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ABSTRACT
Voting rules allow groups of agents to aggregate their preferences

in order to reach joint decisions. The Gibbard-Satterthwaite the-

orem, a seminal result in social choice theory, implies that, when

agents have strict preferences, all anonymous, Pareto-optimal, and

single-valued voting rules can be strategically manipulated. In this

paper, we consider multi-agent voting when there can be ties in

the preferences as well as in the outcomes. These assumptions

are extremely natural—especially when there are large numbers

of alternatives—and enable us to prove much stronger results than

in the overly restrictive setting of strict preferences. In particu-

lar, we show that (i) all anonymous Pareto-optimal rules where

ties are broken according to the preferences of a chairman or by

means of even-chance lotteries are manipulable, and that (ii) all
pairwise Pareto-optimal rules are manipulable, no matter how ties

are broken. These results are proved by reducing the statements to

finite—yet very large—problems, which are encoded as formulas

in propositional logic and then shown to be unsatisfiable by a SAT

solver. We also extracted human-readable proofs from minimal

unsatisfiable cores of the formulas in question, which were in turn

verified by an interactive higher-order theorem prover.
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1 INTRODUCTION
Whenever a group of multiple agents aims at reaching a joint de-

cision in a fair and principled way, they need to aggregate their

individual preferences using a voting rule. Voting rules are studied

in detail in social choice theory and are coming under increas-

ing scrutiny from computer scientists who are interested in their

computational properties or want to utilize them in computational

multiagent systems [see, e.g., 15, 21].

One of the most prominent results in social choice theory, the

Gibbard-Satterthwaite theorem, shows that, when agents have strict
preferences, all anonymous, Pareto-optimal, and single-valued vot-

ing rules are susceptible to strategic manipulation [32, 50].
1
The

restriction to single-valued rules has been identified as a major

shortcoming of the theorem. For instance, Gärdenfors [28] claims

that “[resoluteness] is a rather restrictive and unnatural assumption.”

1
The actual statement by Gibbard and Satterthwaite is somewhat stronger because

it uses non-dictatorship instead of anonymity and non-imposition instead of Pareto-

optimality.
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In a similar vein, Kelly [36] writes that “the Gibbard-Satterthwaite

theorem [. . . ] uses an assumption of singlevaluedness which is

unreasonable” and Taylor [53] that “If there is a weakness to the

Gibbard-Satterthwaite theorem, it is the assumption that winners

are unique.” This sentiment is echoed by various other authors [see,

e.g., 2–4, 19, 20, 24, 43].

The problem with single-valuedness is that the voting rule has

to return a single alternative based on the preferences only. For
example, if there are two alternatives, a and b, and two agents such
that one prefers a and the other one b, there is no deterministic

way of selecting a single alternative without violating basic fairness

conditions such as anonymity and neutrality.

There already is a large number of results in the literature show-

ing impossibility theorems for set-valued voting rules [see, e.g., 2, 4–

7, 19, 20, 28, 36, 39, 45, 48, 49]. However, these resultsmake relatively

strong assumptions on the tie-breaking mechanisms and what the

agents know about these mechanisms [6, 7, 19, 20, 28, 45, 48, 49], or

require strong additional assumptions [2, 4, 5, 28, 36, 39].
23

Some of

these results even hold when individual preferences do not admit

ties [19, 20, 45, 48]. While this assumption makes the statements

stronger in the sense that they hold within a smaller domain of

preferences, stronger conditions are required to derive an impossi-

bility. In many settings, especially when there are large numbers

of alternatives, it is natural or even inevitable to allow agents to

express indifferences between alternatives. Moreover, in many sub-

domains of social choice such as coalition formation, matching, or

allocation, indifferences are inherently present in the agents’ prefer-

ences because agents are only concerned with their own coalition,

matching partner, or assignment. As we show in this paper, the

assumption of weak preferences allows us to prove impossibility

theorems that only require surprisingly weak assumptions with

respect to the tie-breaking mechanism.
4

We have obtained these results using computer-aided theorem

proving techniques that were pioneered by Tang and Lin [52] and

have been successfully used to tackle other problems in social choice

[see, e.g., 10, 11, 17, 18, 30, 52].
5
The basic idea is to reduce the

statement in question to a finite—yet very large—problem, which is

encoded as a formula in propositional logic and then shown to be

2
Early results by Barberà [5] and Kelly [36], for example, required voting rules to be

quasi-transitively rationalizable, a condition which is almost prohibitive on its own

[see, e.g., 41].

3
The models considered by Barberà et al. [6], Benoît [7], and Sato [49] differ from

the other ones in that they assume that agents have complete preferences over sets

(subject to certain rationality constraints). Barberà et al.’s notion of strategyproofness

is stronger than ours; the ones by Benoît and Sato are incomparable to ours. However,

they both make the relatively strong assumption that an agent who prefers a to b to c
may prefer the set {b } to the set {a, c }.
4
In fact, it has turned out that for strict preferences, positive results can be obtained

under the same assumptions [see, e.g., 13, 23, 43].

5
Geist and Peters [31] provide an excellent introduction to these techniques.



unsatisfiable by a SAT solver. We then extract a minimal unsatis-

fiable set of constraints from the formula and translate this back

into a human-readable proof of the result. Despite great efforts

to simplify the proof of our main result as much as possible, it

remains rather complex as it argues about 21 different preference

profiles. We therefore verified the proof using the interactive the-

orem prover Isabelle/HOL, which releases any need to verify our

code for generating the proof. In contrast to previous papers in

this stream of research, we are even able to give a lower bound on

the proof complexity: no such proof is possible using less than 19

preference profiles. This can be considered as evidence that it is un-

likely that the statement would have been proved without the help

of computers, which underlines the potential of computer-aided

theorem proving in social choice theory.

2 PRELIMINARIES
Let A = {a,b, . . . } be a finite set of m alternatives and N =

{1, . . . ,n} a finite set of agents. A (weak) preference relation is a com-

plete, reflexive, and transitive binary relation on A. The preference
relation of agent i is denoted by ≽i , the set of all preference rela-

tions byR. We write ≻i for the strict part of≽i , i.e., x ≻i y if x ≽i y
but not y ≽i x , and ∼i for the indifference part of ≽i , i.e., x ∼i y
if x ≽i y and y ≽i x . A preference relation ≽i is called strict if it
additionally is anti-symmetric, i.e., x ≻i y or y ≻i x for all distinct

alternatives x ,y. We will compactly represent a preference relation

as a comma-separated list where all alternatives among which an

agent is indifferent are written as a set. For example x ≻i y ∼i z
is represented by ≽i : x , {y, z}. A preference profile R is a function

from a set of agents N to the set of preference relations R. The set

of all preference profiles is denoted by RN
. Our central objects of

study are social choice functions (SCFs), i.e., voting rules that map

a preference profile to a set of alternatives called the choice set.6

Formally, an SCF is a function

f : RN → 2
A \ ∅.

Given a preference profile R, an alternative x Pareto-dominates
another alternative y if x ≽i y for all i ∈ N and x ≻j y for some

j ∈ N . An alternative is Pareto-optimal if it is not Pareto-dominated

by some other alternative. The notion of Pareto-optimality can be

used to define a simple SCF that returns the set of all Pareto-optimal

alternatives. Formally,

PO(R) = {x ∈ A : x is not Pareto-dominated in R}.

An SCF f is said to be Pareto-optimal if f (R) ⊆ PO(R) for all R ∈

RN
.

Another simple SCF is serial dictatorship. First, the set of alterna-
tives is restricted to the ones top-ranked by the first agent. Then,

the next agent successively refines the set of alternatives to the

set of most preferred alternatives from the remaining set. Serial

dictatorship is weakly dictatorial in the sense that it only returns

alternatives top-ranked by a pre-determined agent.

Two common symmetry conditions for SCFs are anonymity and

neutrality. An SCF is anonymous if the choice set does not depend on
the identities of the agents and neutral if it is symmetric with respect

to alternatives. Formally, an SCF is anonymous if f (R) = f (R′) for

6
Such functions are sometimes also called social choice correspondences.

all R,R′ ∈ RN
and all bijections π : N → N such that ≽i=≽′

π (i)
for all i ∈ N . For a permutation π on A and a preference relation

≽i , π (x) ≽π
i π (y) if and only if x ≽i y. An SCF f is neutral if

f (Rπ ) = π (f (R)) for all R ∈ RN
and all permutations π : A → A

on the set of alternatives. PO is anonymous and neutral while serial

dictatorship clearly violates anonymity.

For a preference profile R ∈ RN
, let

nR (x ,y) = |{i ∈ N : x ≽i y}|

be the number of agents who prefer x to y. The majority margin of

x over y in R is denoted by дR (x ,y) where

дR (x ,y) = nR (x ,y) − nR (y,x).

An SCF f is pairwise if for all R,R′ ∈ RN
, f (R) = f (R′) whenever

дR (x ,y) = дR′(x ,y) for all alternatives x ,y ∈ A. In other words, the

choice set of a pairwise SCF only depends on the anonymized com-

parisons between pairs of alternatives. Since majority margins are

invariant under permutations of agents, pairwise SCFs are anony-

mous.
7
When ties are allowed, pairwiseness is slightly stronger

than Fishburn’s C2, which requires that the SCF only depends on

nR [27]. For example, PO satisfies C2, but violates pairwiseness.

Nevertheless, there is a large number of attractive pairwise and

Pareto-optimal SCFs [see, e.g., 25, 27]. Typical examples are Borda’s

rule, Kemeny’s rule, the Simpson-Kramer rule (aka maximin), Nan-

son’s rule, Schulze’s rule, ranked pairs, or the essential set.

A very influential concept in social choice theory is that of a

Condorcet winner, i.e., an alternative that is preferred to every other

alternative by some majority of agents. Formally, an alternative

x is a Condorcet winner in R if дR (x ,y) > 0 for all y ∈ A \ {x}. A
Condorcet extension is an SCF that uniquely returns a Condorcet

winner whenever one exists.

3 STRATEGYPROOFNESS OF SET-VALUED
SOCIAL CHOICE FUNCTIONS

An important phenomenon in social choice is that agents misrepre-

sent their preferences in order to obtain a more preferred outcome.

This is often called strategic manipulation.

3.1 Tie-Breaking Mechanisms
When defining strategic manipulability for set-valued SCFs, one

needs to specify how ties are broken and how much the agents

know about the tie-breaking mechanism. In this paper, we will

be concerned with the following tie-breaking mechanisms and

corresponding epistemic assumptions.

(1) Ties are broken arbitrarily; agents do not have any knowl-

edge about the tie-breaking mechanism.

(2) Ties are broken by a chairman, i.e., there exists a strict tie-

breaking ordering; this ordering is unknown to the agents.

(3) Ties are broken by lottery and outcomes are compared based

on expected utility; agents are neither aware of the probabil-

ities nor of their concrete utility functions.
8

7
Note that, in contrast to other papers, we do not require pairwise SCFs to be neutral

[e.g., 1, 12].

8
Utility functions are required to be consistent with ordinal preferences of the agents,

i.e., if x ≽i y , then x has to yield at least as much utility asy . Furthermore, lotteries are

assumed to be consistent with the resulting choice set in the sense that an alternative



(4) Ties are broken by an even-chance (i.e., uniform) lottery and

outcomes are compared based on expected utility; agents are

unaware of their concrete utility functions.

Note that uncertainty on behalf of the agents in Assumption (1)

and (2) is crucial. If the tie-breaking mechanism were deterministic

and known to the agents, we are in the setting of single-valued SCFs

and the Gibbard-Satterthwaite theorem applies. If the probabilities

and concrete utility functions in Assumption (3) were known, a

theorem by Hylland [33] implies that the only Pareto-optimal SCFs

are randomizations over dictatorships.

3.2 Preference Extensions
As it turns out, each set of assumptions stated above can be modeled

using so-called preference extensions which extend the agents’ pref-

erences over alternatives to preferences over sets of alternatives.

The two preference extensions we consider in this paper are Kelly’s
extension [36] and Fishburn’s extension [26, 29]. For all X ,Y ⊆ A
and ≽i∈ R,

X ≽K
i Y iff x ≽i y for all x ∈ X , y ∈ Y , and (Kelly)

X ≽F
i Y iff X\Y ≽K

i Y and X ≽K
i Y\X . (Fishburn)

The strict part of these relations will be denoted by ≻Ki and ≻Fi ,

respectively. Note that

X ≻Ki Y iff X ≽K
i Y and there is x ∈ X ,y ∈ Y such that x ≻i y.

Similarly,

X ≻Fi Y iff X ≽F
i Y and there is x ∈ X \ Y ,y ∈ Y

or x ∈ X ,y ∈ Y \ X such that x ≻i y.

It follows from the definitions that Fishburn’s extension is a refine-

ment of Kelly’s extension. This also holds for the strict parts of both

relations.

≽K
i ⊆ ≽F

i and ≻Ki ⊆ ≻Fi for every ≽i ∈ R.

3.3 Strategyproofness
With these extensions at hand, we can now formally define strate-

gyproofness. An SCF f isKelly-manipulable if there exist preference
profiles R,R′ ∈ RN

, and an agent i ∈ N such that ≽j = ≽′
j for all

j , i and f (R′) ≻Ki f (R). f is said to satisfy Kelly-strategyproofness
if it is not Kelly-manipulable. Fishburn-strategyproofness is de-

fined analogously. The relationship between both preference ex-

tensions implies that Fishburn-strategyproofness is stronger than

Kelly-strategyproofness.

We now connect both strategyproofness notions to the tie-

breaking assumptions given in Section 3.1 [see also 22, 29, 47].

It is fairly easy to see that Kelly-strategyproofness is equivalent

to strategyproofness under Assumptions (1) and (3).
9
Moreover,

Fishburn-strategyproofness is equivalent to strategyproofness un-

der Assumption (2) and to strategyproofness based on expected

utility for a given a priori probability distribution. In the latter

model, one quantifies over the set of consistent utility functions

is assigned positive probability if and only if it is contained in the support of the choice

set.

9
Note that a Kelly-manipulable SCF can be potentially manipulated (once ties have

been broken). It is possible to define an even weaker notion of strategyproofness where

the SCF can be definitely manipulated. See Remark 4 in Section 5.2

like in Assumption (3), but considers a more restricted set of lotter-

ies “consistent” with the choice sets. In particular, probabilities for

a given choice set have to be proportional to the values obtained by

restricting a fixed, but unknown, a priori probability distribution

over all alternatives to the choice set in question [see 6, 19, for more

details]. If the a priori distribution is assumed to be uniform, one

obtains strategyproofness under Assumption (4), which is therefore

stronger than Fishburn-strategyproofness. Hence, any impossibility

for Fishburn-strategyproofness also implies an impossibility for

tie-breaking by even-chance lotteries.

The following example (due to Feldman [23]) illustrates the defi-

nitions of Kelly-strategyproofness and Fishburn-strategyproofness.

To this end, consider the preference profile R.

≽1 : a, {b, c} ≽2 : {b, c},a

Clearly, PO(R) = {a,b, c}. Now assume that Agent 1 changes his

preferences to ≽′
1
resulting in preference profile R′

.

≽′
1
: a,b, c ≽′

2
: {b, c},a

Alternative c is Pareto-dominated by alternative b in R′
and

PO(R′) = {a,b}. This does not constitute a Kelly-manipulation

because X = {a,b} is not preferred to Y = {a,b, c} according to

Kelly’s extension applied to the preference relation ≽1 (note that

a ≻1 b, a ∈ Y ,b ∈ X ). In factX andY are incomparable according to

Kelly’s extension. This is in line with Assumption (1) because there

could be a tie-breaking mechanism that selects b fromX and a from
Y . The picture looks different for Fishburn’s extension, however, as
X ≻F

1
Y . To see that this concurs with Assumption (2), consider a

chairman with preferences c,a,b. This chairman will select a from

X and c from Y and a ≻1 c . For all other strict preference relations
of the chairman, Agent 1 will be indifferent between the eventually

chosen alternatives. Clearly, X is also preferred to Y according to

Assumption (4): for all utility functions consistent with ≽1, the ex-

pected utility for an even-chance lottery between a and b exceeds

that of an even-chance lottery between all three lotteries.

The example shows that PO is Fishburn-manipulable. By con-

trast, as first shown by Feldman [23], PO does satisfy Kelly-

strategyproofness. Since Feldman proves this statement by making

reference to stronger strategyproofness notions, we give a self-

contained proof below.

Theorem 3.1. PO is Kelly-strategyproof.

Proof. Assume for contradiction that there are two preference

profiles R and R′
, and an agent i ∈ N such that≽j = ≽′

j for all j , i

and PO(R′) ≻Ki PO(R). It is well-known that the Pareto dominance

relation is transitive and that every Pareto-dominated alternative is

Pareto-dominated by some alternative in PO. This also implies that

PO contains at least one top-ranked alternative from every agent

because top-ranked alternatives can only be Pareto-dominated by

other top-ranked alternatives. This implies that amanipulation from

R to R′
would only be possible if there is some x ∈ PO(R) \ PO(R′)

and there is no x ′ ∈ PO(R) \ {x} with x ′ ∼i x . Since x < PO(R′),

there has to be some y ∈ PO(R′) such that y Pareto-dominates x
in R′

. Moreover, y does not Pareto-dominate x in R. This implies

that x ≻i y. Since x ∈ PO(R) and y ∈ PO(R′), it is impossible that

PO(R′) ≻Ki PO(R). □



Serial dictatorship is a weakly dictatorial SCF satisfying Pareto-

optimality and any reasonable form of strategyproofness, because

choosing one’s maximal elements is strategyproof for each agent,

ruling out any possibility to manipulate.

4 COMPUTER-AIDED THEOREM PROVING
Our results are obtained using the computer-aided proving method-

ology described by Brandt and Geist [17]. First, we provide a reduc-

tion argument in Lemma 5.1, which allows us to prove a statement

for general domain sizes by restricting ourselves to a finite number

of agents and alternatives. However, in these restricted domains,

the number of anonymous SCFs is huge (see Table 1), which renders

any type of exhaustive search infeasible. For our main results, we

require three agents and three alternatives, which already admits

about 3.3 · 10384 possible anonymous SCFs.
10

Thus, heuristic search

algorithms as provided by state-of-the-art SAT solvers are required.

Apart from allowing us to deal with enormous search spaces, the

computer-aided approach has the major advantage that related

conjectures and hypotheses, e.g., statements including additional

axioms, can be checked quickly using the same framework.

m n Preference profiles SCFs

3 3 455 ∼ 3.3 · 10384

3 4 1,820 ∼ 1.2 · 101,538

4 3 73,150 ∼ 1.2 · 1086,031

4 4 1,426,425 ∼ 9.4 · 101,677,605

Table 1: Number of different profiles and possible SCFs
when assuming anonymity.

4.1 SAT-Solving and Proof Extraction
Basically, the core of the computer-aided approach is the aforemen-

tioned encoding of the problems to be solved as a SAT instances in

conjunctive normal form (CNF). For this, all axioms involved need to

be stated in propositional logic. All variables are of the form cR,X
with a preference profile R and a set of alternatives X ⊆ A. The
semantics of these variables are that cR,X if and only if f (R) = X ,
i.e., the SCF f selects the set of alternatives X as the choice set for

the preference profile R.
Although an encoding with variables cR,x for single alternatives

x rather than choice sets would require less variable symbols, it

would significantly increase the complexity of the clauses for some

axioms, especially for strategyproofness. Due to the fact that strat-

egyproofness clauses outnumber all other clauses combined, we

chose the former encoding with more variables but much easier

clauses. First, we ensure that the variables cR,X indeed model a

function rather than an arbitrary relation, i.e., for each preference

profile R, there is exactly one choice set X such that the variable

cR,X is set to true. We split this into choice set existence,(
∀R ∈ RN

)
(∃X ⊆ A) cR,X ≡

∧
R∈RN

∨
X ⊆A

cR,X ,

10
For comparison, this search space exceeds that of Theorem 3 by Brandt and Geist

[17] and lies in between that of Theorems 1 and 2 by Brandl et al. [11].

and uniqueness,(
∀R ∈ RN

) (
(∀Y ,Z ⊆ A) Y , Z → ¬(cR,Y ∧ cR,Z )

)
≡

∧
R∈RN

∧
Y,Z

(¬cR,Y ∨ ¬cR,Z ).

By contrast to these rather elaborate axioms, the formalization of

Pareto-optimality can be easily written without logical disjunctions

as (
∀R ∈ RN

)
(∀x < PO(R)) x < f (R)

≡
∧

R∈RN

∧
x<PO(R)

∧
X ∋x

¬cR,X .

Similar to the choice set uniqueness axiom, strategyproofness

from some preference extension E can be encoded by(
∀R ∈ RN

)
(∀ ≽i∈ R)

(∀ ≽′
i∈ R

)
¬

(
f
(
Ri 7→≽′

i

)
≻E
i f (R)

)
≡

∧
R∈RN

∧
≽i ∈R

∧
≽′
i ∈R

∧
Y ≻E

i X

(
¬cRi 7→≽′

i
,Y ∨ ¬cR,X

)
,

with Ri 7→≽′
i
denoting the preference profile R where agent i’s pref-

erence relation is replaced with ≽′
i .

After encoding the axioms using a Java program, satisfiability of

the SAT instance is checked with the Lingeling solver family by

Biere [9]. If an instance turns out to be unsatisfiable, we extract a

minimal unsatisfiable core (also called a minimal unsatisfiable set
(MUS)), a feature which is offered by a range of SAT solvers. A

subset of clauses is an unsatisfiable core if it is already unsatisfiable

by itself. If removing any clause from the unsatisfiable core ren-

ders it satisfiable, it is called minimal. However, although an MUS

is inclusion-minimal, it is not necessarily a smallest unsatisfiable
core, i.e., a core with a minimal number of clauses or variables. In

particular, an MUS does not have to be unique.

Especially with regard to proof extraction later on, we intend to

find a smallest minimal unsatisfiable set (SMUS). This can theoreti-

cally be done with the software toolMarco by Liffiton et al. [37], as

it offers an option to search for an SMUS.
11

Although Marco does

not terminate in any reasonable amount of time for our problem

sizes,
12

it returns the smallest MUS found so far. Thus, it yields
increasingly better approximations of an SMUS over time.

Additionally, we aim at minimizing the number of required pref-

erence profiles instead of the number of all clauses of the CNF

formula. One of the reasons behind this is that strategyproofness is

responsible for most of the clauses in our SAT instances, resulting in

Marco spending most of the runtime on optimizing the size of the

MUS concerning the number of applications of strategyproofness

only, instead of rather concentrating on the number of different

preference profiles involved in it. We realized this optimization ob-

jective by using group-oriented CNF formulas and declaring clauses

of the choice set existence axioms as interesting groups and all

the remaining clauses as a single don’t care group. This technique
significantly increases the performance of our search for a (group-

oriented) SMUS. See Liffiton and Sakallah [38] for more details on

group-oriented SAT solving.

11
The option --smus for searching an SMUS is available up to version 1.1 only.

12
The decision problem corresponding to finding an SMUS, i.e., whether there exists

an MUS of size less than or equal to k is ΣP
2
-complete [34, 46].



Moreover, with the group-oriented approach, we can now also

give lower bounds for the number of profiles needed in such im-

possibility proofs. We achieve this with the tool Forqes by Ignatiev

et al. [34], as it supports a restricted version of group-oriented SAT

solving, namely the specification of don’t care clauses.13 In con-

trast toMarco, it does not compute or return approximations of

an SMUS during its runtime, but rather iteratively rules out the

existence of an MUS of a given size starting with the trivial size of

just one clause (and finally returns an SMUS if not aborted before).

After finding a sufficiently small MUS, a proof trace can be ex-

tracted from the MUS with the help of certain SAT solvers like

PicoSAT by Biere [8]. If this yields a reasonably sized proof trace,

we can directly create a pen-and-paper proof by going through

its main steps and translating the clauses back to the preference

profile level. For this, we use a dictionary containing the correspon-

dences between SAT variables and preference profile/choice set

combinations. We used this method, e.g., for Theorem 5.4.

4.2 Formal Verification
If the computer-generated proof exceeds a reasonable size, it be-

comes a tedious and error-prone task for humans to translate the

output of the SAT solver to a human-readable proof and thereby

checking correctness. Simply accepting the black-box-like output

of the SAT solver as a proof is not sufficient, as one has (i) to trust

the correctness of the SAT solver and (ii) to rely on the correctness

of the Java code that generates the CNF formula in the first place.

The first concern is less problematic and is addressed by using a

verified SAT solver [40]. However, more importantly, there is no

guarantee that the Java program meets its specification. Even a

verified SAT solver may produce an overall unsound proof due to a

bug in the Java code for encoding the axioms. To tackle this issue,

we make use of the interactive theorem prover Isabelle/HOL [see,

e.g., 44] to produce a machine-verified proof. The main applica-

tion of the generic proof assistant Isabelle is the formalization of

mathematical proofs and formal verification. Building on the frame-

work introduced by Brandl et al. [10], the set of preference profiles

and conditions obtained from the MUS is translated to Isabelle and

the user interactively develops the proof. This approach entirely

removes the dependence on the unverified Java program and we

obtain an independent Isabelle proof that can even be checked man-

ually step by step. Trustworthiness of Isabelle is considerably high

as it is widely used for verification tasks.
14

5 RESULTS
We start by showing that for impossibility results using Pareto-

optimality and strategyproofness, it suffices to prove that the axioms

are incompatible for some fixed number of alternatives and agents.

Lemma 5.1. Let f be an anonymous SCF f that satisfies Pareto-
optimality and strategyproofness forA and N . Then there is an anony-
mous SCF f ′ that satisfies these axioms for any A′ ⊆ A and N ′ ⊆ N .

Proof. We define an embedding φ of preference profiles R′ =

(≽′
1
, . . . ,≽′

n′) over N ′
andA′

into preference profiles R over N and

13
The don’t care clauses have to be specified in a separate CNF file and called via the

-n option.
14
Using higher-order proof assistants such as Isabelle/HOL to prove these theorems

in the first place is currently completely out of reach.

A by means of extending the existing preferences with D = A \A′

as new bottom-ranked, hence Pareto-dominated, alternatives and

adding indifferent agents:

φ
(
R′
)
= R

with ≽i =

{
≽′
i ∪ (A × D) if i ∈ N ′

,

A ×A otherwise.

Now let f ′(R′) = f (φ(R′)). f ′ is anonymous since f is anonymous

and agents in N only differ by their preferences over A′
. Pareto-

optimality of f ′ holds because f is Pareto-optimal and PO(R) =
PO(R′). Finally, f ′ is strategyproof because f is strategyproof and

the choice sets of f ′ under the two profiles R′
and (R′)i 7→≽′

i
are

equal to the choice sets of f under the two (extended) profiles R
and Ri 7→≽i , respectively. □

It is easily seen that Lemma 5.1 also holds for neutral SCFs.

5.1 Fishburn-strategyproofness
Recall from Section 3.3 that PO is Fishburn-manipulable. Our main

theorem is a much more general statement showing that every
anonymous and Pareto-optimal SCF is Fishburn-manipulable.

Theorem 5.2. There is no anonymous SCF that satisfies Pareto-
optimality and Fishburn-strategyproofness form ≥ 3 and n ≥ 3.

The full proof of Theorem 5.2 is omitted due to space constraints.

Instead, we provide some information on its size and structure and

prove a weaker version of Theorem 5.2 for neutral SCFs (Corol-

lary 5.3). Starting from the initial, unsatisfiable SAT instance, we

usedMarco to find a small (group-oriented)MUS, which utilizes the

21 profiles listed in Table 2. Although the MUS does not guarantee

that this is the minimal number of profiles needed, no significantly

easier proof of this form exists, because we were able to compute a

lower bound of 19 profiles with Forqes. With the help of PicoSAT,

we extracted a proof out of the MUS which is divided in 22 main

proof steps.
15

The first step in the raw proof trace looks as follows.

111 -4 0 1 2 3 5 9 10 11 12 13 18 20 21 22 23 26 27
28 29 30 31 32 33 34 45 46 47 48 56 57 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 96 98
99 101 102 103 104 106 107 0

with 111 designating the clause ID of this step (also counting all

clauses from the MUS). The numbers after the first zero indicate

the IDs of the clauses (corresponding to profiles, manipulation

instances and previous proof steps) that have to be applied. The

literal in front of the first zero indicates the result–here that the

SAT variable 4 is false. The second zero indicates the end of this

proof step.

Translating the raw output into a human-readable format, it

turns out that only profiles R1 to R5, and R10 are directly affected

in the results of these main proof steps. The rest of the profiles

are needed in intermediate steps. Table 3 shows the sequence of

the proof steps indicated by letters in alphabetic ordering. A gray

entry designates a proof step that shows that the profile in this

row cannot be assigned the choice set corresponding to its col-

umn. Accordingly, when all possible choice sets except one are

15
We applied Pareto-optimality constraints manually before these proof steps to make

the proof as compact as possible.



Profile Agent 1 Agent 2 Agent 3

1 {a, c},b {a, c},b b, c,a
2 c, {a,b} b, c,a c,b,a
3 {a, c},b b, c,a c,b,a
4 {a, c},b a,b, c b, c,a
5 c, {a,b} a,b, c b, c,a
6 b, {a, c} c, {a,b} b, c,a
7 {a, c},b b, {a, c} b, c,a
8 {b, c},a a, {b, c} a, c,b
9 {b, c},a b, {a, c} a,b, c
10 c, {a,b} a,b, c c,b,a
11 {a, c},b a,b, c c,b,a
12 c, {a,b} b,a, c c,b,a
13 {a, c},b b,a, c c,b,a
14 a, {b, c} c, {a,b} a, c,b
15 {b, c},a a, {b, c} a,b, c
16 {a,b}, c c, {a,b} a,b, c
17 a, {b, c} a,b, c b, c,a
18 {a, c},b b, {a, c} b,a, c
19 a, {b, c} c, {a,b} a,b, c
20 b, {a, c} a,b, c b,a, c
21 {b, c},a a,b, c b, c,a

Table 2: The 21 profiles needed for the proof of Theorem 5.2.

f (·) {a} {b} {a,b} {c} {a, c} {b, c} {a,b, c}

R1 P Q O

R2 U L V

R3 S T R

R4 A H I E N M J

R5 ? B C F ? G D

R10 ? ? ? K ? ? ?

Table 3: Main steps in the proof of Theorem 5.2.

ruled out for a given profile, the remaining set must be chosen, as

indicated in bold. Observe that alternative a is Pareto-dominated

in the first three profiles. Thus, the choice sets {a}, {a,b}, {a, c},
and {a,b, c} are not allowed for these profiles. The highlighted

gray area marks the final contradiction that no choice set can be

assigned to profile R2. Each main proof step consists of a separate

proof by contradiction using the profiles listed in Table 4 with the

dependencies between the steps shown in Figure 1. Exemplary,

proof step A, which shows f
(
R4

)
, {a}, involves 40 applications

of Fishburn-strategyproofness involving profiles 4, 1, 3, 2, 12, 10, 11,

13, 18, 20, 9, 21, and 5 in this ordering and is a direct prerequisite

for the steps B, C, D and N. The very first step assumes for con-

tradiction that f
(
R4

)
= {a} and yields that f

(
R1

)
= {c}, because

a is Pareto-dominated by c in R1 and b ∈ f
(
R1

)
would contradict

Fishburn-strategyproofness.

We now give an excerpt of our Isabelle proof. In contrast to the

encoding for SAT-solving, where there is only one type of variables,

the formalization in Isabelle employs variables for alternatives,

agents, preference profiles, and social choice functions and allows

Step Sequence of profiles

A 4, 1, 3, 2, 12, 10, 11, 13, 18, 20, 9, 21, 5

B, C, D 5, 16, 19, 14, 8, 15, 17, 4, 21, 9, 20, 18, 7

E 4, 21, 9, 20, 18, 7

F, G 5, 21, 9, 20, 18, 7, 6

H, I, J 4, 5, 17

K 10, 5

L 2, 10, 12

M, O, P 1, 4, 5

R, S, U, V 2, 3, 1

Table 4: Step details in the proof of Theorem 5.2.

Figure 1: Dependencies of proof steps in Theorem 5.2

for a straightforward formulation of the result in higher-order logic.

According to Table 2, we instantiate preference profiles R1 and R4
with fixed variables a,b,c for alternatives and A1,A2,A3 for agents,
respectively.

R1 = A1: [a, c], b A2: [a, c], b A3: b, c, a
R4 = A1: [a, c], b A2: a, b, c A3: b, c, a

Next, we derive the restrictions Pareto-optimality imposes on

the outcome of the social choice function scf. While it is obvious

that Pareto-optimality implies a must not be in scf R1, the formal

proof requires this to be derived from the elementary definition of

Pareto-optimality.

lemma : "a < scf R1"
by (rule pareto_efficiency)

(simp_all add: eval_pareto R1.eval)

In a similar vein, we proceed with the strategyproofness con-

dition. We prove that agent A2 in preference profile R1 must not

prefer the outcome of scf R4 to the outcome of scf R1.

lemma : "¬ scf R4 ≻[Fishb(R1 A2)] scf R1"
by (intro strategyproof'[where j = A2])



(simp_all add: R1.eval R4.eval)

This example showcases the interactive nature of Isabelle. The

user gives commands and Isabelle’s automation completes the proof,

checks that no cases are unintentionally omitted, and derives the

equivalent statement in a quantifier-free formula.

b ∈ scf R4 ∧ c < scf R4 ∧ c ∈ scf R1 ∨ b ∈ scf R4
∧ b < scf R1 ∧ c ∈ scf R1 ∨

(b ∈ scf R1 → a < scf R4 ∧ (c ∈ scf R1 ∨ c < scf R4))
∧ (b ∈ scf R1 → b ∈ scf R4 ∨ a < scf R4 ∧ c < scf R4)

In order to verify Theorem 5.2, we apply these steps to the pref-

erence profiles and manipulation instances indicated by the MUS.

The generated quantifier-free formulas are gathered and the con-

junction thereof is proven to be unsatisfiable. Replication data for

the Isabelle proof can be found in Brandt et al. [16].

For the reader’s benefit, we now give a full, human-readable

proof of a significantly weaker version of Theorem 5.2 which ad-

ditionally assumes neutrality. This proof is based on only three

preference profiles (rather than 21) and requires only five strate-

gyproofness applications (rather than 89).

Corollary 5.3. There is no neutral and anonymous SCF that
satisfies Pareto-optimality and Fishburn-strategyproofness form ≥ 3

and n ≥ 2.

Proof. Let N = {1, 2} and A = {a,b, c} and assume for con-

tradiction that f is a neutral and anonymous SCF that satisfies

Pareto-optimality and Fishburn-strategyproofness. First, consider

preference profile R1.

≽1

1
: a,b, c ≽1

2
: b,a, c

By anonymity and neutrality, a ∈ f (R1) if and only if b ∈ f (R1).
Together with c being Pareto-dominated by b, this implies f (R1) =
{a,b}. This already determines the choice set for the following

preference profile R2.

≽2

1
: a,b, c ≽2

2
: {b, c},a

Both f (R2) = {a} and f (R2) = {b} would allow for manipulations

since the second agent prefers {a,b} to {a} inR2 and {b} to {a,b} in
R1. Furthermore, c < f (R2) since alternative c is Pareto-dominated

by b, hence f (R2) = {a,b}. Lastly, we consider preference profile
R3.

≽3

1
: a, {b, c} ≽3

2
: {b, c},a

By anonymity and neutrality, b ∈ f (R3) if and only if c ∈ f (R3).
However, if {b, c} ⊆ f (R3), then the first agent can deviate from≽3

1

to ≽2

1
. This only leaves f (R3) = {a}, which allows the first agent

to deviate from ≽2

1
to ≽3

1
, a contradiction. □

Remark 1. Using a more complicated proof, it can be shown

that Corollary 5.3 even holds for a weakening of Fishburn-

strategyproofness where choice sets can only be compared when

they are disjoint or contained in each other. We are unable to prove

the same for Theorem 5.2, even whenm = 4 and n = 3 or when

m = 3 and n = 4.

Remark 2. Themain result by Brandt and Geist [17] shows that all

Pareto-optimal majoritarian SCFS are Fishburn-manipulable when

m ≥ 5 and n ≥ 7. This result is implied by Theorem 5.2, except that

the result by Brandt and Geist even holds for strict preferences.

Remark 3. The axioms of Theorem 5.2 are independent of each

other. PO satisfies all axioms except Fishburn-strategyproofness,

serial dictatorship satisfies all axioms except anonymity, and the

trivial SCF which always returns all alternatives satisfies all axioms

except Pareto-optimality. Also, the bounds used in the theorem

(m ≥ 3 and n ≥ 3) are tight, as confirmed by the SAT solver.

Remark 4.When assuming strict preferences, there are various

Fishburn-strategyproof SCFs satisfying Pareto-optimality, e.g., PO
or the SCF that returns all top-ranked alternatives [14]. Theorem 5.2

shows that these SCFs cannot be extended to weak preferences

without giving up one of these desirable properties.

Remark 5. Weak Pareto-optimality requires that an alternative

y should not be selected whenever there is another alternative x
such that x ≻i y for all i ∈ N . Theorem 5.2 does not hold when re-

placing Pareto-optimality with weak Pareto-optimality because the

SCF that returns all first-ranked alternatives satisfies weak Pareto-

optimality and Fishburn-strategyproofness. Note that the SCF that

returns all weakly Pareto-optimal alternatives violates Fishburn-

strategyproofness. This can be seen by replacing the second agent’s

preferences in the example given in Section 3.3 with ≽2 : b, {a, c}.

5.2 Kelly-strategyproofness
It is not possible to replace Fishburn-strategyproofness with Kelly-

strategyproofness in Theorem 5.2 because PO is Kelly-strategyproof.

We therefore focus on pairwise SCFs when dealing with Kelly-

strategyproofness and directly present a human-readable proof of

the following impossibility.

Theorem 5.4. There is no pairwise SCF that satisfies Pareto-
optimality and Kelly-strategyproofness form ≥ 3 and n ≥ 3.

Proof. LetN = {1, 2, 3} andA = {a,b, c} and assume for contra-

diction that there is a pairwise SCF f that satisfies Pareto-optimality

and Kelly-strategyproofness. If not stated otherwise, the absolute

values of the majority margins in the following applications of

pairwiseness are always one. First, consider the classic Condorcet

profile R1.

≽1

1
: a,b, c ≽1

2
: c,a,b ≽1

3
: b, c,a.

Due to the symmetry of the profile, we may assume without loss

of generality that b ∈ f
(
R1

)
. Now consider R2.

≽2

1
: a,b, c ≽2

2
: c,a,b ≽2

3
: b, {a, c},

R2 and R1 only differ in the third agent’s preferences. By Fishburn-

strategyproofness, b ∈ f
(
R2

)
, as otherwise Agent 3 could obtain

a preferred choice set by changing his preferences from ≽2

3
to ≽1

3
.

Now consider R3, which has the same majority margins as R2.

≽3

1
: a,b, c ≽3

2
: {a, c},b ≽3

3
: b, c,a,

Since дR2 = дR3 , b ∈ f
(
R3

)
. Now consider R4.

≽4

1
: a,b, c ≽4

2
: a, c,b ≽4

3
: b, c,a,

R4 differs from R3 by the second agent’s preferences ≽4

2
. It follows

that b ∈ f
(
R4

)
. Otherwise, the second agent could misrepresent



his preferences ≽3

2
by ≽4

2
and obtain the Kelly-preferred choice set

f
(
R4

)
without b. Finally, consider R5.

≽5

1
: a,b, c ≽5

2
: {a,b, c} ≽5

3
: {a,b, c}.

Since дR5 = дR4 , b ∈ f
(
R5

)
holds as well. However, b is Pareto-

dominated by a in R5, a contradiction. □

The original proof of Theorem 5.4 found by the SAT solver con-

sisted of nine preference profiles, and we used Forqes to verify

that no proof with less than nine profiles exists. The given proof

only argues about five profiles because the first step (“without loss

of generality”) implicitly makes reference to profiles that are not

spelled out explicitly.

Remark 6. The conjunction of pairwiseness and Pareto-optimality

implies that Condorcet winners should be chosen whenever the

pairwise majority relation is transitive and its margins have abso-

lute value one. We have shown that Theorem 5.4 also holds when

pairwiseness is replaced with this weaker, but technical, condition

and n ≥ 4. Note that this technical assumption is weaker than

requiring the SCF to be a Condorcet extension.
16

Interestingly, the

SMUS we found for this statement also consists of nine profiles.

Remark 7. The axioms of Theorem 5.4 are independent

of each other. Borda’s rule satisfies all axioms except Kelly-

strategyproofness, PO satisfies all axioms except pairwiseness, and

the trivial SCF which always returns all alternatives satisfies all

axioms except Pareto-optimality. Also, the bounds used in the the-

orem (m ≥ 3 and n ≥ 3) are tight, as confirmed by the SAT solver.

Remark 8. Theorem 5.4 implies Theorem 4 by Aziz et al. [1],

who use a stronger notion of strategyproofness and furthermore

requirem,n ≥ 4. Brandl et al. [11, Table 2] mention a consequence

of this theorem for Fishburn-strategyproof SCFs. Interestingly, this

consequence follows from both Theorem 5.2 and Theorem 5.4.

Remark 9.When assuming strict preferences, there are attractive

pairwise Kelly-strategyproof SCFs satisfying Pareto-optimality, e.g.,

the uncovered set, the minimal covering set, and the essential set

[13]. Theorem 5.4 shows that these SCFs cannot be extended toweak

preferences without giving up one of these desirable properties.

The same is true if we instead define Kelly’s extension by requiring

thatX is preferred toY if and only if every alternative inX is strictly
preferred to every alternatives in Y [13, Remark 6].

Remark 10. Theorem 5.4 does not hold when replacing Pareto-

optimality with weak Pareto-optimality (see Remark 5). The SCF

that returns all weakly Pareto-optimal alternatives satisfies pair-

wiseness, weak Pareto-optimality, and Kelly-strategyproofness.

Remark 11. When preferences are dichotomous (i.e., each prefer-

ence relation admits at most two indifference classes), both impos-

sibilities do not hold because approval voting satisfies all desired

conditions. PO, however, still violates Fishburn-strategyproofness,
which can be seen by modifying the example given in Section 3.3.

16
Brandt [13, Theorem 2] has also shown that every Condorcet extension is Kelly-

manipulable. While his proof needs 3m agents, we require Pareto-optimality for our

reduction argument.

6 CONCLUSION AND DISCUSSION
We investigated the existence of anonymous, Pareto-optimal, and

strategyproof SCFs when there may be ties in the preferences as

well as in the outcomes. Our main results are as follows.

(1) There are no such SCFs when ties are broken according to

the preferences of a chairman or by means of an even-chance

lottery (Theorem 5.2).

(2) There are no such pairwise SCFs, no matter how ties are

broken (Theorem 5.4).

The computer-aided proof of Theorem 5.2 is rather complex and

we have shown that no significantly easier proof exists. The in-

terpretation using even-chance lotteries can be used to relate this

statement to a recent significant result in probabilistic social choice

[10]. Brandl et al. [10] have shown that there is no anonymous,

neutral, and strategyproof SCF that satisfies a strengthening of

Pareto-optimality called SD-efficiency, when ties are broken by

arbitrary lotteries (known to the agents). Our result is weaker in

that it only allows for even-chance lotteries, but it is stronger in

that it only requires Pareto-optimality (rather than SD-efficiency)

and dispenses with neutrality. Even-chance lotteries are the most

natural—and sometimes the only acceptable—form of randomized

tie-breaking [see, e.g., 26]. Moreover, it may be difficult to imple-

ment non-uniform lotteries in practice.

Neutrality seems like an appealing fairness criterion, but can be

overly restrictive in some settings [see, e.g., 51, 54]. In fact, many

voting rules used in the real world such as supermajority rules are

not neutral. It was technically very challenging and required the

aid of computers to prove Theorem 5.2 without the assumption

of neutrality. Mossel and Rácz [42] faced similar difficulties when

generalizing the quantitative Gibbard-Satterthwaite theorem by

Isaksson et al. [35] to non-neutral SCFs.

Due to our weak assumptions about tie-breaking mechanisms,

our results use much weaker notions of strategyproofness than

those by Duggan and Schwartz [20], Barberà et al. [6], Ching and

Zhou [19], Rodríguez-Álvarez [45], and Sato [48]. In part, this is

possible because we allow for weak preferences.

Our results are tight in the sense that omitting any of the axioms,

weakening Pareto-optimality to weak Pareto-optimality, reducing

the number of agents or alternatives, or requiring strict preferences

immediately allows for positive results. This underlines the ade-

quacy of impossibility results to improve our understanding of what

can be achieved and to guide practitioners looking for attractive

SCFs. There are only few opportunities to strengthen our results

even further. One is to try to replace anonymity with weaker condi-

tions such as non-dictatorship conditions for weak preferences. This

would, however, require a new and more complicated reduction

argument.

ACKNOWLEDGMENTS
This material is based on work supported by the Deutsche

Forschungsgemeinschaft under grant BR 2312/11-1. The authors

thank Florian Brandl for helpful discussions and Manuel Eberl for

Isabelle support.



REFERENCES
[1] H. Aziz, F. Brandl, and F. Brandt. 2014. On the Incompatibility of Efficiency and

Strategyproofness in Randomized Social Choice. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI). AAAI Press, 545–551.

[2] T. Bandyopadhyay. 1983. Manipulation of non-imposed, non-oligarchic, non-

binary group decision rules. Economics Letters 11, 1–2 (1983), 69–73.
[3] T. Bandyopadhyay. 1983. Multi-Valued Decision Rules and Coalitional Non-

Manipulability. Economics Letters 13, 1 (1983), 37–44.
[4] S. Barberà. 1977. The Manipulation of Social Choice Mechanisms That Do Not

Leave “Too Much” to Chance. Econometrica 45, 7 (1977), 1573–1588.
[5] S. Barberà. 1977. Manipulation of Social Decision Functions. Journal of Economic

Theory 15, 2 (1977), 266–278.

[6] S. Barberà, B. Dutta, and A. Sen. 2001. Strategy-proof social choice correspon-

dences. Journal of Economic Theory 101, 2 (2001), 374–394.

[7] J.-P. Benoît. 2002. Strategic Manipulation in Voting Games When Lotteries and

Ties Are Permitted. Journal of Economic Theory 102, 2 (2002), 421–436.

[8] A. Biere. 2008. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT) 4 (2008), 75–79.

[9] A. Biere. 2013. Lingeling, Plingeling and Treengeling entering the SAT competi-

tion 2013. In Proceedings of the SAT Competition 2013. 51–52.
[10] F. Brandl, F. Brandt, M. Eberl, and C. Geist. 2018. Proving the Incompatibility of

Efficiency and Strategyproofness via SMT Solving. J. ACM 65, 2 (2018).

[11] F. Brandl, F. Brandt, C. Geist, and J. Hofbauer. 2015. Strategic Abstention based on

Preference Extensions: Positive Results and Computer-Generated Impossibilities.

In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI). AAAI Press, 18–24.

[12] F. Brandl, F. Brandt, and J. Hofbauer. 2015. Incentives for Participation and

Abstention in Probabilistic Social Choice. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). IFAAMAS,

1411–1419.

[13] F. Brandt. 2015. Set-Monotonicity Implies Kelly-Strategyproofness. Social Choice
and Welfare 45, 4 (2015), 793–804.

[14] F. Brandt and M. Brill. 2011. Necessary and Sufficient Conditions for the Strat-

egyproofness of Irresolute Social Choice Functions. In Proceedings of the 13th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK). ACM
Press, 136–142.

[15] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia (Eds.). 2016. Handbook
of Computational Social Choice. Cambridge University Press.

[16] F. Brandt, M. Eberl, C. Saile, and C. Stricker. 2018. The Incompatibility of Fishburn-

Strategyproofness and Pareto-Efficiency. Archive of Formal Proofs (2018). http:

//isa-afp.org/entries/Fishburn_Impossibility.html

[17] F. Brandt and C. Geist. 2016. Finding Strategyproof Social Choice Functions via

SAT Solving. Journal of Artificial Intelligence Research 55 (2016), 565–602.

[18] F. Brandt, C. Geist, and D. Peters. 2017. Optimal Bounds for the No-Show Paradox

via SAT Solving. Mathematical Social Sciences 90 (2017), 18–27. Special Issue in
Honor of Hervé Moulin.

[19] S. Ching and L. Zhou. 2002. Multi-valued strategy-proof social choice rules. Social
Choice and Welfare 19, 3 (2002), 569–580.

[20] J. Duggan and T. Schwartz. 2000. Strategic Manipulability without Resoluteness

or Shared Beliefs: Gibbard-Satterthwaite Generalized. Social Choice and Welfare
17, 1 (2000), 85–93.

[21] U. Endriss (Ed.). 2017. Trends in Computational Social Choice. AI Access.
[22] B. Erdamar and M. R. Sanver. 2009. Choosers as extension axioms. Theory and

Decision 67, 4 (2009), 375–384.

[23] A. Feldman. 1979. Manipulation and the Pareto Rule. Journal of Economic Theory
21 (1979), 473–482.

[24] A. Feldman. 1979. Nonmanipulable multi-valued social choice decision functions.

Public Choice 34 (1979), 177–188.
[25] F. Fischer, O. Hudry, and R. Niedermeier. 2016. Weighted Tournament Solutions.

In Handbook of Computational Social Choice, F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia (Eds.). Cambridge University Press, Chapter 4.

[26] P. C. Fishburn. 1972. Even-chance lotteries in social choice theory. Theory and
Decision 3, 1 (1972), 18–40.

[27] P. C. Fishburn. 1977. Condorcet Social Choice Functions. SIAM J. Appl. Math. 33,
3 (1977), 469–489.

[28] P. Gärdenfors. 1976. Manipulation of Social Choice Functions. Journal of Economic
Theory 13, 2 (1976), 217–228.

[29] P. Gärdenfors. 1979. On definitions of manipulation of social choice functions.

In Aggregation and Revelation of Preferences, J. J. Laffont (Ed.). North-Holland.
[30] C. Geist and U. Endriss. 2011. Automated Search for Impossibility Theorems in

Social Choice Theory: Ranking Sets of Objects. Journal of Artificial Intelligence
Research 40 (2011), 143–174.

[31] C. Geist and D. Peters. 2017. Computer-aided Methods for Social Choice Theory.

In Trends in Computational Social Choice, U. Endriss (Ed.). AI Access, Chapter 13,
249–267.

[32] A. Gibbard. 1973. Manipulation of Voting Schemes: A General Result. Economet-
rica 41, 4 (1973), 587–601.

[33] A. Hylland. 1980. Strategyproofness of Voting Procedures with Lotteries as

Outcomes and Infinite Sets of Strategies. (1980). Mimeo.

[34] A. Ignatiev, A. Previti, M. Liffiton, and J. Marques-Silva. 2015. Smallest MUS

Extraction withMinimal Hitting Set Dualization. In Proceedings of the 21st Interna-
tional Conference on Principles and Practice of Constraint Programming, Vol. 9255.
Springer-Verlag New York, Inc., New York, NY, USA, 173–182.

[35] M. Isaksson, G. Kindler, and E. Mossel. 2012. The Geometry of Manipulation:

A Quantitative Proof of the Gibbard-Satterthwaite Theorem. Combinatorica 32
(2012), 221–250.

[36] J. S. Kelly. 1977. Strategy-Proofness and Social Choice Functions Without Single-

Valuedness. Econometrica 45, 2 (1977), 439–446.
[37] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. 2016. Fast, flexible MUS

enumeration. Constraints 21, 2 (2016), 223–250.
[38] M. H. Liffiton and K. A. Sakallah. 2008. Algorithms for Computing Minimal

Unsatisfiable Subsets of Constraints. Journal of Automated Reasoning 40, 1 (2008),
1–33.

[39] I. MacIntyre and P. K. Pattanaik. 1981. Strategic voting under minimally binary

group decision functions. Journal of Economic Theory 25, 3 (1981), 338–352.

[40] F. Marić. 2010. Formal verification of a modern SAT solver by shallow embedding

into Isabelle/HOL. Theoretical Computer Science 411, 50 (2010), 4333 – 4356.

[41] A. Mas-Colell and H. Sonnenschein. 1972. General Possibility Theorems for

Group Decisions. Review of Economic Studies 39, 2 (1972), 185–192.
[42] E. Mossel and M. Z. Rácz. 2015. A quantitative Gibbard-Satterthwaite theorem

without neutrality. Combinatorica 35, 3 (2015), 317–387.
[43] K. Nehring. 2000. Monotonicity implies generalized strategy-proofness for corre-

spondences. Social Choice and Welfare 17, 2 (2000), 367–375.
[44] T. Nipkow, L. C. Paulson, and M. Wenzel. 2002. Isabelle/HOL – A Proof Assistant

for Higher-Order Logic. Lecture Notes in Computer Science (LNCS), Vol. 2283.

Springer-Verlag.

[45] C. Rodríguez-Álvarez. 2007. On the manipulation of social choice correspon-

dences. Social Choice and Welfare 29, 2 (2007), 175–199.
[46] V. Ryvchin and O. Strichman. 2011. Faster Extraction of High-Level Minimal

Unsatisfiable Cores. In Proceedings of the 14th International Conference on Theory
and Applications of Satisfiability Testing - SAT 2011 (Lecture Notes in Computer
Science (LNCS)), Karem A. Sakallah and Laurent Simon (Eds.), Vol. 6695. Springer,

174–187.

[47] M. R. Sanver andW. S. Zwicker. 2012. Monotonicity properties and their adaption

to irresolute social choice rules. Social Choice andWelfare 39, 2–3 (2012), 371–398.
[48] S. Sato. 2008. On strategy-proof social choice correspondences. Social Choice and

Welfare 31 (2008), 331–343.
[49] S. Sato. 2014. A fundamental structure of strategy-proof social choice correspon-

dences with restricted preferences over alternatives. Social Choice and Welfare
42, 4 (2014), 831–851.

[50] M. A. Satterthwaite. 1975. Strategy-Proofness and Arrow’s Conditions: Exis-

tence and Correspondence Theorems for Voting Procedures and Social Welfare

Functions. Journal of Economic Theory 10, 2 (1975), 187–217.

[51] A. K. Sen. 1970. Collective Choice and Social Welfare. North-Holland.
[52] P. Tang and F. Lin. 2009. Computer-aided proofs of Arrow’s and other impossi-

bility theorems. Artificial Intelligence 173, 11 (2009), 1041–1053.
[53] A. D. Taylor. 2005. Social Choice and the Mathematics of Manipulation. Cambridge

University Press.

[54] W. S. Zwicker. 2008. Consistency without neutrality in voting rules: When is

a vote an average? Mathematical and Computer Modelling 48, 9 (2008), 1357 –

1373.

http://isa-afp.org/entries/Fishburn_Impossibility.html
http://isa-afp.org/entries/Fishburn_Impossibility.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Strategyproofness of Set-Valued Social Choice Functions
	3.1 Tie-Breaking Mechanisms
	3.2 Preference Extensions
	3.3 Strategyproofness

	4 Computer-aided Theorem Proving
	4.1 SAT-Solving and Proof Extraction
	4.2 Formal Verification

	5 Results
	5.1 Fishburn-strategyproofness
	5.2 Kelly-strategyproofness

	6 Conclusion and Discussion
	Acknowledgments
	References

