On the Tradeoff Between Efficiency and Strategyproofness

Felix Brandt (joint work with Haris Aziz, Florian Brandl, and Markus Brill)

GAMES 2016, Maastricht

Probabilistic Social Choice

- Agents have complete and transitive preference relations \geq_i over a finite set of alternatives A.
- A social decision scheme f maps a preference profile (\geq_1, \ldots, \geq_n) to a lottery $\Delta(A)$.

- Special case: Random assignment (aka house allocation). A is the set of deterministic assignments.
 - Agents are indifferent between all assignments in which they are assigned the same object.

efficiency

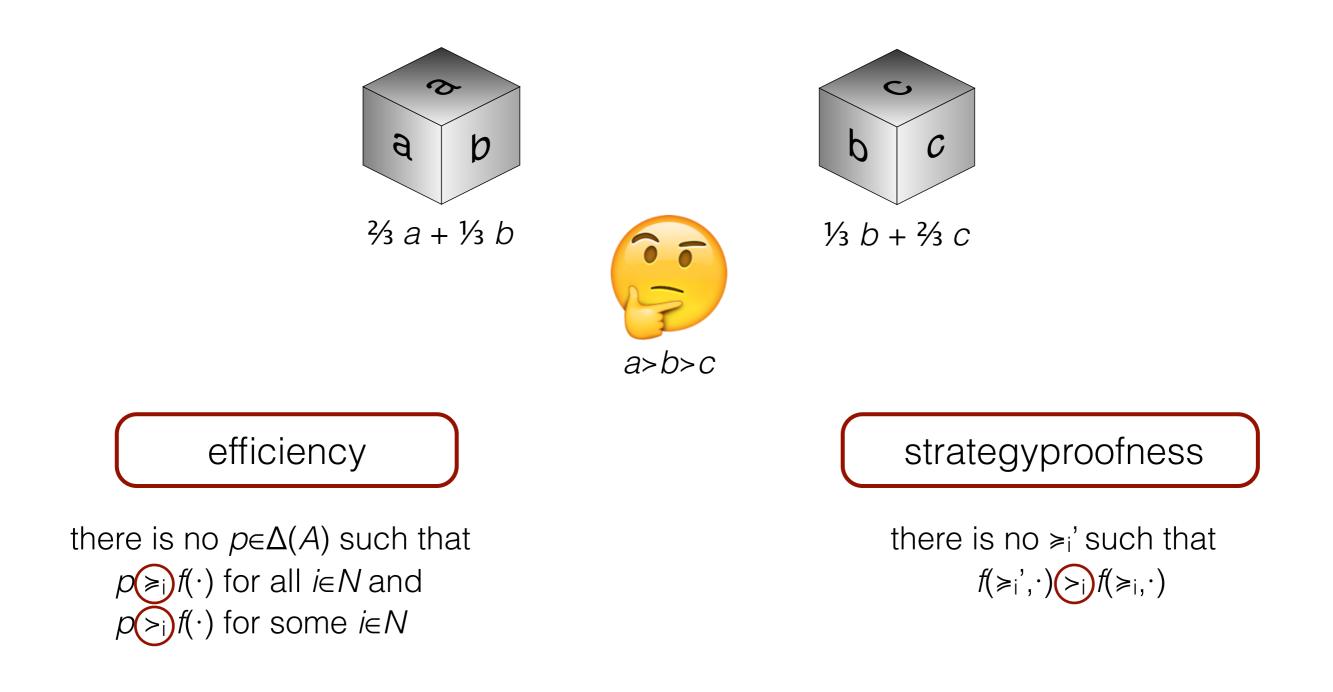
No agent can be made better off without making another one worse off

strategyproofness

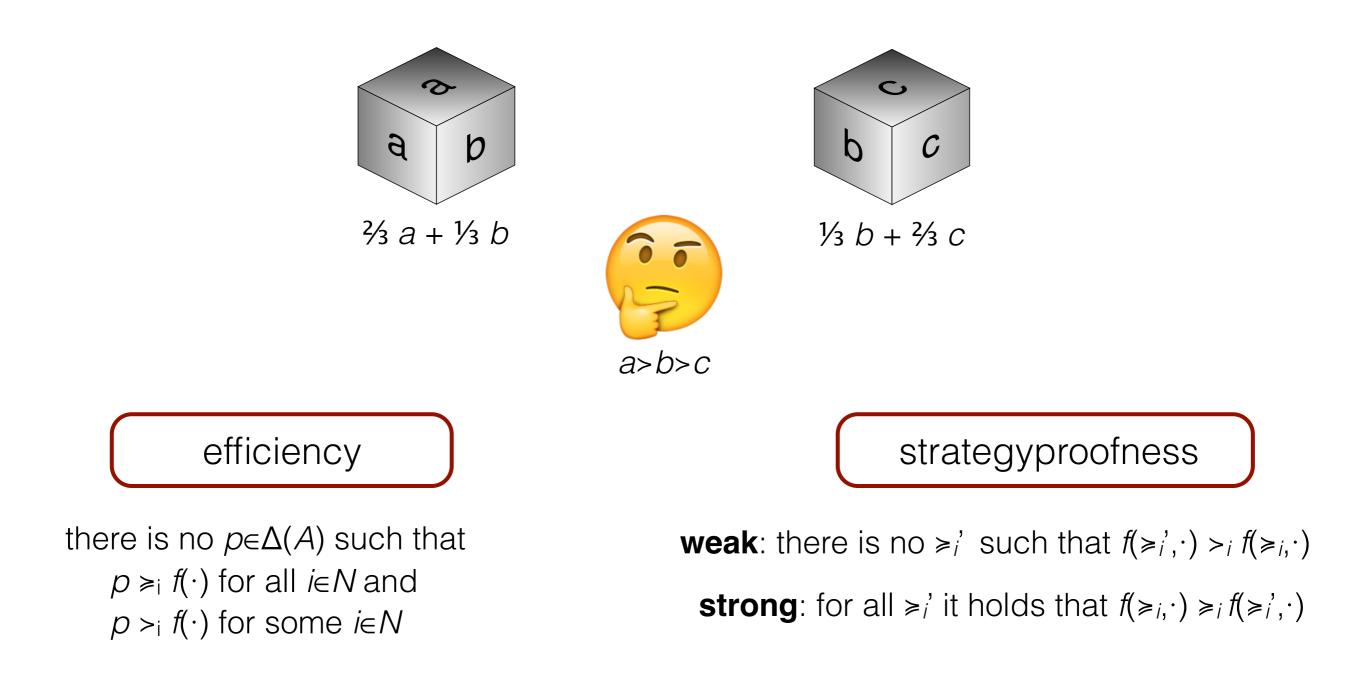
No agent can obtain a more preferred outcome by misreporting his preferences

Only Dictatorship

strict preferences; Gibbard (1973), Satterthwaite (1975)



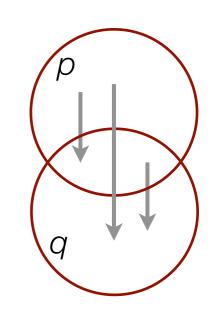
Extend preferences over alternatives to (incomplete) preferences over lotteries!



Extend preferences over alternatives to (incomplete) preferences over lotteries!

Sure Thing (ST)

 $\frac{a > b > c}{p = (\frac{2}{3} \quad \frac{1}{3} \quad 0)}$ $q = (0 \quad \frac{1}{3} \quad \frac{2}{3})$



- ► $p \ge^{ST} q \iff \forall x \in \text{supp}(p) \setminus \text{supp}(q), y \in \text{supp}(q): x > y$
 - $\land \forall x \in \text{supp}(p), y \in \text{supp}(q) \setminus \text{supp}(p): x > y$
 - $\wedge \quad \forall x \in \text{supp}(p) \cap \text{supp}(q): p(x) = q(x)$
 - loosely based on Savage's sure-thing principle
 - inspired by non-probabilistic preference extensions due to Fishburn (1972) and G\u00e4rdenfors (1979)

Bilinear Dominance (BD)

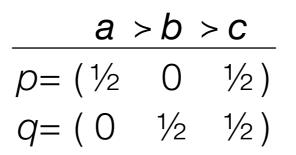
 $\frac{a > b > c}{p = (\frac{1}{2} \quad \frac{1}{2} \quad 0)}$ $q = (\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3})$

• $p \geq^{BD} q \iff [\forall x, y \in A: x > y \Rightarrow p(x) q(y) \ge p(y) q(x)]$

- for every pair of alternatives, it's more likely that p yields the better alternative and q the worse alternative
- p is preferred to q for every consistent SSB utility function
- Fishburn (1984), Aziz et al. (2015)

$$\forall \geq : \geq^{ST} \subseteq \geq^{BD}$$

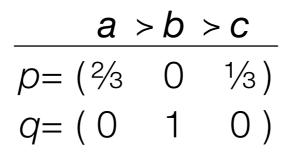
Stochastic Dominance (SD)



- $p \ge^{SD} q \iff \forall x \in A: \sum p(y) \ge \sum q(y)$
 - for every alternative, it's more likely that p yields something better
 - p yields more expected utility for every consistent vNM function
 - Bogomolnaia & Moulin (2001) and many others

$$\forall \geq : \geq^{ST} \subseteq \geq^{BD} \subseteq \geq^{SD}$$

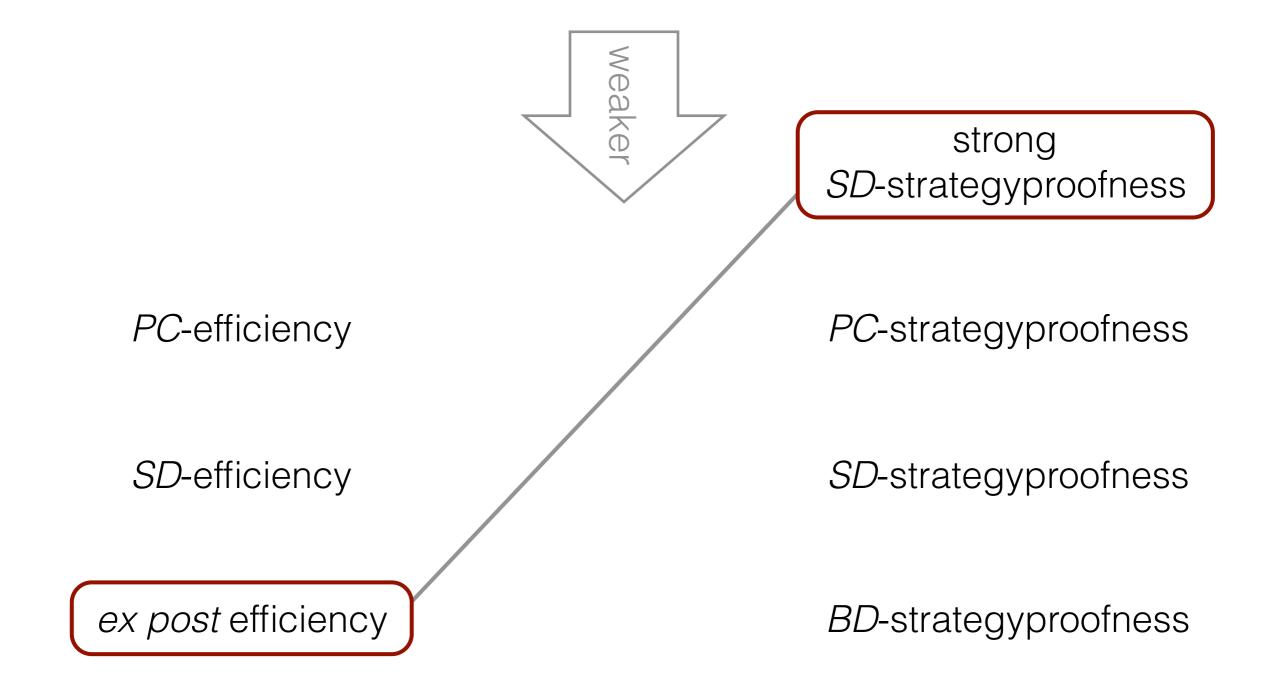
Pairwise Comparison (PC)



•
$$p \ge PC q \iff \forall x \in A: \sum_{x \ge y} p(x) q(y) \ge \sum_{x \ge y} q(x) p(y)$$

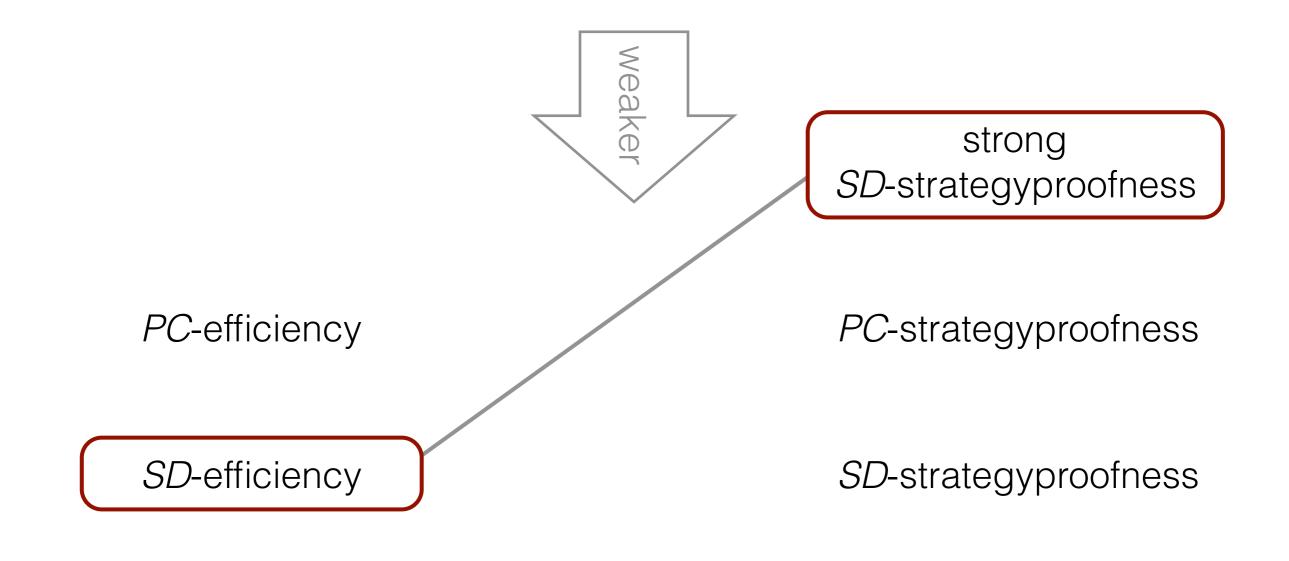
- it's more likely that p yields a better alternative
- minimizes ex ante regret
- ▶ \geq^{PC} is a complete relation for all \geq
- Blavatskyy (2006), Aziz et al. (2015)

$$\forall \geq : \geq^{ST} \subseteq \geq^{BD} \subseteq \geq^{SD} \subseteq \geq^{PC}$$



Only Random Dictatorship

strict preferences; Gibbard (1977)



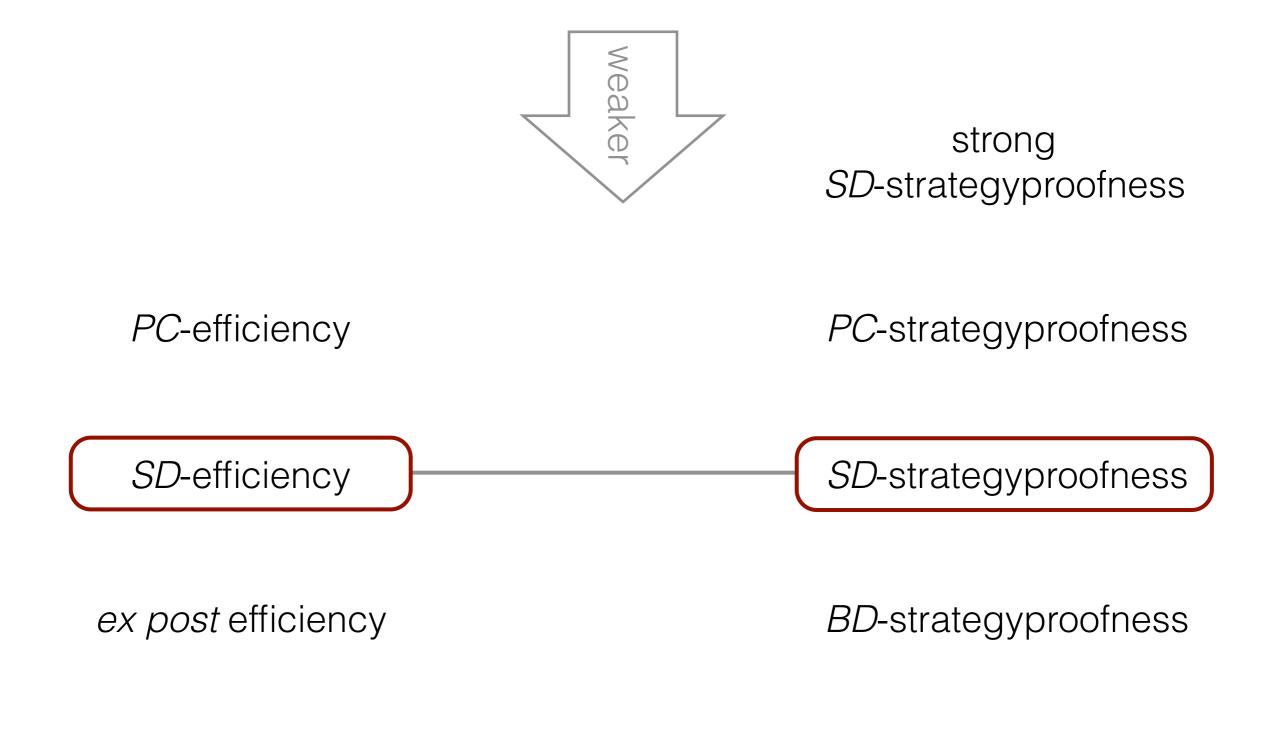
ex post efficiency

BD-strategyproofness

ST-strategyproofness

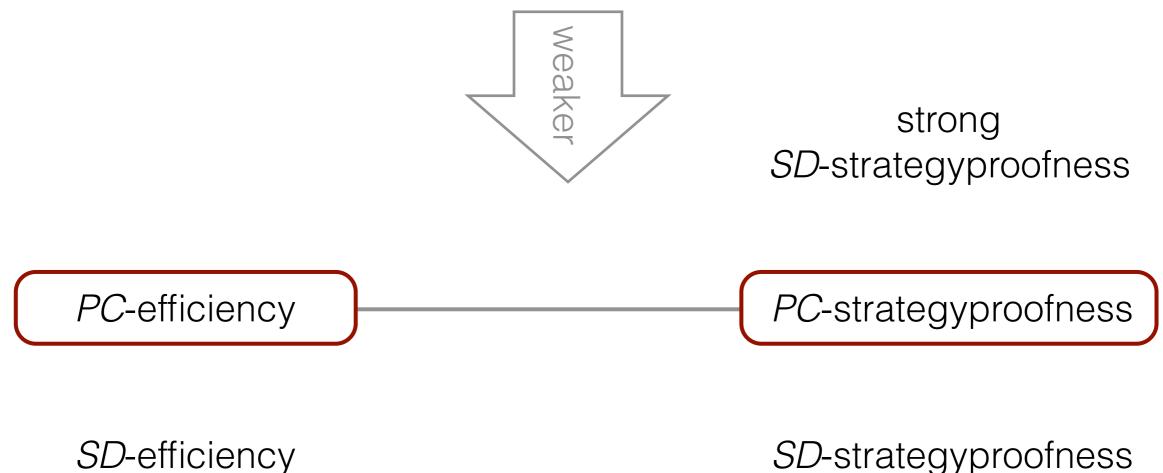
No assignment rule

strict preferences; Bogomolnaia & Moulin (2001)



Probabilistic Serial (PS) assignment rule

strict preferences, Bogomolnaia & Moulin (2001)



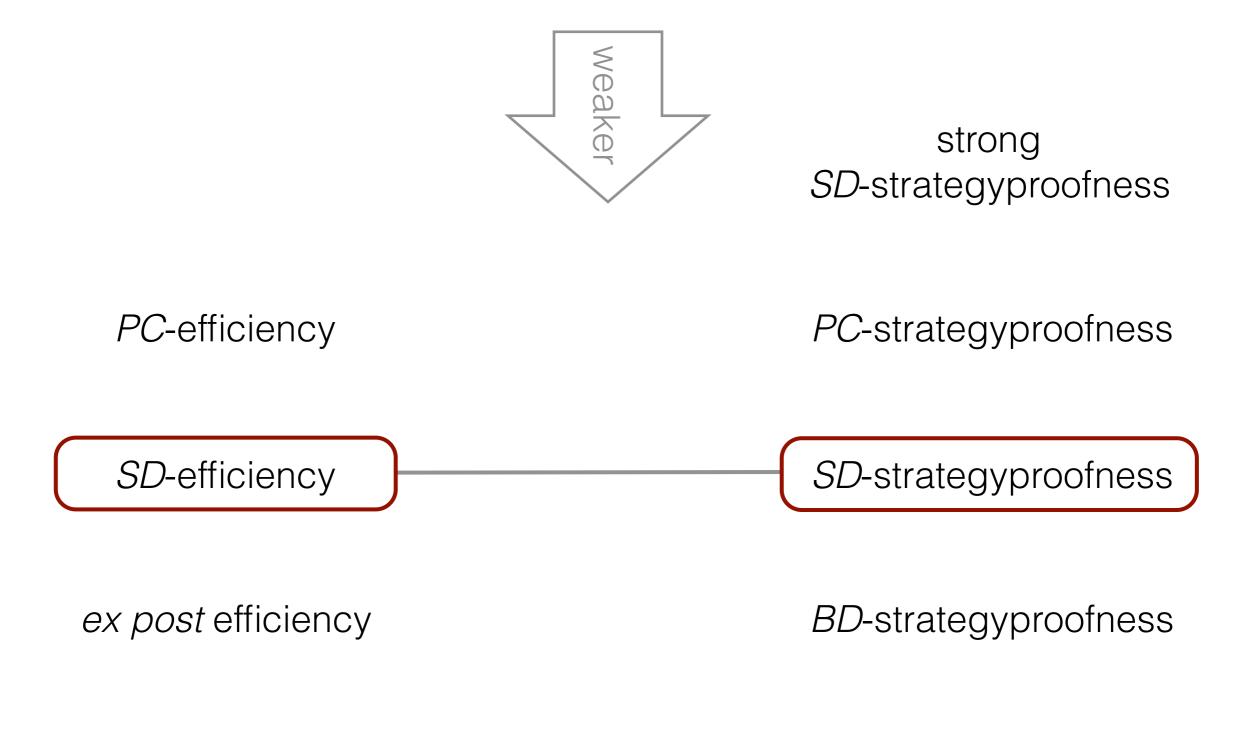
ex post efficiency

SD-strategyproofness

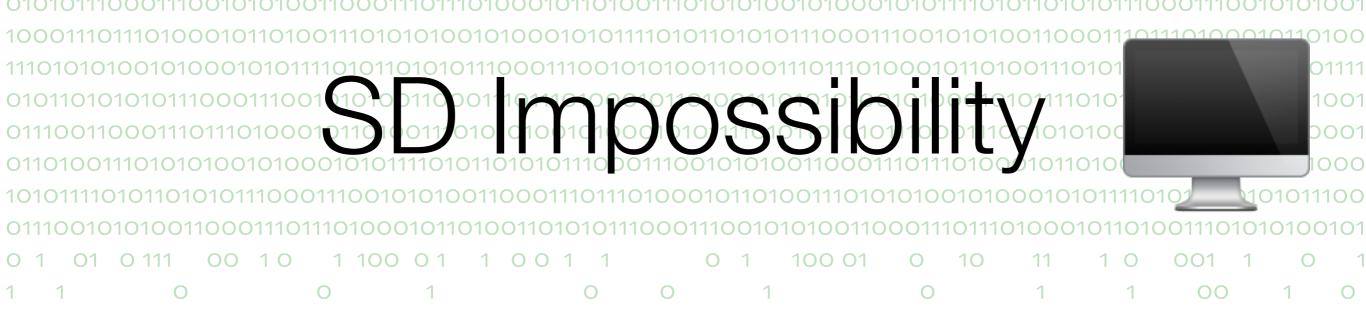
BD-strategyproofness

ST-strategyproofness

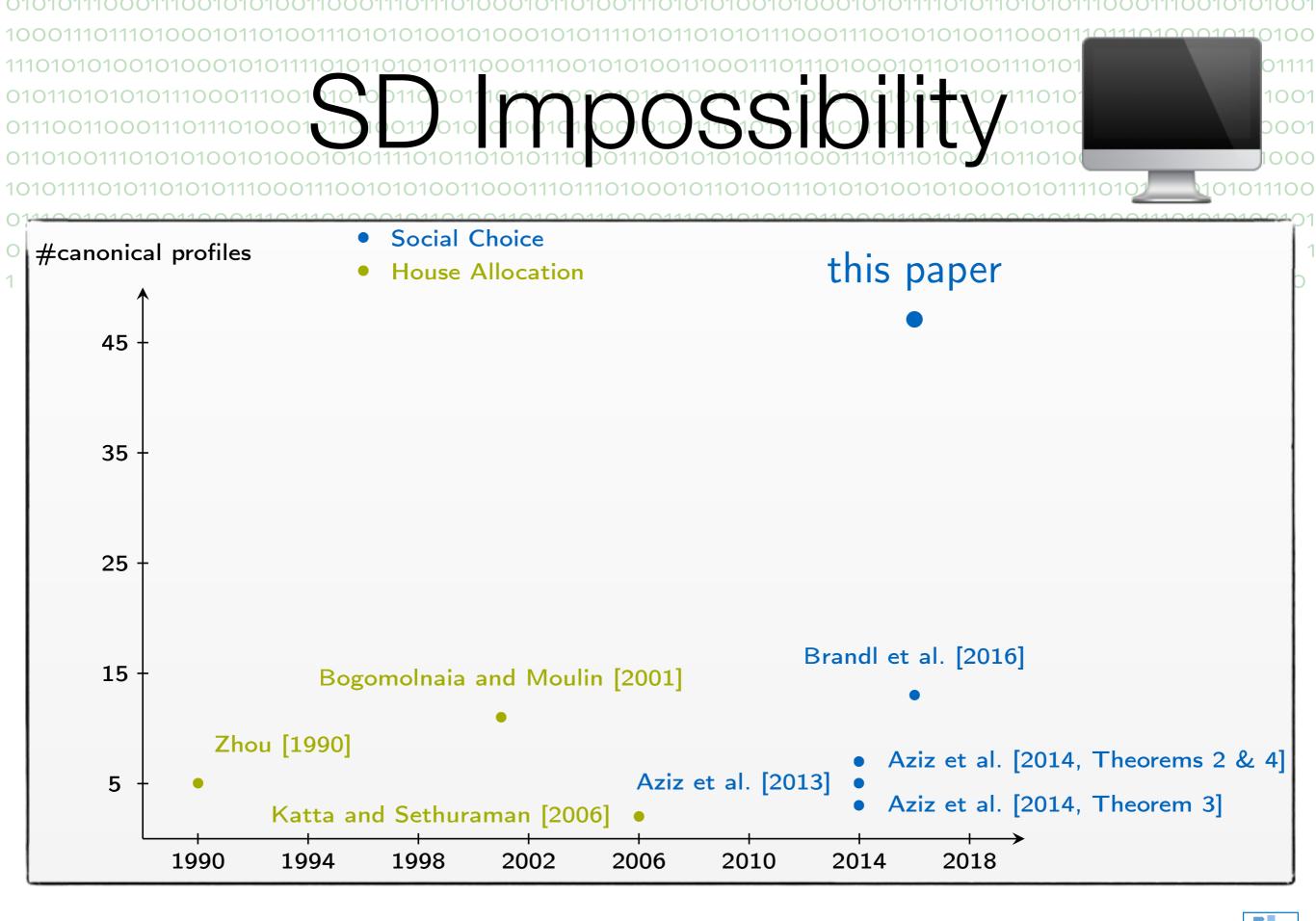
No anonymous and neutral social decision scheme Aziz, Brandl, & B. (2014)

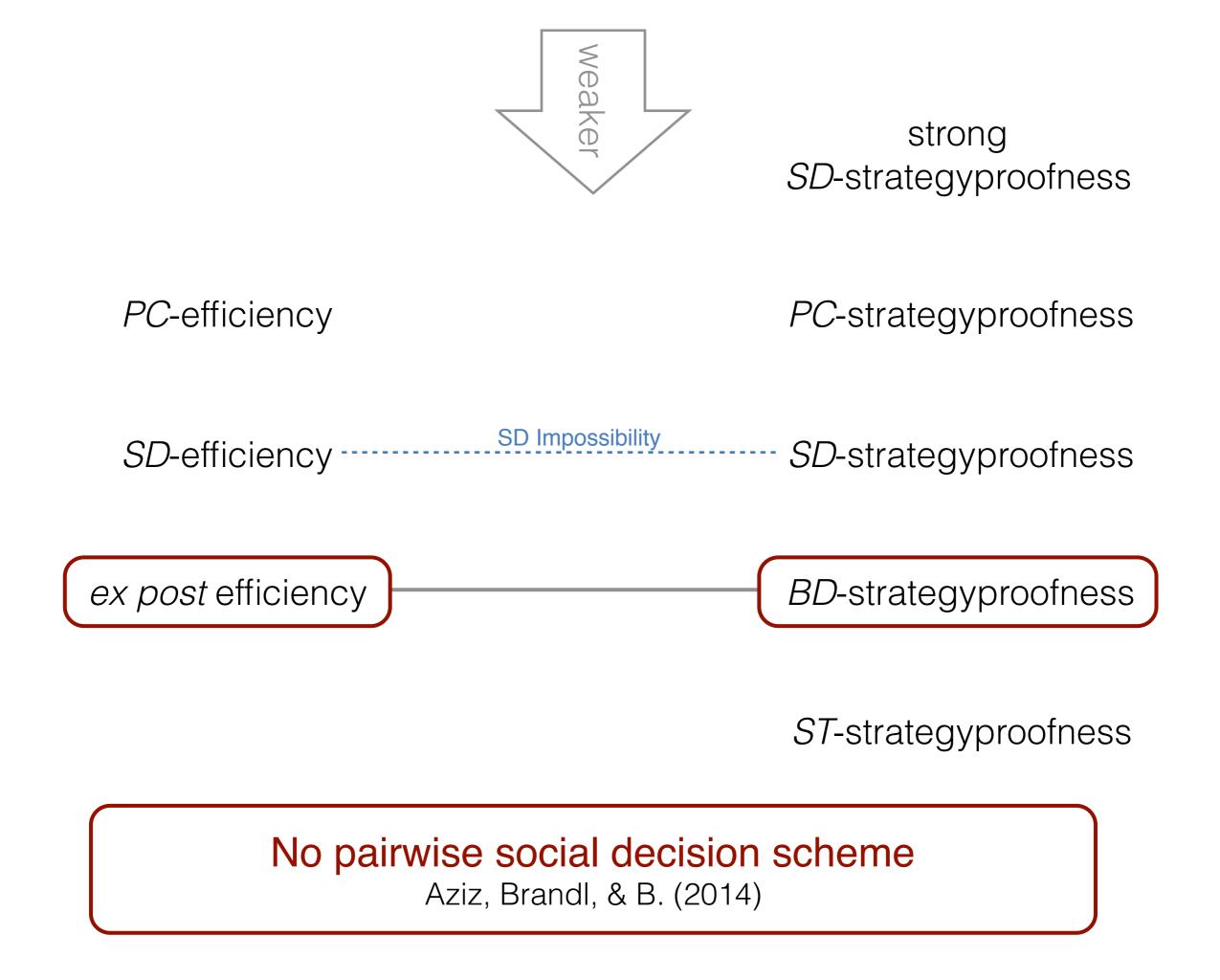


No anonymous and neutral social decision scheme Brandl, B., & Geist (2016)



- requires at least 4 agents and at least 4 alternatives
 - more than 31 million possible preferences profiles
- was shown with the help of a computer (SMT solver)
- proof has been extracted from the solver's output and brought into human-readable form
- operates on 47 canonical preference profiles and is very tedious to check
- has been verified by a computer (Isabelle/HOL)

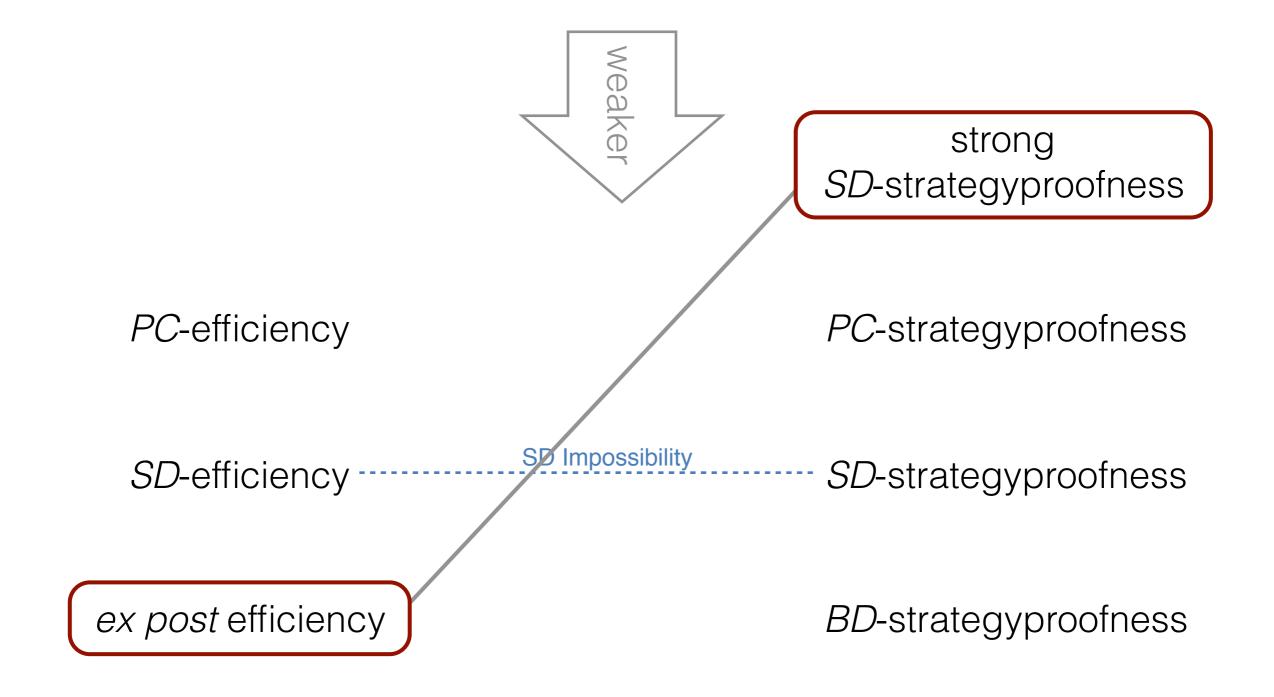




Random Serial Dictatorship

- Extension of random dictatorship to weak preferences
 - pick an ordering of agents uniformly at random
 - sequentially narrow down the set of alternatives by letting each agent restrict it to his most preferred ones.
- Widespread assignment rule (aka random priority)

1/2 a + 1/6 b + 1/3 c



Random Serial Dictatorship

Aziz, B., & Brill (2013)

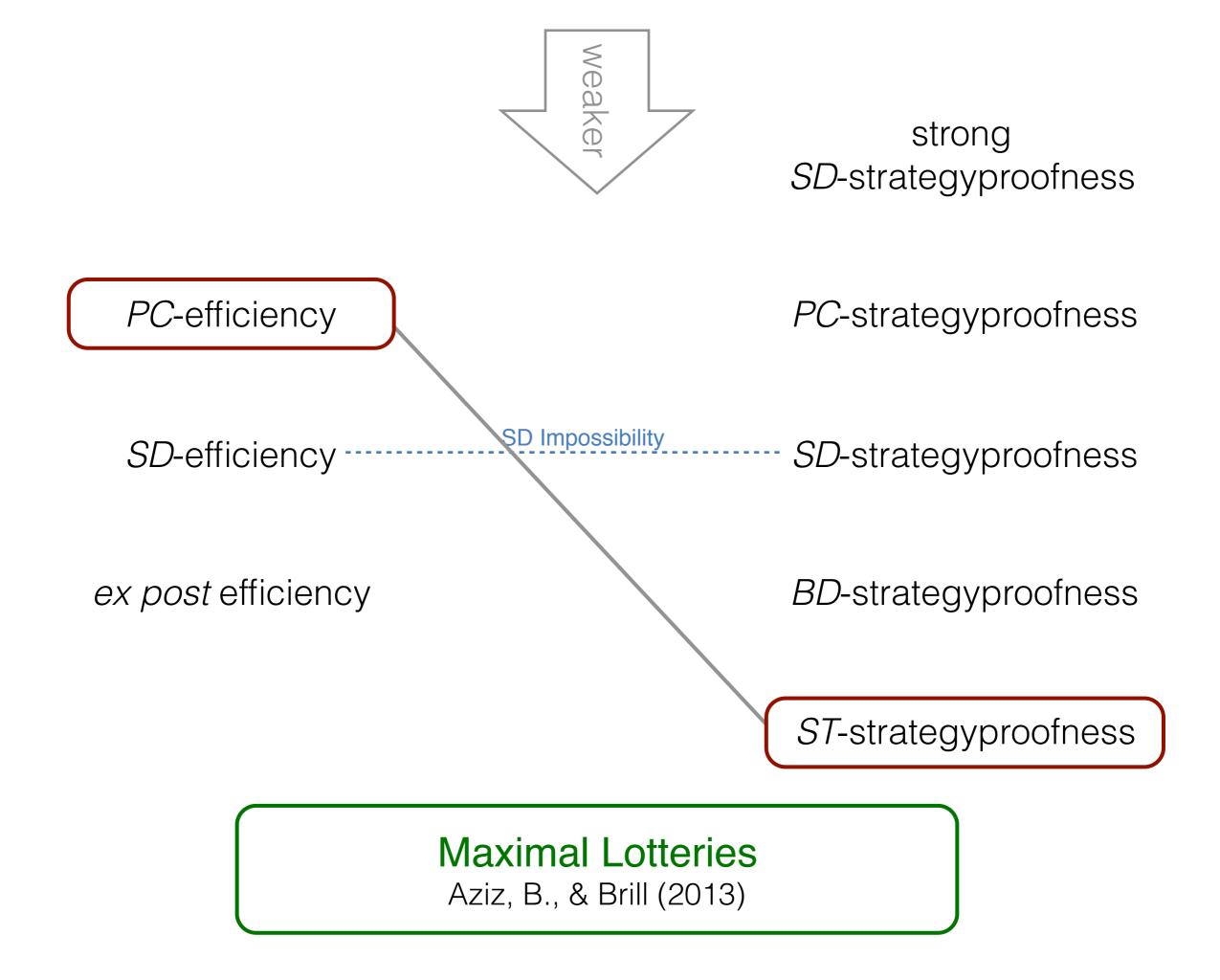
Maximal Lotteries

Peter C. Fishburn

- First studied by Kreweras (1965) and Fishburn (1984)
 - rediscovered by Laffond et al. (1993), Felsenthal and Machover (1992), Fisher and Ryan (1995), Rivest and Shen (2010)
 - preference profiles induce symmetric zero-sum games
 - maximal lotteries correspond to mixed maximin strategies in these games

2	2	1			b	
а	b	С	а	0	1	-1 3
b	С	а	b	-1	0	3
С	а	b	С	1	-3	0

3⁄5 a + 1∕5 b + 1∕5 c



Conclusion

- No social decision scheme satisfies moderate degrees of efficiency and strategyproofness.
- *RSD* is very strategyproof, but only a little efficient.
- ► *ML* is very efficient, but only a little strategyproof.
- Further results
 - RSD and ML are ST-group-strategyproof, but not SD-groupstrategyproof.
 - No anonymous and neutral social decision scheme is *ex post* efficient and *BD*-group-strategyproof, even when preferences are dichotomous.

