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• Let U be a universe of at least three alternatives.

• Alternatives are chosen from feasible subsets.

‣ Throughout this talk, the set of feasible sets F(U) contains all 
finite and non-empty subsets of U.

• A choice function is a function S:F(U)→F(U) such that 
S(A)⊆A.

‣ Two standard consistency conditions:
Let A,B∈F(U) with B⊆A and S(A)∩B≠∅.

- Contraction (α):   S(A)∩B⊆S(B)

- Expansion (β+):    S(A)∩B⊇S(B)

‣ The conjunction of both properties is equivalent to Samuelson’s 
weak axiom of revealed preference (Sen, 1969; Bordes, 1976).
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From Choice to Social Choice

• Let N be a finite set of voters and R(U) the set of all 
transitive and complete relations over U.

• A social choice function (SCF) is a function 

S:R(U)N×F(U)→F(U) such that S(R,A)⊆A.

• Useful conditions on SCFs

‣ IIA (Independence of Irrelevant Alternatives): Choice only 
depends on preferences over alternatives within the feasible set.

‣ Pareto-optimality: Alternative y is not chosen if there exists 
some x that is unanimously strictly preferred to y.

‣ Non-dictatorship: There should be no voter whose most 
preferred alternative is always uniquely chosen.
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• Theorem (Arrow, 1951, 1959): There exists no SCF that 
simultaneously satisfies IIA, Pareto-optimality, non-

dictatorship, α, and β+.

‣ In the context of SCFs, IIA is only a mild framework requirement  
(Bordes and Tideman, 1991) and dropping it offers little relief 
(Banks, 1995).

‣ Dropping Pareto-optimality offers little relief (Wilson, 1972).

‣ Dropping non-dictatorship is unacceptable.

‣ Dropping β+ offers little relief (Sen, 1977).

• Dropping α allows for reasonable SCFs!
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Majoritarian SCFs

• An SCF is majoritarian if its outcome only 
depends on the pairwise majority relation ≻ 
within the feasible set.

‣ Majoritarianism implies all Arrovian conditions 

except α and β+.

‣ We assume for convenience that individual 
preferences are strict and there is an odd 
number of voters.

‣ Hence, the pairwise majority relation is 
asymmetric and complete, i.e., it can be 
represented by a tournament graph.

‣ Let D̅(x)={y | y≻x} denote the dominators of x.
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• Theorem (B., 2011): The Banks set is the 

smallest majoritarian SCF satisfying ρ+.

- ρ+ can be weakened to ρ: S(D̅(a)) ⊆ S(A) for all a∈S(A).

• Conjecture (Schwartz, 1990): The tournament equilibrium 

set (TEQ) is the smallest majoritarian SCF satisfying ρ.
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• S is a new choice function that yields the union of all 
inclusion-minimal S-retentive sets.

• The tournament equilibrium set (TEQ) of a tournament is 
defined as TEQ=TEQ.

‣ Recursive definition (unique fixed point of ring-operator)

‣ Conjecture (Schwartz, 1990): Every tournament contains a 
unique inclusion-minimal TEQ-retentive set.
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checked 154 billion tournaments (B. et al., 2010). 

‣ TEQ satisfies all nice properties when there are less than 13 
alternatives.

• No counterexample was found by searching billions of 
random tournaments with up to 50 alternatives.

‣ Checking significantly larger tournaments is computationally 
intractable.

• Over the years, various incorrect proof attempts of 
Schwartz’s conjecture by ourselves and other researchers 
were discarded.
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Draft – February 29, 2012

TEQ Conjecture

Schwartz (1990)

TRIV (k )

Conjecture

Brandt et al. (2010)

TRIV (2)

Conjecture

Brandt et al. (2010)

TRIV (1)

Conjecture

Good (1971)

ME Conjecture

Brandt (2011)

MC Conjecture

Dutta (1988)

bSM⇤k Conjecture

Brandt (2011)

bSM⇤
4

Conjecture

Brandt (2011)

CF Conjecture

Brandt et al. (2012)

A counterexample for any of these conjectures would carry all the way up to the TEQ-Conjecture while
a proof for any statement would imply correctness of its children.
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• The proof is non-constructive and relies on a probabilistic 
argument by Erdös and Moser (1964).

‣ Neither the counter-example nor its size can be deduced from proof.

‣ Smallest counter-example of this type requires about 10136 vertices.

‣ The estimated number of atoms in the universe is approx. 1080.
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Moral of the Tale?

• In principle, TEQ is severely flawed.

• If there does not exist a substantially smaller counter-
example, this has no practical consequences.

• The 22-year-old conjecture of a political scientist has been 
refuted using extremal graph theory.

• “Politics shouldn’t be some mind-bending exercise. 
It’s about what you feel in your gut”
(British PM David Cameron, April 2011)
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