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Technical University of Munich, 80538 Munich, Germany
{brandtf,wilczyns}@in.tum.de

Abstract. We study whether Pareto-optimal stable matchings can be
reached via pairwise swaps in one-to-one matching markets with initial
assignments. We consider housing markets, marriage markets, and room-
mate markets as well as three different notions of swap rationality. Our
main results are as follows. While it can be efficiently determined whether
a Pareto-optimal stable matching can be reached when defining swaps via
blocking pairs, checking whether this is the case for all such sequences is
computationally intractable. When defining swaps such that all involved
agents need to be better off, even deciding whether a Pareto-optimal
stable matching can be reached via some sequence is intractable. This
confirms and extends a conjecture made by Damamme et al. (2015), who
have furthermore shown that convergence to a Pareto-optimal match-
ing is guaranteed in housing markets with single-peaked preferences. We
show that in marriage and roommate markets, single-peakedness is not
sufficient for this to hold, but the stronger restriction of one-dimensional
Euclidean preferences is.

1 Introduction

One-to-one matchings, where individuals are matched with resources or other
individuals, are omnipresent in everyday life. Examples include the job market,
assigning offices to workers, pairing students in working groups, and online dat-
ing. The formal study of matching procedures is fascinating because it leads to
challenging mathematical and algorithmic problems while being of immediate
practical interest [see, e.g., 22, 24].

One typically distinguishes between three different types of abstract one-to-
one matching settings. In housing markets [28], each agent is matched with an
object (usually referred to as a house). In marriage markets [16], agents are
partitioned into two groups—say, males and females—and each member of one
group is matched with an agent from the other group. Finally, in roommate
markets [16], all agents belong to the same group and each agent is matched
with another agent. In many applications, it is reasonable to assume that there
is an initial assignment because agents already live in a house, are engaged in
a relationship, and are employed by a company [see, e.g., 1, 25]. Under these
assumptions, an important question is whether sequences of individual agree-
ments between small groups of agents can lead to socially optimal outcomes. In
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this paper, we focus on atomic agreements which require the least coordination:
pairwise swaps.

In general, we consider three different types of individual rationality for pair-
wise swaps. In housing markets, there is only one meaningful notion of swap
rationality: two agents will only exchange objects if both of them are better off.
By contrast, when matching agents with each other, one could require that all
four agents involved in a swap or only two of them are better off. The latter
requirement allows for two kinds of swap rationality: two agents who exchange
their match are better off (e.g., a company and its subsidiary exchange employ-
ees without asking their consent) or two agents who decide to form a new pair
are better off (e.g., two lovers leave their current partners to be together).

Social optimality in settings with ordinal preferences like that of matching
markets is measured in terms of Pareto-optimality. We therefore study whether
there exists a sequence of pairwise swaps that results in a Pareto-optimal match-
ing that does not allow for further swaps (and hence is called stable). Whenever
all sequences of pairwise swaps are of this kind, we say that the given type of
swap dynamics converges.

It turns out that in all three types of matching markets and all three no-
tions of swap rationality, it may not be possible to reach a Pareto-optimal stable
matching from the initial assignment. We prove that deciding whether this is the
case is NP-hard for two types of swap rationality while it can be solved in polyno-
mial time for swaps based on blocking pairs. However, in the latter case, checking
convergence is co-NP-hard. On the other hand, we show that when preferences
are one-dimensional Euclidean—a natural but demanding restriction—swap dy-
namics for two types of swap rationality will always converge.

2 Related Work

Damamme et al. [14] investigated the dynamics of individually rational pair-
wise swaps in housing markets, where two agents are better off by exchanging
their objects. Recently, variants of this problem that further restrict the agents’
interactions using underlying graph structures have been examined [17, 20, 27].

In marriage and roommate markets, most of the literature focuses on devia-
tions based on blocking pairs, where two agents decide to leave their old partners
in order to be matched with each other. Blocking pairs are best known for their
role in the definition of stability [16], but some papers also studied the dynam-
ics of blocking pair swaps [2, 26]. The notion of exchange stability, where two
agents agree to exchange their partners has been investigated in both roommate
markets [5, 11] and marriage markets [12]. We consider both types of swaps,
i.e., blocking pair swaps and exchange rational swaps, but focus on the study of
dynamics that reach Pareto-optimal matchings.

In contrast to our definition of Pareto-optimality, some papers on swap dy-
namics have investigated matchings that are Pareto-optimal among all reachable
matchings [7, 17]. Other types of dynamics that have been considered in match-
ing markets include pairwise swaps without local rationality constraints [7],
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Pareto improvements [8, 25], local dynamics based on underlying graphs [18, 19],
and exchanges among more than two agents [7, 9].

Perhaps closest to our work is a result by Damamme et al. [14] who proved
that swap dynamics always converge to a Pareto-optimal matching in housing
markets when the preferences of the agents are single-peaked. However, they
left open the computational problem of deciding whether a Pareto-optimal sta-
ble matching can be reached for unrestricted preferences and conjectured this
problem to be intractable. We solve this problem and extend it to marriage
and roommate markets. Moreover, we prove that their convergence result for
housing markets under single-peaked preferences does not extend to marriage
and roommate markets, but can be restored when restricting preferences even
further.

3 The Model

We are given a set N of agents {1, . . . , n} and a set O of objects {a, b, . . . } such
that |N | = |O| = n. Each agent i ∈ N has strict ordinal preferences, represented
by a linear order �i, over a set Ai of alternatives to be matched with. In the
matching markets we consider, Ai is either a subset of the set of agents N or the
set of all objects O. A tuple of preference relations �= (�1, . . . ,�n) is called a
preference profile.

We consider two restricted preference domains in this article: single-peaked
preferences [10] and its subdomain of one-dimensional Euclidean preferences [13].
A preference profile � is single-peaked if there exists a linear order > over the
alternatives in A :=

⋃
i∈N Ai such that for each agent i in N and each triple of

alternatives x, y, z ∈ Ai with x > y > z or z > y > x, x �i y implies y �i z. A
preference profile � is one-dimensional Euclidean (1-Euclidean) if there exists
an embedding E : N ∪ O → R on the real line such that for every agent i ∈ N
and any two alternatives x, y ∈ Ai, x �i y iff |E(i)− E(x)| < |E(i)− E(y)|.

One-dimensional Euclidean preferences form a subdomain of single-peaked
preferences because every 1-Euclidean preference profile is singled-peaked for
the linear order > given by x > y iff E(x) > E(y). However, a single-peaked
preference profile may not be 1-Euclidean, as illustrated in the example below.

Example 1. Consider an instance with four agents. Each agent i ∈ N has pref-
erences over the same set of alternatives Ai = O = {a, b, c, d}.

1 : a � b � c � d
2 : d � c � b � a
3 : b � c � d � a
4 : c � b � a � d

Observe that this preference profile is single-peaked only w.r.t. the linear
order a < b < c < d (or its reverse order) because of the preferences of Agents
1 and 2. Suppose that this preference profile is 1-Euclidean w.r.t. an embedding
E on the real line. Then, without loss of generality, we can assume that E(a) <
E(b) < E(c) < E(d). Since Agent 3 prefers b to c and Agent 4 prefers c to
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b, it must hold that E(3) < E(4). However, d �3 a, therefore E(d) − E(3) <
E(3)−E(a). It follows that E(d)−E(4) < E(4)−E(a), implying that Agent 4
prefers d to a, a contradiction.

While assuming that all agents have 1-Euclidean preferences certainly rep-
resents a strong restriction, there are nevertheless some applications where this
assumption is not unreasonable. For example, in job markets, preferences could
be 1-Euclidean because employees prefer one workplace to another if it is closer
to their home, or when pairing workers in offices with a joint thermostat, work-
ers could prefer co-workers whose most preferred room temperature is closer to
their own.

3.1 Matching Markets

In this article, we are considering three different settings where the goal is to
match the agents either with objects—like in housing markets—or with other
agents—like in marriage or roommate markets. In all cases, we assume that there
is an initial matching. More formally,

– a housing market consists of a preference profile where Ai = O for all i ∈ N ,
and an initial endowment given as a bijection µ : N → O,

– a marriage market consists of a preference profile where N = W ∪M with
W ∩M = ∅, Ai = M for all i ∈W and Ai = W for all i ∈M , and an initial
matching given as a bijection µ : W →M , and

– a roommate market consists of a preference profile with even n and Ai = N \
{i} for all i ∈ N , and an initial matching given as an involution µ : N → N
such that µ(i) 6= i for all i ∈ N .

In marriage markets, we will sometimes denote the inverse function µ−1 of
matching µ by µ for the sake of simplicity.

When allowing for indifferences as well as unacceptabilities in the preferences,
the three settings form a hierarchy: housing markets are marriage markets where
the “objects” are indifferent between all agents, and marriage markets are room-
mate markets where all agents of the same type are considered unacceptable. In
this paper, however, we do not make either assumption and therefore these in-
clusion relationships do not hold.

The key question studied in this paper is whether Pareto-optimal matchings
can be reached from the initial matching via local modifications. A matching is
Pareto-optimal if there is no other matching µ′ such that for every agent i ∈ N ,
µ′(i) �i µ(i) and for at least one agent j ∈ N , µ′(j) �j µ(j).

3.2 Rational Swaps

We study sequences of matchings in which two pairs of the current matching
are permuted. More formally, we assume that a swap w.r.t. two agents (i, j)
transforms a matching µ into a matching µ′ where agents i and j have exchanged
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matching µ

matching µ′ after the swap w.r.t. pair (i, j)

Fig. 1. Two matchings µ and µ′ that differ in one swap.

their matches, i.e., µ′(i) = µ(j) and µ′(j) = µ(i), while the rest of the matching
remains unchanged, i.e., µ′(k) = µ(k) for every k /∈ {i, j, µ(i), µ(j)} (see Fig. 1).

We furthermore require these swaps to be rational in the sense that they
result from an agreement among agents, and thus make the agents involved in
the agreement better off.

The most natural notion of rationality in our definition of a swap is exchange-
rationality, which requires that the two agents who exchange their matches are
better off [5]. A swap w.r.t. agents (i, j) from matching µ is exchange rational
(ER) if the agents who exchange their matches are better off, i.e.,

µ(j) �i µ(i) and µ(i) �j µ(j). (ER-swap)

Exchange-rationality is the only meaningful notion of swap rationality in housing
markets because only one side of the market has preferences. However, several
notions of rationality emerge in marriage and roommate markets, where agents
are matched with each other. One could demand that only two of the agents
who agree to form a new pair need to be better off. This notion of rational
swaps is based on the classic idea of blocking pairs, which forms the basis of the
standard notion of stability [16]. A swap w.r.t. agents (i, j) from matching µ
between agents is blocking pair (BP) rational if one of the new pairs in µ′ forms
a blocking pair, where both agents are better off, i.e.,[

µ(j) �i µ(i) and i �µ(j) j
]

or
[
µ(i) �j µ(j) and j �µ(i) i

]
. (BP -swap)

We usually refer to a BP -swap by mentioning the associated blocking pair
((i, µ(j)) or (j, µ(i))). The old partners of the blocking pair are also assumed to
be matched together.1

Finally, in marriage and roommate markets, a stronger notion of rationality
is that of a fully rational swap, which makes all four involved agents better off. A
swap w.r.t. agents (i, j) from matching µ is fully rational (FR) if all four agents
involved in the swap are better off, i.e.,

µ(j) �i µ(i), µ(i) �j µ(j), j �µ(i) i, and i �µ(j) j. (FR-swap)

Note that for marriage and roommate markets, an FR-swap w.r.t. pair of
agents (i, j) from a matching µ is an ER-swap w.r.t. pair (i, j) or (µ(i), µ(j))
and also a BP -swap w.r.t blocking pair (i, µ(j)) or (j, µ(i)). We thus obtain the
following implications:

1 Once the old partners are alone, they have an incentive to form a new pair. Roth and
Vande Vate [26] therefore decompose BP-swaps into two steps. We do not explicitly
consider these steps in order to always maintain a perfect matching [cf. 23].
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BP -swap ⇐ FR-swap ⇒ ER-swap

The different types of swap rationality are illustrated in the following exam-
ple.

Example 2. Consider a roommate market with six agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : 4 � 3 � 6 � 5 � 2
2 : 3 � 1 � 4 � 6 � 5
3 : 6 � 2 � 1 � 5 � 4
4 : 5 � 1 � 3 � 2 � 6
5 : 2 � 6 � 4 � 1 � 3
6 : 4 � 3 � 1 � 2 � 5

The swap w.r.t. pair (1, 2), which matches Agent 1 with Agent 4 and Agent
2 with Agent 3, is an FR-swap because every involved agent is better off. Hence,
this is also an ER-swap for pair (1, 2) or (3, 4) because they both prefer to
exchange their partner. It is also a BP -swap for blocking pair (2, 3) or (1, 4)
because they both prefer to be together than with their current partner.

The swap w.r.t. pair (1, 6) is a BP -swap for blocking pair (3, 6) because Agent
3, the old partner of Agent 1, prefers to be with Agent 6, as well as Agent 6
who prefers 3 to her old partner 5. This is not an ER-swap (and hence not an
FR-swap) because neither the agents in pair (1, 6) nor in pair (3, 5) want to
exchange their partners.

The swap w.r.t. pair (4, 6) is an ER-swap for (4, 6) because Agent 4 prefers
the current partner of 6, i.e., Agent 5, to her current partner and 6 prefers the
current partner of 4, i.e., Agent 2, to her current partner. This is not a BP -swap
(and hence not an FR-swap) because it matches Agent 4 with Agent 5, who
prefers to stay with her current partner, and Agent 6 with Agent 2, who prefers
to stay with her current partner.

Stability can now be defined according to the different notions of rational
swaps. A matching µ is σ-stable, for σ ∈ {FR,ER,BP}, if no σ-swap can be
performed from matching µ. A sequence of σ-swaps, for σ ∈ {FR,ER,BP}, cor-
responds to a sequence of matchings (µ0, µ1, . . . , µr) such that a σ-swap trans-
forms each matching µt into matching µt+1 for every 0 ≤ t < r. Then, matching
µ is σ-reachable from initial matching µ0 if there exists a sequence of σ-swaps
(µ0, µ1, . . . , µr) such that µr = µ. When the context is clear, we omit σ and the
initial matching µ0.

A σ-dynamics is defined according to initial matching µ0 and a type σ of
rational swaps. The σ-dynamics is finite if all associated sequences of σ-swaps
terminate in a σ-stable matching, and it is said to converge if it is finite for every
initial matching µ0.

In this article, we consider the following two decision problems related to the
convergence of dynamics to a Pareto-optimal matching.
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∃-σ-ParetoSequence / ∀-σ-ParetoSequence
Input: Matching market, type σ of rational swaps
Question: Does there exist a sequence of σ-swaps terminating in a Pareto-

optimal σ-stable matching? /
Do all sequences of σ-swaps terminate in a Pareto-optimal σ-stable
matching?

In order to tackle these questions, we also study the stability and convergence
properties of the considered dynamics in the three types of matching markets.

4 Exchange Rational Swaps

In housing markets, every ER-swap represents a Pareto improvement. Hence,
since the number of agents and objects is finite, ER-dynamics always converges
and the existence of ER-stable matchings is guaranteed (simply because every
Pareto-optimal matching happens to be ER-stable). However, it may be impossi-
ble to reach a Pareto-optimal matching from a given matching by only applying
ER-swaps.

Proposition 1. ER-dynamics may not converge to a Pareto-optimal matching
in housing markets.

Proof. Consider a housing market with three agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : a � b � c
2 : b � c � a
3 : c � a � b

Observe that no ER-swap is possible in this instance, therefore the initial
matching (framed objects) is the unique ER-reachable matching. However, there
exists a unique Pareto-optimal matching (circled objects), and this matching is
different from the initial one. ut

Nevertheless, Damamme et al. [14] have shown that ER-dynamics always con-
verges to a Pareto-optimal matching in housing markets when the agents’ pref-
erences are single-peaked.

In marriage and roommate markets, an ER-stable matching may not ex-
ist, even for single-peaked preferences (Cechlárova [11] and Alcalde [5] provide
counterexamples). However, it turns out that, when restricting preferences even
further to 1-Euclidean preferences, an ER-stable matching always exists, and,
moreover, the convergence to such a matching is guaranteed.

Proposition 2. ER-dynamics always converges in marriage and roommate
markets for 1-Euclidean preferences.

Proof. Denote by E : N → R the embedding of the agents on the real line
such that their preferences are 1-Euclidean w.r.t. this embedding. Define as a
potential function f : µ → R the function which assigns to each matching
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the sum of the distances on the real line between all the assigned pairs in the
matching, i.e., f(µ) =

∑
(i,j)s.t.µ(i)=j |E(i) − E(j)|. Now consider a sequence of

ER-swaps given by the sequence of matchings (µ0, µ1, . . . , µr). Between each µt

and µt+1, with 0 ≤ t < r, an ER-swap is performed, say w.r.t. pair (i, j) of
agents. By definition of an ER-swap, agents i and j prefer to exchange their
partners in µt, and thus, µt(j) �i µt(i) and µt(i) �j µt(j). This implies that
|E(i)−E(µt(j))| < |E(i)−E(µt(i))| and |E(j)−E(µt(i))| < |E(j)−E(µt(j))|.
But i and µt(j) are matched in µt+1, as well as j and µt(i). Since the rest of
the pairs remains unchanged between µt and µt+1, we get that f(µt+1) < f(µt).
Because the number of different matchings is finite, we can conclude that ER-
dynamics always converges. ut

In general, an ER-stable matching may not be Pareto-optimal, and thus the
convergence to a Pareto-optimal matching is not guaranteed even when an ER-
stable matching exists (note that determining whether there exists an ER-stable
matching is NP-hard in both marriage and roommate markets [11, 12]).

Proposition 3. ER-dynamics may not converge to a Pareto-optimal matching,
in marriage and roommate markets, even when an ER-stable matching exists.

Proof. Consider a marriage market with three women and three men. The
preferences are given below and the initial assignment is marked with frames.

w1 : m1 � m2 � m3

w2 : m2 � m3 � m1

w3 : m3 � m1 � m2

m1 : w1 � w3 � w2

m2 : w2 � w1 � w3

m3 : w3 � w2 � w1

No ER-swap is possible from the initial matching (framed agents), therefore
the initial matching is the unique ER-reachable matching. However, there is
another matching (circled agents) which is the unique Pareto-optimal matching.

Now, consider a roommate market with six agents. Preferences of the agents
are given below, where the initial partner of each agent is marked with frames
and “[. . . ]” denotes an arbitrary order over the rest of the agents.

1 : 3 � 2 � [. . . ] 4 : 6 � 3 � [. . . ]
2 : 5 � 1 � [. . . ] 5 : 2 � 6 � [. . . ]
3 : 1 � 4 � [. . . ] 6 : 4 � 5 � [. . . ]

No ER-swap is possible from the initial matching (framed agents), thus the
initial matching is the unique ER-reachable matching. However, there is another
matching (circled agents) which is the unique Pareto-optimal matching. ut

Note that the above preference profiles are not 1-Euclidean. In fact, they
are not even single-peaked. Again, more positive results can be obtained by
restricting the domain of admissible preferences.

Proposition 4. Every ER-stable matching is Pareto-optimal when preferences
are single-peaked in marriage and roommate markets.
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Proof. Let µ be an ER-stable matching. For any two agents i and j (in N for
roommate markets, or both in either W or M for marriage markets) it holds
that µ(i) �i µ(j) or µ(j) �j µ(i). Suppose there is another matching µ′ such
that µ′(i) �i µ(i) for every i ∈ N and there exists j ∈ N such that µ′(j) �j µ(j).
Then, there exists a Pareto improving cycle from µ to µ′ along agents (n1, . . . , nk)
such that each agent ni, 1 ≤ i ≤ k, is matched in µ′ with agent µ(n(i mod k)+1).
For marriage markets, the agents in (n1, . . . , nk) are restricted by definition to
only one side of the market, but it impacts both sides since the agents exchange
agents of the other side. But there is no problem of preferences of the matched
agents because no agent is worse off in µ′ compared to µ. The same holds for
roommate markets. Since µ is ER-stable, it holds that k > 2. However, for single-
peaked preferences, one can prove, by following the same proof by induction as
Damamme et al. [14], that a Pareto improving cycle of any length cannot occur,
contradicting the fact that µ is Pareto dominated. ut

Propositions 2 and 4 allow us to conclude that sequences of ER-swaps will
always terminate in Pareto-optimal matchings when preferences are 1-Euclidean.

Corollary 1. ER-dynamics always converges to a Pareto-optimal matching in
marriage and roommate markets for 1-Euclidean preferences.

An interesting computational question is whether, given a preference pro-
file and an initial assignment, a Pareto-optimal matching can be reached via
ER-swaps. In the context of housing markets, the complexity of this question
was mentioned as an open problem by Damamme et al. [14]. It turns out that
this problem is computationally intractable for all kinds of matching markets
considered in this paper.

Theorem 1. ∃-ER-ParetoSequence is NP-hard in housing, marriage, and
roommate markets.

The proof is omitted due to space restrictions.

5 Blocking Pair Swaps

BP -swaps cannot occur in housing markets because objects can never be better
off. We therefore focus in this section on matching markets that match agents
with each other.

By definition of a blocking pair, any BP -stable matching is Pareto-optimal.
Moreover, a BP -stable matching always exists in marriage markets by the De-
ferred Acceptance algorithm [16]. However, the convergence to such a state is not
guaranteed, even for single-peaked preferences [23]. Nevertheless, there always
exists a sequence of BP -swaps leading to a stable matching [26].2 In roommate
markets, even the existence of a BP -stable matching is not guaranteed [16], and

2 Assuming that the old partners also form a new pair does not alter this result.



10 F. Brandt and A. Wilczynski

actually this is the case even for single-peaked preferences. Nevertheless, check-
ing the existence of a stable matching in a roommate market can be done in
polynomial time [21], and there always exists a sequence of BP -swaps leading
to a stable matching when there exists one [15]. Therefore, by combining these
facts with the observation that every BP -stable matching is Pareto-optimal, we
get the following corollary.

Corollary 2. ∃-BP-ParetoSequence is solvable in polynomial time in mar-
riage and roommate markets.

However, in general, determining whether all sequences of BP -swaps termi-
nate in a Pareto-optimal matching, i.e., checking convergence of BP -dynamics
to a Pareto-optimal matching, is hard. This is due to the hardness of checking
the existence of a cycle in BP -dynamics.

Theorem 2. Determining whether BP-dynamics can cycle in marriage and
roommate markets is NP-hard.

The proof is omitted due to space restrictions.

Corollary 3. ∀-BP-ParetoSequence is co-NP-hard in marriage and room-
mate markets.

Nevertheless, when preferences are 1-Euclidean, we can always reach a stable
matching thanks to BP -dynamics in both settings.

Indeed, a marriage market under 1-Euclidean preferences is a particular case
of a correlated two-sided market [4] where all the possible pairs are globally
ranked [see, also 3]. In such a correlated market, the preferences of the agents
are induced from the global order by taking into account the order over the pairs
to which they belong. It has been proved that BP -dynamics always converges in
correlated marriage markets [4]. Moreover, it is easy to see that from 1-Euclidean
preferences, a global ranking over all possible pairs can be extracted by sorting
all pairs according to the distance on the real line between the two partners.3

Therefore, we obtain the following corollary.

Corollary 4. BP-dynamics always converges in marriage markets for 1-
Euclidean preferences.

In roommate markets, there always exists a unique BP -stable matching under
1-Euclidean preferences [6]. We further prove that convergence to this matching
is guaranteed using a potential function argument.

Proposition 5. BP-dynamics always converges in roommate markets for 1-
Euclidean preferences.

3 The presence of a global ranking over all possible pairs does not imply that pref-
erences are 1-Euclidean. Consider for instance, in roommate markets, the following
preference profile: 1 : 2 � 3 � 4, 2 : 1 � 4 � 3, 3 : 4 � 1 � 2, 4 : 3 � 2 � 1.
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Proof. Denote by E : N → R the embedding of the agents on the real line
such that their preferences are 1-Euclidean w.r.t. this embedding. Let d(µ) be
the n/2-vector of distances in E of all the different pairs in µ, i.e., d(µ) =
(|E(i)− E(j)|)i,j s.t. µ(i)=j . Now consider a sequence of BP -swaps given by the
following sequence of matchings (µ0, µ1, . . . , µr). Then, between each pair of
matchings µt and µt+1 with 0 ≤ t < r, a BP -swap is performed, say w.r.t.
blocking pair (i, j) of agents. By definition of a BP -swap, agents i and j prefer
to be together than being with their partner in µt, so j = µt+1(i) �i µt(i)
and i = µt+1(j) �j µt(j), which implies that |E(i) − E(j)| < |E(i) − E(µt(i))|
and |E(i) − E(j)| < |E(j) − E(µt(j))|. Therefore, (|E(i) − E(j)|, |E(µt(i)) −
E(µt(j))|) is lexicographically smaller than (|E(i)−E(µt(i))|, |E(j)−E(µt(j))|).
Since the rest of the pairs remains unchanged between µt and µt+1, d(µt+1) is
lexicographically strictly smaller than d(µt). Because the number of different
matchings is finite, we conclude that BP -dynamics always converges. ut

Since every BP -stable matching is Pareto-optimal, Corollary 4 and Proposi-
tion 5 imply the following corollary.

Corollary 5. BP-dynamics always converges to a Pareto-optimal matching in
marriage and roommate markets for 1-Euclidean preferences.

6 Fully Rational Swaps

Just as in the case of ER-swaps and housing markets, FR-swaps always represent
Pareto improvements because all involved agents are strictly better off after the
swap. Hence, FR-stable matchings are guaranteed to exist because every Pareto-
optimal matching is FR-stable and FR-dynamics always converges because the
number of agents is finite.

In Section 4, we have shown that ER-dynamics always converges to a Pareto-
optimal matching when the preferences of the agents are 1-Euclidean. It turns
out that this does not hold for FR-dynamics.

Proposition 6. A sequence of FR-swaps may not converge to a Pareto-optimal
matching in marriage and roommate markets, even for 1-Euclidean preferences.

Proof. Consider a marriage market with three women and three men. The
preferences are given below, where the initial assignment is marked with frames.

w1 : m1 � m3 � m2

w2 : m3 � m1 � m2

w3 : m2 � m1 � m3

m1 : w1 � w3 � w2

m2 : w3 � w1 � w2

m3 : w2 � w1 � w3

The initial matching is the only reachable matching, because no FR-swap is
possible in this matching. However, there is another matching (circled agents)
which is not reachable but which Pareto dominates this only reachable matching.
The preferences are 1-Euclidean w.r.t. the following embedding on the real line.
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m2 w3 w1m1 m3 w2

Now, consider a roommate market with six agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : 2 � 3 � 4 � 5 � 6
2 : 1 � 3 � 4 � 5 � 6
3 : 4 � 2 � 1 � 5 � 6

4 : 3 � 2 � 5 � 1 � 6
5 : 6 � 4 � 3 � 2 � 1
6 : 5 � 4 � 3 � 2 � 1

The initial matching is the only reachable matching, because there is no FR-
swap from this matching. However, there is another matching (circled agents)
which is not reachable but which Pareto dominates this only reachable matching.
The preferences are 1-Euclidean w.r.t. the following embedding on the real line.

1 2 3 4 5 6

ut

The proof of Theorem 1 only dealt with instances in which FR-swaps
are identical to ER-swaps. We thus immediately obtain hardness of ∃-FR-
ParetoSequence.

Theorem 3. ∃-FR-ParetoSequence is NP-hard in marriage and roommate
markets.

7 Conclusion

We have studied the properties of different dynamics of rational swaps in match-
ing markets with initial assignments and, in particular, the question of conver-
gence to a Pareto-optimal matching. For all considered settings, the dynamics
may not terminate in a Pareto-optimal matching because (i) there is no stable
matching, (ii) the dynamics does not converge, or (iii) the stable matching that
is eventually reached is not Pareto-optimal. An overview of our results is given
in Table 1.

Computationally, determining whether there exists a sequence of rational
swaps terminating in a Pareto-optimal matching is NP-hard for fully rational
swaps and exchange rational swaps in all matching markets (Th. 1 and Th. 3).
For swaps based on blocking pairs, this problem can be solved efficiently (Cor. 2).
However, the convergence to a Pareto-optimal matching is co-NP-hard to decide
(Cor. 3). Since determining the existence of a sequence of fully rational or ex-
change rational swaps terminating in a Pareto-optimal matching is already hard,
we did not investigate the complexity of convergence to a Pareto-optimal match-
ing (which means that all sequences terminate) for these swaps. We leave it as
an open problem that we conjecture to be hard.

The convergence to a Pareto-optimal matching in housing markets for ex-
change rational dynamics and single-peaked preferences [14] does not hold for
more general settings where the “objects” are agents who have preferences. How-
ever, this convergence is guaranteed under 1-Euclidean preferences in marriage
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Table 1. Summary of the results on the existence of a stable matching (Stable), the
guarantee of convergence (Conv) and the guarantee of convergence to a Pareto-optimal
matching (Pareto) for the three different matching markets under study, according
to different types of rational swaps and under different preference domains (General,
single-peaked (SP), and 1-Euclidean (1-D)). The only meaningful type of rational swaps
in housing markets are exchange-rational swaps; hence, the empty spaces.

Market Prefs
Exchange Rational Swaps Blocking Pair Swaps Fully Rational Swaps
Stable Conv Pareto Stable Conv Pareto Stable Conv Pareto

Housing
General 3 3 – (Prop. 1)

SP 3 3 3 [14]

1-D 3 3 3

Marriage
General – – – 3 [16] – – 3 3 –

SP – [11] – – 3 – – 3 3 –
1-D 3 3 3 (Prop. 2) 3 3 3 (Cor. 4) 3 3 – (Prop. 6)

Roommate
General – – – – [16] – – 3 3 –

SP – [5] – – – – – 3 3 –
1-D 3 3 3 (Prop. 2) 3 3 3 (Prop. 5) 3 3 – (Prop. 6)

and roommate markets. Hence, the generalization of this convergence result to
more general settings requires more structure in the preferences.

A natural extension of this work would be to study meaningful dynamics for
hedonic games, where agents form groups consisting of more than two agents.
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