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® Alternatives are chosen from feasible subsets.

» Throughout this talk, the set of feasible sets F(U) contains all
finite and non-empty subsets of U.

® A choice function is a function S:F(U)—F(U) such that
S(A)CA.
» Two standard consistency conditions:
Let A,BeF(U) with BCA and S(A)nBz2.
- Contraction (a): S(A)nB<S(B)
- Expansion (B+): S(A)nB2S(B)
» The conjunction of both properties is equivalent to Samuelson’s
weak axiom of revealed preference (Sen, 1969; Bordes, 1976).




From Choice to Social Choice

o | et N be a finite set of voters and R(U) the set of all
transitive and complete relations over U.

® A social choice function (SCF) is a function
S:R(U)NxF(U)— F(U) such that S(R,A)CA.

e Useful conditions on SCFs
» |lIA (Independence of Irrelevant Alternatives): Choice only
depends on preferences over alternatives within the feasible set.
» Pareto-optimality: Alternative y is not chosen if there exists
some x that is unanimously strictly preferred to y.
» Non-dictatorship: There should be no voter whose most
preferred alternative is always uniquely chosen.
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Arrow’s Impossibility

® Theorem (Arrow, 1951, 1959): There exists no SCF that
simultaneously satisfies I|A, Pareto-optimality, non-
dictatorship, «, and B-+.

» In the context of SCFs, IlIA is only a mild framework requirement
(Bordes and Tideman, 1991) and dropping it offers little relief
(Banks, 1995).

» Dropping Pareto-optimality offers little relief (Wilson, 1972).
» Dropping non-dictatorship is unacceptable.

»  Dropping B+ offers little relief (Sen, 1977).

® Dropping « allows for reasonable SCFs!



Majoritarian SCFs

e An SCF is majoritarian if its outcome only
depends on the pairwise majority relation >
within the feasible set.

» Majoritarianism implies all Arrovian conditions

except o and B+.

» We assume for convenience that individual
preferences are strict and there is an odd
number of voters.

» Hence, the pairwise majority relation is
asymmetric and complete, I.e., it can be
represented by a tournament graph.

> Let D(x)={y | y>x} denote the dominators of x.
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Theorem (Bordes, 1976): The top cycle is
the smallest majoritarian SCF satisfying B+.
- B+ can be weakened to y: S(A)nS(B)<S(AuB) for all A,B.

Theorem (Moulin, 1986): The uncovered set is
the smallest majoritarian SCF satisfying v.

-y can be weakened to p*: S(D(@)) ¢ S(A) for all acA.
Theorem (B., 2011): The Banks set is the

smallest majoritarian SCF satisfying p+.
- p* can be weakened to p: S(D(@)) ¢ S(A) for all aeS(A).

Jeffrey S. Bank

Conjecture (Schwartz, 1990): The tournament equilibrium
set (TEQ) is the smallest majoritarian SCF satisfying p.

S
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Thomas Schwartz

® |etS be a choice function and define S(2)=2.

» A non-empty set of alternatives B is S-retentive if
S(D(x))cB for all xeB. Q

» Idea: No alternative in the set should be “properly”
dominated by an outside alternative.

e Sis anew choice function that yields the union of all
inclusion-minimal S-retentive sets.

® The tournament equilibrium set (TEQ) of a tournament is
defined as TEQ=TEQ.

» Recursive definition (unigue fixed point of ring-operator)

» Conjecture (Schwartz, 1990): Every tournament contains a
unique inclusion-minimal TEQ-retentive set.
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The Mystery of TEQ

e Theorem (Laffond et al., 1993; Houy 2009; B., 2011; B. and
Harrenstein, 2011): The following statements are
equivalent:

» Every tournament contains a unique minimal TEQ-retentive set.
» TFEO ic the emallest mainritarian SCF eatisfuina o

All or nothing:
Either TEQ is a most appealing SCF or it is severely flawed.

-

» TEQ is group-strategyproof (for Kelly’s preference extension).

e [urthermore, a simple and very efficient heuristic for
computing TEQ (which is NP-hard in general) relying on
Schwartz’s conjecture exists (B. et al., 2010).
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Schwartz’s Conjecture

® There is no counterexample with less than 13 alternatives;
checked 154 billion tournaments (B. et al., 2010).

» TEQ satisfies all nice properties when there are less than 13
alternatives.

® No counterexample was found by searching billions of
random tournaments with up to 50 alternatives.

» Checking significantly larger tournaments is computationally
intractable.

® (Qver the years, various incorrect proof attempts of
Schwartz’s conjecture by ourselves and other researchers
were discarded.
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CF Conjecture: Let (A,B) be a partition of the vertex set of a tournament T.
Then A or B contains a transitive subtournament that is undominated in T.
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® The proof is non-constructive and relies on a probabilistic
argument by Erdos and Moser (1964).
» Neither the counter-example nor its size can be deduced from proof.

» Smallest counter-example of this type requires about 70736 vertices.
» The estimated number of atoms in the universe is approx. 7089,

(r- .l
i



Moral of the Tale?



Moral of the Tale?

® |n principle, TEQ is severely flawed.



Moral of the Tale?

In principle, TEQ is severely flawed.

If there does not exist a substantially smaller counter-
example, this has no practical consequences.



Moral of the Tale?

In principle, TEQ is severely flawed.

If there does not exist a substantially smaller counter-
example, this has no practical consequences.

The 22-year-old conjecture of a political scientist has been
refuted using extremal graph theory.



Moral of the Tale?

In principle, TEQ is severely flawed.

If there does not exist a substantially smaller counter-
example, this has no practical consequences.

The 22-year-old conjecture of a political scientist has been
refuted using extremal graph theory.

“Politics shouldn’t be some mind-bending exercise.

It’s about what you feel in your gut”
(British PM David Cameron, April 2011)



