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The Gibbard-Satterthwaite theorem implies that all anonymous, Pareto-
optimal, and single-valued social choice functions can be strategically ma-
nipulated. In this paper, we investigate whether there exist social choice
correspondences (SCCs), that satisfy these conditions under various assump-
tions about how single alternatives are eventually selected from the choice
set. These assumptions include even-chance lotteries as well as resolute choice
functions and linear tie-breaking orderings unknown to the agents. We show
that (i) all anonymous Pareto-optimal SCCs where ties are broken according
to some linear tie-breaking ordering or by means of even-chance lotteries are
manipulable, and that (i) all pairwise Pareto-optimal SCCs are manipulable
for any deterministic tie-breaking rule. These results are proved by reduc-
ing the statements to finite—yet very large—formulas in propositional logic,
which are then shown to be unsatisfiable by a computer.

1. Introduction

The Gibbard-Satterthwaite theorem has established that all non-dictatorial, non-
imposing, and single-valued social choice functions (SCFs) are susceptible to strategic
manipulation (Gibbard, 1973; Satterthwaite, 1975). While this sweeping impossibility
has had a great effect on microeconomic theory at large, it has been repeatedly ob-
served that the assumption of single-valuedness is somewhat restrictive, in particular
in the context of voting.! For instance, Girdenfors (1976) claims that “[resoluteness| is
a rather restrictive and unnatural assumption.” In a similar vein, Kelly (1977) writes
that “the Gibbard-Satterthwaite theorem [...] uses an assumption of singlevaluedness
which is unreasonable” and Taylor (2005) that “If there is a weakness to the Gibbard-
Satterthwaite theorem, it is the assumption that winners are unique.” This sentiment

!Gibbard himself acknowledged this limitation by proving a strengthening of his theorem that allows
for randomized outcomes (Gibbard, 1977).



is echoed by various other authors (see, e.g., Barbera, 1977b; Duggan and Schwartz,
2000; Nehring, 2000; Barbera et al., 2001; Ching and Zhou, 2002). The problem with
single-valuedness is not that the SCF has to return a single alternative, which is a well-
motivated practical requirement, but that it has to select a single alternative based on
the preferences only. For example, if there are two alternatives, a and b, and two agents
such that one prefers a and the other one b, there is no deterministic way of selecting
a single alternative without violating basic fairness conditions such as anonymity and
neutrality, which demand that all agents and all alternatives are treated equally. In the
context of voting, these conditions are imperative because elections should be impartial.

Since anonymity is stronger than non-dictatorship and Pareto-optimality is stronger
than non-imposition, the Gibbard-Satterthwaite theorem implies that no single-valued
SCF can simultaneously satisfy anonymity, Pareto-optimality, and strategyproofness. In
this paper, we investigate whether there exist set-valued SCFs, so-called social choice
correspondences (SCCs), that satisfy these properties under various assumptions on how
ties are broken to eventually select a single alternative. Our main results are as follows.

1. There are no such SCCs when ties are broken according to some linear tie-breaking
ordering unknown to the agents or by means of an even-chance lottery (Theorem 1).

2. There are no such pairwise SCCs for any deterministic tie-breaking rule unknown
to the agents (Theorem 2).

In contrast to most existing results, our results crucially rely on the possibility of ties
in the preferences, i.e., we require preferences to be complete and transitive, but not
necessarily anti-symmetric. At the same time, we use much weaker notions of strat-
egyproofness than related results. In the following, we first defend the assumption of
weak preferences before pointing out in which sense our notions of strategyproofness are
weaker than those used in existing impossibility theorems.

A large part of the social choice literature focusses on the special case of strict indi-
vidual preferences. We believe that this assumption is mostly driven by mathematical
convenience rather than by practical constraints. In most applications, indifferences are
ubiquitous and sometimes even inevitable. A voter who strongly believes in open borders
may find all nationalistic parties equally unacceptable, or an employee may be indiffer-
ent between all budget proposals that assign the same budget to his department. The
case of indifferences is even more striking when social outcomes have the characteristics
of private goods such as partitions of agents or assignments of objects to agents. In
these settings, agents are likely to be indifferent between coalitions or assignments in
which they are grouped with the same agents or in which they receive the same objects.
Moreover, the sheer number of alternatives renders it impossible to come up with a strict
ranking of all possible partitions, matchings, or assignments.

Independently of whether preferences are strict or weak, there are various ways of
defining strategyproofness for SCCs. The tie-breaking assumptions mentioned above
lead to so-called preference extensions that extend preferences over alternatives to in-
complete preferences over sets. An incomplete preference extension allows for two differ-
ent types of strategyproofness, one being stronger than the other. The first one, strong



strategyproofness, counts every misrepresentation of an agent that changes the outcome
to a set that is preferred or incomparable to the original choice set as a manipulation.
The second one, weak strategyproofness, only counts a misrepresentation as a manipula-
tion if the new set is comparable and preferred to the original choice set. The more pairs
of sets are comparable, the less demanding becomes strong strategyproofness and the
more demanding becomes weak strategyproofness. In the extreme case, where prefer-
ences over sets are complete, both notions coincide. The literature has produced several
impossibility results for strong strategyproofness (e.g., Duggan and Schwartz, 2000; Bar-
bera et al., 2001; Ching and Zhou, 2002; Benoit, 2002) and several possibility results for
weak strategyproofness (e.g., Feldman, 1979; Nehring, 2000; Brandt, 2015; Brandt and
Lederer, 2022). Our results show that, when allowing for weak preferences, the possibil-
ity results break down as there are far-reaching impossibility theorems that only require
weak strategyproofness. Some SCCs become manipulable for weak preferences because a
manipulator only needs to be strictly better off under some tie-breaking rule whereas he
can be indifferent under all other tie-breaking rules. When weakening strategyproofness
even further by demanding that a manipulator has to be strictly better off under any
tie-breaking rule, the positive results for strict preferences are retained.

We have obtained our results using computer-aided theorem proving techniques that
were pioneered by Tang and Lin (2009) and have been successfully used to tackle other
problems in social choice (see, e.g., Geist and Endriss, 2011; Brandt and Geist, 2016;
Brandt et al., 2017; Brandl et al., 2018, 2019). The basic idea is to reduce the state-
ment in question to a finite—yet very large—problem, which is encoded as a formula in
propositional logic and then shown to be unsatisfiable by a so-called SAT solver. We
then extract a minimal unsatisfiable set of constraints from the formula and translate
this back into a human-readable proof of the result. Despite great efforts to simplify the
proof of our main result as much as possible, it remains rather complex as it argues about
21 different preference profiles. We therefore verified the proof using the interactive the-
orem prover ISABELLE, which releases any need to verify our program for generating
the proof. In contrast to previous papers, we are even able to give a lower bound on
the proof complexity: no such proof is possible using less than 19 preference profiles.
This can be considered as evidence that it is unlikely that the statement would have
been proved without the help of computers, underlining the potential of computer-aided
theorem proving in social choice theory.

The remainder of the paper is structured as follows. The setting and basic concepts
from social choice theory are introduced in Section 2. Section 3 defines a rigorous
model of strategyproofness when ties returned by the SCC are broken by preference-
independent tie-breaking functions. This establishes a formal justification for consider-
ing the preference extensions attributed to Kelly and Fishburn. Our results and their
consequences and limitations are presented in Section 4. Section 5 discusses the rela-
tionship between our theorems and related results from the literature. Finally, Section 6
concludes the paper with an overview of our results and a brief discussion of consequences
for probabilistic social choice. Appendix A contains a complete human-readable proof of
our main theorem and Appendix B provides details on the computer-aided methodology
used to obtain the proof.



2. Preliminaries

Let A be a finite set of m alternatives and N = {1,...,n} a finite set of agents. A (weak)
preference relation is a complete and transitive binary relation on A. The preference
relation of agent ¢ is denoted by =;, the set of all preference relations by R. We write >;
for the strict part of =;, i.e., x >; y if x >=; y but not y >=; x, and ~; for the indifference
part of =;, i.e., x ~; y if x >=; y and y >=; x. A preference relation >=; is called strict if
it additionally is anti-symmetric, i.e., x >=; y or y »=; x for all distinct alternatives x,y.
The set of all strict preference relations is denoted by £. We will compactly represent
a preference relation as a comma-separated list where all alternatives among which an
agent is indifferent are written as a set. For example z >; y ~; z is represented by
=it x,{y,z}. A preference profile R is a function from a set of agents N to the set
of preference relations R. The set of all preference profiles is denoted by RY. Our
central objects of study are social choice correspondences (SCCs), i.e., functions that
map a preference profile to a set of alternatives called the choice set. Formally, an SCC
is a function f: RN — C where C = 24\ §) denotes the non-empty subsets of A. Note
that alternatives are assumed to be mutually exclusive, i.e., choice sets do not refer to
committees of candidates, but rather to sets of equally capable candidates, from which
a single candidate will eventually be selected.

Given a preference profile R, an alternative x Pareto-dominates another alternative y
if v = yforalli € N and x =; y for some j € N. An alternative is Pareto-optimal if
it is not Pareto-dominated by some other alternative and PO(R) denotes the SCC that
returns the set of all Pareto-optimal alternatives. An SCC f is said to be Pareto-optimal
if f(R) C PO(R) for all R € RV,

Another simple SCC with appealing strategic properties is serial dictatorship, which
is based on a fixed, but arbitrary, ordering of the agents. First, the set of alternatives is
restricted to the ones top-ranked by the first agent. Then, the next agent successively
refines the set of alternatives to the set of most preferred alternatives from the remaining
set. Formally, serial dictatorship returns max,, o ... omaxy, (A), where max,, (X)
denotes the maximal elements of X according to the preference relation 3=;. Serial
dictatorship satisfies Pareto-optimality and any reasonable form of strategyproofness,
because choosing one’s maximal elements is strategyproof for each agent, ruling out any
possibility to manipulate. However, serial dictatorship is weakly dictatorial in the sense
that it only returns alternatives top-ranked by a pre-determined agent.

Two common symmetry conditions for SCCs are anonymity and neutrality. An SCC
is anonymous if the choice set does not depend on the identities of the agents and
neutral if it is symmetric with respect to alternatives. Formally, an SCC is anonymous
if f(R) = f(R) for all R, R € R" and all permutations 7: N — N such that >,—i:>;r(i)
for all ¢ € N. For a permutation m: A — A and a preference relation =;, we define =] as
the preference relation where alternatives are renamed according to =, i.e., w(x) =I 7(y)
if and only if x 3=; y. For a preference profile R € R, R™ denotes the preference profile
that maps each ¢ € N to »=]. Similarly, 7 is extended to sets of alternatives A € C by
letting 7(A) = {n(x): x € A}. An SCC f is neutral if f(R™) = 7(f(R)) for all R € RY
and all permutations 7: A — A. PO is anonymous and neutral while serial dictatorship



clearly violates anonymity (while satisfying neutrality).

For a preference profile R € RY, let np(x,y) = |{i € N: 2 =; y}| be the number
of agents who prefer x to y. The majority margin of = over y in R is denoted by
gr(z,y) = nr(x,y) —nr(y,z). An SCC f is pairwise if for all R, ' € RN, f(R) = f(R')
whenever gr(x,y) = gr/(z,y) for all alternatives x,y € A. In other words, the choice
set of a pairwise SCC only depends on the anonymized comparisons between pairs of
alternatives (see, e.g., Young, 1974; Zwicker, 1991). Since majority margins are invariant
under permutations of agents, pairwise SCCs are anonymous.”? When ties are allowed,
pairwiseness is slightly stronger than Fishburn’s C2, which requires that the SCC only
depends on ng (Fishburn, 1977). This is due to the fact that a pair of opposed preferences
affects the majority margin exactly like indifferences do. Hence, PO satisfies C2, but
violates pairwiseness because you cannot tell whether x Pareto-dominates y by only
looking at ggr(x,y).

A very influential concept in social choice theory is that of a Condorcet winner, i.e.,
an alternative that is preferred to every other alternative by some majority of agents.
Formally, an alternative x is a Condorcet winner in R if gr(z,y) > 0 for all y € A\ {z}.
A Condorcet extension is an SCC that uniquely returns a Condorcet winner whenever
one exists. Almost all Condorcet extensions considered in the literature also happen to
be pairwise.

3. A Formal Model of Manipulation Under Tie-Breaking

When defining strategic manipulability for set-valued SCCs, one needs to specify how ties
are broken and what the agents know about the tie-breaking mechanism. To this end,
we introduce tie-breaking functions g that map choice sets to single alternatives. This
provides a clean separation between preference-based selection (by means of a set-valued
SCC f) and non-preference-based selection (by means of a tie-breaking function g).
While agents are fully informed about f, they only have incomplete information about g.
We will distinguish between two different types of tie-breaking functions: deterministic
ones (such as a fixed linear tie-breaking ordering) and randomized ones (such as returning
an even-chance lottery over selected alternatives).

3.1. Deterministic Tie-Breaking

Let us first consider deterministic tie-breaking functions g : C — A. If g is known by
all agents, this model is equivalent to that of single-valued SCFs and the Gibbard-
Satterthwaite theorem applies. We therefore make the weaker—yet reasonable—
assumption that agents are unaware of the concrete tie-breaking function g, but only
know that g belongs to a certain class of functions GG. Based on this uncertainty, we
define the following strong notion of strategy manipulability (which in turn results in a
weak notion of strategyproofness).

2Note that, in contrast to other papers, we do not require pairwise SCCs to be neutral (cf. Brandl
et al., 2015; Aziz et al., 2018).



An SCC f is G-manipulable if there exist preference profiles R, R’ € R, and an agent
i€ N with =; = %;- for all j # i such that

g(f(R) =i g(f(R)) for all g € G and
g(f(R")) =i g(f(R)) for some g € G.

f is G--strategyproof if it is not G-manipulable.
A very weak notion of strategyproofness is obtained when quantifying over all possible
tie-breaking functions G,y where

Gar={g€ A% g(X) € X forall X €C}.

A natural subset of G is given by all tie-breaking functions that break ties according to
a linear tie-breaking ordering > on A (such as the alphabetical ordering). G, consists
of all tie-breaking functions that consistently return the alternative in the choice set that
is ranked highest according to some fixed tie-breaking ordering. Formally,

Giin = {9 € Gap: there is > € £ such that for all X € C and y € X, g(X) > y}.

If > is known by the agents, this setting is equivalent to that of single-valued
SCFs. By quantifying over all possible linear tie-breaking orderings, we obtain G-
strategyproofness, which is stronger than G,j-strategyproofness. This notion can, for
example, be motivated by the existence of a chairman, whose preferences are unknown
and who eventually picks a single alternative from the choice set.

3.2. Randomized Tie-Breaking

Another common way to break ties is to utilize randomization. A randomized tie-
breaking function is any function g : C — A(A) where A(A) is the set of all probability
distributions (or lotteries) over alternatives in A. Lotteries are typically compared by
assuming the existence of a utility function v : A — R that assigns numeric values
to alternatives and that is consistent with the agent’s ordinal preferences. A utility
function u is consistent with a preference relation - if, for all z,y € A, x = y if and
only if u(x) > u(y). The set of all utility functions consistent with 7 will be denoted by
U(z). With slight abuse of notation, we extend any utility function u to lotteries via
expected utility. For some class of randomized tie-breaking functions G2, an SCC f is
G2 -manipulable if there exist preference profiles R, R’ € RN, and an agent i € N with
=j = = for all j # i such that

u(g(f(R")) > u(g(f(R))) for all g € G® and all u € U(Z;).

Gﬁl—strategyproofness is obtained when quantifying over all lotteries that randomize
among alternatives in the choice set, i.e.,

Gai = {9 € A(A)°: supp(g(X)) = X for all X € C}.



A very natural special case of randomized tie-breaking is to randomize uniformly among
the alternatives, i.e., G® consists of the unique function uni, which maps every choice
set to an even-chance lottery over its alternatives. A more general set of tie-breaking
functions is obtained by fixing an a priori weight function w : A — Rsg and then assign
probabilities to alternatives in the choice set that are proportional to their weights.

G2, = {g€ G4, : there is w € (Rsg)” such that for all X € C, g(X) = wlx}.

pro

If the weight function assigns the same weight to all alternatives, this corresponds to
an even-chance lottery. In Section 6, we discuss generalizations of this model where f
directly maps to the set of all lotteries A(A).

3.3. Preference Extensions

As it turns out, each variant of G-manipulation introduced in the previous section can
be modeled using so-called preference extensions which extend the agents’ preferences
over alternatives to preferences over sets of alternatives. The three preference extensions
considered in this paper are Kelly’s extension, Fishburn’s extension, and the even-chance
extension (Kelly, 1977; Fishburn, 1972; Gérdenfors, 1979). For all X,Y € C and ;€ R,

Xe=Ryiffesjyforalze X, yeV, (Kelly)
X =Py iff X\Y =8 Y and X =K Y\ X, and (Fishburn)
Xe=Pyiff e X:oam 2Y/|IX|>{yeY:ys= 2}|/|V]forall z€ XUY.

(Even-chance)

The strict parts of these extensions require that at least one of the relations in the defini-
tion holds strictly and will be denoted by >f( , >ZF , and >f , respectively. It follows from
the definitions that the even-chance extension is a refinement of Fishburn’s extension,
which in turn is a refinement of Kelly’s extension. This inclusion relationship also holds
for the strict parts of the three relations. For every =; € R,

FC Rl cxfand »K C-F P

Even when m = 3 (which is sufficient for our impossibility theorems), the even-chance
extension is incomplete because the sets {b}, {a, c}, and {a,b, c} are incomparable with
respect to =;: a, b, c. Furthermore, for three alternatives, the only difference between the
even-chance extension and Fishburn’s extension is that {a,b} =¥ {a,c} and {a,c} =¥
{b,c} (while these pairs of sets are incomparable according to Fishburn’s extension).
With these extensions at hand, we can formally define strategyproofness of SCCs
without making reference to tie-breaking functions. An SCC f is Kelly-manipulable if
there exist preference profiles R, R' € RY, and an agent i € N such that o= %;
for all j # i and f(R') =K f(R). f is said to satisfy Kelly-strategyproofness if it is
not Kelly-manipulable. Fishburn-strategyproofness and even-chance-strategyproofness
are defined analogously. The relationship between the preference extensions implies
that even-chance-strategyproofness is stronger than Fishburn-strategyproofness and that



Fishburn-strategyproofness is stronger than Kelly-strategyproofness. The connection be-
tween both strategyproofness notions and the tie-breaking assumptions given in Sections
3.1 and 3.2 is as follows. For any SCC f, we have that

(i) f is Kelly-strategyproof iff it is Guy-strategyproof iff it is Gﬁl—strategyproof,

A
pro

(i) f is Fishburn-strategyproof iff it is Gy,-strategyproof iff it is G5, -strategyproof,

and
(#i) f is even-chance-strategyproof iff it is {uni}-strategyproof.

The equivalences between Kelly-strategyproofness and G,j-strategyproofness and Gﬁl—
strategyproofness are relatively straightforward (see, e.g., Erdamar and Sanver (2009,
Theorem 3.1) for the former and Gérdenfors (1979, Prop. 5) for the latter). The equiva-
lence of Fishburn-strategyproofness and Gj;,-strategyproofness is essentially due to the
fact that for all g € Gy and X, Y € C, 9(X),g(Y) € X NY implies g(X) = g(Y) (see,
e.g., Erdamar and Sanver, 2009, Theorem 3.4). The equivalence between Fishburn-
strategyproofness and Gﬁm—strategyproofness was shown by Ching and Zhou (2002,
Lemma 1). Even-chance-strategyproofness and {uni}-strategyproof are equivalent be-
cause of standard stochastic dominance arguments (see, e.g., Gardenfors, 1979).

The more the agents know about the tie-breaking mechanism, the stronger the cor-
responding notion of strategyproofness. In this sense, Kelly-strategyproofness is the
weakest possible notion of strategyproofness because it assumes that agents do not know
anything about tie-breaking (except that ties will eventually be broken).

4. Results

We are now ready to state our results. We start by showing that the Pareto rule satisfies
Kelly-strategyproofness but violates Fishburn-strategyproofness. This observation will
lead to the main theorem, showing that every anonymous and Pareto-optimal SCC is
Fishburn-manipulable. We then prove that this impossibility remains intact when weak-
ening Fishburn-strategyproofness to Kelly-strategyproofness and restricting attention to
the broad class of pairwise SCCs.

4.1. Manipulation of the Pareto Rule

In order to illustrate the definitions of Kelly-strategyproofness and Fishburn-
strategyproofness, consider the Pareto rule PO and the following preference profile R.

1t a,{b,c} 2! {b,c},a

Clearly, PO(R) = {a,b,c}. Now assume that Agent 1 changes his preferences to =)
resulting in preference profile R’.

=1:a,b,c =51 {b,c},a



Alternative ¢ is Pareto-dominated by alternative b in R and PO(R') = {a,b}. This does
not constitute a Kelly-manipulation because

{a,b} #1 {a,b,c}

In fact, these sets are incomparable according to 4. This is in line with our observations
from Section 3 because there could be a deterministic tie-breaking function that selects
b from {a,b} and a from {a,b,c}. The picture looks different for Fishburn’s extension,
however, as

{a, b} >—f {a,b,c}.

To see that this concurs with the equivalence of Fishburn’s extension and linear tie-
breaking orderings, consider the tie-breaking ordering > with ¢ > a > b. According
to this ordering, a will be selected from {a,b} and ¢ from {a,b,c}. Since a >; ¢ and
for all other tie-breaking orderings, Agent 1 is indifferent between the eventually chosen
alternatives, we have a Fishburn-manipulation. {a,b} is also preferred to {a,b, c} when
ties are broken by even-chance lotteries: for all utility functions consistent with =1, the
expected utility for an even-chance lottery between a and b exceeds that of an even-
chance lottery between all three alternatives.

The example shows that PO is Fishburn-manipulable (and consequently also even-
chance-manipulable). By contrast, as first shown by Feldman (1979), PO does satisfy
Kelly-strategyproofness. Since Feldman proves this statement by making reference to
stronger strategyproofness notions, we give a self-contained proof below.

Proposition 1. PO is Kelly-strategyproof.

Proof. Assume for contradiction that there are two preference profiles R and R’, and an
agent i € N such that »=; ==} for all j # i and PO(R) =K PO(R). Tt is well-known
that the Pareto dominance relation is transitive and that every Pareto-dominated alter-
native is Pareto-dominated by some alternative in PO. This also implies that PO con-
tains at least one top-ranked alternative from every agent because top-ranked alternatives
can only be Pareto-dominated by other top-ranked alternatives. Hence, PO(R’) contains
only top-ranked alternatives of agent ¢ while PO(R) contains at least one alternative that
is not top-ranked by agent i. This means that there is some x € PO(R) \ PO(R') and
there is no 2’ € PO(R) \ {z} with 2/ ~; z. Since z ¢ PO(R’), there has to be some
y € PO(R’) such that y Pareto-dominates = in R’. Moreover, y does not Pareto-dominate
x in R. This implies that x »; y. Since z € PO(R) and y € PO(R/), it is impossible
that PO(R') =K PO(R). O

Remark 1 (Refinements of PO). PO is not the most discriminating Kelly-
strategyproof SCC. For example, using a proof similar to that of Proposition 1, it can
be shown that the SCC that returns all Pareto-optimal alternatives that are top-ranked
by at least one agent is Kelly-strategyproof as well.

Remark 2 (Group-strategyproofness). Proposition 1 and Remark 1 also hold when
replacing strategyproofness with group-strategyproofness where a group of agents can
manipulate such that all of them are strictly better off (see, also, Bandyopadhyay, 1983b;
Umezawa, 2009).



4.2. Fishburn-strategyproofness

The example given in the previous section shows that PO is Fishburn-manipulable. Our
main theorem significantly strengthens this observation by showing that every anony-
mous refinement of PO is Fishburn-manipulable.

Theorem 1. There is no anonymous SCC that satisfies Pareto-optimality and Fishburn-
strategyproofness for m > 3 and n > 3.

The proofs of this and the next theorem are obtained using the computer-aided proving
methodology described by Brandt and Geist (2016). The idea is to first manually prove
a reduction argument (Lemma 1), which essentially establishes that an impossibility
result using Pareto-optimality and strategyproofness can already be shown by proving
the incompatibility of these properties for some fixed number of alternatives and agents.

Lemma 1. Let f be an anonymous SCC that satisfies Pareto-optimality and strate-
gyproofness for A and N. Then there is an anonymous SCC f' that satisfies these
azioms for any A’ C A and N' C N.

Proof. We define an embedding ¢ of preference profiles R’ = (=/,...,=,) over N" and
A’ into preference profiles R over N and A by means of extending the existing preferences
with D = A\ A" as new bottom-ranked, hence Pareto-dominated, alternatives and adding
indifferent agents: ¢ (R') = R with

. = U (AxD) ifie N,
T lAx A otherwise.

Now let f'(R') = f(p(R')). f'is anonymous since f is anonymous and agents in N only
differ by their preferences over A’. Pareto-optimality of f’ holds because f is Pareto-
optimal and PO(R) = PO(R'). Finally, f is strategyproof because f is strategyproof
and the choice sets of f’ under the two profiles R’ and (R'); ./ are equal to the choice
sets of f under the two (extended) profiles R and R, respezctively. O

It is easily seen that Lemma 1 also holds for neutral SCCs.

We have used a computer program to generate a proof by contradiction for three
agents and three alternatives, which essentially boils down to an extensive case analysis.
Similar proofs were found by humans to show impossibility theorems in the context of
random assignment and probabilistic social choice (e.g., Bogomolnaia and Moulin, 2001;
Bogomolnaia et al., 2005; Brandl et al., 2016; Chang and Chun, 2017; Nesterov, 2017;
Aziz et al., 2018; Chun and Yun, 2020). Despite the finiteness of the domain we consider,
the number of anonymous SCCs is still enormous (see Table 1), which renders any type
of exhaustive search infeasible. There are already about 3.3 - 10%** possible anonymous
SCCs when m = n = 3. We therefore formulated the existence of an SCC with the
desired properties as a formula in propositional logic and then consulted a state-of-the-
art SAT solver, which uses heuristic search algorithms to decide the satisfiability of such
formulas. Apart from enabling us to deal with enormous search spaces, the computer-
aided approach has the major advantage that related conjectures and hypotheses, e.g.,
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m n Preference profiles SCCs Pareto-optimal SCCs
3 3 455 ~ 3.3-10%% ~5.0-10'

3 4 1,820 ~1.2.10"538 ~ 2.8 10933

4 3 73,150 ~ 1.2.1086:031 ~ 2.2.1042914

Table 1: Number of different profiles and Pareto-optimal SCCs when assuming
anonymity.

statements including weaker axioms, can be checked quickly using the same framework.
This is reflected in many of the technical remarks given after the theorems.

Starting from the initial, unsatisfiable SAT instance, we used MARCO to find a small
(group-oriented) MUS, which utilizes the 21 profiles (out of the 455 possible anonymous
preference profiles when m = n = 3) given in Table 3 of the Appendix. Although
the MUS does not guarantee that this is the minimal number of profiles needed, no
significantly easier proof of this form exists, because we were able to compute a lower
bound of 19 profiles with FORQES. This lower bound also implies that for any domain
(with m = n = 3) that consists of at most 18 preference profiles, there exists some
anonymous SCC that satisfies Pareto-optimality and Fishburn-strategyproofness. With
the help of PICOSAT, we extracted a proof out of the MUS which is divided into eight
main proof steps.®> This proof has been verified by ISABELLE and proof replication
data is publicly available (Brandt et al., 2018). The complete human-readable proof of
Theorem 1 is given in Appendix A. A more detailed description of the proof methodology
is given in Appendix B.

Remark 3 (Independence of axioms). The axioms of Theorem 1 are independent of
each other. PO satisfies all axioms except Fishburn-strategyproofness, serial dictatorship
satisfies all axioms except anonymity, and the trivial SCC which always returns all
alternatives satisfies all axioms except Pareto-optimality. Also, the bounds used in the
theorem (m > 3 and n > 3) are tight, as confirmed by the SAT solver.

Remark 4 (Majoritarian SCCs). Brandt and Geist (2016, Theorem 3) have shown
that all Pareto-optimal majoritarian SCCs are Fishburn-manipulable when m > 5 and
n > 7. This result is weaker than Theorem 1, except that it even holds for strict
preferences.

Remark 5 (Strict preferences). When assuming strict preferences, there are
Fishburn-strategyproof SCCs satisfying Pareto-optimality, e.g., PO or the SCC that
returns all top-ranked alternatives (Feldman, 1979; Brandt and Brill, 2011). Theorem 1
shows that these SCCs cannot be extended to weak preferences without giving up one
of these desirable properties. The same is true if we instead define Fishburn’s extension
using strict preferences, i.e., X is preferred to Y if and only if x >; y for all x € X\Y,

3We applied Pareto-optimality constraints manually before these proof steps to make the proof as
compact as possible.
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y €Y and all z € X, y € Y\X. This preference extension can be obtained via the
framework introduced in Section 3 by changing the definition of G-manipulability such

that for all g € G, g(f(R')) # g(f(R)) implies g(f(R)) =i g(f(R)).

Remark 6 (Weak Pareto-optimality). Weak Pareto-optimality requires that an al-
ternative y should not be selected whenever there is another alternative z such that
x »; y for all i € N. Theorem 1 does not hold when replacing Pareto-optimality with
weak Pareto-optimality because the SCC that returns all top-ranked alternatives satisfies
weak Pareto-optimality and Fishburn-strategyproofness. Note that the SCC that returns
all weakly Pareto-optimal alternatives violates Fishburn-strategyproofness. This can be
seen by replacing the second agent’s preferences in the example given in Section 4.1 with
=20 b, {a,c}.

For the reader’s benefit, we now give a simple human-readable proof of a significantly
weaker version of Theorem 1 which additionally assumes neutrality.* This proof is based
on only three preference profiles (rather than 21) and requires only five strategyproofness
applications (rather than 89).

Corollary 1. There is no neutral and anonymous SCC that satisfies Pareto-optimality
and Fishburn-strategyproofness for m > 3 and n > 2.

Proof. Let N ={1,2} and A = {a,b, c} and assume for contradiction that f is a neutral
and anonymous SCC that satisfies Pareto-optimality and Fishburn-strategyproofness.
First, consider preference profile R'.

?%:a,b,c %%:b,a,c

By anonymity and neutrality, a € f(R') if and only if b € f(R'). Together with c
being Pareto-dominated (by both a and b), this implies f(R') = {a,b}. This already
determines the choice set for the following preference profile R

2 2
>Fl:a’vbvc ?2: {bvc}aa

Both f(R?) = {a} and f(R?) = {b} would allow for manipulations since the second
agent prefers {a,b} to {a} in R? and {b} to {a,b} in R!. Furthermore, ¢ ¢ f(R?)
since alternative c is Pareto-dominated by b, hence f(R?) = {a,b}. Lastly, we consider
preference profile R3.

=3 a,{b,c} =5:{b,c},a

By anonymity and neutrality, b € f(R?) if and only if ¢ € f(R?). However, if {b,c} C
f(R3), then the first agent can deviate from =3 to =%. This only leaves f(R3) = {a},
which allows the first agent to deviate from #% to %1)’, a contradiction. O

4Neutrality may seem like an innocuous fairness criterion, but it can be overly restrictive in some
settings (see, e.g., Sen, 1970, Section 6.1 (Critique of Anonymity and Neutrality)). In fact, many
SCCs used in the real world such as supermajority rules are not neutral.
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Remark 7 (Weakening Fishburn-strategyproofness). Using a more complicated
proof, it can be shown that Corollary 1 even holds for a weakening of Fishburn-
strategyproofness where choice sets can only be compared when they are disjoint or
contained in each other. We are unable to prove the same for Theorem 1, even when
m =4 and n = 3 or when m = 3 and n = 4.

Since even-chance-strategyproofness is stronger than Fishburn-strategyproofness, we
get the following immediate corollary of Theorem 1.

Corollary 2. There is no anonymous SCC that satisfies Pareto-optimality and even-
chance-strategyproofness for m > 3 and n > 3.

Proving Corollary 2 is not significantly easier than proving Theorem 1. FORQES
provides a lower bound of 15 preference profiles.

4.3. Kelly-strategyproofness

It is not possible to replace Fishburn-strategyproofness with Kelly-strategyproofness in
Theorem 1 because PO is Kelly-strategyproof (Proposition 1). We therefore focus on
the class of pairwise SCCs (see Section 1), which excludes PO.

Pairwise SCCs constitute a rich and well-studied subclass of SCCs, which contains all
magjoritarian SCCs (i.e., SCCs that only depend on the sign of gr such as Copeland’s
rule, the top cycle, and the uncovered set). There is a large number of attractive pairwise
and Pareto-optimal SCCs (see, e.g., Fishburn, 1977; Fischer et al., 2016). Typical exam-
ples are Borda’s rule, Kemeny’s rule, the Simpson-Kramer rule (aka maximin), Nanson’s
rule, Schulze’s rule, ranked pairs, and the essential set. Virtually all Condorcet exten-
sions considered in the literature are pairwise SCCs.

Theorem 2. There is no pairwise SCC that satisfies Pareto-optimality and Kelly-
strategyproofness for m > 3 and n > 3.

Proof. Let N = {1,2,3} and A = {a,b,c} and assume for contradiction that there is
a pairwise SCC f that satisfies Pareto-optimality and Kelly-strategyproofness. If not
stated otherwise, the absolute values of the majority margins in the following applications
of pairwiseness are always 1. First, consider the classic Condorcet profile R'.

k%:a,b,c %%:c,a,b %é:b,c,a

Due to the symmetry of the profile, we may assume without loss of generality that
be f(Rl). Now consider R?.

2 2 2
=1:a,b,c =5:¢,a,b =51 b,{a,c}

R? and R' only differ in the third agent’s preferences. By Kelly-strategyproofness,
b e f(RQ), as otherwise Agent 3 could obtain a preferred choice set by changing his
preferences from &% to >,—:1,,. Now consider R?, which has the same majority margins as
R?.

3 3
=11 a,b,c =5t {a,c},b =5:b,c,a
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Since gp2 = gps, b € f(R3). Now consider R*.
4, 4, .
=11 a,b,c =5 a,cb =3:b,c,a

R* differs from R3 by the second agent’s preferences 3=3. It follows that b € f(R4).
Otherwise, the second agent could misrepresent his preferences =3 by %‘21 and obtain the
Kelly-preferred choice set f (R4) without b. Finally, consider R>.

#5:a,b,c =50 {a,b,c} =50 {a,b,c}

Since gps = gpe, b € f (R5) holds as well. However, b is Pareto-dominated by a in R®,
a contradiction. O

The original proof of Theorem 2 found by the SAT solver consisted of nine preference
profiles, and we used FORQES to verify that no proof with less than nine profiles exists.
The given proof only argues about five profiles because the first step (“without loss of
generality”) implicitly makes reference to profiles that are not spelled out explicitly.

Remark 8 (Independence of axioms). The axioms of Theorem 2 are independent of
each other. Borda’s rule satisfies all axioms except Kelly-strategyproofness, PO satisfies
all axioms except pairwiseness, and the trivial SCC which always returns all alternatives
satisfies all axioms except Pareto-optimality. Also, the bounds used in the theorem
(m > 3 and n > 3) are tight, as confirmed by the SAT solver.

Remark 9 (Condorcet winners). The conjunction of pairwiseness and Pareto-
optimality implies that Condorcet winners should be chosen whenever the pairwise ma-
jority relation is transitive and its margins have absolute value 1. We have shown that
Theorem 2 also holds when pairwiseness and Pareto-optimality are replaced with this
weaker, but technical, condition and m = 3 and n = 4. Interestingly, the SMUS we
found for this statement also consists of nine profiles. Kelly-strategyproof Condorcet
extensions have been further explored by Brandt et al. (2022, Remark 12).

Remark 10 (Condorcet losers). For m = 3 and n = 4, we found a proof consisting of
29 profiles that shows the incompatibility of Kelly-strategyproofness, Pareto-optimality,
and the condition that the choice set should not contain a Condorcet loser, i.e., an
alternative = such that gr(x,y) < 0 for all y € A\ {z}. However, the former condition
does not allow for an induction step (even when paired with Pareto-optimality). This
has been rectified using a manual proof by Brandt et al. (2022, Theorem 3).

Remark 11 (BD-strategyproofness). Theorem 2 implies Theorem 6 by Aziz et al.
(2018), who use a stronger notion of strategyproofness in the context of probabilistic
social choice and furthermore require m,n > 4.

Remark 12 (Strict preferences). When assuming strict preferences, there are attrac-
tive pairwise Kelly-strategyproof SCCs satisfying Pareto-optimality, e.g., the uncovered
set, the minimal covering set, and the essential set (Brandt, 2015). Theorem 2 shows that
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these SCCs cannot be extended to weak preferences without giving up one of these desir-
able properties. The same is true if we instead define Kelly’s extension using strict prefer-
ences, i.e., X is preferred to Y if and only if z >; y forallz € X,y € Y (Brandt, 2015, Re-
mark 6). This preference extension can be obtained via the framework introduced in Sec-
tion 3 either by defining G-manipulability using g(f(R')) »; g(f(R)) for all g € G or by
changing the definition of GZ) to G5, = {g € A(A)°: supp(g(X)) C X for all X € C}.

Remark 13 (Weak Pareto-optimality). Theorem 2 does not hold when replacing
Pareto-optimality with weak Pareto-optimality (see Remark 6). The SCC that returns
all weakly Pareto-optimal alternatives satisfies pairwiseness, weak Pareto-optimality, and
Kelly-strategyproofness.

Remark 14 (Dichotomous preferences). When preferences are dichotomous (i.e.,
each preference relation admits at most two indifference classes), both impossibilities
do not hold because approval voting satisfies all desired conditions. PO, however, still
violates Fishburn-strategyproofness, which can be seen by considering the following two
profiles R and R'.

1t {ba C}a a 721 a, {b7 C} 731 a, {b> C}
=11 {b,c},a =5t a,{b,c} =51 {a,b},c

It is easily verified that PO(R) = {a,b,c}, PO(R') = {a,b}, and {a,b} =% {a,b,c}.

5. Discussion of Related Work

There is already a large body of literature dealing with impossibility theorems for strat-
egyproof SCCs and a comparison is in order. From a bird’s eye view, existing results
require rather restrictive additional assumptions or utilize stronger notions of strate-
gyproofness, but they already hold for the domain of strict individual preferences.

Early results by Barbera (1977a) and Kelly (1977) using Kelly-strategyproofness (or
even weaker notions) required SCCs to be quasi-transitively rationalizable, a condition
which is almost prohibitive on its own (see, e.g., Mas-Colell and Sonnenschein, 1972).°
Maclntyre and Pattanaik (1981) and Bandyopadhyay (1983a) use similar—albeit slightly
weaker—rationalizability conditions such as minimal binariness or quasi-binariness
while Brandt (2015), improving on a result by Gérdenfors (1976) for a strengthening of
Fishburn-strategyproofness, uses Condorcet-consistency. Barbera (1977b) restricts at-
tention to positively responsive SCCs, which are almost always single-valued. Only very
few commonly considered SCCs satisfy positive responsiveness, most notably Borda’s
rule and some of its variations.

Results with less restrictive assumptions typically require significantly stronger no-
tions of strategyproofness. For example, while Ching and Zhou (2002) also use Fish-
burn’s preference extension like we do in Theorem 1, they require that the original

5This is acknowledged by Kelly (1977) who writes that “one plausible interpretation of such a theorem is
that, rather than demonstrating the impossibility of reasonable strategy-proof social choice functions,
it is part of a critique of the regularity [rationalizability| conditions.”
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outcome is Fishburn-comparable to the choice set for any misrepresentation of pref-
erences. This results in strong Fishburn-strategyproofness (see Section 1), which is
stronger than Fishburn-strategyproofness and any other form of strategyproofness men-
tioned in this section. Perhaps the best known result in this area is due to Duggan
and Schwartz (2000), who have shown that any non-imposing and non-dictatorial SCC
that satisfies a condition they refer to as residual resoluteness can be manipulated by an
optimist or by a pessimist. The corresponding notion of strategyproofness is stronger
than Fishburn-strategyproofness (when preferences are strict) and stronger than Kelly-
strategyproofness (without imposing any restrictions on preferences). Their remain-
ing conditions—except residual resoluteness—are weaker than ours: non-imposition is
weaker than Pareto-optimality and non-dictatorship is weaker than anonymity. Residual
resoluteness is a rather technical condition that is difficult to justify (see, e.g., Rodriguez-
Alvarez, 2007; Sato, 2008), and which is, for example, violated by the Pareto rule. To the
best of our knowledge, the only impossibility using Fishburn-strategyproofness is a theo-
rem by Brandt and Geist (2016), which only holds for the restricted class of majoritarian
SCCs, which form a subset of pairwise SCCs.

The models considered by Barbera et al. (2001), Benoit (2002), Ozyurt and Sanver
(2009), and Sato (2014) differ from the ones considered so far in that they assume
that agents submit complete preference relations over sets, subject to certain rationality
constraints. Hence, their results can be interpreted as results about single-valued SCFs
where the set of alternatives is defined as the set of all non-empty subsets of some set of
candidates and the domain of admissible preferences is restricted. Barbera et al. (2001)
prove a remarkable analogue of the Gibbard-Satterthwaite theorem for the domain of all
preference relations over sets that concur with Fishburn’s extension. However, Barbera
et al.’s notion of strategyproofness (as well as that of Ozyurt and Sanver) is stronger
than Fishburn-strategyproofness because it rests on the assumption that all sets are
comparable. The strategyproofness notions used by Benoit and Sato are weaker than
those of Duggan and Schwartz (2000) and Barbera et al. (2001), but incomparable to
both Fishburn- and Kelly-strategyproofness. Their results rely on the comparatively
strong assumption that an agent who prefers a to b to ¢ may prefer the set {b} to the
set {a,c} whereas we always deem these sets to be incomparable.® Benoit and Sato
also employ additional technical conditions called near unanimity and non-decisiveness,
respectively, which are reminiscent of Duggan and Schwartz’s residual resoluteness and
which are controversial when there are only few agents. For example, near unanimity is
violated by Borda’s rule for three agents and three alternatives (Sato, 2014).

In contrast to our theorems, the results by Duggan and Schwartz (2000), Barbera
et al. (2001), Ching and Zhou (2002), Benoit (2002), Rodriguez-Alvarez (2007), Sato
(2008, 2014), and Brandt and Geist (2016) all hold even when preferences are strict.

SWithin the domain of strict preferences, our proof of Theorem 1 does not make any assumptions on
the comparability of sets that is not also made by Benoit (2002) and Sato (2014).

16



6. Conclusion

We investigated the existence of anonymous, Pareto-optimal, and strategyproof SCCs
when there may be ties in the preferences as well as in the outcomes. Our main results
are negative and, together with existing positive results, sharpen the boundary of strat-
egyproof social choice. The computer-aided proof of Theorem 1 is quite involved and we
have shown that no significantly easier proof exists.

Model G-Manipulation  Pref. extension Result
Gl=1 none Gibbard (1973) and Satterthwaite (1975)
RN L0 9, 4 G C Giin Fishburn Theorem 1
G C Gan Kelly Theorem 2 (pairwise SCCs)
G = {uni} even-chance Corollary 2
RN .09, A(4) GC Gﬁo Fishburn Theorem 1
G C Gﬁll Kelly Theorem 2 (pairwise SCCs)
RN L, A(A) n/a stochastic dom.  Brandl et al. (2018) (neutral, SD-efficient SDSs)
uN L, A(A) n/a expected utility Hylland (1980) (ex ante efficient cardinal SDSs)

Table 2: Summary of main results plus two results from probabilistic social choice
for comparison. FEach line corresponds to an impossibility theorem using
anonymity, Pareto-optimality, and strategyproofness.

Our results and their interpretation based on the tie-breaking rules introduced in Sec-
tion 3 are summarized in Table 2. For comparison, the table also contains the Gibbard-
Satterthwaite theorem and two related results from probabilistic social choice, which
studies social decision schemes (SDSs), i.e., functions that directly map to the set of
all lotteries. When agents submit expected utility functions (or, equivalently, com-
plete preferences over lotteries that adhere to the von Neumann-Morgenstern axioms),
one speaks of cardinal SDSs. Hylland (1980) has proven that no cardinal SDS satis-
fies non-dictatorship, strategyproofness, and a strengthening of Pareto-optimality called
ex ante efficiency. Brandl et al. (2018) showed that this impossibility still holds when
agents only submit preferences over alternatives, strategyproofness is weakened to SD-
strategyproofness, ex ante efficiency is weakened to SD-efficiency, and non-dictatorship
is strengthened to anonymity and neutrality. When comparing this result to Corollary 2,
it turns out that Corollary 2 is weaker in that it only allows for even-chance lotteries,
but it is stronger in that it only requires Pareto-optimality (rather than SD-efficiency)
and dispenses with neutrality. Even-chance lotteries are the most natural—and some-
times the only acceptable—form of randomized tie-breaking (see, e.g., Fishburn, 1972).
Moreover, it may be difficult to implement non-uniform lotteries in practice.

Both Kelly- and Fishburn-strategyproofness can be translated to the probabilistic
setting by applying them to the support of lotteries. For strict preferences, both
notions are much weaker than SD-strategyproofness. Similarly, SDSs can be trans-
lated to the set-valued setting by only considering the support of the resulting lot-
teries. Thus, Gibbard (1977)’s random dictatorship, for example, translates to the
ommninomination rule, which returns all alternatives that are top-ranked by some agent.
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It follows from Gibbard’s characterization that this rule is Fishburn-strategyproof for
strict preferences. Theorem 1 implies that the omninomination rule cannot be ex-
tended to weak preferences without giving up Fishburn-strategyproofness or Pareto-
optimality. When preferences are weak, Fishburn-strategyproofness is incomparable to
SD-strategyproofness. In fact, random serial dictatorship (a natural extension of ran-
dom dictatorship to weak preferences) is SD-strategyproof and Pareto-optimal, but vio-
lates Fishburn-strategyproofness.” Kelly-strategyproofness, on the other hand, remains
weaker than SD-strategyproofness even when preferences are weak. Hence, Theorem 2
implies that no pairwise SDS can be SD-strategyproof and Pareto-optimal at the same
time.

Our definitions of Pareto-optimality and strategyproofness crucially rely on the as-
sumption that indifferences are due to equal valuations rather than the absence of com-
parisons. In the latter case, weak Pareto-optimality (see Remarks 6 and 13), and weaker
notions of strategyproofness (see Remarks 5 and 12) are appropriate. Any of these weak-
enings renders our results moot. The same is true when requiring that individual prefer-
ences are strict. For example, the essential set (Dutta and Laslier, 1999; Laslier, 2000)
and its probabilistic counterpart mazimal lotteries (Fishburn, 1984; Brandl et al., 2022)
satisfy Kelly-strategyproofness when preferences are strict and a weakening of Kelly-
strategyproofness when preferences are weak (see Remark 12 and Aziz et al. (2018)).
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APPENDIX
A. Proof of Theorem 1

Proof. Let f be a Fishburn-strategyproof and Pareto-optimal SCC. A recurrent step in
the proof is to argue that, for two preference profiles R, R’ € RV and some agent i € N
such that i=; = =) for all j # 4, f(R) = {} implies that f(R') = {y} for some y € A. In
particular, it can be shown that the following four implications hold when f(R) = {x}
and m = 3.

(i) If agent i top-ranks x, possibly with other Pareto-dominated alternatives, in R/,
then f(R') = {z}.

(i) If agent i does not top-rank x in R and some alternative is Pareto-dominated both

in R and R, then f(R') = {z}.
(i) If agent i’s unique least-preferred alternative in R is z, then f(R') = {z}.

(iv) If y Pareto-dominates x in R’ and agent i top-ranks exactly x and y in R/, then

f(RY) = A{y}.

All four implications already hold for Kelly’s extension and are easily proved. Implica-
tions (i) and (iv) make use of strategyproofness from R’ to R: if agent i ranks alternative
x top in R and if f(R) = {z}, then strategyproofness implies that f(R’) must consist
only of top ranked alternatives of agent ¢ in R’. Otherwise, agent ¢ can get a strictly
preferred outcome by changing his preferences from R’ to R.

For implication (i), observe that there is some alternative y in the top indifference
class of agent ¢ in R, while, by assumption, alternative z is not top ranked. Since
f(R) = {«}, strategyproofness with respect to agent 7 from R to R’ implies that neither
f(R) = {z,y} nor f(R') = {y}. By Pareto-optimality, we have that the remaining
alternative z ¢ f(R’), therefore we have that f(R') = {z}.

Lastly, implication (74) is an immediate consequence of strategyproofness from R to R':
Any outcome other than the singleton consisting of the last ranked alternative would be
strictly preferred by agent 7.

Now, for the proof of the theorem, let N = {1,2,3} and A = {a,b,c} and consider
the preference profiles given in Table 3. We determine restrictions on the outcome
of f imposed by Pareto-optimality and Fishburn-strategyproofness until we arrive at a
contradiction. We will use the four implications from above by referring to their numbers
and instantiating with the appropriate preference profiles. To improve readability, it
will not be explicitly mentioned that Pareto-dominated alternatives, which are marked
in gray, must not be contained in any choice set. Anonymity is used implicitly by
identifying preference profiles with sets of individual preference relations.

Interestingly, Kelly-strategyproofness suffices for the entire proof except for two im-
plications involving the possibility that f(R?) = {a,b,c} in the proof of Claim (2). We
will explicitly mention that Fishburn’s extension is used in these cases. It turns out that

23



Profile Preference relations

R! {a,c},b
R? ¢, {a, b}
R3 ¢, {a,b}
R* e, {0, b}
R {0,¢},b
RS b,{,c}
R’ {0,¢},b
R® {/,c},a
R? {b,},a
R0 {7,¢c},b
RU {a,c},b
R1? e, {0,b}
R13 {a,c},b
R a,{,c}
R {b, },a
R'6 {a, '}, c
R a,{b, }
R'® {a,},b
RY a,{/,c}
R?0 b, {a, }
R {b, },a

a,b,c
a,b,c
a,b,c
b, c,

{o,ch b
¢, {0, b}
b,{",c}
a,{V, c}
b,{a,}
b, c,

a,b,c
b,u,c
b,a,c
¢ {a, "}
a,{b,}
¢, {a, "}
a,b,

b,{a,}
¢, {a, '}
a,b,

a,b,

b,c,a
b,c,a
¢, b,a
¢, b,
b, c,
b, c,
b, c,
a’ c7
a,b,
c? b7
c,b,a
C’ b7
c,b,a

Table 3: Anonymous preference profiles for three agents used in the proof of Theorem 1.

Pareto-dominated alternatives are marked in gray.

only profiles R' to R* are directly affected in the results of the main proof steps, which
can be broken down into eight claims. The rest of the profiles are needed in intermediate

steps.

(1) f(R) # {a}

Assume for contradiction that f(R!) = {a}. The following chain of implications shows
that this entails f(R'?) = {c}. For convenience, we restate the preference profiles
involved in these implications on the right-hand side. Preference relations that changed

from one profile to another are highlighted in gray.
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SR = {a) wbe  {mehb o bea
) j ) = () foeht  {ochd b
L f(RYO) = {c} &5 tnehb b
% FRY ={c} c, b, c,{a, b} b,c,
(), F(R2) = {¢} c,b, ¢, {v,b} b, ,c

From f(R'?) = {c} we can infer that f(R'?) C {a,c} because otherwise there is a
manipulation from R'3 to R!?.

f(R?) = {c} e, {,b} b,u,c c, b,
= f(R®)C{a,c} {a,c},b b,a,c c,b,a
Further, f(R') = {a} implies that f(R'!) = {a}.

f(Rl) :{(I} b,C,CL {(I,C},b (l,b,C
L f(RM) = {a} eba  {achb  abe

Now f(R'3) C {a,c} and f(R') = {a} imply f(R'®) = {a}, since both f(R'3) = {c}
and f(R') = {a,c} would violate strategyproofness from R'? to R!!.

f(R™) = {a} a,b,c  {a,c},b ¢ ba
= f(R¥®) = {a} b,a,c {a,c},b c,b,a

From f(R') = {a} we deduce that f(R?) = {a} using the following chain of implica-
tions.

§(E) = {a) eba - Aachb o bac
(i), F(R®) = {a) b, {a, } {a, },b b,a,
L (1) = {a) biach [0S  be
L 1R = {a) b {a, ) @b, b, cha
G f(R?) = {a} boa o ab thcha
L §(R?) = {a) b,c,a “be Giab

Also, f(R'?) = {c} implies f(R3) = {c}.

f(R12): {C} b,o,c Cv{ 7b} ¢, b,
L F(RY) ={c} abe clabl  cba
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However, f(R3) = {c} and f(R?) = {a} violate strategyproofness from R? to R3.

f(R?) = {a} bea ¢ {a,b}  a,bc
f(R3) ={c} ¢, b,a ¢, {a,b} a,b,c

Hence, the assumption that f(R') = {a} was incorrect.
(2) f(R?) & {{b} {a, b}, {a,b,c}}

Assume for contradiction that (2) is false. This implies f(R®) = {a}, since f(R!®) =
{a,c} and f(R'®) = {c} would violate Fishburn-strategyproofness from R'® to R?.

F(R?) € {{b}, {a,b}, {a,b,c}} bea  ofabl  abe
—  f(RY)={a) @oe  c{ab} abe
Now f(R1®) = {a} implies f(R'7) = {a}.
 f(R)={a} {a,’},c a,lye c{a,}
Y F(RY)={a) o {bel abec  c{ab)
Y FRY) = {a) o, (e} aeb ¢ {ab}
Ly 1R = {a) o, (b} aeb  {beha
e F(RY) = {a} o, {0} abe {bcha
L FRTY = {a) a,{b,}  ab, G

From (1) we know that f(R') # {a}, therefore f(R'") = {a} yields either f(R') = {c}
or f(R') = {a,c} by strategyproofness from R' to R'7.

F(RY) = {a} a,{b,} a,b, b,c,a
= f(RY € {{c},{a,c}} {a,c},b a,b,c b,c,a

However, f(R!) € {{c},{a,c}} contradicts the assumption that f(R?) is either {b},
{a,b}, or {a,b,c}. In each of the cases, Fishburn-strategyproofness from R? to R! is
violated.

f(R?) € {{b},{a,b},{a,b,c}} ¢, {a,b} a,b,c b,c,a
f(RY) € {{c},{a,c}} {a,c},b a,b,c b,c,a

(3) f(RY) #{c}
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Assume for contradiction that f(R') = {c}. The following chain of implications shows
that this implies f(R7) = {b}.

_ f(RY = {c} {a,c},b b,c,a a,b,c
% f(R?Y) = {b} {b, },a b,c,a a,b,
Lo F(RY) =} {b.}a  bfa}  ab
B F(RO) = () b,a, b{a,’}  ab,
L HR®) = {b) ba, b{a,}  {a, },b
G #(RT) = (b} b, b{nch  {nchb

However, f(R") = {b} and f(R') = {c} contradicts strategyproofness from R! to R".
f(RY) = {c} a,b,c {a,c},b b,c,a
f(R7): {b} b7{ ,C} { 76}71) b, ¢,
(4) f(R?) & {{c},{b,c}}

Assume for contradiction that (4) does not hold. This implies f(R?') = {b}, since
a € f(R*') would violate strategyproofness from R?! to R2.

f(R?) € {{c},{b,c}} ¢, {a,b} a,b,c b,c,a
= f(R*)={b} {b, },a a, b, b, ,a

Now f(R?') = {b} implies f(R®) = {b}:

F(R2Y) = {b) boa  {bha  ab
O HRY) = (b bia,} (b }a  ab,
Y 1R = () b{a,}  ba, a,b,
Lo (R = {b) b{a,}  ba, {a,c},b
O HRT) = (b} b{ncl b {0,ehb
L9 F(RSY = {b) bi{nel b ¢, {1,b}

However, f(R%) = {b} and the assumption that f(R?) is either {c} or {b,c} contradicts
strategyproofness from R? to RS in either case.

f(R?) € {{c},{b,c}} a,b,c ¢,{a,b} b,c,a
= f(RG):{b} bv{ 76} Cv{ 7b} b, c,
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(5) b¢ f(RY)

Assume for contradiction that (5) does not hold. From (2) and (4) we deduce that either
f(R?) = {a} or f(R?) = {a,c}. This contradicts strategyproofness from R! to RZ.

f(RY > {a,c},b a,b,c b,c,a
f(R?) € {{a},{a,c}} ¢,{a,b} a,b,c b,c,a

(6) f(R?) # {c}

Assume for contradiction that f(R3) = {c}. From (2) and (4) we have again that either
f(R?) = {a} or f(R?) = {a,c}. In both cases, strategyproofness from R? to R? is
violated.

f(R?) € {{a},{a,c}} b,c,a ¢,{a,b} a,b,c
f(R3) ={c} c,b,a ¢,{a,b} a,b,c
(1) f(RY) # {c}

Assume for contradiction that f(R*) = {c}. This implies f(R3) = {c}, a contradiction
to (6).

g f(RY) ={c} b,c, ¢,{v,b} ¢ b,
% f(R?) = {c} b, ,c ¢, {,b} c,b,
% f(R?) = {c} a,b,c ¢, {a,b} ¢,bya

®) f(BY) ={c}

From (1), (3), and (5) we know that f(R') = {a,c}. This implies f(R%) = {c}, as
otherwise strategyproofness from R° to R' would be violated.

f(RY = {a,c} a,b,c {a,c},b b,c,a
= f(R’)={c} {ehb {o,chb bie
Now f(R®) = {c} implies f(R*) = {c}.
IR =A{¢} {o,etb {oehd o bie
G FR19) = {c} e,b, {nehb b
L (RY ={a) e,b, e,{,b} b

Since f(R*) = {c} and f(R*) # {c} is a contradiction, (8) and (7) conclude the proof,
showing that no Fishburn-strategyproof and Pareto-optimal SCC exists. O
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B. Computer-Aided Theorem Proving

Basically, the core of the computer-aided approach is the encoding of the problems to be
solved as SAT instances in conjunctive normal form (CNF'). For this, all axioms involved
need to be stated in propositional logic. All variables are of the form cr x where R is a
preference profile and X C A a set of alternatives. The semantics of these variables are
that cp x is true if and only if f(R) = X, i.e., the SCC f selects the set of alternatives
X as the choice set for the preference profile R.

Although an encoding with variables cgr . for single alternatives = rather than choice
sets would require less variable symbols, it would significantly increase the complexity
of the clauses for some axioms, especially for strategyproofness. Due to the fact that
strategyproofness clauses outnumber all other clauses combined, we chose the former
encoding with more variables but much easier clauses. First, we ensure that the variables
cr,x indeed model a function rather than an arbitrary relation, i.e., for each preference
profile R, there is exactly one choice set X such that the variable cg x is set to true. We
split this into choice set existence,

VReRY)EX C A ecrx= /\ V crx
ReRN XCA
and uniqueness,

(VRe RN) (WY, Z CA)Y #Z — —(cry Acrz))

/\ /\ (_‘CR,Y \/_‘CR,Z)~

RERNY#Z

By contrast to these rather elaborate axioms, the formalization of Pareto-optimality
can be easily written without logical disjunctions as

(VR e RY) (Vz ¢ PO(R)) = ¢ f(R)

=N AN\ erx

ReRN z¢PO(R) X3z

Similar to the choice set uniqueness axiom, strategyproofness for some preference exten-
sion £ can be encoded as

(VR € RY) (v i€ R) (¥ i€ R) = (f(Risny) =5 S(R))

/\ /\ /\ /\ (_‘CRZ.,_)%,Y\/_‘CR,X>7

RERN #i€R »jeR Y»¢X

with R, ,._, denoting the preference profile R where agent i’s preference relation is re-
placed with =

After encoding the axioms using a Java program, satisfiability of the SAT instance
is checked with the LINGELING solver family by Biere (2013). If an instance turns
out to be unsatisfiable, we extract a minimal unsatisfiable core (also called a minimal

29



unsatisfiable set (MUS)), a feature which is offered by a range of SAT solvers. Any
unsatisfiable subset of clauses is an unsatisfiable core. If removing any clause from the
unsatisfiable core renders it satisfiable, it is called minimal. However, although an MUS
is inclusion-minimal, it is not necessarily a smallest unsatisfiable core, i.e., a core with
a minimal number of clauses or variables. In particular, neither an MUS nor a smallest
unsatisfiable core has to be unique.

Especially with regard to proof extraction later on, we aimed at finding a smallest
minimal unsatisfiable set (SMUS), for which we used the software tool MARCO by Liffiton
et al. (2016). Rather than merely minimizing the number of clauses of the CNF formula,
we are interested in proofs that minimize the number of required preference profiles. One
of the reasons behind this is that strategyproofness is responsible for most of the clauses
in our SAT instances, resulting in MARCO spending most of the runtime on optimizing
the size of the MUS concerning the number of applications of strategyproofness only,
instead of rather concentrating on the number of different preference profiles involved
in it. We realized this optimization objective by using group-oriented CNF formulas
and declaring clauses of the choice set existence axioms as interesting groups and all the
remaining clauses as a single don’t care group. This technique significantly increases the
performance of our search for a (group-oriented) SMUS (see Liffiton and Sakallah (2008)
for more details on group-oriented SAT solving).

Moreover, using the group-oriented approach, we can now also give lower bounds for
the number of profiles needed in impossibility proofs. The number of profiles seems
to be a reasonable measure of proof complexity, even though it is, of course, very well
possible that proofs using more profiles turn out to be “easier,” e.g., by requiring fewer
case distinctions. We achieve the lower bound with the tool FORQES by Ignatiev et al.
(2015), as it supports a restricted version of group-oriented SAT solving, namely the
specification of don’t care clauses. In contrast to MARCO, it does not compute or return
approximations of an SMUS during its runtime, but rather iteratively rules out the
existence of an MUS of a given size starting with the trivial size of just one clause (and
finally returns an SMUS if not aborted prematurely).

After finding a sufficiently small MUS, a proof trace can be extracted from the MUS
with the help of certain SAT solvers like PICOSAT by Biere (2008). If this yields a
reasonably sized proof trace, we can directly create a pen-and-paper proof by going
through its main steps and translating the clauses back to statements about preference
profiles. For this, we use a dictionary containing the correspondences between SAT
variables and tuples consisting of preference profiles and choice sets.

If computer-generated proofs exceed a certain size, it becomes a tedious and error-
prone task for humans to translate the output of the SAT solver to a human-readable
proof and thereby checking correctness. Simply accepting the black-box-like output of
the SAT solver as a proof is not sufficient, as one has (i) to trust the correctness of the
SAT solver and (ii) to rely on the correctness of the Java program that generates the
CNF formula. The first concern is less problematic and is addressed by using a verified
SAT solver (Mari¢, 2010). However, more importantly, there is no guarantee that the
Java program meets its specification. Even a verified SAT solver may produce an overall
unsound proof due to a bug in the program for encoding the axioms. To tackle this
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issue, we make use of the interactive theorem prover ISABELLE (see, e.g., Nipkow et al.,
2002) to produce a machine-verified proof. The main application of the generic proof
assistant [SABELLE is the formalization of mathematical proofs and formal verification.
Building on the framework introduced by Brandl et al. (2018), the set of preference
profiles and conditions obtained from the MUS is translated to higher-order logic and
the user interactively develops the proof. This approach entirely removes the dependence
on the unverified Java program and we obtain an independent ISABELLE proof that can
even be checked manually step by step. Trustworthiness of ISABELLE is considerably
high as it is widely used for verification tasks.® For more background on computer-aided
theorem proving in the context of social choice theory, the reader is referred to Geist
and Peters (2017).

8Using higher-order proof assistants such as ISABELLE to prove these theorems in the first place is
currently completely out of reach due to performance limitations.
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