥 ∈ 𝑁 | 𝜇 ⪰𝑥 𝜆} denote the set of agents who

weakly prefer 𝜇 to 𝜆. An assignment 𝜇 weakly majority dominates
assignment 𝜆 if at least as many agents prefer 𝜇 to 𝜆 than vice versa,

i.e., 𝜇 ¥ 𝜆 if |𝑁𝜇,𝜆 | ≥ |𝑁𝜆,𝜇 |. Similarly, an assignment 𝜇 (strictly)
majority dominates another assignment 𝜆 if strictly more agents

prefer 𝜇 to 𝜆 than vice versa, i.e., 𝜇 ≻ 𝜆 if |𝑁𝜇,𝜆 | > |𝑁𝜆,𝜇 |.
This naturally leads to the analysis of majority graphs, which

have been extensively studied in social choice theory [see, e.g.,

8, 33]. Each profile 𝑃 induces a directed graph 𝐺𝑃 = (𝑀, {(𝜇, 𝜆) ∈
𝑀2

: 𝜇 ¥ 𝜆}), which has all possible assignments as its vertices and

there is an edge from an assignment 𝜇 to another assignment 𝜆 if 𝜇

weakly majority dominates 𝜆.

Example 1. Consider the following profile 𝑃 with 𝑁 = {1, 2, 3}
and 𝐻 = {𝑎, 𝑏, 𝑐}, and the corresponding majority graph. An arrow

from 𝜇 to 𝜆 indicates that 𝜇 strictly majority dominates 𝜆, and the

absence of an arrow indicates a majority tie.

𝑃 =

1 : 𝑎, 𝑏, 𝑐

2 : 𝑎, 𝑏, 𝑐

3 : 𝑎, 𝑏, 𝑐

(𝑎, 𝑏, 𝑐) (𝑏, 𝑐, 𝑎) (𝑐, 𝑎, 𝑏)

(𝑐, 𝑏, 𝑎) (𝑎, 𝑐, 𝑏) (𝑏, 𝑎, 𝑐)

Note that we can obtain the samemajority graph from other profiles,

too. Specifically, if all three agents 𝑥 rank 𝑏 ≻′𝑥 𝑐 ≻′𝑥 𝑎 in profile 𝑃 ′,
or all agents rank 𝑐 ≻′′𝑥 𝑎 ≻′′𝑥 𝑏 in profile 𝑃 ′′, then𝐺𝑃 = 𝐺𝑃 ′ = 𝐺𝑃 ′′ .

While every directed graph is induced by some preference profile

in social choice [37], Brandt et al. [14] pointed out that this is not the

case in assignment, where only a small fraction of majority graphs

can actually be realized by preference profiles. Moreover, Brandt

et al. gave an efficiently testable, necessary, and sufficient condition

for two profiles yielding the same weighted majority graph, where

each edge (𝜆, 𝜇) of the majority graph is weighted by the margin

|𝑁𝜆,𝜇 | − |𝑁𝜇,𝜆 | of the majority comparison. In this section, we will

generalize this result to unweighted majority graphs, showing that

almost all majority graphs are induced by a unique profile.
To this end, we first recall some terminology by Brandt et al..

Let 𝑃 be a profile and let (𝐻1, . . . , 𝐻𝑘 ) be an ordered partition of 𝐻 ,

where we call each 𝐻 𝑗 a component. We say that (𝐻 𝑗 ) 𝑗 is a de-
composition of this profile, if all agents rank all houses in 𝐻1 over

all houses in 𝐻2 and so on. Formally, for all 𝑗 < ℓ ≤ 𝑘 and all

𝑝 ∈ 𝐻 𝑗 , 𝑞 ∈ 𝐻ℓ , and 𝑥 ∈ 𝑁 , it holds that 𝑝 ≻𝑥 𝑞. Two profiles 𝑃 , 𝑃 ′

are called rotation equivalent, if the preferences on 𝑃 and 𝑃 ′ coincide
within each component, and one ordering of the components is ob-

tained by shifting the other. Formally, consider any decomposition

(𝐻1, . . . , 𝐻𝑘 ) of 𝑃 . Then, for all 𝑗 ≤ 𝑘 , 𝑝, 𝑞 ∈ 𝐻 𝑗 , and 𝑥 ∈ 𝑁 , it has

to hold that 𝑝 ≻𝑥 𝑞 if and only if 𝑝 ≻′𝑥 𝑞, and there exists some

𝑟 < 𝑘 such that (𝐻1+𝑟 , . . . , 𝐻𝑘+𝑟 ) is a decomposition of 𝑃 ′ (where
we set 𝐻 𝑗+𝑟 := 𝐻 𝑗+𝑟−𝑘 if 𝑗 + 𝑟 > 𝑘).

Example 2. To illustrate rotation equivalence, consider the follow-

ing profiles 𝑃, 𝑃 with 𝑁 = {1, 2, 3, 4}, 𝐻 = {𝑎, 𝑏, 𝑐, 𝑑}, and decompo-

sition (𝐻1 = {𝑎}, 𝐻2 = {𝑏}, 𝐻3 = {𝑐, 𝑑}).

𝑃 =

1 : 𝑎, 𝑏, 𝑐, 𝑑

2 : 𝑎, 𝑏, 𝑐, 𝑑

3 : 𝑎, 𝑏, 𝑑, 𝑐

4 : 𝑎, 𝑏, 𝑑, 𝑐

𝑃 =

1 : 𝑎, 𝑏, 𝑐, 𝑑

2 : 𝑎, 𝑏, 𝑑, 𝑐

3 : 𝑎, 𝑏, 𝑑, 𝑐

4 : 𝑎, 𝑏, 𝑑, 𝑐

The profile 𝑃 is not rotation equivalent to 𝑃 , as 𝑐 ≻2 𝑑 and

𝑑 ≻′
2
𝑐 even though 𝑐 and 𝑑 belong to the same component 𝐻3.

Moreover, rotation equivalence can also be violated when, within

each component, the preferences of the agents are coherent. For

this, consider the profile 𝑃 from Example 1 and let 𝑃 ′′′ be the

profile, where all agents 𝑥 report 𝑎 ≻′′′𝑥 𝑐 ≻′′′𝑥 𝑏. Then, 𝑃 ′′′ is
not rotation equivalent to 𝑃 , as the decomposition ({𝑎}, {𝑏}, {𝑐})
cannot be rotated to ({𝑎}, {𝑐}, {𝑏}). However, ({𝑏}, {𝑐}, {𝑎}) and
({𝑐}, {𝑎}, {𝑏}) are valid rotations. Hence, the profiles 𝑃 ′ and 𝑃 ′′

described in Example 1 are rotation equivalent to 𝑃 .

Brandt et al. [14] showed that rotation equivalence character-

izes the profiles that induce the same weighted majority graph.

We are able to strengthen this result by showing that the margins

are not required: rotation equivalence, in fact, characterizes the

profiles inducing the same (unweighted) majority graph! As a con-

sequence, given any assignment-induced majority graph, we can

reconstruct the margins of all majority edges. Moreover, let a house

“Pareto-dominate” another house if all agents rank the former above

the latter. Whenever there are no Pareto-dominated houses in a

profile 𝑃 , our result implies that this profile has a unique major-

ity graph 𝐺𝑃 . Even in the presence of Pareto-dominated houses,

we can deduce all agent preferences except for the direction of

some Pareto-dominations. The full proof of the following result is

deferred to Appendix A.

Theorem 1. Two profiles induce the same majority graph if and
only if they are rotation equivalent.

Proof sketch. It is easy to verify that rotation equivalent pro-

files indeed induce the same majority graph, so we focus on the

remaining implication. Let 𝐺𝑃∗ be a majority graph that is induced

by some profile 𝑃∗. Our goal is to find all profiles 𝑃 such that

𝐺𝑃 = 𝐺𝑃∗ . As a first step, we consider a pair of houses 𝑝, 𝑞. We

iterate over pairs of agents 𝑥,𝑦 and instantiate an assignment 𝜇 in



which 𝑥 obtains 𝑝 and 𝑦 obtains 𝑞. We compare 𝜇 to the assignment

𝜆 in which 𝑥 and 𝑦 swap houses. If the two assignments create a

majority tie, then 𝑥 and 𝑦 have identical preferences over 𝑝, 𝑞. How-

ever, if, e.g., 𝜇 is strictly majority-preferred to 𝜆, then this means

that 𝑝 ≻𝑥 𝑞 and 𝑞 ≻𝑦 𝑝 for any profile 𝑃 with 𝐺𝑃 = 𝐺𝑃∗ . In other

words, for each pair of distinct houses 𝑝 and 𝑞, we can determine

whether one Pareto-dominates the other (without knowing which

one) for all profiles 𝑃 with 𝐺𝑃 = 𝐺𝑃∗ . If this is not the case, then

we can determine for each agent whether she ranks 𝑝 over 𝑞 in all

such profiles 𝑃 or vice versa.

Next, we instantiate a graph with the houses being the nodes.

An edge between two houses 𝑝 , 𝑞 is added whenever not all agents

prefer 𝑝 to 𝑞 or vice versa. By the insights of the previous para-

graph, this means that we can determine for each agent which

of the houses she prefers more. This graph partitions the set of

houses into connected components 𝐻1, . . . , 𝐻𝑘 . We then show that

within each component 𝐻𝑖 , we can determine the relative ordering

between all pairs of houses by querying appropriate majority com-

parisons, and that each agent ranks the houses of each component

contiguously. Finally, we re-order the components and prove that 𝑃

can be decomposed as (𝐻1, . . . , 𝐻𝑘 ) or a rotation (𝐻1+𝑟 , . . . , 𝐻𝑘+𝑟 )
thereof. □

Remark 1. The proof of Theorem 1 yields an efficient algorithm for

reconstructing all profiles inducing a given majority graph in time

polynomial in 𝑛. Moreover, the majority graph uniquely determines

the majority margins, which can also be deduced algorithmically.

On the other hand, to verify whether a given directed graph is the

majority graph of a profile, one needs to check all ∼(𝑛!)2 edges of
the graph.

Remark 2. Unless 𝑛 is small, only very few profiles admit a non-

trivial decomposition, implying that they can be fully reconstructed

from their majority graph. As a matter of fact, almost all majority

graphs are induced by a single preference profile. Calculations by
Brandt et al. [14] demonstrate that more than 99% of all majority

graphs are induced by a single profile as soon as 𝑛 ≥ 4.

4 MAJORITARIAN ASSIGNMENT RULES
The concept of majority graphs has given rise to numerous influ-

ential solution concepts in social choice theory, such as Condorcet

winners, Copeland’s rule, the top cycle, and the uncovered set [see,

e.g., 8, 33]. In particular, all of these concepts are majoritarian,

i.e., they can be computed solely based on the majority graph of

a profile. As a consequence, the definitions of these concepts di-

rectly carry over to the assignment domain while preserving their

natural appeal. Weak Condorcet winners, for example, are known

as popular assignments in house allocation. An assignment 𝜇 is

popular if 𝜇 ¥ 𝜆 for all 𝜆 ∈ 𝑀 . Example 1 shows that popular assign-

ments need not exist. In the following, we investigate majoritarian
assignment rules, i.e., assignment rules that only depend on the

majority graph. Formally, an assignment rule 𝐹 is majoritarian if

𝐹 (𝑃) = 𝐹 (𝑃 ′) for all profiles 𝑃 and 𝑃 ′ with 𝐺𝑃 = 𝐺𝑃 ′ .

While our main focus is the study of established majoritarian

voting rules in the context of assignment, Theorem 1 implies that

several well-known assignment concepts are actually majoritarian.

Specifically, this result entails that an assignment rule is majoritar-

ian if and only if it is invariant with respect to rotation equivalence.

We use this fact to prove that Pareto-optimality, least unpopularity,

and mixed popularity are majoritarian. By least unpopularity, we
denote the rule that returns all assignments minimizing the margin

of their worst majority defeat. By mixed popularity, we denote the
rule that returns all assignments which are part of the support of

some mixed popular matching. Formal definitions of these con-

cepts can, for example, be found in the papers by McCutchen [35],

Kavitha et al. [31], and Brandt and Bullinger [9].

Corollary 1. PO, least unpopularity, and mixed popularity are ma-
joritarian.

Proof. Let 𝑃 and 𝑃 ′ be two rotation equivalent profiles w.r.t.

some decomposition (𝐻1, . . . , 𝐻𝑘 ) and a shift by 𝑟 ∈ {1, . . . , 𝑘 − 1}.

PO: Let 𝜇 ∈ PO(𝑃) be a Pareto-optimal assignment. By a charac-

terization due to Abdulkadiroğlu and Sönmez [1], there is an order

over the agents 𝜎 = (𝑥1, . . . , 𝑥𝑛) such that 𝜇 is chosen by the serial

dictatorship 𝑆𝐷𝜎 induced by 𝜎 , i.e., 𝜇 = 𝑆𝐷𝜎 (𝑃). Note that the

agents choose houses from 𝐻1, . . . , 𝐻𝑘 in this order because, for all

𝑖, 𝑗 ∈ {1, . . . , 𝑘} with 𝑖 < 𝑗 , it holds that every agent prefers every

house ℎ ∈ 𝐻𝑖 to every house ℎ′ ∈ 𝐻 𝑗 . Next, we partition the agents

𝑥 ∈ 𝑁 into the sets 𝑁𝑖 = {𝑥 ∈ 𝑁 : 𝜇 (𝑥) ∈ 𝐻𝑖 } for 𝑖 ∈ {1, . . . , 𝑘}. Let
𝜎′ denote the order of agents such that (i) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑘}
with 𝑖 < 𝑗 , all agents in 𝑁𝑖+𝑟 are ranked before all agents in 𝑁 𝑗+𝑟
and (ii) within each set 𝑁𝑖 , the agents are ordered the same as in

𝜎 . Under the serial dictatorship 𝑆𝐷𝜎 ′ induced by this sequence,

the agents from 𝑁1+𝑟 first get to choose their houses. Since 𝑃 ′ is
achieved by rotating 𝑃 with a shift of 𝑟 , these agents obtain pre-

cisely the same houses from 𝐻1+𝑟 as in 𝜇. Inductively, the agents

in 𝑁 𝑗+𝑟 obtain precisely the houses from 𝐻 𝑗+𝑟 under this shifted
picking sequence in the profile 𝑃 ′, and the obtained assignment is

hence 𝜇. This proves that 𝜇 ∈ PO(𝑃 ′). Reversing the roles of 𝑃 and

𝑃 ′, we obtain that PO chooses the same set of assignments on both

profiles.

Least unpopularity and mixed popularity: In the proof of

Theorem 1, we show that we can infer the precise margin of each

majority comparison from the majority graph. Since least popular-

ity and mixed popularity only depend on these margins, they are

majoritarian. □

By contrast, we show next via an example that the rule that

returns all rank-maximal assignments [29] is not majoritarian. To

introduce rank-maximality, we define the rank of a house 𝑝 in a

preference relation ≻ by 𝑟 (≻, 𝑝) = 1 + |{𝑞 ∈ 𝐻 | 𝑞 ≻ 𝑝}|, i.e.,
an agent’s favorite house has rank 1, his second favorite house

has rank 2, etc. Further, the rank vector of an assignment 𝜇 for a

profile 𝑃 contains the ranks 𝑟 (≻𝑥 , 𝜇 (𝑥)) of each agent 𝑥 ∈ 𝑁 for

her assigned house in increasing order. Then, an assignment 𝜇 is

rank-maximal if its rank vector is lexicographically optimal, i.e.,

the assignment maximizes the number of agents who obtain their

favorite house, subject to this it maximizes the number of agents

who obtain their second-ranked house, and so on.



Example 3. Consider the following two profiles 𝑃 and 𝑃 ′, which
are rotation equivalent and thus induce the same majority graph.

𝑃 =

1 : 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓

2 : 𝑎, 𝑐, 𝑏, 𝑑, 𝑓 , 𝑒

3 : 𝑏, 𝑎, 𝑐, 𝑒, 𝑑, 𝑓

4 : 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓

5 : 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓

6 : 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓

𝑃 ′ =

1 : 𝑑, 𝑒, 𝑓 , 𝑎, 𝑏, 𝑐

2 : 𝑑, 𝑓 , 𝑒, 𝑎, 𝑐, 𝑏

3 : 𝑒, 𝑑, 𝑓 , 𝑏, 𝑎, 𝑐

4 : 𝑑, 𝑒, 𝑓 , 𝑎, 𝑏, 𝑐

5 : 𝑑, 𝑒, 𝑓 , 𝑎, 𝑏, 𝑐

6 : 𝑑, 𝑒, 𝑓 , 𝑎, 𝑏, 𝑐

The assignment 𝜇 = (𝑎, 𝑐, 𝑏, 𝑑, 𝑒, 𝑓 ) marked in blue is rank max-

imal in 𝑃 , but not in 𝑃 ′, as the assignment 𝜆 = (𝑑, 𝑓 , 𝑒, 𝑎, 𝑏, 𝑐) in
red assigns two agents their top choice. To see that 𝜇 indeed is

rank-maximal in 𝑃 , note that any assignment can give at most two

agents their top choices. Agent 3 has to obtain 𝑏, and since 1, 4, 5, 6

all have the same preferences, we can assign 𝑎 to agent 1. Among

the remaining agents, only 2 can still obtain her second-favorite

house, 𝑐 . Among 4, 5, 6, it then does not matter how we assign 𝑑, 𝑒, 𝑓

for rank-maximality.

We conclude this section by proving a surprising relationship

between twomajoritarian assignment rules that does not hold in the

social choice domain. Specifically, we show that all Pareto-optimal

assignments are semi-popular. Semi-popularity is a weakening of

popularity, which requires that an assignment is majority preferred

to at least half of all assignments. Let a profile 𝑃 be given. More

formally, an assignment is semi-popular if |{𝜆 ∈ 𝑀 | 𝜇 ¥ 𝜆}| ≥ |𝑀 |
2

[32]. By 𝑆𝑃 (𝑃), we denote the set of all semi-popular assignments.

Proposition 1. PO ⊆ 𝑆𝑃 .

Proof. For our proof, we first introduce permutations on as-

signments. Given a permutation 𝜋 on 𝑁 , define 𝜋 ′ : (𝑁 → 𝐻 ) →
(𝑁 → 𝐻 ) such that for any assignment 𝜇 : 𝑁 → 𝐻 and agent

𝑥 ∈ 𝑁 , we have 𝜋 ′ (𝜇) (𝑥) := 𝜇 (𝜋 (𝑥)). Intuitively, the assignment

𝜇′ = 𝜋 ′ (𝜇) is obtained from 𝜇 by assigning to agent 𝑥 the house that

is given to agent 𝜋 (𝑥) in 𝜇. For the sake of simplicity, we slightly

abuse notation and refer to 𝜋 ′ as 𝜋 too.

Now, fix an arbitrary preference profile 𝑃 and an assignment

𝜇 ∈ PO(𝑃). We consider an arbitrary permutation 𝜋 and show

that 𝜋 (𝜇) ≻ 𝜇 implies that 𝜇 ≻ 𝜋−1 (𝜇). For simplicity, we name

𝜋 (𝜇) =: 𝜂 and 𝜋−1 (𝜇) =: 𝜆. Let 𝑦 denote an arbitrary agent who

strictly prefers 𝜂 to 𝜇, i.e., 𝜂 (𝑦) ≻𝑦 𝜇 (𝑦). Further, let 𝑥 = 𝜇−1 (𝜂 (𝑦))
be the agent who gets 𝜂 (𝑦) in 𝜇. Note that 𝑥 ≠ 𝑦. Since 𝜇 is Pareto-

optimal, it cannot be that 𝜇 (𝑦) ≻𝑥 𝜇 (𝑥), as otherwise swapping the
houses of 𝑥 and𝑦 would be a Pareto-improvement over 𝜇. Therefore,

𝜇 (𝑥) ≻𝑥 𝜇 (𝑦) = 𝜆(𝑥) and 𝜇 ≻𝑥 𝜆. Since 𝑦 was chosen arbitrarily,

we see that for every agent strictly preferring 𝜂 to 𝜇, we have one

other strictly preferring 𝜇 to 𝜆. Moreover, if 𝜇 (𝑥) = 𝜂 (𝑥), then
𝜋 (𝑥) = 𝑥 , which implies also that 𝜇 (𝑥) = 𝜆(𝑥). Hence, if a majority

of agents prefer 𝜂 to 𝜇, a majority of agents prefer 𝜇 to 𝜆. We lastly

note that every assignment 𝜂 can be obtained by permuting 𝜇, i.e.,

there is some permutation 𝜋 such that 𝜂 = 𝜋 (𝜇). Hence, it follows
that |{𝜆 ∈ 𝑀 | 𝜇 ¥ 𝜆}| ≥ |𝑀 |

2
, so 𝜇 is semi-popular. □

The proof of Proposition 1, in fact, shows a stronger statement:

each Pareto-optimal assignment has at least as many outgoing

(strict) majority edges as ingoing ones.

4.1 The Top Cycle
We next turn to the top cycle, one of the most prominent majori-

tarian rules in the social choice domain [e.g., 4, 15, 28, 39, 40]. The

underlying idea is very natural: popular assignments do not always

exist because the majority relation ¥ fails to be transitive (see Exam-

ple 1). Instead, one can consider ¥∗, the transitive closure of ¥, and
simply return the maximal elements according to this relation. For-

mally, TC (𝑃) = {𝜇 ∈ 𝑀 : ∀𝜆 ∈ 𝑀 : 𝜇 ¥∗ 𝜆}.3 Or, in other words, the

top cycle returns all assignments that reach every other assignment

on some path in the majority graph.

As a first step towards understanding the top cycle in the assign-

ment domain, we prove that it always contains all Pareto-optimal

assignments. This is not true in the social choice domain. We defer

the proof of the following result to Appendix B.1.

Proposition 2. PO ⊆ TC.

Using Proposition 2 as a stepping stone, we obtain a much

stronger structural result about majority graphs in assignment:

the top cycle can only contain one, two, all but one, all but two, all

but three, or all assignments. The full proof of this result is given

in Appendix B.

Theorem 2. Let 𝑃 be any profile with 𝑛 ≥ 5 agents and houses.
Then, |TC (𝑃) | ∈ {1, 2, 𝑛! − 2, 𝑛! − 1, 𝑛!}. More precisely, we have

(i) |TC (𝑃) | = 1 if all agents have distinct top choices,4

(ii) |TC (𝑃) | = 2 if all but two agents have distinct top choices.
Further, these two also share the same second choice, which is
not top-ranked by any other agent either,

(iii) |TC (𝑃) | = 𝑛! − 2 if (i) and (ii) do not hold, and all but two
agents have distinct bottom choices. Further, these two also
share the same second-to-bottom choice, which is not last-
ranked by any other agent either,

(iv) |TC (𝑃) | = 𝑛! − 1 if (i) and (ii) do not hold, and all agents
have distinct bottom choices, and

(v) |TC (𝑃) | = 𝑛! if none of the above cases holds.

Proof sketch of Theorem 2. First, the cases (i) and (ii) follow
relatively easy from Proposition 2: we get under the corresponding

assumptions that there are 1 or 2 Pareto-optimal assignments, and

it is easy to show that these are the only ones in the top cycle. More-

over, if the corresponding assumptions are not true, we can show

that there are more than 1 (resp. 2) Pareto-optimal assignments.

For cases (iii) through (v), we first prove via a computer-aided

approach that our result holds when there are 𝑛 = 5 agents and

houses. Specifically, we let the computer enumerate all profiles

for 𝑛 = 5 (up to symmetries) and verify that our theorem is true.

Based on this insight, we then tackle the remaining cases when

𝑛 ≥ 6. For case (v), we introduce the concept of the bottom cycle,

which contains all assignments that can be reached from every

other assignment via a path in the majority graph. Using our base

case for 𝑛 = 5, we prove case (v) for 𝑛 ≥ 6 by carefully constructing

3
One can also consider ≻∗ , the transitive closure of the strict part of the majority

relation and return its maximal elements. The resulting SCF is known as the Schwartz

set or GOCHA [39].

The top cycle is unrelated to the Top Trading Cycle (TTC), an assignment algorithm for

settings with initial endowments.

4
This case corresponds to the profiles admitting a strongly popular assignment, which

strictly majority dominate every other assignment. These are known as (strict) Con-

dorcet winners in social choice.



an assignment 𝜇 from the top cycle and an assignment 𝜆 from the

bottom cycle such that 𝜆 ¥∗ 𝜇. This implies that the top cycle

contains every assignment since every assignment has a path to

every other assignment in the majority graph via 𝜆 and 𝜇.

Lastly, we turn to the cases (iii) and (iv). For these cases, we

can assume that the profile takes one of the following forms as

otherwise case (i) or (ii) would apply.

𝑃 =

1 : 𝑎, . . .

2 : 𝑎, . . .

3 : 𝑎, . . .

4 : . . . . . .

5 : . . . . . .

𝑃 ′ =

1 : 𝑎, 𝑐

2 : 𝑎, 𝑐

3 : 𝑏, 𝑑

4 : 𝑏, 𝑑

5 : . . . . . .

𝑃 ′′ =

1 : 𝑎, 𝑏

2 : 𝑎, . . .

3 : 𝑏, . . .

4 : . . . . . .

5 : . . . . . .

We will exemplarily discuss our proof idea for the profile 𝑃 ′′. Con-
trary to the proof of case (v), we have no choice but to start from
an arbitrary assignment 𝜆∗ not contained in the bottom cycle. For

this assignment, we show that there is a trading cycle in which all

agents involved get worse off. For example, the trading cycle may

be of length two involving agents 4, 5 and houses 𝑐, 𝑑 . Since all the

agents in this trading cycle are worse off, we can let agent 1 swap

her house with whoever currently holds house 𝑎. This yields an

assignment 𝜆 with 𝜆∗ ¥∗ 𝜆 and 𝜆(1) = 𝑎. We illustrate this step

with the subsequent profile, where 𝜆 is the blue assignment and 𝜆∗

the red one.

𝑃 ′′ =

1 : 𝑎, 𝑏, . . .

2 : 𝑎, . . . . . .

3 : 𝑏, . . . 𝑎

4 : . . . 𝑐 𝑑

5 : . . . 𝑑 𝑐

Take now any Pareto-optimal assignment 𝜇∗ with 𝜇∗ (1) = 𝑎 and

𝜇∗ (3) = 𝑏. We will define a sequence of assignments 𝜆0, . . . , 𝜆𝑘 such

that 𝜆0 = 𝜆, 𝜆𝑘 = 𝜇∗, and 𝜆0 ¥∗ 𝜆1 ¥∗ . . . ¥∗ 𝜆𝑘 . As a first step, we
will construct an assignment 𝜆1 such that 𝜆1 (1) = 𝑎 and 𝜆1 (3) = 𝑏.

Let 𝑁 ′ be the set of 5 agents containing agents 1, 2, 3, the agent

𝑥 with 𝜆0 (𝑥) = 𝑏, and an arbitrary fifth agent 𝑦. Moreover, let 𝐻 ′

be the houses assigned to these agents in 𝜆0. We define 𝜆1 as the

assignment obtained from 𝜆0 by letting agents 3 and 𝑥 swap their

houses. When considering the restriction of 𝑃 ′′ to 𝑁 ′ and 𝐻 ′, we
see that case (iii), (iv), or (v) apply to this 5-agent instance. From

this, we infer that there is a path in the majority graph from 𝜆0

to 𝜆1.

Finally, starting from 𝜆1, we can repeatedly identify pairs of

agents 𝑥 and 𝑦 such that agent 𝑦 obtains in the current assignment

𝜆𝑖 the house 𝜇∗ (𝑥). Then, we obtain the next assignment 𝜆𝑖+1 by
letting agents 𝑥 and𝑦 swap their assigned houses. By restricting the

profile 𝑃 ′′ to the agents {1, 2, 3, 𝑥,𝑦} and their currently assigned

houses, we can again use the insights of the 5-agent case to deduce

that there is a path from 𝜆𝑖 to 𝜆𝑖+1. Finally, by repeatedly applying

this argument, we get that there is a path from 𝜆∗ to 𝜇∗ in the

majority graph, which shows that 𝜆∗ is in the top cycle. □

Theorem 2 shows that deterministic assignments are highly un-

stable with respect to majority deviations. One can almost always,

given a starting assignment and a target assignment, convince the

agents to transition from one to the other by presenting intermedi-

ate assignments that are preferred by a weak majority of agents. To

illustrate this point, consider the following poor assignment that

reaches every other assignment via some majority path.

Example 4. In 𝑃 , the assignment 𝜇 marked in red is obviously

not a desirable assignment. It fails to be Pareto-optimal, and many

agents even receive their last-preferred house. Nevertheless, it is

contained in the top cycle. A path of dominations via which 𝜇

reaches a serial dictatorship (and by virtue of Proposition 2 the

entire top cycle) is given in Appendix C. The rough idea is to

reassign to some agents slightly worse houses while improving

other agents’ assignments significantly. This creates majority ties

with better and better assignments. For example, we can make

agents 4, 5 worse by assigning 𝑐, 𝑎 to them, respectively. However,

this frees houses 𝑑, 𝑒 , which we assign to agents 2 and 7. These are

now significantly happier.

𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎

Remark 3. For completeness, we also consider the cases 𝑛 < 5 for

Theorem 2. Clearly, there exists only one assignment for 𝑛 = 1, and

two assignments for𝑛 = 2. For𝑛 = 3, we have found via a computer-

aided approach that the top cycle has size either 1, 2, 𝑛! − 2 = 4, or

𝑛! = 6. However, in contrast to case (iv) of Theorem 2, it is possible

that the top cycle contains𝑛!−2 assignments even though all agents

have pairwise distinct bottom choices. This happens, for example

in the following profile, where 𝜇 = (𝑏, 𝑐, 𝑎) (in red) and 𝜆 = (𝑐, 𝑏, 𝑎)
do not belong to the top cycle.

𝑃 =

1 : 𝑎, 𝑏, 𝑐

2 : 𝑎, 𝑐, 𝑏

3 : 𝑐, 𝑏, 𝑎

Lastly, for𝑛 = 4, we found via our computer-aided approach that the

top cycle can, in addition to the five sizes described in Theorem 2,

also have a size of 𝑛! − 3. Up to symmetries, this happens precisely

in the following two profiles 𝑃 and 𝑃 ′, where the assignments

𝜇 = (𝑐, 𝑑, 𝑏, 𝑎) (marked in red), 𝜆 = (𝑑, 𝑐, 𝑎, 𝑏), and 𝜂 = (𝑑, 𝑐, 𝑏, 𝑎) are
respectively not contained in the top cycle.

𝑃 =

1 : 𝑎, 𝑏, 𝑐, 𝑑

2 : 𝑎, 𝑏, 𝑑, 𝑐

3 : 𝑐, 𝑑, 𝑎, 𝑏

3 : 𝑐, 𝑑, 𝑏, 𝑎

𝑃 ′ =

1 : 𝑎, 𝑏, 𝑐, 𝑑

2 : 𝑎, 𝑏, 𝑑, 𝑐

3 : 𝑑, 𝑐, 𝑎, 𝑏

3 : 𝑑, 𝑐, 𝑏, 𝑎

Remark 4. Theorem 2 stands in stark contrast to classic social

choice, where the top cycle has virtually no cardinality restrictions.

In social choice, the top cycle may have any number of elements,

even when there are at most three agents. Further, in social choice

theory, TC can be computed in linear time in the size of the profile [8,

12]. Theorem 2 implies that in assignment, computing and returning

a concise representation of the (possibly exponentially large) top

cycle is possible in sub-linear time.



4.2 Uncovered Sets
We now proceed to another technique addressing the non-

transitivity of the majority relation: uncovered sets. These sets

are based on covering relations, which are natural transitive subre-
lations of the majority relation. Just as in the definition of the top

cycle, we can take the maximal elements for each of these relations,

defining an uncovered set that refines the top cycle. Uncovered

sets have been extensively studied in social choice theory [see, e.g.,

5, 6, 11, 20].

The presence of majority ties in the assignment domain allows

for multiple definitions of covering relations and uncovered sets,

and we will subsequently define the three most common ones.

Given a profile 𝑃 , an assignment 𝜇 Bordes covers another assignment

𝜆, if 𝜇 ≻ 𝜆, and for every third assignment 𝜂, we have that 𝜆 ≻
𝜂 implies 𝜇 ≻ 𝜂. Similarly, 𝜇 Gillies covers 𝜆, if 𝜇 ≻ 𝜆, and for

every 𝜂, we have that 𝜂 ≻ 𝜇 implies 𝜂 ≻ 𝜆. Finally, 𝜇 McKelvey
covers 𝜆 if it Bordes and Gillies covers it. Each of the three covering

relations gives rise to a corresponding uncovered set (UC). It returns
the maximal assignments of the covering relation, i.e., UC (𝑃) =
{𝜇 ∈ 𝑀 : no 𝜆 ∈ 𝑀 covers 𝜇 }. Whenever we refer to covering or

UC without further specification, we mean McKelvey covering. All

three uncovered sets can be characterized as assignments that reach

all other assignments via some majority path of length at most 2.

For Bordes, the first segment of any path of length 2 must be strict;

for Gillies, the second segment must be strict; and for McKelvey,

one of the two segments must be strict. This immediately implies

that all uncovered sets are contained in the top cycle. Moreover,

both the Bordes and the Gillies uncovered set are refinements of

the McKelvey uncovered set.

From the general social choice setting, we know that UC ⊆ PO
[23]. This inherits to assignment, and we can easily prove that the

inclusion is strict on this domain, too.

Example 5. In the following profile, the assignment 𝜇 = (𝑐, 𝑎, 𝑏)
in blue McKelvey-covers the assignment in red 𝜆 = (𝑎, 𝑏, 𝑐), even
though 𝜆 is Pareto-optimal.

𝑃 =

1 : 𝑎, 𝑐, 𝑏

2 : 𝑎, 𝑏, 𝑐

3 : 𝑏, 𝑎, 𝑐

Recall that all serial dictatorships are Pareto-optimal. Hence, this

example illustrates that PO fails to distinguish between “good” pick-

ing sequences and “bad” ones in which the agents take away each

other’s favorite houses in unfortunate ways. This effect occurs for

arbitrarily large numbers of agents. Thus, the uncovered assign-

ments set can be seen as particularly attractive among the set of

Pareto-optimal assignments.

To see how decisive UC is, we computed its choice sets and

tracked the occurring cardinalities while iterating over all prefer-

ence profiles up to symmetry for 𝑛 = 5 exhaustively. The resulting

graph is depicted in Figure 1. Further, we sampled profiles for

𝑛 = 7 agents drawing each agents preferences uniformly at ran-

dom, depicted in Figure 2. It turns out that the Bordes-UC is almost

indistinguishable from the McKelvey-UC, while the Gillies-UC is,

on average, the most discriminating one. This can be explained

as follows: Under the Gillies-UC, for an assignment 𝜆 to not be

covered despite 𝜇 ≻ 𝜆, there needs to exist another assignment 𝜂
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Figure 1: Size distributions of UCs for 𝑛 = 5. The high peak is
at size 2 for all of them. In total, there are 9078630 profiles (up
to symmetries) and there are 5! = 120 different assignments.
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Figure 2: Size distributions of UCs for 𝑛 = 7 in 1000 profiles
sampled via the impartial culture model. The high peak is
at size 2 for McKelvey and Bordes. Gillies-UC has an even
higher peak at size 4.

such that 𝜆 ¥ 𝜂 ≻ 𝜇. However, for small numbers of agents, there

are many profiles admitting popular assignments. If 𝜇 is such a

popular assignment, then there exists no 𝜂 with 𝜂 ≻ 𝜇, and hence 𝜇

automatically Gillies-covers all 𝜆 with 𝜇 ≻ 𝜆. Most notably, many

profiles in both simulations admitted an uncovered set of size two.

This finding suggests that UC is much more discriminative in as-

signment than in general social choice. However, can this already

be explained by PO being more discriminative in assignment than

in social choice?

To investigate how much UC differs from PO, we exhaustively
studied the case when 𝑛 = 5. For this, we utilize that the rules

are symmetric with respect to permuting agents and houses. We

therefore fix the preferences of agent 1, and further demand that

the preferences of agents 2 through 5 are ordered lexicographically.

This results in roughly 9 million profiles to be checked, which can

be done within a few days on a computer. In Figure 3, we depict

the percentage of profiles 𝑃 for which the ratio
|UC (𝑃 ) |
|PO (𝑃 ) | is at most

𝑥 ∈ [0, 1], as a function of 𝑥 . The results suggest that, indeed, UC is

significantly more discriminative than PO. Hence, this consolidates
that UC is an interesting refinement of PO, and it seems worthwhile

to further investigate the properties of UC.

Remark 5. In social choice, UC can be computed in polynomial

time via matrix multiplication [8, 12]. In assignment, the uncovered

set can be exponentially large. Unless a structural result such as
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Theorem 2 also holds for UC, it seems unlikely that the uncovered

set can be returned in polynomial time. Instead, the two interesting

questions are (i) whether, given a profile, one can efficiently find

an uncovered assignment, and (ii) whether, given a profile and

an assignment, the assignment is uncovered. The computational

complexity of both problems remains open.

Remark 6. Our experiments suggest that, at least for small 𝑛, all

rank-maximal assignments are contained in the uncovered set. We

have verified this through exhaustive search for all profiles with

𝑛 ≤ 5. If this were true in general, we could obtain an element of

the uncovered set by computing a rank-maximal assignment, which

is possible in polynomial time. A set inclusion between the two

rules would be interesting, as then UC would be a natural rule that

is relatively decisive, yet contains all rank-maximal and all popular

assignments.

Remark 7. Generous assignments [34, 38] are a dual version of

rank maximal assignments: we compare assignments again based

on their rank vector, but we now lexicographically optimize for the

worst-off agents. While generous and rank-maximal assignments

have very similar definitions, UC indicates that rank-maximal as-

signments may be preferable, as there are simple instances where

no generous assignment is in the UC. For example, consider the

following profile 𝑃

𝑃 =

1 : 𝑐 𝑓 𝑎 𝑒 𝑏 𝑔 𝑑

2 : 𝑏 𝑐 𝑔 𝑒 𝑎 𝑑 𝑓

3 : 𝑔 𝑓 𝑎 𝑑 𝑒 𝑐 𝑏

4 : 𝑔 𝑏 𝑒 𝑐 𝑎 𝑓 𝑑

5 : 𝑒 𝑑 𝑎 𝑏 𝑐 𝑓 𝑔

6 : 𝑎 𝑏 𝑑 𝑔 𝑓 𝑒 𝑐

7 : 𝑓 𝑏 𝑑 𝑒 𝑐 𝑎 𝑔

The only two uncovered assignments for 𝑃 are the underlined

𝜇 = (𝑐, 𝑏, 𝑑, 𝑔, 𝑒, 𝑎, 𝑓 ) and the blue 𝜆 = (𝑐, 𝑏, 𝑔, 𝑑, 𝑒, 𝑎, 𝑓 ). However,
neither of these is generous, as we can modify 𝜇 by giving agent

3 house 𝑎 and agent 6 house 𝑑 . This modified assignment 𝜇′ gives
all agents houses within their top three, while both 𝜇 and 𝜆 give

some agent her fourth-best house or worse. Hence, no generous

assignment in this profile is uncovered.

5 CONCLUSION AND FUTUREWORK
In this paper, we initiate a systematic study of majoritarian assign-

ment rules—set-valued assignment rules that rely solely on the

pairwise majority relation. Prior work on majoritarian concepts in

the context of assignment was restricted to popularity, correspond-

ing to weak Condorcet winners in social choice theory.
5
. However,

just like weak Condorcet winners, popular assignments rarely ex-

ist. To circumvent this issue, social choice theory has developed

a range of majoritarian functions that return sets of “good” alter-

natives in the absence of Condorcet winners. We have transferred

two of the most prominent such functions—the top cycle and the

uncovered set—to the subdomain of assignment. These rules are

symmetric, treating all agents and houses equally, and they help to

narrow down the set of acceptable assignments, from which a final

selection (e.g., by randomization) can be made.

We proved a structural result about assignment-induced ma-

jority graphs, which, somewhat surprisingly, revealed that some

well-known assignment rules are in fact majoritarian. We then

gave a complete and efficiently checkable characterization of the as-

signments contained in the top cycle. This characterization reveals

that the top cycle not only contains all Pareto-optimal assignments

(which does not hold in the more general social choice domain)

but also some rather unattractive ones. The top cycle is too coarse

to exclude these undesirable assignments. By contrast, the three

variants of the uncovered set we studied are much more selective.

In fact, each of them contains a (symmetric) subset of all Pareto-

optimal assignments and thus offers a promising foundation for

new, appealing assignment rules.

Our findings pave the way for the exploration of further ap-

pealing refinements of the McKelvey uncovered set, such as the

minimal covering set and the bipartisan set (aka sign-essential set)

[see, e.g., 8, 10, 21]. Both of these rules can be computed efficiently

in social choice theory. Whether this is also true in assignment

is wide open. Indeed, even seemingly simpler problems—such as

finding an assignment in the uncovered set or the Copeland set,

or deciding whether a given assignment belongs to any of these

sets—remain unresolved. In particular, it would be interesting to

5
Kavitha and Vaish [32] have studied semi-popularity and Copeland winners in the

more general setting of roommate markets.



investigate whether—in contrast to general social choice—the sup-

port of mixed popular assignments is contained in the uncovered

set.

Other avenues for future research include relaxations of the

model that allow for different numbers of agents and houses, ties in

the preferences, and pairwise matchings of agents. These general-

izations would broaden the applicability of majoritarian assignment

rules and deepen our understanding of their structural and compu-

tational properties.
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A PROOF OF THEOREM 1
In this appendix, we present the proof of Theorem 1, which we

break down into the following lemmas.

Lemma 1. Let 𝑥,𝑦 ∈ 𝑁 and 𝑝, 𝑞 ∈ 𝐻 be pairwise distinct. Consider
any 𝜇 with 𝜇 (𝑥) = 𝑝 , 𝜇 (𝑦) = 𝑞. Consider the matching 𝜆 which only
differs from 𝜇 in 𝜆(𝑥) = 𝑞 and 𝜆(𝑦) = 𝑝 . Then, the following holds:

• 𝜇 ≻ 𝜆 iff 𝑝 ≻𝑥 𝑞 and 𝑞 ≻𝑦 𝑝 ,
• 𝜇 ≺ 𝜆 iff 𝑞 ≻𝑥 𝑝 and 𝑝 ≻𝑦 𝑞, and
• 𝜇 ∼ 𝜆 iff 𝑥,𝑦 have the same preferences over 𝑝, 𝑞 (i.e., either

𝑝 ≻𝑥 𝑞 and 𝑝 ≻𝑦 𝑞 or 𝑞 ≻𝑥 𝑝 and 𝑞 ≻𝑦 𝑝).

Proof. Since 𝜇 (𝑧) = 𝜆(𝑧) for all agents 𝑧 ∈ 𝑁 \ {𝑥,𝑦}, the ma-

jority comparison only depends on the preferences of 𝑥,𝑦 between

𝑝, 𝑞. Going through all three cases, we see that the statement clearly

holds. As aid, we visualize the assignments 𝜇 and 𝜆 in blue and red,

respectively, for all three cases.

• 𝑥 prefers 𝑝 to 𝑞 but 𝑦 does not (hence 𝜇 ≻ 𝜆):

𝑃 =
𝑥 : 𝑝, 𝑞

𝑦 : 𝑞, 𝑝

• 𝑥 prefers 𝑞 to 𝑝 , but 𝑦 does not (hence 𝜇 ≺ 𝜆):

𝑃 ′ =
𝑥 : 𝑞, 𝑝

𝑦 : 𝑝, 𝑞

• 𝑥,𝑦 have the same preferences over 𝑝, 𝑞 (hence 𝜇 ∼ 𝜆):

𝑃 ′′ =
𝑥 : 𝑞, 𝑝

𝑦 : 𝑞, 𝑝
𝑃 ′′′ =

𝑥 : 𝑝, 𝑞

𝑦 : 𝑝, 𝑞

□

Fix any 𝑝, 𝑞 ∈ 𝐻 . We apply Lemma 1 for the agent pair 1, 2,

then 2, 3, and so on. Either, all agents have the same preferences

over the pair 𝑝, 𝑞, or for some pair 𝑥, 𝑥 + 1 we can determine the

preferences of these two agents over 𝑝, 𝑞 and hence obtain these

pairwise preferences of all agents.

We build a graph with the houses as nodes and edges between

two assignments if we were able to fully determine the pairwise

agent preferences between this pair. Name the connected compo-

nents of this graph 𝐻1, . . . , 𝐻𝑘 . Next, we focus on each connected

component𝐻𝑖 .We are able to fully determine the preferenceswithin

each component by virtue of the following lemma.

Lemma 2. Let 𝑝, 𝑞, 𝑟 ∈ 𝐻 be distinct such that for all agents, we
know their preferences between 𝑝 and 𝑞, as well as between 𝑞 and 𝑟 .
Then, we also know all agents’ preferences between 𝑝 and 𝑟 .

Proof. If not all agents rank 𝑝 over 𝑟 or not all agents rank 𝑟 over

𝑝 , we can apply Lemma 1 to obtain all agent preferences between

𝑝 and 𝑟 . Hence, let all agents rank 𝑝 over 𝑟 , or let all agents rank 𝑟

over 𝑝 . It now suffices to determine the preferences of a single agent.

If there is an agent 𝑥 such that 𝑝 ≻𝑥 𝑞 ≻𝑥 𝑟 or 𝑟 ≻𝑥 𝑞 ≻𝑥 𝑝 , then

by transitivity we know 𝑝 ≻𝑥 𝑟 or 𝑟 ≻𝑥 𝑝 , respectively. Otherwise,

all agents 𝑥 rank 𝑞 either first or last among {𝑞, 𝑝, 𝑟 } (i.e., either
𝑞 ≻𝑥 𝑝, 𝑟 or 𝑝, 𝑟 ≻𝑥 𝑞). Because the case 𝑛 ≤ 2 is trivial, consider

𝑛 ≥ 3. By the pigeonhole principle, there are at least two agents 𝑥

and 𝑦 of the same type. We only consider the case where 𝑞 ≻𝑥 𝑝, 𝑟

and 𝑞 ≻𝑦 𝑝, 𝑟 . The other case is symmetric and follows from the

same arguments. Now, take any third agent 𝑧 ∈ 𝑁 and consider the

two assignments 𝜇 and 𝜆 which we first visualize.

𝑃 =

𝑥 : 𝑞, 𝑝, 𝑟

𝑦 : 𝑞, 𝑝, 𝑟

𝑧 : . . . 𝑝, 𝑟

Formally, we take any 𝜇 ∈ 𝑀 with 𝜇 (𝑥) = 𝑞, 𝜇 (𝑦) = 𝑝 , and

𝜇 (𝑧) = 𝑟 . We obtain 𝜆 by altering 𝜇 in 𝜆(𝑥) = 𝑟, 𝜆(𝑦) = 𝑞, and

𝜆(𝑧) = 𝑝 . Since 𝜇 (𝑤) = 𝜆(𝑤) for all𝑤 ∈ 𝑁 \ {𝑥,𝑦, 𝑧}, the majority

comparison only depends on the agents 𝑥,𝑦, 𝑧. Clearly, 𝑥 prefers

𝜇 to 𝜆, and 𝑦 prefers 𝜆 to 𝜇. Hence, there are two possibilities. If

𝜇 ≻ 𝜆, then 𝑟 ≻𝑧 𝑝 . Otherwise 𝜇 ≺ 𝜆, due to 𝑟 ≺𝑧 𝑝 . We have thus

determined the preferences of agent 𝑧 regarding houses 𝑝 and 𝑟 .

This concludes the proof. □

Based on the last two lemmas, we can now identify sets of houses

𝐻1, . . . , 𝐻𝑘 for which we can fully specify the agents’ preferences.

To this end, consider the following graph 𝐺 , whose vertices are

the houses 𝐻 , and there is an edge between two houses 𝑝 and 𝑞 if

applying Lemma 1 for all agent pairs allows us to infer the agents’

preferences over 𝑝 and 𝑞. Then, the sets 𝐻1, . . . , 𝐻𝑘 correspond to

the connected components of this graph. In particular, for any two

houses 𝑝, 𝑞 that are connected in this graph, there is a sequence of

houses 𝑝1 = 𝑝, . . . , 𝑝ℓ = 𝑞 such that 𝑝𝑖 is a neighbor of 𝑝𝑖+1 in 𝐺 .

By repeatedly applying Lemma 2 along this path, we can infer the

preferences of all agents between 𝑝 and 𝑞.

Moreover, we claim that the houses in each set𝐻𝑖 must be ranked

contiguously by each agent, i.e., for all𝐻𝑖 , agents 𝑥 ∈ 𝑁 , and houses

𝑝, 𝑞 ∈ 𝐻𝑖 , there is no house 𝑟 ∉ 𝐻𝑖 such that 𝑝 ≻𝑥 𝑟 ≻𝑥 𝑞. Assume

for contradiction that this is not true, which means that there is a

connected component 𝐻𝑖 of 𝐺 , an agent 𝑥 , and houses 𝑝, 𝑞 ∈ 𝐻𝑖 ,

𝑟 ∉ 𝐻𝑖 such that 𝑝 ≻𝑥 𝑟 ≻𝑥 𝑞. Further, we partition 𝐻𝑖 into the

sets 𝐻+
𝑖
= {𝑝′ ∈ 𝐻𝑖 : 𝑝

′ ≻𝑥 𝑟 } and 𝐻−
𝑖

= {𝑞′ ∈ 𝐻𝑖 : 𝑟 ≻𝑥 𝑞′}. Since
𝑟 ∉ 𝐻𝑖 , we know that there is no edge from 𝑟 to any house ℎ ∈ 𝐻𝑖

in 𝐺 . This means all agents agree on the preference between 𝑟 and

the houses in 𝐻𝑖 , i.e., it holds for all 𝑦 ∈ 𝑁 that 𝑝′ ≻𝑦 𝑟 for all

𝑝′ ∈ 𝐻+
𝑖
and 𝑟 ≻𝑦 𝑞′ for all 𝑞′ ∈ 𝐻−

𝑖
. However, by the transitivity

of the agents’ preferences, this means that 𝑝′ ≻𝑦 𝑞′ for all 𝑦 ∈ 𝑁 ,

𝑝′ ∈ 𝐻+
𝑖
, and 𝑞′ ∈ 𝐻−

𝑖
. In turn, this implies that there is no edge

between houses in 𝐻+
𝑖
and 𝐻−

𝑖
in 𝐺 , which contradicts that 𝐻𝑖 is a

connected component in this graph. Note that contiguity of each

component𝐻𝑖 is only required for correctness of the algorithm, not

for the algorithm itself.

We note that it follows from the last paragraph also that, for all

components𝐻𝑖 ,𝐻 𝑗 , it either holds that 𝑝 ≻𝑥 𝑞 for all 𝑥 ∈ 𝑁 , 𝑞 ∈ 𝐻𝑖 ,

𝑝 ∈ 𝐻 𝑗 , or 𝑞 ≻𝑥 𝑝 for all 𝑥 ∈ 𝑁 , 𝑞 ∈ 𝐻𝑖 , 𝑝 ∈ 𝐻 𝑗 . The reason for

this is that all agents rank the houses in 𝐻𝑖 and 𝐻 𝑗 contiguously.

Moreover, if there were two agents 𝑥 and 𝑦 such that 𝑝 ≻𝑥 𝑞 and

𝑞 ≻𝑦 𝑝 for all 𝑝 ∈ 𝐻𝑖 , 𝑞 ∈ 𝐻 𝑗 , then 𝐻𝑖 and 𝐻 𝑗 would be placed in

the same connected component. From this, we infer that the sets

𝐻1, . . . , 𝐻𝑘 can be ordered to form a valid decomposition of 𝑃 .

By our analysis so far, we get that every profile that induces𝐺𝑃∗

can only differ in the order of the components 𝐻1, . . . , 𝐻𝑘 in the

agents’ preferences. To complete the proof, we need to show that

the only cyclic shifts of the components lead to the same majority

graph. This last step can be inferred analogously to Lemma 4 of

Brandt et al. [13]. The idea is that, for each three distinct houses

𝑝, 𝑞, 𝑟 , a linear preference relation either agrees with two out of

three of the following comparisons 𝑝 ≻𝑐𝑦𝑐 𝑞, 𝑞 ≻𝑐𝑦𝑐 𝑟, 𝑟 ≻𝑐𝑦𝑐 𝑞,



or it agrees with two out of three of the following comparisons

𝑝 ≻′𝑐𝑦𝑐 𝑟, 𝑟 ≻′𝑐𝑦𝑐 𝑞, 𝑞 ≻′𝑐𝑦𝑐 𝑝 . We can use this as follows:

Lemma 3. Let 𝑝, 𝑞, 𝑟 be houses such that agents 1, 2, 3 satisfy
≻1 |𝑝,𝑞,𝑟 = ≻2 |𝑝,𝑞,𝑟 = ≻3 |𝑝,𝑞,𝑟 . Then, from the majority graph,
we can determine the “direction” in which these three are ordered.

Proof. Consider any 𝜇 with 𝜇 (1) = 𝑝 , 𝜇 (2) = 𝑞, 𝜇 (3) = 𝑟 , and 𝜆

which differs from 𝜇 only in 𝜆(1) = 𝑞, 𝜆(2) = 𝑟 , 𝜆(3) = 𝑝 . Then, it

holds that 𝜇 ≻ 𝜆 or 𝜆 ≻ 𝜇, depending onwhether the preferences are

of type 𝑝 ≻′𝑐𝑦𝑐 𝑟, 𝑟 ≻′𝑐𝑦𝑐 𝑞, 𝑞 ≻′𝑐𝑦𝑐 𝑝 or 𝑝 ≻𝑐𝑦𝑐 𝑞, 𝑞 ≻𝑐𝑦𝑐 𝑟, 𝑟 ≻𝑐𝑦𝑐 𝑞,
respectively. □

For each three distinct components, we can take 𝑝 ∈ 𝐻𝑖 , 𝑞 ∈ 𝐻 𝑗 ,

𝑟 ∈ 𝐻ℓ and apply Lemma 3. Since each component is contiguous

in all preference relations, this gives us the “cycle type” of how

the three components are ordered in the entire profile. Now, one

can prove that any cyclic permutation of the components does not

change the “cycle type” of any three distinct components. However,

any non-cyclic permutation of the components yields three distinct

components 𝐻𝑖 , 𝐻 𝑗 , 𝐻𝑟 such that their cycle type is changed. By

choosing 𝑝 ∈ 𝐻𝑖 , 𝑞 ∈ 𝐻 𝑗 , 𝑟 ∈ 𝐻𝑟 , we can use the assignment in

Lemma 3 to obtain 𝜇 and 𝜆 for which the majority comparison does

not coincide with the respective one in 𝐺𝑃∗ .

B PROOF OF THEOREM 2
In this section, we present the proof of Theorem 2 in two steps.

First, we introduce Pareto-pessimality and the bottom cycle, which

are dual concepts to Pareto-optimality and the top cycle. Then, we

prove that all Pareto-optimal assignments are contained in the top

cycle and characterize the cases in which the top cycle is of size

at most two. We obtain analogous statements for the bottom cycle.

Then, in step two, we show that the top cycle and bottom cycle

coincide whenever they are not of size one or two. This requires

a proof by induction. We prove the base case for five agents by

computer, whereas the induction step is shown by hand.

For the proof of Theorem 2, we have to consider concepts for

assignments that are particularly “bad”. Given a profile 𝑃 , by 𝑃−1,
we denote the profile where all agent preferences ≻𝑥 are inverted

to ≻−1𝑥 , i.e., 𝑝 ≻𝑥 𝑞 if and only if 𝑞 ⪰−1𝑥 𝑝 . The majority relation

induced by 𝑃−1 is precisely the inverse of the majority relation ¥
of 𝑃 , and we hence denote it by ¥−1.

As a dual concept to a serial dictatorship, a serial antidictatorship

works exactly the other way around. The agents pick their least

preferred houses that is available yet in order of 𝜎 .

Analogously to the TC, the bottom cycle consists of all as-

signments which are minimal elements in the transitive clo-

sure of the weak dominance relation. Formally, BC (𝑃) ={
𝜇 ∈ 𝑀𝑁,𝐻 : ∀𝜈 : 𝜈 ¥∗ 𝜇

}
. An assignment is Pareto-pessimal if it

does not Pareto-dominate any other assignment. By PP (𝑃) =

PO(𝑃−1), we denote the set of all Pareto-pessimal assignments

in 𝑃 . It holds that an assignment is Pareto-pessimal if and only if it

can be obtained as a serial antidictatorship.

Lemma 4. For all profiles 𝑃 , we have TC (𝑃) = BC (𝑃−1). (Note that
this directly implies BC (𝑃) = BC ((𝑃−1)−1) = TC (𝑃−1).)

Proof. Note that the majority relation over the assignments

induced by 𝑃 is precisely inverse to the majority relation induced

by 𝑃−1, and hence so is the transitive closure over it. Thus, 𝜇 ¥∗ 𝜆
for all assignments 𝜆 if and only if 𝜆

(
¥−1

)∗
𝜇 for all assignments

𝜆. This proves the claim. □

For example, Lemma 4 implies that each Pareto-pessimal assign-

ment belongs to the bottom cycle, as Pareto-pessimal assignments

of a profile 𝑃 are Pareto-optimal assignments of 𝑃−1.

B.1 Step 1: Understanding Small TC sizes
We first characterize all profiles in which TC chooses at most two

assignments. For this, we prove a strengthening of Proposition 2.

Proposition 3. All Pareto-optimal assignments are in the top cycle.

PO ⊆ TC

Conversely, all Pareto-pessimal assignments are in the bottom cycle.

PP ⊆ BC

Proof. It suffices to show PO ⊆ TC, as the proof for PP ⊆
BC then follows from Lemma 4. For this, we will prove that, for

every profile 𝑃 , each Pareto-optimal assignment can reach each

other Pareto-optimal assignment via a path in the majority graph.

This shows that PO(𝑃) ⊆ TC (𝑃) because each assignment that is

not Pareto-optimal is Pareto-dominated (and thus also majority

dominated) by an assignment in PO(𝑃). To prove this claim, we

will rely on the characterization of Pareto-optimal assignments by

Abdulkadiroğlu and Sönmez [1], which states that an assignment 𝜇

is in PO(𝑃) if and only if there is a priority order 𝜎 over the agents

such that 𝜇 is the outcome of the corresponding serial dictatorship.

Before showing that all Pareto-optimal assignments are con-

nected by paths in the majority graph, we prove an auxiliary state-

ment: when modifying a picking sequence 𝜎 by improving the

position of the last agent, the outcome of the serial dictatorship

for the original sequence weakly majority dominates the outcome

of the serial dictatorship for the modified sequence. To make this

more formal, fix an order 𝜎 = (𝑥1, . . . , 𝑥𝑛) over the agents and let

𝜎′ = (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑛, 𝑥𝑘 , . . . , 𝑥𝑛−1) for some 𝑘 ∈ {1, . . . , 𝑛 − 1}.
Moreover, let 𝜇 denote the assignment picked by the serial dictator-

ship induced by 𝜎 and 𝜆 the one picked by the serial dictatorship

induced by 𝜎′. We will show that 𝜇 ¥ 𝜆.

To prove this, let 𝑋𝑖 and 𝑋
′
𝑖
denote the houses that are available

when agent 𝑥𝑖 gets to pick her house under 𝜎 and 𝜎′, respectively.
We claim that 𝑋𝑖 ⊇ 𝑋 ′

𝑖
for all 𝑖 ∈ {1, . . . , 𝑛 − 1}. First, for the agents

𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑘−1}, it holds even that 𝑋𝑖 = 𝑋 ′
𝑖
because 𝜎 and 𝜎′

agree on the first 𝑘−1 agents. Next, we have that𝑋𝑘 = 𝑋 ′
𝑘
∪{𝜆(𝑥𝑛)}

because agent 𝑥𝑘 gets to pick before 𝑥𝑛 in 𝜎 . Now, inductively

assume that 𝑋𝑖 ⊇ 𝑋 ′
𝑖
for some 𝑖 ∈ {𝑘, . . . , 𝑛 − 2}. We will show

that 𝑋𝑖+1 ⊇ 𝑋 ′
𝑖+1. For this, we note that |𝑋𝑖 | = |𝑋

′
𝑖
| + 1 because the

agents 𝑥1, . . . , 𝑥𝑖−1 pick before 𝑥𝑖 under 𝜎 , whereas 𝑥𝑛 additionally

gets to choose before 𝑥𝑖 under 𝜎
′
. By our induction assumption, we

thus conclude that there is a single house 𝑝 such that𝑋𝑖 = 𝑋 ′
𝑖
∪{𝑝}.

Since 𝜆(𝑥𝑖 ) is agent 𝑥𝑖 ’s favorite house in 𝑋 ′𝑖 , this means that agent

𝑥𝑖 either picks 𝑝 or 𝜆(𝑥𝑖 ) from 𝑋𝑖 . Consequently, 𝑋𝑖+1 = 𝑋 ′
𝑖
if agent

𝑥𝑖 picks 𝑝 , or 𝑋𝑖+1 = 𝑋 ′
𝑖+1 ∪ {𝑝} if she picks 𝜆(𝑥𝑖 ). In both cases, it

holds that 𝑋𝑖+1 ⊇ 𝑋 ′
𝑖+1, thus proving the induction step.

By the definition of serial dictatorships, the fact that 𝑋𝑖 ⊇ 𝑋 ′
𝑖

for all 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛−1} implies that 𝜇 ⪰𝑥𝑖 𝜆 for all these agents.

If one of these agents strictly prefers 𝜇 to 𝜆, we have that 𝜇 ¥ 𝜆



as only agent 𝑥𝑛 may prefer 𝜆 to 𝜇. On the other hand, if no 𝑥𝑖 ∈
{𝑥1, . . . , 𝑥𝑛−1} strictly prefers 𝜇 to 𝜆, then 𝜇 (𝑥𝑖 ) = 𝜆(𝑥𝑖 ) for all these
agents, which implies that 𝜇 = 𝜆 and thus again 𝜇 ¥ 𝜆.

Based on our auxiliary claim, we will now complete the proof

of this lemma. To this end, we fix two distinct assignments

𝜇, 𝜆 ∈ PO(𝑃) and consider two orders 𝜎 = (𝑥1, . . . , 𝑥𝑛) and
𝜎′ = (𝑥 ′

1
, . . . , 𝑥 ′𝑛) such that the corresponding serial dictatorship

choose 𝜇 and 𝜆 for 𝑃 . We will iteratively transform 𝜎 into 𝜎′. To
this end, let 𝑖 denote the smallest index such that 𝑥𝑖 ≠ 𝑥 ′

𝑖
and let

𝑗 > 𝑖 denote the index such that 𝑥 𝑗 = 𝑥 ′
𝑖
. Now, consider the priority

order 𝜎1 derived from 𝜎 by placing the currently last-ranked agent

directly before 𝑥 𝑗 , and let 𝜂1 be the assignment chosen by the corre-

sponding serial dictatorship. By our auxiliary claim, we have 𝜇 ¥ 𝜂1.

Further, we can repeat this step until we have a priority order 𝜎2
where 𝑥 ′

𝑖
= 𝑥 𝑗 is in the last position, and our auxiliary claim shows

that 𝜇 ¥∗ 𝜂2 for the assignment 𝜂2 chosen by the corresponding

assignment. Next, let 𝜎3 be the priority order derived from 𝜎2 by

moving 𝑥𝑖′ directly before 𝑥𝑖 . Again using our auxiliary claim, the

assignment 𝜂3 chosen by the corresponding serial dictatorship sat-

isfies that 𝜂2 ¥ 𝜂3, so we have 𝜇 ¥∗ 𝜂3. Lastly, we observe that the
priority orders 𝜎3 and 𝜎

′
agree on the first 𝑖 positions. Hence, by

repeating our argument at most 𝑛 times, we transform 𝜎1 into 𝜎2
while constructing a path from 𝜇 to 𝜆 in the majority graph. □

In the remainder of this subsection, we use Proposition 3 to ana-

lyze cases (i) and (ii) of Theorem 2, as well as analogous statements

regarding the bottom cycle.

We next use Proposition 3 to analyze profiles where all agents

have distinct top choices (or bottom choices).

Lemma 5. |TC (𝑃) | = 1 if and only if all agents have distinct top
choices.

Analogously, |BC (𝑃) | = 1 if and only if all agents have distinct
bottom choices.

Proof. Let 𝑃 be a profile where all agents have distinct top

choices. Let 𝜇 be the assignment that assigns to each agent her top

choice. For all other assignments 𝜆, there is at least one agent who

does not obtain their top choice. These agents strictly prefer 𝜇 to 𝜆,

while all other agents weakly prefer 𝜇 to 𝜆. Thus, we have 𝜇 ≻ 𝜆

for all assignments 𝜆 ≠ 𝜇, which implies TC (𝑃) = {𝜇}.
We prove the other implication for TC by contraposition. Let 𝑃

be a profile where two agents 𝑥 ≠ 𝑦 have the same favorite house

𝑝 . By Proposition 3, we know that all assignments obtained via

serial dictatorships are contained in the top cycle. Since the serial

dictatorship where 𝑥 chooses first and 𝑦 second yields a different

assignment than the serial dictatorship where 𝑦 chooses first and

then 𝑥 chooses, there are at least two assignments in the top cycle.

This proves the statement for the top cycle.

For the bottom cycle, the statement follows from Lemma 4. This

concludes the proof. □

The first part of Lemma 5 follows from existing literature (e.g., 34,

Proposition 7.24.). For the sake of completeness, we provided a proof

nevertheless. We further note that Lemma 5 directly proves case (i)
of Theorem 2 and will be useful for the proof of case (iv).

Next, we describe all cases in which the top cycle has cardinality

two. We analogously obtain a similar statement for bottom cycle.

Lemma 6. |TC (𝑃) | = 2 if and only if all but two agents have distinct
top choices and the two agents who have the same top choice also
share the same second best choice, which is not top-ranked by any
agent.

Analogously, |BC (𝑃) | = 2 if and only if all but two agents have
distinct bottom choices and the two agents who have the same bottom
choice also share the same second worst choice, which is not bottom-
ranked by any agent.

Proof. Let 𝑃 be a profile where two distinct agents 𝑥∗, 𝑦∗ share
the same top choice 𝑝 and second choice𝑞, and all other agents have

unique favorite houses in 𝐻 \ {𝑝, 𝑞}. Consider the two assignments

𝜇𝑥∗ , where all agents but 𝑥∗ obtain their favorite house and 𝑥∗

obtains 𝑞, and 𝜇𝑦∗ , where all agents but 𝑦∗ obtain their favorite

houses and𝑦∗ obtains 𝑞. Clearly, 𝜇𝑥∗ ∼ 𝜇𝑦∗ . Further, we note that in

every other assignment 𝜆 ∈ 𝑀\{𝜇𝑥∗ , 𝜇}, at least one agent among𝑥∗

and 𝑦∗ cannot obtain their fav𝑝 . Without loss of generality, let that

agent be 𝑥∗. Then, every agent weakly prefers 𝜇𝑥∗ to 𝜆. Moreover,

since 𝜆 ∉ {𝜇𝑥∗ , 𝜇𝑦∗ }, there is at least one agent 𝑥 ∈ 𝑁 \{𝑥∗, 𝑦∗} with
𝜆(𝑥) ≠ 𝜇𝑥∗ (𝑥). Indeed, if 𝜆 would agree with 𝜇𝑥∗ on all agents in

𝑁 \ {𝑥∗, 𝑦∗}, then either 𝑥∗ gets 𝑝 and 𝑦∗ gets 𝑞 and 𝜆 = 𝜇𝑦∗ , or 𝑥
∗

gets 𝑞 and 𝑦∗ gets 𝑝 and 𝜆 = 𝜇𝑥∗ . This agent 𝑥 strictly prefers 𝜇𝑥∗ to

𝜆, so 𝜇𝑥∗ ≻ 𝜆. Further, we compare 𝜆 to 𝜇𝑦∗ . If 𝜆(𝑦∗) ≠ 𝑝 , we have

that 𝜇𝑦∗ ⪰𝑥 𝜆 for all 𝑥 ∈ 𝑁 , so we immediately get that 𝜇𝑦∗ ≻ 𝜆. On

the other hand, if 𝜆(𝑦∗) = 𝑝 , then 𝜇𝑦∗ (𝑥∗) = 𝑝 ≻𝑥∗ 𝜆(𝑥∗). Further,
since there is another agent 𝑥 ∉ {𝑥∗, 𝑦∗} with 𝜇𝑦∗ ≻𝑥 𝜆, there are

at least two agents strictly preferring 𝜇𝑦∗ to 𝜆, proving that 𝜇𝑦∗ ≻ 𝜆.

This concludes the proof that TC (𝑃) has cardinality two.

For the other direction of the TC statement, let 𝑃 not be of the

above form. Then, we distinguish between three cases.

(1) The top choices of the agents are all pairwise different.

(2) There are three agents who share the same top choice.

(3) All agents but𝑥∗ and𝑦∗ have disjoint top choices, but agents
𝑥∗ and 𝑦∗ have different second choices.

(4) There are two pairs of agents 𝑥,𝑦 and 𝑧,𝑤 with coinciding

top choices.

In Case (i), Lemma 5 directly implies that the cardinality of TC is

not equal to two. In Case (ii), we consider three serial dictatorships,

where one of these agents chooses their house first, respectively.

Since the three serial dictatorships yield different outcomes, we

otbain by Proposition 3 that the top cycle contains at least three as-

signments. In Case (iii), we again consider three serial dictatorships.

By pigeon hole principle, the second choice of one of the two agents

𝑥∗, 𝑦∗ coincides with the top choice of some agent 𝑧. Without loss

of generality, we assume that the favorite house of agent 𝑧 is the

second-ranked house of agent 𝑦∗. In the first serial dictatorship, 𝑦∗

chooses before 𝑥∗ before 𝑧∗. In the second, the roles of 𝑥∗ and𝑦∗ are
reversed. In the third, 𝑧 chooses first, 𝑥∗ second, and 𝑦∗ third. The
resulting three assignments do not coincide as agent 𝑦∗ obtains her
first-ranked (resp. second-ranked or third-ranked) house in the first

(resp. second or third) serial dictatorship. Hence, in Case (iii) there

are at least three assignments in the top cycle by Proposition 3.

Finally, in Case (iv), we can consider all serial dictatorships which

vary the picking order between agents 𝑥 , 𝑦, 𝑧, and𝑤 . This results in

at least four assignments that are serial dictatorships and hence in

the top cycle. This concludes the proof of the top cycle statement.



Note that the bottom cycle statement follows from Lemma 4 and

the proven statement about the top cycle. □

Lemma 6 directly proves case (ii) of Theorem 2. It will further

be helpful in proving case (iii).
We will make case analyses based on the structure of the profile.

For often-recurring structures, we introduce shorthand notation.

Let Pp,p,p
denote the set of profiles where three distinct agents

have 𝑝 as their top-ranked house. We use concatenation to describe

further ranks of agents, i.e., Ppq,pq
denotes the set of profiles where

two distinct agents have 𝑝 as their top-ranked house and 𝑞 as their

second choice. Similarly, Pp,p denotes the set of profiles where two
distinct agents have 𝑝 as their last-ranked house, and Ppq,pq means

that these two agents also have 𝑞 as their second-to-last choice.

Now that we understand when top cycle and bottom cycle have

size one or two, we summarize and slightly reformulate Lemma 5

and Lemma 6 using our new notation.

Lemma 7. Let 𝑃 be given. The following equivalences hold:
• |TC (𝑃) | = 1 ⇐⇒ �𝑝 : 𝑃 ∈ Pp,p

• |TC (𝑃) | = 2 ⇐⇒ ∃𝑝 ∈ 𝐻 : ∀𝑞 ≠ 𝑟 ∈ 𝐻 : 𝑃 ∈ Pp,p \
{Pq,q,q ∪ Pq,q,r,r ∪ Pqr,q,r }

• |TC (𝑃) | > 2 ⇐⇒ ∃𝑝, 𝑞 ∈ 𝐻 : 𝑃 ∈ Pp,p,p ∪ Pp,p,q,q ∪
Ppq,p,q

Analogously,
• |BC (𝑃) | = 1 ⇐⇒ �𝑝 ∈ 𝐻 : 𝑃 ∈ Pp,p
• |BC (𝑃) | = 2 ⇐⇒ ∃𝑝 ∈ 𝐻 : ∀𝑞, 𝑟 ∈ 𝐻 : 𝑃 ∈ Pp,p \{
Pq,q,q ∪ Pq,q,r,r ∪ Pqr,q,r

}
• |BC (𝑃) | > 2 ⇐⇒ ∃𝑝, 𝑞 ∈ 𝐻 : 𝑃 ∈ Pp,p,p ∪ Pp,p,q,q ∪
Ppq,p,q

Note that for |TC (𝑃) | > 2, a finer case analysis of the different
structures is: 𝑃 ∈ Pp,p,p ∪ Ppq,p,q ∪ Ppr,pr,qs,qs for some pairwise
disjoint 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐻 . (Analogous cases for the bottom cycle hold.)

Proof. By Lemma 4, it suffices to prove the TC statements.

Clearly, all top choices being distinct is equivalent to no house be-

ing top-ranked twice, and hence the |TC (𝑃) | = 1 statement follows

directly from Lemma 5.

For the |TC (𝑃) | = 2 statement, we prove both implications. Let

any 𝑃 be given where TC has cardinality two. Lemma 6 states that,

then, (a) all agents but two have distinct top choices. Further, (b)

these two agents have the same second rank house, which no agent

ranks as their top. Clearly, this implies that no three agents have the

same top choice and there are not two distinct houses top-ranked by

two agents each. Further, if there are two agents who top rank some

house 𝑞 and one of these ranks some house 𝑟 second, then both of

these agents rank 𝑟 second. Hence, no other agent may top rank

the second-ranked house 𝑟 of these two agents, and 𝑃 ∉ Pqr,q,r
.

For the other implication, let 𝑃 be given such that the top cycle

has a cardinality not equal to two. Then, we can negate the structure

described in Lemma 6. If (a) is false, then the first case is that there

are only distinct top choices, and hence 𝑃 ∉ Pp,p
for any house 𝑝 .

Otherwise, at least three agents top-ranking the same house 𝑝 , or

there exist at least two distinct houses that are top-ranked twice

each. In this case, 𝑃 ∈ Pq,q,q ∪ Pq,q,r,r
for some houses 𝑞 ≠ 𝑟 . If (a)

is true but (b) is false, then the two agents sharing some top choice

𝑞 either have the same second-ranked house 𝑟 which is top-ranked

by some other agent—in which case we directly have 𝑃 ∈ Pqr,q,r
—

or they have distinct second-ranked houses 𝑟, 𝑠 . There are 𝑛 − 2

other agents, but only 𝑛 − 3 houses not top or second-ranked by

the two agents. The pigeonhole principle implies that one of these

second-ranked houses, w.l.o.g. say 𝑟 , is top-ranked by some agent.

Hence, 𝑃 ∈ Pqr,q,r
.

For the |TC (𝑃) | > 2 statement, we once more prove both direc-

tions. Note that if 𝑃 is such a profile, then TC neither has cardinality

one nor two. Hence, by our previously proven equivalences, there

is some 𝑝′ such that 𝑃 ∈ Pp′,p′
. Further, for this 𝑝′, there exist 𝑞′, 𝑟 ′

such that 𝑃 ∈ Pq′,q′,q′∪Pq′,q′,r′,r′∪Pq′r′,q′,r′
. By setting 𝑝 = 𝑞′ and

𝑞 = 𝑟 ′, we hence obtain 𝑃 ∈ Pp,p,p∪Pp,p,q,q∪Ppq,p,q
. For the other

implication, let 𝑃 be a profile such that 𝑃 ∈ Pp,p,p∪Pp,p,q,q∪Ppq,p,q
.

Then, by definition of the three structures, 𝑃 ∈ Pp,p
, proving that

TC does not have cardinality one. Further, by setting 𝑞′ = 𝑝 and

𝑟 ′ = 𝑞, we obtain that 𝑃 ∈ Pq′,q′,q′ ∪ Pq′,q′,r′,r′ ∪ Pq′r′,q′,r′
, and

hence TC does not have cardinality two either.

Finally, note that if 𝑃 ∈ Pq,q,r,r \ Pqs,qs,rt,rt
for some 𝑝 ≠ 𝑞 ∈ 𝐻

and all 𝑠 ≠ 𝑡 ∈ 𝐻 , then the first and second ranks of these four

agents contain at least five houses. By the pigeon-hole principle,

a fifth agent must top-rank a house which is among these four. If

this house is 𝑞 or 𝑟 , then w.l.o.g. 𝑃 ∈ Pq,q,q
. Otherwise, the house

is the second rank 𝑠 of some agent top ranking 𝑞 or 𝑟 , hence w.l.o.g.

𝑃 ∈ Pqs,q,s
. This concludes the proof. □

Given Lemma 7, we call TC (𝑃) (BC (𝑃)) isolated iff |TC (𝑃) | ≤ 2

(|BC (𝑃) | ≤ 2). Given a profile 𝑃 and an assignment 𝜇, we say that 𝜇

is not in an isolated top cycle, if TC (𝑃) is not isolated or if the top

cycle is isolated and 𝜇 ∉ 𝑇𝐶 (𝑃).

B.2 Step 2: Understanding Large TC Sizes
By using Lemma 7, we can check for a given instance whether

the top or bottom cycle are of size one or two. In contrast, at this

moment of the proof, we know little about the exact size of the

top cycle when it exceeds two. It will turn out that, if the top cycle

contains more than two assignments, the transitive closure of the

majority relation forms at most two equivalence classes: the top

cycle and the bottom cycle. For now, we focus on the five-agent

case, which will be very useful for later arguments.

Fact 1. For any profile 𝑃 with 𝑛 = 5, the following statements hold.

(1) |TC (𝑃) | > 2 ⇐⇒ 𝑀 \ PP (𝑃) ⊆ TC (𝑃).
(2) |BC (𝑃) | > 2 ⇐⇒ 𝑀 \ PO(𝑃) ⊆ BC (𝑃).
(3) |TC (𝑃) | > 2 and |BC (𝑃) | > 2 ⇐⇒ TC (𝑃) = 𝑀

(4) If |TC (𝑃) | ≤ 2 and |BC (𝑃) | ≤ 2, then for all 𝜇, 𝜆 ∈ 𝑀 \
(TC (𝑃) ∪ BC (𝑃)) we have 𝜇 ¥∗ 𝜆.

In words, if the top cycle (bottom cycle) contains more than two
assignments, then it contains all assignments that are not serial anti-
dictatorships (serial dictatorships). Further, if both contain at least
three assignments, TC chooses all assignments. Vice versa, if both the
top and bottom cycle contain two or fewer assignments, respectively,
there is precisely one equivalence class sandwiched between the two.

Proof. For 𝑛 = 5, the number of possible instances is man-

ageable: up to symmetry, there are about nine million preference

profiles. Using Lemma 7, we are able to verify Fact 1 by brute forcing



through all possible profiles with the help of a household computer

in two days. The code is in the supplementary material. □

Fact 1 implies a very helpful lemma for general 𝑛. We first intro-

duce corresponding terminology.

Restricted feasible sets. We now consider an arbitrary number

of agents and require notation for restricted feasible sets. Recall

that 𝑁,𝐻 induce a corresponding set of assignments𝑀 . Let𝑀𝑁 ′,𝐻 ′

denote the set of all assignments on the agent set𝑁 ′ ⊆ 𝑁 and house

set 𝐻 ′ ⊆ 𝐻 . Some assignments 𝜇 ∈ 𝑀 also obtain a corresponding

restriction 𝜇𝑁 ′,𝐻 ′ , with domain 𝑁 ′ and image 𝐻 ′. Note that we

only use this notation if indeed 𝜇 (𝑁 ′) = 𝐻 ′ is a bijection, and the

restricted matching is hence well-defined on 𝑁 ′ and 𝐻 ′. Similarly,

for a profile 𝑃 for agent set 𝑁 and house set𝐻 , let 𝑃𝑁 ′,𝐻 ′ denote the

profile restricted to agent set 𝑁 ′ and house set 𝐻 ′. The restricted
profile 𝑃𝑁 ′,𝐻 ′ induces a majority relation on𝑀𝑁 ′,𝐻 ′ . This relation

is denoted via ¥𝑁 ′,𝐻 ′ . Note that we will only use this notation

and compare two assignments w.r.t. ¥𝑁 ′,𝐻 ′ if they both belong to

𝑀𝑁 ′,𝐻 ′ .

Lemma 8 (Non-isolation). Let 𝜇, 𝜆 ∈ 𝑀 such that for some 𝑁 ′ of
size 5, 𝜇 (𝑁 ′) = 𝜆(𝑁 ′) =: 𝐻 ′. If 𝜇𝑁 ′,𝐻 ′ is not part of an isolated top
cycle w.r.t.𝑀𝑁 ′,𝐻 ′ , and 𝜆𝑁 ′,𝐻 ′ is not part of an isolated bottom cycle
w.r.t. 𝑀𝑁 ′,𝐻 ′ , then 𝜆𝑁 ′,𝐻 ′ ¥∗𝑁 ′,𝐻 ′ 𝜇𝑁 ′,𝐻 ′ . Moreover, if 𝜇 (𝑥) = 𝜆(𝑥)
for all 𝑥 ∈ 𝑁 \ 𝑁 ′, we have 𝜆 ¥∗ 𝜇.

Proof. If TC (𝑃𝑁 ′,𝐻 ′ ) is not isolated and BC (𝑃𝑁 ′,𝐻 ′ ) is nei-

ther, then TC (𝑃𝑁 ′,𝐻 ′ ) = 𝑀𝑁 ′,𝐻 ′ by Claim (3) of Fact 1 and

the statement follows trivially. If TC (𝑃𝑁 ′,𝐻 ′ ) is not isolated but

BC (𝑃𝑁 ′,𝐻 ′ ) is, then TC (𝑃𝑁 ′,𝐻 ′ ) = 𝑀𝑁 ′,𝐻 ′ \ BC (𝑃𝑁 ′,𝐻 ′ ). In more

detail, our assumptions mean that TC (𝑃𝑁 ′,𝐻 ′ ) ≠ BC (𝑃𝑁 ′,𝐻 ′ ),
Claim (1) of Fact 1 shows that 𝑀 \ PP (𝑃𝑁 ′,𝐻 ′ ) ⊆ TC (𝑃𝑁 ′,𝐻 ′ ),
and Proposition 3 that PP (𝑃𝑁 ′,𝐻 ′ ) ⊆ BC (𝑃𝑁 ′,𝐻 ′ ), which implies

that TC (𝑃𝑁 ′,𝐻 ′ ) = 𝑀𝑁 ′,𝐻 ′ \ BC (𝑃𝑁 ′,𝐻 ′ ). Since 𝜆 is not in the

isolated BC, 𝜆 ∈ TC (𝑃𝑁 ′,𝐻 ′ ) and the lemma follows. Thirdly,

assume that TC (𝑃𝑁 ′,𝐻 ′ ) is isolated but BC (𝑃𝑁 ′,𝐻 ′ ) is not. Then,
we can infer from Claim (2) of Fact 1 and Proposition 3 that

TC (𝑃𝑁 ′,𝐻 ′ ) = 𝑀𝑁 ′,𝐻 ′ \ BC (𝑃𝑁 ′,𝐻 ′ ). Since 𝜇𝑁 ′,𝐻 ′ is not in the iso-

lated top cycle, 𝜇𝑁 ′,𝐻 ′ ∈ BC (𝑃𝑁 ′,𝐻 ′ ) and the statement follows in

this case. Finally, if TC (𝑃𝑁 ′,𝐻 ′ ) is isolated and BC (𝑃𝑁 ′,𝐻 ′ ) is too,
then all assignments in 𝑀𝑁 ′,𝐻 ′ \ (TC (𝑃𝑁 ′,𝐻 ′ ) ∪ BC (𝑃𝑁 ′,𝐻 ′ )) are
connected via ¥∗

𝑁 ′,𝐻 ′ by Claim (4) of Fact 1. Since 𝜇𝑁 ′,𝐻 ′ is not

in the isolated top cycle and 𝜆𝑁 ′,𝐻 ′ is not in the isolated bottom

cycle, we have 𝜇𝑁 ′,𝐻 ′ ∈ BC (𝑃𝑁 ′,𝐻 ′ ), or 𝜆𝑁 ′,𝐻 ′ ∈ TC (𝑃𝑁 ′,𝐻 ′ ), or
both belonging to the connected set of assignments. In all three

cases, the statement follows directly. □

Using Fact 1 and Lemma 8, we show in several steps that, when-

ever both top cycle and bottom cycle contain strictly more than two

assignments, the two cycles coincide and contain all assignments.

Proposition 4. Let 𝑃 be any profile with 𝑛 ≥ 5. Then, |TC (𝑃) | > 2

and |BC (𝑃) | > 2 ⇐⇒ TC (𝑃) = 𝑀 = BC (𝑃).

Proof. First, we quickly handle some easy cases. The direction

from right to left is trivial as 𝑛! > 2. For 𝑛 = 5, we obtain the

direction from left to right directly from Fact 1. Now, let 𝑛 > 5

and consider direction from left to right. Let any profile 𝑃 be given

such that TC (𝑃) and BC (𝑃) contain at least three assignments each.

In order to show TC (𝑃) = BC (𝑃) = 𝑀 , it suffices to show that

𝜆∗ ¥∗ 𝜇∗ for some assignments 𝜇∗ ∈ TC (𝑃) and 𝜆∗ ∈ BC (𝑃). To
define these, we consider the structure of the profile.

Defining 𝜇∗ and 𝜆∗. By Lemma 7, there are agents 𝑥,𝑦, 𝑧,𝑤 ∈ 𝑁
and distinct houses 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐻 such that 𝑃 has one of the following

three structures.

Structure 𝑝–𝑝–𝑝: 𝑥,𝑦, 𝑧 are distinct and rank 𝑝 first (set𝑤 := 𝑧),

or

Structure 𝑝𝑞–𝑝–𝑞: 𝑥,𝑦, 𝑧 are distinct, 𝑥,𝑦 rank 𝑝 first, 𝑥 ranks 𝑞

second, and 𝑧 ranks 𝑞 first (set𝑤 := 𝑧), or

Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–𝑞𝑠: 𝑥,𝑦, 𝑧,𝑤 are distinct,𝑥,𝑦 rank 𝑝 first and

𝑟 second, and 𝑧,𝑤 rank 𝑞 first and 𝑠 second.

Clearly, the profile 𝑃𝑁 ′,𝐻 ′ still contains the respective structure

for all 𝑁 ′ ⊇ {𝑥,𝑦, 𝑧,𝑤}. To formally talk about the rank at which

agents rank their houses, we define ℎ𝑥 (𝑖) to be the 𝑖th favorite

house of agent 𝑥 .

We aim to choose 𝜇∗ ∈ 𝑀 with

• 𝜇∗ ∈ TC (𝑃).
• 𝜇∗ (𝑥) = 𝑝 .

• Under Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–𝑞𝑠 , we require 𝜇∗ (𝑦) ≠ ℎ𝑦 (2).

Under Structure 𝑝–𝑝–𝑝 and 𝑝𝑞–𝑝–𝑞, this is achieved by letting

𝜇∗ ∈ PO with 𝑥 picking first. Under Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–𝑞𝑠 , we first

let 𝜇 be a serial dictatorship with priority order 𝜎 = (𝑦, 𝑥, 𝑧, . . . ).
Then, 𝜇 (𝑥) = 𝑟, 𝜇 (𝑦) = 𝑝, 𝜇 (𝑧) = 𝑞. We now permute to create

𝜇∗. Let 𝜇∗ (𝑥) = 𝑝, 𝜇∗ (𝑦) = 𝑞, 𝜇∗ (𝑧) = 𝑟 and 𝜇∗ (𝑣) = 𝜇 (𝑣) for all
𝑣 ∈ 𝑁 \ {𝑥,𝑦, 𝑧}. Restricted to 𝑁 ′ ⊇ {𝑥,𝑦, 𝑧,𝑤} of size 5, 𝜇 and 𝜇∗

are not part of an isolated top or bottom cycle, respectively. By

Lemma 8, 𝜇 ­∗ 𝜇∗, hence 𝜇∗ ∈ TC (𝑃). We can hence choose 𝜇∗ as
desired.

Analogously, since the bottom cycle contains more than two

assignments, there are 𝑥 ′, 𝑦′, 𝑧′,𝑤 ′ ∈ 𝑁 and distinct 𝑝′, 𝑞′, 𝑟 ′, 𝑠′ ∈
𝐻 such that

Structure 𝑝′–𝑝′–𝑝′: 𝑥 ′, 𝑦′, 𝑧′ are distinct and rank 𝑝′ last (set
𝑤 ′ := 𝑧′), or

Structure 𝑝′𝑞′–𝑝′–𝑞′: 𝑥 ′, 𝑦′, 𝑧′ are distinct, 𝑥 ′, 𝑦′ rank 𝑝′ last, 𝑥 ′

ranks 𝑞′ second-to-last, and 𝑧′ ranks 𝑞′ last (set𝑤 ′ := 𝑧′), or
Structure 𝑝′𝑟 ′–𝑝′𝑟 ′–𝑞′𝑠′–𝑞′𝑠′: 𝑥 ′, 𝑦′, 𝑧′,𝑤 ′ are distinct, 𝑥 ′, 𝑦′

rank 𝑝′ last and 𝑟 ′ second-to-last, and 𝑧′,𝑤 ′ rank 𝑞′ last
and 𝑠′ second-to-last.

For choosing 𝜆∗ ∈ BC (𝑃) and connecting it to 𝜇∗, it will become

relevant that among 𝑥 ′, 𝑦′, 𝑧′, and 𝑦, enough agents obtain a “bad”

house. Under Structure 𝑝′–𝑝′–𝑝′ and 𝑝′𝑞′–𝑝′–𝑞′, we take 𝜆∗ ∈
PP (𝑃) with the first three picking agents being 𝑥 ′, 𝑦′, and 𝑧′ (in this

order). If 𝑦 is not equal to 𝑥 ′, 𝑦′, or 𝑧′, we let her choose as fourth.
Lastly, let 𝑥𝑝 denote the agent that will receive house 𝑝 in 𝜆∗. Then,
summarized, under these two structures, 𝜆∗ satisfies:

• 𝜆∗ ∈ BC (𝑃).
• 𝜆∗ (𝑥 ′) = 𝑝′.
• 𝑦 obtains at best her fourth-least favorite house from 𝐻 .

• Under 𝜆∗, at least one agent in {𝑥 ′, 𝑦′, 𝑧′} \ {𝑥, 𝑥𝑝 } ob-
tains their third-least favorite house from 𝐻 at best (due to

𝑥 ′, 𝑦′, 𝑧′ all picking first).



Under Structure 𝑝′𝑟 ′–𝑝′𝑟 ′–𝑞′𝑠′–𝑞′𝑠′, we have the same goal but

require an in-between step. We first want to use the inherent sym-

metry to relabel the agents, and then choose some 𝜆 ∈ PP (𝑃) as
follows:

• If 𝑥 ∈ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}, then ensure 𝑥 = 𝑤 ′ by renaming

agents.

• If 𝑦 ∈ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}, then ensure 𝑦 ∈ {𝑥 ′, 𝑧′} by renaming

agents.

• 𝜆(𝑧′) = 𝑠′.
• 𝜆(𝑦′) = 𝑝′.
• 𝜆(𝑤 ′) = 𝑞′.
• If𝑦 ∉ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}, then𝑦 obtains her fourth-least favorite

house at best under 𝜆.

Considering 𝑥 , we can clearly relabel the sets {𝑥 ′, 𝑦′} and {𝑧′,𝑤 ′}
such that 𝑥 ∉ {𝑥 ′, 𝑦′}. If 𝑥 ∈ {𝑧′,𝑤 ′}, then by symmetry of 𝑧′

and𝑤 ′, we can relabel agents such that 𝑥 ≠ 𝑧′. Considering 𝑦, we
are interested in the situation 𝑦 ∈ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}. The first case is
𝑦 ∈ {𝑥 ′, 𝑦′}. Here, by symmetry of 𝑥 ′ and 𝑦′ we relabel such that

𝑦 = 𝑥 ′. The second case is 𝑦 ∈ {𝑧′,𝑤 ′}. Here, if 𝑥 = 𝑤 ′, then 𝑦 = 𝑧′.
Otherwise, 𝑥 ∉ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}. Then, by symmetry of 𝑧′ and 𝑤 ′,
we can relabel such that 𝑦 = 𝑧′. This concludes the relabeling of

𝑥 ′, 𝑦′, 𝑧′, and 𝑤 ′. If 𝑦 ∈ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}, we choose 𝜆 ∈ PP (𝑃) via
the picking order such that 𝑦′ obtains 𝑝′,𝑤 ′ obtains 𝑞′, 𝑧′obtains
𝑠′, and then 𝑥 ′ obtains 𝑟 ′. This order guarantees that 𝜆(𝑤 ′) = 𝑞′,
𝜆(𝑦′) = 𝑝′ and 𝜆(𝑧′) = 𝑠′. Otherwise,𝑦 ∉ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}. If𝑦 has 𝑝′,
𝑞′, 𝑟 ′, and 𝑠′ as her four least favorite houses, we sacrifice 𝑥 ′ and
let 𝑦 pick before her: 𝑦′ gets 𝑝′,𝑤 ′ gets 𝑞′, 𝑧′ gets 𝑠′, 𝑦 gets 𝑟 ′, and
𝑥 ′ gets whatever. Otherwise, 𝑦 has one house not in {𝑝′, 𝑞′, 𝑟 ′, 𝑠′}
among her four least favorite houses. Then, 𝑦 can pick as fifth and

obtain her fourth least favorite house at best. Also, 𝜆(𝑦′) = 𝑝′,
𝜆(𝑤 ′) = 𝑞′, and 𝜆(𝑧′) = 𝑠′ is guaranteed. This proves that we can
choose 𝜆 as desired in all cases.

We now “rotate” 𝜆 over 𝑥 ′, 𝑦′,𝑤 ′ and define 𝜆∗ (𝑥 ′) = 𝑝′,
𝜆∗ (𝑦′) = 𝑞′ ≠ 𝑦′

𝑛−1, 𝜆
∗ (𝑤 ′) = 𝜆(𝑥 ′), and 𝜆∗ (𝑣) = 𝜆(𝑣) for

all 𝑣 ∈ 𝑁 \ {𝑥 ′, 𝑦′,𝑤 ′} (including 𝜆∗ (𝑧′) = 𝑠′). By our invari-

ant, if 𝑦 ∉ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′}, 𝜆∗ (𝑦) = 𝜆(𝑦) and she still obtains her

fourth-least favorite house at best. Otherwise, 𝑦 ∈ {𝑥 ′, 𝑧′}. Since
𝜆∗ (𝑥 ′) = 𝑝′, 𝜆∗ (𝑧′) = 𝑠′, 𝑦 obtains her second-least favorite house

at best. To prove that 𝜆∗ ­∗ 𝜆, take any 𝑁 ′ ⊇ {𝑥 ′, 𝑦′, 𝑧′,𝑤 ′} of size
5 and let 𝐻 ′ = 𝜆(𝑁 ′). 𝜆𝑁 ′,𝐻 ′ does not belong to an isolated bottom

cycle due to 𝑥 ′, 𝑦′, 𝑧′,𝑤 ′ ∈ 𝑁 ′. 𝜆∗ does not belong to an isolated

top cycle, as we have 𝜆∗ (𝑥 ′) = 𝑝′ and 𝑝′ is 𝑥 ′’s least preferred
house. We call Lemma 8, and obtain the desired claim. In total,

under Structure 𝑝′𝑟 ′–𝑝′𝑟 ′–𝑞′𝑠′–𝑞′𝑠′, we again constructed 𝜆∗ ∈ 𝑀
such that:

• 𝜆∗ ∈ BC (𝑃).
• 𝜆∗ (𝑥 ′) = 𝑝′.
• Under 𝜆∗, 𝑦 obtains her fourth-least favorite house from 𝐻

at best.

• Under 𝜆∗, at least one agent in {𝑥 ′, 𝑦′, 𝑧′} \ {𝑥, 𝑥𝑝 } obtains
their third-least favorite house from 𝐻 at best (due to our

relabeling ensuring 𝑥 ≠ 𝑥 ′, 𝑧′ and both 𝑥 ′ and 𝑧′ obtaining
their second-least favorite house at best).

• Additionally, 𝜆∗ (𝑦′) ≠ ℎ𝑦′ (𝑛 − 1).

Moving from 𝜇∗ to 𝜆∗. Roughly speaking, the following claim

states that, starting from the chosen 𝜇∗ ∈ TC (𝑃), we can perform

arbitrary swaps between all agents not equal to 𝑥 or 𝑥𝑝 .

Claim: Let 𝜇 ∈ 𝑀 with 𝜇 (𝑥) = 𝑝 and, under Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–

𝑞𝑠 , 𝜇 (𝑦) ≠ ℎ𝑦 (2). For any 𝑢, 𝑣 ∈ 𝐻 \ {𝑥, 𝑥𝑝 } let 𝜇𝑢↔𝑣 ∈ 𝑀 such that

𝜇 = 𝜇𝑢↔𝑣 , except for 𝜇 (𝑢) = 𝜇𝑢↔𝑣 (𝑣) and 𝜇 (𝑣) = 𝜇𝑢↔𝑣 (𝑢). Then,
𝜇 ­∗ 𝜇𝑢↔𝑣 .

To prove this claim, let 𝑁 ′ ⊇ {𝑥,𝑦, 𝑧,𝑢, 𝑣} be of size 5 (𝑣 may

coincide with 𝑦 or 𝑧. Fill up arbitrarily, then). Let 𝐻 ′ = 𝜇 (𝑁 ′) and
denote for brevity 𝜆 := 𝜇𝑢↔𝑣 . Note that 𝜇 (𝑁 ′) = 𝜆(𝑁 ′). Further,
note that 𝜇𝑁 ′,𝐻 ′ is not part of an isolated top cycle, since by design

𝑦 obtains her third-best house at best under Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–

𝑞𝑠 . Similarly, since 𝑥 ∈ 𝑁 ′ and 𝜆(𝑥) = 𝑝 is her top choice (in 𝐻

and thus also in 𝐻 ′), 𝜆𝑁 ′,𝐻 ′ is not part of an isolated bottom cycle.

Hence, by Lemma 8, 𝜇 ­∗ 𝜆. This concludes the proof of the claim.

Now, start by setting 𝜇0 := 𝜇∗ and 𝑖 := 0. Iterate over each

𝑢 ∈ 𝐻 \ {𝑥, 𝑥𝑝 }. Check if 𝜇𝑖 (𝑢) = 𝜆∗ (𝑢). If yes, there is nothing to
do and we proceed with the next 𝑢. Otherwise, identify 𝑣 ≠ 𝑢 with

𝜇𝑖 (𝑣) = 𝜆∗ (𝑢). By the proven claim, 𝜇𝑖 ­∗ 𝜇𝑖𝑢↔𝑣 . By construction,

we still have 𝜇𝑖𝑢↔𝑣 (𝑥) = 𝑝 , and it coincides with 𝜆∗ in more agents

than 𝜇𝑖 . Set 𝜇𝑖+1 := 𝜇𝑖𝑢↔𝑣 , then increment 𝑖 ← 𝑖 +1. Note that under
Structure 𝑝𝑟–𝑝𝑟–𝑞𝑠–𝑞𝑠 , repeatedly applying the claim requires that

𝜇𝑖 (𝑦) ≠ ℎ𝑦 (2) for all 𝑖 ≤ 𝑘 . For this, first note that 𝜆∗ (𝑦) ≠ ℎ𝑦 (2),
as it is 𝑦’s fourth-least favorite house in 𝐻 at best and 𝑛 ≥ 6.

Hence, we can in the first step pick 𝑢 = 𝑦 if needed, and obtain

𝜇1 (𝑦) = 𝜆∗ (𝑦). Afterwards, it will not reappear in the procedure as

some 𝑣 : Observe that in step 𝑖 + 1, the chosen 𝑣 with 𝜇𝑖 (𝑣) = 𝜆∗ (𝑢)
satisfies 𝜇𝑖 (𝑣) = 𝜆∗ (𝑢) ≠ 𝜆∗ (𝑣). For 𝑖 = 1, clearly 𝜇1 (𝑦) = 𝜆∗ (𝑦),
and 𝑣 ≠ 𝑦. Inductively, 𝜇𝑖+1 (𝑦) = 𝜇𝑖 (𝑦) = 𝜆∗ (𝑦) for all 𝑖 , as desired.
In at most 𝑛 − 2 steps, we arrive at some 𝜇𝑘 ∈ 𝑀 with 𝜇∗ ­∗ 𝜇𝑘 ,
𝜇𝑘 (𝑥) = 𝜆∗ (𝑥) for all 𝑥 ∈ 𝐻 \ {𝑥, 𝑥𝑝 }.

Finally, we prove 𝜇𝑘 ­∗ 𝜆∗. To this end, consider 𝑁 ′ =

{𝑥, 𝑥𝑝 , 𝑥 ′, 𝑦′, 𝑧′} and 𝐻 ′ = 𝜇𝑘 (𝑁 ′). We know 𝜇𝑘 coincides with

𝜆∗ on {𝑥 ′, 𝑦′, 𝑧′} \ {𝑥, 𝑥𝑝 }. Hence, 𝜇𝑘𝑁 ′,𝐻 ′ is not part of an isolated

top cycle, as at least one agent in 𝑁 ′ obtains their third-least fa-
vorite house at best. Further, 𝑥 ′, 𝑦′, 𝑧′ ∈ 𝑁 ′ and under structures

𝑝′–𝑝′–𝑝′ and 𝑝′𝑞′–𝑝′–𝑞′, there are no isolated bottom cycles. Fi-

nally, regarding structure 𝑝′𝑟 ′–𝑝′𝑟 ′–𝑞′𝑠′–𝑞′𝑠′, recall that we chose
𝜆∗ such that 𝜆∗ (𝑦′) ≠ ℎ𝑦′ (𝑛 − 1). It follows that 𝜆∗𝑁 ′,𝐻 ′ is not part
of an isolated bottom cycle. Calling Lemma 8 on 𝑁 ′, 𝐻 ′ to obtain
𝜇𝑘 ­∗ 𝜆∗ concludes the proof.

□

Proposition 5. Let 𝑃 be any profile with 𝑛 ≥ 5. Then, |TC (𝑃) | > 2

and |BC (𝑃) | ≤ 2 implies TC (𝑃) = 𝑀 \ BC (𝑃).

Some lemmas before the main proof are required.

Lemma 9. Let 𝜆1 be an assignment such that 𝑥 , 𝑦, or 𝑧 obtains one
of her three most preferred houses, say 𝑡 , under Structure 𝑝–𝑝–𝑝 or
Structure 𝑝𝑞–𝑝–𝑞. Then, there is 𝜆 with 𝜆1 ¥∗ 𝜆 and 𝜆(𝑥) = 𝑝 .

Proof. Consider

𝑃 =

𝑥 : 𝑝, ℎ𝑥 (2), ℎ𝑥 (3), . . .

𝑦 : 𝑝, ℎ𝑦 (2), ℎ𝑦 (3), . . .

𝑧 : 𝑝, ℎ𝑧 (2), ℎ𝑧 (3), . . .



𝑃 ′ =
𝑥 : 𝑝, 𝑞, . . .

𝑦 : 𝑝, ℎ𝑦 (2), . . .

𝑧 : 𝑞, ℎ𝑧 (2), . . .

Our goal is to show that we can keep each structure intact on a

subprofile with five agents and five houses.

For 𝑃 : Add 𝑣 ∈ 𝑁 with 𝜆1 (𝑣) = 𝑝 to 𝑥,𝑦, 𝑧 and fill 𝑥,𝑦, 𝑧, 𝑣 up until

it is a set 𝑁 ′ of size 5. Then, 𝜆1 (𝑁 ′) ⊇ {𝑝, 𝑡}.
For 𝑃 ′: Add 𝑣,𝑤 ∈ 𝑁 with 𝜆1 (𝑣) = 𝑝 and 𝜆1 (𝑤) = 𝑞 to 𝑥,𝑦, 𝑧 and

fill 𝑥,𝑦, 𝑧, 𝑣,𝑤 up until it is a set 𝑁 ′ of size 5 if needed. Then,
𝜆1 (𝑁 ′) ⊇ {𝑝, 𝑞, 𝑡}.

Clearly, the structure remains intact on 𝑁 ′, 𝐻 ′, so there is no iso-

lated top cycle on 𝑀𝑁 ′,𝐻 ′ . Further, 𝜆
1
is not part of an isolated

bottom cycle, as some agent obtains 𝑡 as their third favorite house

or better. It follows by Lemma 8 that 𝜆1 can reach every assignment

𝜆 with 𝜆(𝑁 ′) = 𝐻 ′, in particular one with 𝜆(𝑥) = 𝑝 . □

Lemma 10. Let 𝜆1 be an assignment such that one of 𝑥,𝑦, 𝑧,𝑤
obtains one of her two most preferred houses, say 𝑡 , under Structure
𝑝𝑟–𝑝𝑟–𝑞𝑠–𝑞𝑠 . Then, there is 𝜆 with 𝜆1 ¥∗ 𝜆 and 𝜆(𝑥) = 𝑝 .

Proof. Consider

𝑃 ′′ =

𝑥 : 𝑝, 𝑟, . . .

𝑦 : 𝑝, 𝑟, . . .

𝑧 : 𝑞, 𝑠, . . .

𝑤 : 𝑞, 𝑠, . . .

W.l.o.g., let𝑤 obtain 𝑡 , one of her top two houses. Let 𝑣 ∈ 𝑁 with

𝜆1 (𝑣) = 𝑝 . Then, if needed, fill up 𝑥,𝑦, 𝑧,𝑤, 𝑣 to some set 𝑁 ′ of size
5. Since 𝜆1 (𝑁 ′) ⊇ {𝑝, 𝑡}, the four agents 𝑥,𝑦, 𝑧,𝑤 top-rank two

houses twice, and there is no isolated top cycle in𝑀𝑁 ′,𝐻 ′ . Further,

𝜆1 is not in an isolated bottom cycle, as an agent obtains her second-

best house or better. Hence, define 𝜆 by letting 𝑥 and 𝑣 swap houses

from 𝜆1. Lemma 8 yields 𝜆1 ¥∗ 𝜆. □

Proof of Proposition 5. Now, consider any assignment 𝜆∗ ∉
BC (𝑃).

The following is our Claim: 𝜆∗ ¥∗ 𝜆1 for some 𝜆1 with 𝜆1 (𝑥) =
𝑝 .

If 𝜆∗ (𝑥) = 𝑝 , we are done immediately by 𝜆1 = 𝜆∗. Otherwise,
since 𝜆∗ is not Pareto-pessimal, there exists a swap cycle of houses

such that all agents on this cycle will be worse off after applying

it to 𝜆∗. Our overall approach is to swap houses in a way that 𝑥

receives 𝑝 (getting better off) while still enough agents are worse off,

so that the assignment after the swap (𝜆1) is still weakly majority-

dominated by 𝜆∗. To this end, we make use of the just mentioned

possible swap which is a Pareto-worsening. We now distinguish

several cases depending on the structure. Recall that 𝑃 has one of

the following three forms

𝑃1 =

𝑥 : 𝑝, ℎ𝑥 (2), ℎ𝑥 (3), . . .

𝑦 : 𝑝, ℎ𝑦 (2), ℎ𝑦 (3), . . .

𝑧 : 𝑝, ℎ𝑧 (2), ℎ𝑧 (3), . . .

𝑃2 =

𝑥 : 𝑝, 𝑞, . . .

𝑦 : 𝑝, ℎ𝑦 (2), . . .

𝑧 : 𝑞, ℎ𝑧 (2), . . .

𝑃3 =

𝑥 : 𝑝, 𝑟, . . .

𝑦 : 𝑝, 𝑟, . . .

𝑧 : 𝑞, 𝑠, . . .

𝑤 : 𝑞, 𝑠, . . .

For 𝑃1: If 𝜆∗ assigns 𝑝 to 𝑥 , 𝑦, or 𝑧, then we can w.l.o.g. rename

the agents such that 𝜆∗ (𝑥) = 𝑝 . Otherwise, consider the

swap cycle: if it is of length 2, at least one agent among

𝑥,𝑦, 𝑧 is untouched by it, say 𝑥 . Further, one of 𝑥 ’s top

three houses 𝑡 is not affected by it, and since two agents

are worse off by the cycle we can find the agent 𝑤 with

𝜆∗ (𝑤) = 𝑡 and create 𝜆1 by letting 𝑥 and 𝑤 swap their

houses simultaneously with the two agents getting worse

houses by the cycle. Then, as at most 2 agents improve by

letting 𝑥 and 𝑤 swap their houses (and they are disjoint

from the two agents being worse off), we have 𝜆∗ ¥ 𝜆1.

Using Lemma 9, we obtain 𝜆1 ¥∗ 𝜆1.5 with 𝜆1.5 being some

assignment satisfying 𝜆1.5 (𝑥) = 𝑝 . If the swap cycle is of

length at least 3, it again can either not contain 𝑝 or none

of the three agents 𝑥,𝑦, 𝑧. If it doesn’t contain 𝑝 , simply let

𝑤 be the agent such that 𝜆∗ (𝑤) = 𝑝 , and force swap the

houses of𝑤 and 𝑥 after performing the Pareto-worsening

swap cycle, to obtain 𝜆1. Agent 𝑥 improves, and at most one

agent from the cycle improves. Hence, at least two agents

from the cycle are still worse off, yielding 𝜆∗ ¥ 𝜆1. Similarly,

if it does not contain w.l.o.g. 𝑥 , force swap 𝑝 to 𝑥 with the

same argument.

For 𝑃2: We can clearly force swap a top three house 𝑡 to one of

the three agents 𝑥,𝑦, 𝑧: If the Pareto-worsening swap cy-

cle is of length 2, we can use the pigeon hole principle

because one of the three agents, w.l.o.g. 𝑥 , and one of her

top three houses 𝑡 are not affected by the swap cycle. De-

fine 𝜆1 by identifying the agent currently holding house 𝑡

and letting her swap houses with 𝑥 after performing the

Pareto-worsening swap cycle. This yields 𝜆∗ ¥ 𝜆1. Then,

apply Lemma 9 to obtain 𝜆1.5, in which 𝜆1.5 (𝑥) = 𝑝 . If

the Pareto-worsening swap cycle is of length 3, it either

does not involve one of 𝑥,𝑦, 𝑧 or one of 𝑝, 𝑞. If, e.g., the

cycle does not contain 𝑥 , we define 𝜆1 by letting 𝑥 swap

her house with the agent who holds 𝑝 after performing

the Pareto-worsening swap cycle. If the Pareto-worsening

swap cycle is of length at least 4, just give agent 𝑥 house 𝑝

after performing the Pareto-worsening swap cycle.

For 𝑃3 Again, we perform a case analysis based on the length of

the Pareto-worsening swap cycle.

– Consider first the case where the cycle has length 2.

∗ It could be that houses 𝑝, 𝑟 and agents 𝑧,𝑤 form

this swap cycle. This is the most annoying case,

as our improving swap can neither contain 𝑝

or 𝑟 , nor can we directly swap 𝑠 to 𝑧 or 𝑤 . Ef-

fectively, this prevents all four agents 𝑥,𝑦, 𝑧,𝑤

from obtaining one of their top 2 houses directly

by means of executing a swap directly after the

worsening swap. We are forced to take a detour

by defining 𝜆1 from 𝜆∗ by first applying thewors-
ening swap cycle and then letting 𝑥 obtain her

third-best house by swapping with some other



agent (which cannot be 𝑧,𝑤 , as they hold 𝑝, 𝑟 ).

𝜆1 is well defined, and 𝜆∗ ¥ 𝜆1. Annoyingly, 𝜆1

is too weak to call Lemma 10. We hence resort to

Lemma 8 to swap 𝑝 to 𝑥 or 𝑦: Let 𝑣 be the agent

with 𝜆1 (𝑣) = 𝑠 . Considering 𝑁 ′ = {𝑥,𝑦, 𝑧,𝑤, 𝑣},
we see that 𝐻 ′ = 𝜆1 (𝑁 ′) contains 𝑠 . Further, by
assumption on the Pareto-worsening swap cy-

cle, 𝑧,𝑤 hold 𝑝 and 𝑟 ! Hence, the on 𝑃𝑁 ′,𝐻 ′ , the

structure with two pairs of agents sharing the

same top choice is intact, meaning𝑀𝑁 ′,𝐻 ′ con-

tains no isolated top cycle. As 𝜆1 gives agent 𝑥

his third ranked house, it is not in an isolated bot-

tom cycle in𝑀𝑁 ′,𝐻 ′ . Using Lemma 8, it reaches

all assignments with 𝜆(𝑁 ′) = 𝐻 ′ on the major-

ity graph, in particular 𝜆1.5 which assigns 𝑝 to

𝑥 .

∗ If one of 𝑝 or 𝑟 is not affected by the Pareto wors-

ening swap cycle, we proceed by a further case

analysis. The first case is that the cycle does not

affect at least one agent of 𝑥 and 𝑦. The second

case is that the cycle is between 𝑥 and 𝑦. In the

first case, force swap 𝑝 or 𝑟 (whichever one of

them is not affected by the Pareto-worsening

swap cycle) to 𝑥 or 𝑦 (whichever one of them

is not affected by the Pareto-worsening swap

cycle) after performing the Pareto-worsening

swap cycle, to obtain 𝜆1. In the second case, we

can assume that one of 𝑞 or 𝑠 is unaffected by the

cycle because this situation would be identical

to the case where the cycle lets 𝑤 and 𝑧 swap

houses 𝑝 and 𝑟 up to renaming. We hence force

swap 𝑞 or 𝑠 to 𝑧 after performing the Pareto-

worsening swap cycle to obtain 𝜆1. We make

use of Lemma 10, which yields 𝜆1 ¥∗ 𝜆1.5 for

some 𝜆11.5 with 𝜆1.5 (𝑥) = 𝑝 .

∗ Finally, consider the case when at least of the

agents 𝑤 or 𝑧 is not affected by the Pareto-

worsening swap cycle, say w.l.o.g.𝑤 . We know

that, since we are not in the previous case, the

two houses being swapped by the cycle are 𝑝

and 𝑟 . This means we can simultaneously per-

form two swaps: Let𝑤 swap with the agent who

gets 𝑞 in 𝜆, and let the two agents getting 𝑝 and

𝑟 swap their houses. The result of these two si-

multaneous swaps is 𝜆1 and we have 𝜆∗ ¥ 𝜆1.

By Lemma 10, we can reach a 𝜆1.5, giving 𝑥 to 𝑝 .

– If the cycle is of length 3: Either some agent among

𝑥,𝑦, 𝑧,𝑤 already obtained one of her top 2 choices or

there is an easy force swap to achieve this. Call again

Lemma 10.

– If the cycle is of length 4 or larger: Force swap 𝑝 to 𝑥

after performing the Pareto-worsening swap cycle.

In all cases, we obtain an assignment, overwrite 𝜆1, with 𝜆1 (𝑥) = 𝑝 .

This proves the claim.

With this claim, the proof becomes significantly easier. Take any

Pareto-optimal assignment 𝜇∗ with 𝜇∗ (𝑥) = 𝑝 and, if applicable,

𝜇∗ (𝑧) = 𝑞. We again perform a case analysis based on the profile

structure.

• For 𝑃1, we start from 𝜆1, and always consider 𝑥,𝑦, 𝑧. We

add some𝑤 on which 𝜆𝑖 does not coincide with 𝜇∗, and the
𝑣 which holds 𝜇∗ (𝑤) under 𝜆𝑖 . Force swap to obtain 𝜆𝑖+1,
as 𝜆𝑖 is not in an isolated bottom cycle and by 𝑝 ∈ 𝐻 ′ and
𝜆1 (𝑥) = 𝑝 there is no isolated top cycle.

• For 𝑃2, we first start by swapping 𝑞 to 𝑧 (with the same

connectedness argument) to obtain 𝜆2. From that point

on, any 𝑁 ′ ⊇ {𝑥,𝑦, 𝑧} contains the structure pq–p–q with

𝐻 ′ = 𝜆𝑖𝑁 ′. We keep adding𝑤, 𝑣 to 𝜆𝑖 as in the item before.

• For 𝑃3, we can swap 𝑞 to 𝑧 in the first step (with the same

connectedness argument). This case is rather tricky as we

need all five agents 𝑥,𝑦, 𝑧,𝑤, 𝑣 with 𝜆1 (𝑣) = 𝑞. From this

point on, the double double top is intact whenever 𝑥 and 𝑧

are present in 𝜆𝑖 . Since 𝑥,𝑦, 𝑧,𝑤 do not allow for the addi-

tion of two new agents 𝑢, 𝑣 , we need to swap in two steps.

First, we identify some 𝑣 for which 𝜆𝑖 assigns a different

house than 𝜇∗, and find the agent 𝑢 holding it. Then, we

let 𝑢 and 𝑦 swap. Then, we let 𝑦 and 𝑣 swap. We can do

this until all agents 𝑣 ≠ 𝑥,𝑦, 𝑧,𝑤 except for one last 𝑢 are

satisfied. The last five agents 𝑥,𝑦, 𝑧,𝑤,𝑢 we easily deal with

at once.

This concludes the proof, as we have shown that from any as-

signment not in an isolated bottom cycle, we can reach a serial

dictatorship on the majority graph.

□

C PATH FOR EXAMPLE 4
Here, we provide a concrete path from the assignment 𝜇 in Exam-

ple 4 to a serial dictatorship 𝜆 in the majority graph.What follows, is

a sequence of pairs of assignments with the red assignment weakly

dominating the other one (which is marked in blue for the agents

receiving a different house). The profile 𝑃 of course remains the

same. In the first illustration, the red assignment is 𝜇. In the last

illustration, the blue assignment is 𝜆.

𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎

𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎



𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎

𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎

𝑃 =

1 : 𝑓 , 𝑏, 𝑑, 𝑒, 𝑐, 𝑎, 𝑔

2 : 𝑑, 𝑓 , 𝑔, 𝑎, 𝑏, 𝑒, 𝑐

3 : 𝑑, 𝑎, 𝑐, 𝑔, 𝑒, 𝑏, 𝑓

4 : 𝑎, 𝑑, 𝑏, 𝑓 , 𝑔, 𝑒, 𝑐

5 : 𝑐, 𝑔, 𝑒, 𝑏, 𝑓 , 𝑑, 𝑎

6 : 𝑓 , 𝑎, 𝑒, 𝑑, 𝑔, 𝑐, 𝑏

7 : 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, 𝑓 , 𝑎

The assignment 𝜆 is a serial dicatorship, e.g., with the picking order

3, 4, 6, 7, 1, 5, 2.
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