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ABSTRACT
In this paper, we examine hedonic coalition formation games
in which each player’s preferences over partitions of players
depend only on the members of his coalition. We present
three main results in which restrictions on the preferences
of the players guarantee the existence of stable partitions for
various notions of stability. The preference restrictions per-
tain to top responsiveness and bottom responsiveness which
model optimistic and pessimistic behavior of players respec-
tively. The existence results apply to natural subclasses of
additively separable hedonic games and hedonic games with
B-preferences. It is also shown that our existence results
cannot be strengthened to the case of stronger known sta-
bility concepts.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), teamwork,
coalition formation, and coordination

1. INTRODUCTION
In many models of multiagent interaction such as room-

mate matching and exchange of discrete goods, deviations
from one outcome to another can cycle and it may well be
possible that no stable outcome is guaranteed. This leads
to one of the most fundamental questions in game theory:
what are the necessary and sufficient conditions for the ex-
istence of stable outcomes? This question has been exam-
ined extensively by researchers working in market design,
multiagent systems, and operations research. We address
this question in the context of coalition formation games
in which outcomes are partitions of the players. We focus
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on hedonic coalition formation games in which each player’s
preferences over partitions depend only on the members of
his coalition. Hedonic games are a rich and versatile class
of coalition formation games which also encapsulate various
stable matching scenarios [see e.g., 5, 6, 7, 14].

In game theory and multiagent systems, understanding
the conditions under which systems and social outcomes are
guaranteed to be in equilibrium is a fundamental research
problem. In this paper, we advance the state of the art on
existence results for hedonic games. We strengthen the re-
cently introduced stability concept strong Nash stability [15]
to strict strong Nash stability and show that top responsive-
ness and mutuality—conditions different from ones in [15]—
are sufficient for the existence of a strictly strong Nash sta-
ble partition in any hedonic game. The result applies to
natural subclasses of additively separable hedonic games [6].
It is also shown that top responsiveness and mutuality to-
gether do not guarantee the non-emptiness of the set of per-
fect partitions—a natural concept stronger than strict strong
Nash stability.

We then consider a recently introduced property of hedo-
nic games called bottom refuseness [17] which we will refer
to as bottom responsiveness. A new stability notion called
strong individual stability is formulated which is stronger
than both core stability and individual stability. It is shown
that bottom responsiveness guarantees the existence of a
strong individually stable partition. Also, the combination
of strong bottom responsiveness and mutuality guarantees
the existence of a strong Nash stable partition. Our results
concerning bottom responsive games cannot be strengthened
to any stronger known stability concept. They also apply to
‘aversion to enemies’ games introduced in [11].

Outline.
In Section 2, we present the backdrop of our results and

discuss related work. We then introduce hedonic games and
the stability concepts considered for these games in Sec-
tion 3. The relationships between the stability concepts are
expounded and clarified in Section 4. We then proceed to
Sections 5 and 6 in which the main results are presented.
Section 5 concerns hedonic games satisfying top responsive-
ness whereas in Section 6, existence results concerning bot-
tom responsive games are presented. In Section 7, well-
studied subclasses of hedonic games such as additively sepa-
rable hedonic games and hedonic games with B-preferences
are considered and it is shown how existence results apply
to these games. Finally, we conclude the discussion in Sec-
tion 8.



2. RELATED WORK
Identifying sufficient and necessary conditions for the exis-

tence of stability in coalition formation has been active area
of research. Perhaps the most celebrated result in this field is
the existence of a (core) stable matching for the stable mar-
riage problem via the Gale-Shapley algorithm [13]. Later,
Banerjee et al. [5] proved that if a hedonic game satisfies a
condition called weak top coalition property, then the core is
non-empty. Banerjee et al. [5] also showed that for various
restrictions over preferences, stability is still not guaranteed.

In another important paper, Bogomolnaia and Jackson
[6] formalized Nash stability and individual stability in the
context of hedonic games and presented a number of suf-
ficient conditions for the existence of various stability con-
cepts. For instance, they showed that symmetric additively
separable preferences guarantee the existence of a Nash sta-
ble partition. A hedonic game is additively separable if each
player has a cardinal value for every other player and the
player’s utility in a partition is the sum of his values for
the players in his coalition. The strict core and core is also
non-empty for ‘appreciation of friends’ and ‘aversion to en-
emies’ games respectively—two simple classes of additively
separable games [11].

Alcalde and Revilla [1] proposed a natural preference re-
striction called top responsiveness which is based on the idea
that players value other players on how they could comple-
ment them in research teams. They showed that there exists
an algorithm called the Top Covering Algorithm which finds
a core stable partition for top responsive hedonic games.
The Top Covering Algorithm can be seen as a generaliza-
tion of Gale’s Top Trading Cycle algorithm [16]. Dimitrov
and Sung [9, 10] simplified the Top Covering Algorithm and
proved that top responsiveness implies non-emptiness of the
strict core and if mutuality is additionally satisfied, then a
Nash stable partition exists.

In a follow-up paper, Suzuki and Sung [17] introduced
bottom refuseness in an analogous way to top responsive-
ness. They showed that for hedonic games satisfying bot-
tom refuseness, the Bottom Avoiding Algorithm returns a
core stable partition. Suzuki and Sung [17] noted that ‘ap-
preciation of friends’ and ‘aversion to enemies’ games satisfy
top responsiveness and bottom responsiveness respectively,
thereby explaining the results in [11].

Very recently, Karakaya [15] proposed a new stability
concept called strong Nash stability which is stronger than
Nash stability and core stability combined. He showed that
strong-Nash is non-empty if the weak top choice property
(stronger than the weak top coalition property) is satisfied
or if preferences are ‘descending separable’. We will prove
three different results in which natural restrictions on the
player preferences guarantee the existence of stable parti-
tions where stability is strong Nash stability or its general-
ization or variant.

3. HEDONIC GAMES & STABILITY CON-
CEPTS

In this section, we review the terminology, notation, and
concepts related to hedonic games.

Hedonic games.
A hedonic coalition formation game is a pair (N,%) where

N is a set of players and % is a preference profile which

specifies for each player i ∈ N the preference relation %i,
a reflexive, complete and transitive binary relation on set
Ni = {S ⊆ N : i ∈ S}. S �i T denotes that i strictly
prefers S over T and S ∼i T that i is indifferent between
coalitions S and T . A partition π is a partition of players
N into disjoint coalitions. By π(i), we denote the coalition
in π which includes player i.

Stability Concepts.
We present the various stability concepts for hedonic

games. Nash stability, strict core stability, Pareto optimal-
ity, core stability, and individual rationality are classic sta-
bility concepts. Individual stability was formulated in [6].
Strong Nash stability was introduced by Karakaya [15] and
perfect partitions were considered in [2]. In this paper, we
also introduce strict strong Nash stability and strong indi-
vidual stability which imply strong Nash stability and core
stability respectively.

• A partition π is individually rational (IR) if no player
has an incentive to become alone, i.e., for all i ∈ N ,
π(i) %i {i}.

• A partition is perfect if each player is in one of his most
preferred coalition [2].

• A partition is Nash stable (NS) if no player can ben-
efit by moving from his coalition to another (possibly
empty) coalition T .

• A partition is individually stable (IS) if no player can
benefit by moving from his coalition to another exist-
ing (possibly empty) coalition T while not making the
members of T worse off.

• A coalition S ⊆ N blocks a partition π, if each player
i ∈ S strictly prefers S to his current coalition π(i) in
the partition π. A partition which admits no blocking
coalition is said to be in the core (C).

• A coalition S ⊆ N weakly blocks a partition π, if each
player i ∈ S weakly prefers S to π(i) and there exists
at least one player j ∈ S who strictly prefers S to his
current coalition π(j). A partition which admits no
weakly blocking coalition is in the strict core (SC).

• A partition π is Pareto optimal (PO) if there is no
partition π′ with π′(j)%j π(j) for all players j and
π′(i)�i π(i) for at least one player i.

• For partition π, π′ 6= π is called reachable from π by

movements of players H ⊆ N , denoted by π
H→π′, if

∀i, j ∈ N \H, i 6= j : π(i) = π(j)⇔ π′(i) = π′(j).

A subset of players H ⊆ N,H 6= ∅ strong Nash blocks

π if a partition π′ 6= π exists with π
H→ π′ and ∀i ∈ H :

π′(i) �i π(i).

If a partition π is not strong Nash blocked by any set
H ⊆ N , π is called strong Nash stable (SNS) [15].

• A subset of players H ⊆ N,H 6= ∅ weakly Nash blocks

π if a partition π′ 6= π exists with π
H→ π′, ∀i ∈ H :

π′(i) %i π(i) and ∃i ∈ H : π′(i) �i π(i).

A partition which admits no weakly Nash blocking
coalition is said to satisfy strict strong Nash stability
(SSNS).



• A non-empty set of players H ⊆ N is strongly indi-
vidually blocking a partition π, if a partition π′ exists
such that:

1. π
H→ π′ (as for SNS),

2. ∀i ∈ H : π′(i) �i π(i), and

3. ∀j ∈ π′(i) for some i ∈ H : π′(j) %j π(j).

A partition for which no strongly individually blocking
set exists is strongly individually stable (SIS).1

Perfect

SSNS

SNS

NS SIS
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IS
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C

Figure 1: Inclusion relationships between stability
concepts for hedonic games. For e.g, every NS par-
tition is also IS. NS, SC, PO, C and IR are classic
stability concepts. IS was formulated in [6]; SNS in
[15]; and perfect partitions in [2]. We also introduce
SSNS and SIS in this paper.

Depending on the context, we will utilize abbreviations
like SIS, SNS, SSNS, IS etc. either for adjectives (for e.g. IS
for individually stable) or for nouns (for e.g. IS for individual
stability).

4. RELATIONS BETWEEN STABILITY
CONCEPTS

In this section, we will explore and clarify the inclusion
relationships between the stability concepts. The inclusion
relationships between stability concepts are depicted in Fig-
ure 1.

Proposition 1. Strict core stability implies strong indi-
vidual stability which implies individual stability and also
core stability.

Proof. Strict core stability implies strong individual sta-
bility. Assume that a partition π is strict core stable but

1SIS is a natural intermediate stability concept which is im-
plied by strong Nash stability and strict core stability re-
spectively and it also implies individual stability and core
stability.

not strong individually stable. Then, there exists a coali-
tion S ⊆ N such that S /∈ π and each player in S is at least
as happy as in π and one player in S is strictly happier than
in π. But this means that π is not strict core stable.

Strong individual stability trivially implies individual sta-
bility.

Finally, we show that strong individual stability implies
core stability. Assume that a partition π is strong individu-
ally stable but not core stable. Then there is a core deviating
coalition S. But this would mean that each player i ∈ S is
strictly better off than in π(i). But this means that π is not
strong individually stable. This completes the proof.

Strong Nash stability as introduced by Karakaya [15] is
quite a strong stability notion as seen by the following simple
proposition.

Proposition 2. Strong Nash stability implies Nash sta-
bility and also core stability.

Furthermore, even if a partition is both strict core stable
and Nash stable, it is not necessarily strong Nash stable.

Proof. The first statement follows from the definitions
of the stability concepts and was already pointed out by
Karakaya [15]. In fact, it can also easily be shown that SNS
implies SIS. If a partition is SNS, then there is no strong
Nash blocking set. This implies that there does not exist
any strongly individually blocking set.

We now show that even if a partition is both strict core
stable and Nash stable, it is not necessarily strong Nash
stable. The following example shows a game, that admits
a strict core and Nash stable partition but no strong Nash
stable partition.

Let (N,%) be a game with N = {1, 2, 3, 4} and the pref-
erence profile specified as follows:

{1, 2} �1 {1, 4} �1 {1} �1 ...

{2, 3} �2 {1, 2} �2 {2} �2 ...

{3, 4} �3 {2, 3} �3 {3} �3 ...

{1, 4} �4 {3, 4} �4 {4} �4 ...

It is easy to check, that the partitions π = {{1, 2}, {3, 4}}
and π′ = {{1, 4}, {2, 3}} are both (even strictly) core stable
and Nash stable. But neither of them is strong Nash stable
since {2, 4} is blocking π and π′ is blocked by {1, 3}. Ob-
viously any partition containing a coalition with 3 or more
players is not even Nash stable, since each player prefers be-
ing alone to any coalition with more than 2 players. Also
{{1, 3}, {2, 4}} is not even Nash stable, since it is not indi-
vidually rational.

Nash and core stability prevent single players from mov-
ing to another (possibly empty) coalition or several players
forming a new coalition respectively. In the given partitions
π and π′, it is possible for a pair of players to improve by
switching coalitions and therefore prevent π and π′ from
being strong Nash stable.

In the next proposition, we show that although strong
Nash stability is a strong stability concept, it implies neither
strict core stability nor Pareto optimality.

Proposition 3. Strict strong Nash stability implies
strong Nash stability, strict core stability and Pareto opti-
mality.

On the other hand, strong Nash stability implies neither
strict core stability nor Pareto optimality.



Proof. Strict strong Nash stability trivially implies
strong Nash stability. Strict strong Nash stability also im-
plies strict core stability. If a partition is strong Nash stable,
there exists no new coalition H, in which each player at least
as happy and one player is strictly better off. Therefore, the
partition is also strict core stable.

Now, we will show that strong Nash stability implies nei-
ther strict core stability nor Pareto optimality. Since, it is
well-known that strict core stability implies Pareto optimal-
ity, it is sufficient to show that strong Nash stability does
not imply Pareto optimality.

Strong Nash stability does not imply Pareto optimality.
Consider the following four-player hedonic game:

{1, 2} ∼1 {1, 3} ∼1 {1, 4} �1 · · ·

{1, 2} ∼2 {2, 3} ∼2 {2, 4} �2 · · ·

{2, 3} ∼3 {3, 4} �3 · · ·

{1, 4} ∼4 {2, 4} �4 {3, 4} �4 · · ·

Then, the partition {{1, 2}, {3, 4}} is strong Nash stable.
However it is Pareto dominated by {{2, 3}, {1, 4}}.

In the next sections, we will present the central results of
the paper.

5. TOP RESPONSIVENESS
Top responsiveness [1, 9, 10] and bottom responsive-

ness [17] are natural restrictions that are imposed on the
individual preferences and not on the whole preference pro-
file. The idea is that a player’s preference for a coalition
depends on the best and worst subcoalitions respectively.
In this section, we present a result that a partition fulfilling
SSNS exists for hedonic games satisfying top responsiveness
and an additional property called mutuality (with respect
to top responsiveness).

Top responsiveness.
Top responsiveness is based on choice sets—sets of play-

ers which each player wants to be with. Let Ch(i, S)—the
choice sets of player i in coalition S—be defined as follows:

Ch(i, S) = {S′ ⊆ S : (i ∈ S′) ∧ (S′ %i S
′′ ∀S′′ ⊆ S)}.

A game satisfies top responsiveness if for each i ∈ N , the
following three conditions hold:

1. for each X ∈ Ni, |Ch(i,X)| = 1, (we denote by
ch(i,X) the unique maximal set of player i on X under
%i),

2. for each pair X,Y ∈ Ni, X �i Y if ch(i,X) �i

ch(i, Y );

3. for each pair X,Y ∈ Ni, X �i Y if ch(i,X) = ch(i, Y )
and X ⊂ Y .

A hedonic game satisfying top responsiveness additionally
satisfies mutuality if

∀i, j ∈ N,X ∈ Ni ∩Nj : i ∈ ch(j,X)⇔ j ∈ ch(i,X).

We will also specify similar notion of mutuality with respect
to hedonic games satisfying strong bottom responsiveness.
When the context is clear, we will refer to the condition
simply as mutuality.

Example 1. Let (N,%) be a game with N = {1, 2, 3} and
the preference profile specified as follows:

{1, 2} �1 {1, 2, 3} �1 {1} �1 {1, 3}
{1, 2, 3} �2 {1, 2} ∼2 {2, 3} �2 {2}
{2, 3} �3 {1, 2, 3} �3 {3} �3 {1, 3}

Then, (N,%) satisfies top responsiveness and mutuality.

We are now in a position to present our first result.

Theorem 1. Top responsiveness and mutuality together
guarantee the existence of an SSNS partition.

We prove Theorem 1 by showing that if a hedonic game
satisfies top responsiveness and mutuality, then the Top
Covering Algorithm of [1, 9, 10] returns an SSNS partition.
Therefore, we identify conditions different than the ones
identified by Karakaya [15] for which strong Nash stability
is guaranteed. Since SSNS is stronger than SNS (Proposi-
tion 3) which in turn is stronger than even the combination
of Nash stability and strict core stability (Proposition 2),
Theorem 1 simultaneously strengthens the result in [9] and
[10] in which it was shown that top responsiveness and mu-
tuality together guarantee the existence of a Nash stable and
strict core partition.

It can also be proved that Theorem 1 is optimal in the
sense that it does not extend to perfect partitions. To be
precise, we show that top responsiveness and mutuality to-
gether do not guarantee the existence of a perfect partition.

Proposition 4. Top responsiveness and mutuality to-
gether do not guarantee the existence of a perfect partition.

Proof. By counter example. In the game in Example 1,
top responsiveness and mutuality are satisfied but no perfect
partition exists.

Now that we have stated Theorem 1 and its complement-
ing Proposition 4, we will present the proof of Theorem 1.

Proof of Theorem 1.
Firstly, we need additional definitions and a description of

the Top Covering Algorithm. For each X ⊆ N , we denote
by vX the relation on X×X where i vX j if and only if j ∈
ch(i,X). In this case j is called a neighbor of i in X. Note
that in the preference profiles satisfies top responsiveness
mutuality, then vX is a symmetric relation.
The connected component CC(i,X) of i with respect to X
is defined as follows:

CC(i,X) = {k ∈ X:∃j1, . . . , jl ∈ X : i = j1 vX · · · vX jl = k}.

If j ∈ CC(i,X), j is called reachable from i in X. Also
note that CC(j,X) ⊆ CC(i,X) if j is reachable from i and
if mutuality is satisfied, then the following holds: ∀X ⊆ N ,
i, j ∈ X : i ∈ CC(j,X)⇔ j ∈ CC(i,X).

Now we are ready to present the simplified Top Covering
Algorithm provided by Dimitrov and Sung [9, 10], adapted
to the notation defined above. The algorithm is specified as
Algorithm 1.

The following lemma will be used in the proof to Theorem
1.



Lemma 1. Let (N,%) be a game satisfying top respon-
siveness and mutuality and π be the partition resulting by
applying the simplified Top Covering Algorithm to it. Then

∀i ∈ N : ch(i,N) ⊆ π(i)

Proof. First we show by induction over the iterations
of the algorithm that ch(i, Rk) = ch(i,N) ∀i ∈ Rk, k =
1, 2, .... For k = 1, this is obviously true, because R1 = N .
Assume by induction, that ch(i, Rk) = ch(i,N) ∀i ∈ Rk.
Let i′ be the player selected in the k-th iteration of Step
3 and j ∈ Rk+1. Therefore j /∈ ch(i, Rk) ∀i ∈ CC(i′, Rk).
Because of mutuality i /∈ ch(j, Rk) ∀i ∈ CC(i′, Rk). So
ch(j, Rk) ⊆ Rk+1 and therefore ch(j, Rk+1) = ch(j, Rk) =
ch(j,N).

Now take an arbitrary player i ∈ N and denote by k
the iteration of the algorithm in which i was added to
his coalition, i.e. i ∈ Sk. Let i′ be the player selected
in the k-th iteration of Step 3, so i ∈ CC(i′, Rk). Be-
cause of mutuality, CC(i′, Rk) = CC(i, Rk) and clearly
ch(i, Rk) ⊆ CC(i, Rk). From above, we know that
ch(i,N) = ch(i, Rk) ⊆ CC(i, Rk) = Sk = π(i).

Algorithm 1 Top Covering Algorithm

Input: A hedonic game (N,%) satisfying top responsive-
ness.

1: R1 ← N ; π ← ∅.
2: for k = 1 to |N | do
3: Select i ∈ Rk such that |CC(i, Rk)| ≤ |CC(j, Rk)| for

each j ∈ Rk.
4: Sk ← CC(i, Rk); π ← π ∪{Sk}; and Rk+1 ← Rk \Sk

5: if Rk+1 = ∅ then
6: return π
7: end if
8: end for
9: return π

We note here that Lemma 1 may not hold, if mutuality is
violated.

As shown by Dimitrov and Sung [9, 10] the resulting par-
tition of the simplified Top Covering Algorithm is strict core
stable as well as Nash stable if preferences as mutual. We
are now ready to present the proof of Theorem 1.

Proof. Let π be the resulting partition and suppose it
is not strictly strong Nash stable. Then a pair (H,π′) exists
where H ⊆ N is the set of deviators and π′ is the par-

tition resulting after the deviation, i.e. π
H→ π′. Firstly,

by Lemma 1, ch(i,N) ⊆ CC(i,N) ∀i ∈ N . Since H is a
coalition blocking strict strong Nash stability, the following
holds:

∀i ∈ H : π′(i) %i π(i) and

∃j ∈ H : π′(j) �j π(j).

Now consider the player j, who is better off in his new
coalition π′(j). Assume that π(j) ∩ π′(j) ⊆ H, which
means only deviators in π(j) ∩ π′(j). For i ∈ π(j) ∩ π′(j):
ch(i, π′(i)) %i ch(i, π(i)), since i ∈ H by assumption. We
also know that ch(i, π(i)) = ch(i,N) by Lemma 1. There-
fore, for i ∈ π(j) ∩ π′(j): ch(i, π′(i)) %i ch(i, π(i)) =
ch(i,N). Because of uniqueness of choice sets in the def-
inition of top responsiveness, ch(i, π′(i)) = ch(i,N). So

ch(i,N) ⊆ π(i) ∩ π′(i) = π(j) ∩ π′(j).

=⇒ ∀i ∈ π(j) ∩ π′(j) : (π′(j) ∩ π(j)) %i π
′(j).

Due to assumption π(j) ∩ π′(j) ⊆ H, the following holds:

∀i ∈ π(j) ∩ π′(j) : (π(j) ∩ π′(j)) %i π
′(j) %i π(j) = π(i) &

(π(j) ∩ π′(j)) %j π
′(j) �j π(j)

So π(j) ∩ π′(j) would be a coalition blocking strict core
stability, but Dimitrov and Sung [10] proved that π as pro-
duced by the simplified Top Covering Algorithm has to be
strict core stable. Therefore π′(j)∩π(j) * H and there is at
least one non-deviator in π(j)∩π′(j). Let us call this player
i′.

Now take a look at the players in π(j) \ π′(j). Note that
this is not an empty set, because otherwise π′(j) ⊃ π(j) =⇒
π′(j) -j π(j). If one of them is not in H, then he was in
the same coalition as i′ in π, namely π(j), and is now in a

different, which is not consistent with π
H→ π′. So (π(j) \

π′(j)) ⊆ H. Because π(j) is a connected component, at least
one player k in π(j) \ π′(j) has a friend l in π′(j), meaning
they are in each other’s choice sets and as mentioned l ∈
ch(k,N) ⊆ π(k). But now l /∈ π′(k) and therefore π′(k) ≺k

π(k) which contradicts k being a deviator.

6. BOTTOM RESPONSIVENESS
In this section, we present the central results concerning

hedonic games which satisfy bottom responsiveness.

Bottom responsiveness.
Bottom responsiveness is a restriction on the preferences

of each player in a hedonic game which models conservative
or pessimistic agents. In contrast to top responsiveness, bot-
tom responsiveness is based on avoid sets—sets of players
which each player wants to avoid having in his coalition.

For any player i ∈ N and S ∈ Ni, Av(i, S)—the set of
avoid sets of player i in coalition S—is defined as follows:

Av(i, S) = {S′ ⊆ S : (i ∈ S′) ∧ (S′ -i S
′′ ∀S′′ ⊆ S)}.

A game satisfies bottom responsiveness if for each i ∈ N , the
following conditions hold:

1. for each pair X,Y ∈ Ni, X �i Y if X ′ �i Y
′ for each

X ′ ∈ Av(i,X) and each Y ′ ∈ Av(i, Y ); and

2. for each i ∈ N and X,Y ∈ Ni, Av(i,X)∩Av(i, Y ) 6= ∅
and |X| ≥ |Y | implies X %i Y .

A hedonic game (N,%) satisfies strong bottom responsive-
ness if it is bottom responsive and if for each i ∈ N and
X ∈ Ni, |Av(i,X)| = 1. By av(i,X), we denote the unique
minimal set of player i on X under %i. The strong part
of bottom responsiveness is analogous to Property 1 in the
definition of top responsiveness. A hedonic game (N,%)
satisfying strong bottom responsiveness additionally satis-
fies mutuality if for all i, j ∈ N , and X such that i, j ∈ X,
i ∈ av(j,X) if and only if j ∈ av(i,X).

Example 2. Let (N,%) be a game with N = {1, 2, 3} and
the preference profile specified as follows:

{1, 3} �1 {1} �1 {1, 2, 3} �1 {1, 2}
{2, 3} �2 {2} �2 {1, 2, 3} �2 {1, 2}
{1, 2, 3} �3 {1, 3} ∼3 {2, 3} �3 {3}



Then, (N,%) satisfies strong bottom responsiveness and
also mutuality (with respect to strong bottom responsive-
ness).

For bottom responsive games, we prove that an SIS parti-
tion is guaranteed to exist even in the absence of mutuality.

Theorem 2. Bottom responsiveness guarantees the exis-
tence of an SIS partition.

As a corollary, a core stable partition and an individu-
ally stable partition is guaranteed to exist. Previously, it
was only known that the core is non-empty for bottom re-
sponsive games [17]. In contrast to the result by Suzuki
and Sung [17], the proof of Theorem 2 does not require the
Bottom Avoiding Algorithm. We associate with each IR
partition a vector of coalition sizes in decreasing order. It is
then shown via lexicographic comparisons between the cor-
responding vectors that arbitrary deviations between par-
titions are acyclic. With an additional natural constraint,
even SNS is guaranteed (Theorem 3).

Theorem 3. Strong bottom responsiveness and mutuality
together guarantee the existence of an SNS partition.

We point out that Theorem 2 cannot be extended any
further to take care of strict core stability and Theorem 3
cannot be extended to SSNS. The reason is that symmetric
‘aversion to enemies’ games—a subclass of strong bottom
responsive games which satisfy mutuality—may not admit
a strict core stable partition (Example 4, [11]).

Now that we have stated our results concerning hedo-
nic games satisfying bottom responsiveness, we sketch the
proofs.

Proof of Theorem 2.
For the use of further proofs, we introduce an ordering

relation on the partitions. The definition will also apply to
the proof of Theorem 3.

Definition 1. Let N = {1, ..., n} be a set of players and
π, π′ two partitions of N , where π = (S1, ..., Sk) and π′ =
(T1, ..., Tl) with |Si| ≥ |Si+1| ∀i ∈ {1, ..., k − 1} and |Tj | ≥
|Tj+1| ∀j ∈ {1, ..., l − 1} respectively. We say, that

π >̇ π′ ⇔ ∃i ≤ min{k, l} : |Si| > |Ti| and |Sj | = |Tj | ∀j < i

& π
.
= π′ ⇔ k = l and ∀i ≤ k : |Si| = |Ti|.

The relation >̇ is complete, transitive and asymmetric,
and places an ordering on the set of partitions. We now
present the proof of Theorem 2 in which we utilize the rela-
tion >̇.

Proof. To simplify the presentation, we prove that ev-
ery bottom responsive game admits an IS partition. The
same argument can also be used to show that every bottom
responsive game admits an SIS partition.

We show individual stability for each maximum element
according to >̇ of the set of individual rational coalitions.
Consider the set P = {π′ : π′ partitions N and ∀S ∈ π′, i ∈
S : {i} ∈ Av(i, S)}. Note that P 6= ∅, because the partition
consisting of only singletons is in P and that P is a finite
set because the number of partitions is finite. Denote by π
a maximal element of P according to >̇, i.e. π ≥̇π′ ∀π′ ∈ P .
By definition, π is individually rational.

Now assume π is not individually stable. Then, there
exists a player i ∈ N and a coalition S ∈ π ∪ {∅}, such that
S ∪ {i} �i π(i) and ∀j ∈ S : S ∪ {i} %j S. Now we show
that the partition π resulting after the deviation of i is still
individually rational and therefore an element of P . Clearly
S 6= ∅ because of individual rationality of π. Furthermore
{j} ∈ Av(j, S ∪ {i}) ∀j ∈ S, because if not S ∪ {i} ≺j S for
some j ∈ S.
Consider a player j ∈ π(i)\{i}. Due to individual rationality
of π, {j} ∈ Av(j, π(i)), which implies T %j {j} ∀T ⊆ π(i)
with j ∈ T . So π(i) \ {i} %j {j}. All other players j ∈
N \ (π(i)∪ S) are not affected by the deviation of i because
of the hedonic game setting. Therefore π′ is individually
rational and π′ ∈ P .

The last step is to show π′ >̇ π, which contradicts the max-
imality of π in P . Because player i improves by changing,
|S ∪ {i}| > |π(i)| follows from condition 2) of bottom re-
sponsiveness . So (S∪{i}, π(i)\{i}) >̇(S, π(i)) and all other
coalitions are identical in π and π′. This contradicts π ≥̇π′

and finishes the proof.

The proof also highlights a decentralized way to compute
an IS or SIS partition. Start from the partition of single-
tons and enable arbitrary deviations. For each partition πk,
the new partition πk+1 is such that πk+1 >̇ πk. Therefore,
in a finite number of deviations, an IS or SIS partition is
achieved.

Proof of Theorem 3.
We now present the proof of Theorem 3.

Proof. We show strong Nash stability for each maxi-
mal element according to ≥̇ of the set of individual rational
coalitions (please see Definition 1). Consider the set P =
{π′ : π′ partitions N and ∀S ∈ π′, i ∈ S : {i} = av(i, S)}.
Note that P 6= ∅, because the partition consisting of only
singletons is in P and P is a finite set, because the number
of partitions is finite. Denote by π a maximal element of P
according to ≥̇, i.e. π ≥̇π′ ∀π′ ∈ P .

Now assume π is not strong Nash stable. Then a set of
players H ⊆ N and a partition π′ exist, such that

(1) π
H−→ π′

(2) ∀i ∈ H : π′(i) �i π(i).

We show that the partition π′ resulting after the devia-
tion is still individually rational and therefore an element
of P . Clearly av(i, π′(i)) = {i} ∀i ∈ H, because otherwise
π′(i) �i π(i) would not hold. Now consider a player j such
that π′(j) ∩H 6= ∅. ∀i ∈ H ∩ π′(j) : j /∈ av(i, π′(j)). Mutu-
ality implies i /∈ av(j, π′(j)) and therefore av(j, π′(j)) =
av(j, π(j)) = {j}. All other players j ∈ N are either
not affected by any changes (π(j) = π′(j)) or they are
left by some players in H (π′(j) ⊂ π(j)). In both cases
av(j, π′(j)) = av(j, π(j)) = {j}, so π′ is an element of P .

The last step is to show π′ >̇ π, which contradicts the
maximality of π in P . Because each player i ∈ H improves,
|π′(i)| > |π(i)| ∀i ∈ H, which follows from condition (iii)
of bottom responsiveness. Take the largest coalition S ∈ π
such that S ∩ H 6= ∅. Obviously any coalition bigger than
S in π at least does not get smaller after the deviation,
because it contains no players from H. Then one of
following two cases holds:



Case 1: at least one coalition T ∈ π with |T | > |S| gets
joined by some player i ∈ H. But then π′ >̇ π, since T
increases in size and any larger coalition in π does not get
smaller.

Case 2: If Case 1 does not hold, we know that no coalition
in π larger than S is joined by a player in H and therefore
stays the same. But one player i ∈ S∩H is part of a coalition
S′ ∈ π′ with |S′| > |S|. Since all coalitions in π, which are
larger than S also exist in π′, we can again conclude π′ >̇ π.

In both cases π′ >̇ π which contradicts the maximality of
π in P and finishes the proof.

7. EXISTENCE OF STABILITY FOR SPE-
CIFIC CLASSES OF GAMES

In this section, we highlight some natural subclasses of
additively separable hedonic games [see e.g., 3, 6, 12, 14]
and hedonic games with B-preferences [see e.g., 8, 14]
which guarantee top responsiveness or bottom responsive-
ness. Consequently, our existence results in Sections 5 and
6 and an existence result in the literature [10] applies to
these settings.

Additively separable hedonic games.
Additively separable hedonic games are one of the most

well-studied and natural class of hedonic games [see e.g., 3,
6, 12, 14]. In an additively separable hedonic game (ASHG)
(N,%), each player i ∈ N has value vi(j) for player j being in
the same coalition as i and if i is in coalition S ∈ Ni, then i
gets utility

∑
j∈S\{i} vi(j). For coalitions S, T ∈ Ni, S %i T

if and only if
∑

j∈S\{i} vi(j) ≥
∑

j∈T\{i} vi(j). Therefore an

ASHG can be represented as (N, v). An ASHG is symmetric
if vi(j) = vj(i) for any two players i, j ∈ N and is strict if
vi(j) 6= 0 for all i, j ∈ N .

We now formally introduce two classes of additively sep-
arable hedonic games which also satisfy top responsiveness
and bottom responsiveness respectively. Both classes were
introduced by Dimitrov et al. [11].

• An ASGH (N, v) is appreciation of friends if for all
i, j ∈ N such that i 6= j, the following holds: vi(j) ∈
{−1,+n}.

• An ASGH (N, v) is aversion to enemies if for all
i, j ∈ N such that i 6= j, the following holds: vi(j) ∈
{−n,+1}.

It is clear that ‘appreciation of friends’ and ‘aversion to
enemies’ games are ASHGs with strict preferences. Suzuki
and Sung [17] noted that ‘appreciation of friends’ and ‘aver-
sion to enemies’ games satisfy top responsiveness and bot-
tom responsiveness respectively. As a consequence, our main
results apply to these games.

Corollary 1. There exists an SSNS partition for each
symmetric ‘appreciation of friends’ game.

Proof. An ‘appreciation of friends’ game satisfies top re-
sponsiveness. Furthermore, if the game is (additively separa-
ble) symmetric, then it also satisfies mutuality with respect
to top responsiveness. Then, as a result of Theorem 1, we
get the corollary.

Corollary 2. There exists an SIS partition for each
‘aversion to enemies’ game.

Proof. The statement follows from Theorem 2 and the
fact that ‘aversion to enemies’ games satisfy bottom respon-
siveness.

Corollary 3. There exists an SNS partition for each
symmetric ‘aversion to enemies’ game.

Proof. It is already known that ‘aversion to enemies’
games satisfy bottom responsiveness. Since ‘aversion to en-
emies’ are additively separable hedonic games with strict
preferences, they not only satisfy bottom responsiveness
but also strong bottom responsiveness. If ‘aversion to ene-
mies’ have symmetric preferences, then they not only satisfy
strong bottom responsiveness but also (bottom responsive)
mutuality. Therefore, we can apply Theorem 3 to derive the
corollary.

B-hedonic games.
Finally, we show another important subclass of hedonic

games called B-hedonic games [8, 7] satisfies top responsive-
ness. In B-hedonic games, players express preferences over
players and these preferences over players are naturally ex-
tended to preferences over coalitions. We will assume that
maxi(∅) = {i}. In hedonic games with B-preferences (in
short B-hedonic games), for S, T ∈ Ni, S�i T if and only if
one of the following conditions hold:

1. for each s ∈ maxi(S\{i}) and t ∈ maxi(T \{i}), s �i t,
or

2. for each s ∈ maxi(S\{i}) and t ∈ maxi(T \{i}), s ∼i t
and |S| < |T |.

A B-hedonic has strict preferences for each i ∈ N and
j, k ∈ N , the following holds: j 6= k ⇒ j �i k. Then, we
have the following proposition.

Proposition 5. B-hedonic games with strict preferences
satisfy top responsiveness.

Proof. We show that B-hedonic games with strict pref-
erences satisfy all the three conditions of top responsiveness.

1. Firstly, for each X ∈ Ni, Ch(i,X) = {maxiX ∪ {i}}
and thus |Ch(i,X)| = 1.

2. For a pair X,Y ∈ Ni, assume that ch(i,X) �i

ch(i, Y ). This means that {maxi(X)} ∪ {i} �i

{maxi Y } ∪ {i}. Since the best player in X is more
preferred by i than the best player in Y , then by the
definition of B-hedonic games, X �i Y .

3. Finally, for each pair X,Y ∈ Ni, assume that
ch(i,X) = ch(i, Y ) and X ⊂ Y . Then, the player
most preferred by i in X is the same as the player
player most preferred by i in Y . Therefore, by the
definition of B-hedonic games, X �i Y .

This completes the proof.

Therefore, as a corollary we get the following statement
which was proved by Cechlárová and Romero-Medina [8].

Corollary 4. For each B-hedonic game with strict pref-
erences, a strict core stable partition is guaranteed to exist.



Proof. Dimitrov and Sung [10] showed that for hedonic
games satisfying top responsiveness admit a strict core stable
partition. Since B-hedonic games satisfy top responsiveness,
they admit a strict core stable partition.

It will be interesting to see whether there are any natural
restrictions on B-hedonic games with strict preferences such
that not only top responsiveness is satisfied but also (top
responsive) mutuality is satisfied. In that case, we can apply
Theorem 1 concerning SSNS to B-hedonic games.

Our demonstrated connection between B-hedonic games
and top responsiveness goes deeper. The essential fact be-
hind previous results concerning B-hedonic games with strict
preferences is that they satisfy top responsiveness. It turns
out that the Top Covering Algorithm in [1] generalizes the
B-STABLE algorithm in [8] and in fact Theorems 4.4 and
5.2 in [1] imply Theorem 1 and Theorem 2 in [8] respec-
tively. This connection seems to have been unnoticed in the
literature.

8. CONCLUSIONS
To conclude, we tried to paint a clearer picture of the

landscape of stability concepts used in coalition formation
games. The concepts ranged from standard ones such as the
core to recently introduced concepts such as strong Nash sta-
bility. The core and strong Nash stability were generalized
to strong individual stability and strict strong Nash stabil-
ity respectively. The basic inclusion relationships between
the stability concepts are depicted in Figure 1. Since hedo-
nic games generalize various matching settings, the relations
between the stability concepts also hold in matching settings
such as two-sided matching, roommate matching etc.

We then examined restrictions on the preferences of agents
which guarantee stable outcomes for the new stability con-
cepts. Three main existence results (Theorems 1, 2 and 3)
pertaining to top responsiveness and bottom responsiveness
were presented. Our results strengthen or complement a
number of results in the literature. We also showed that
none of our existence results can be extended to a stronger
known stability concept. It was seen that the theorems ap-
ply to some natural subclasses of hedonic games which have
already been of interest among game-theorists. It will be
interesting to find further applications of our existence re-
sults.

Identifying the impact of preference restrictions on sta-
bility also has algorithmic consequences. Recently, hedo-
nic games have attracted research from an algorithmic and
computational complexity point of view. There are various
algorithmic questions such as checking the existence of and
computing stable partitions for different representations of
hedonic games (see e.g., [7, 14]). A general framework of
preference restrictions and their impact on stability of par-
titions promises to be useful in devising generic algorithmic
techniques to compute stable partitions. For example, we
noted that the Top Covering Algorithm in [1] generalizes
the B-STABLE algorithm in [8] by utilizing the insight that
B-hedonic games with strict preferences satisfy top respon-
siveness. We also mention the following interesting algorith-
mic questions. For hedonic games represented by individu-
ally rational lists of coalitions [4], what is the computational
complexity of testing whether the game satisfies top repon-
siveness or bottom responsiveness?

Our focus in the paper has been on sufficient conditions

which guarantee the existence of stable outcomes. It will be
interesting to see what additional conditions are required to
ensure uniqueness of stable partitions for different notions
of stability. Finally, characterizing the conditions for the
existence of stability remains an open problem.
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