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For the problem of aggregating several rankings into one ranking, Kemeny [1959] proposed two methods:
the median rule which selects the ranking with the smallest total swap distance to the input rankings, and
the mean rule which minimizes the squared swap distances to the input rankings. The median rule has been
extensively studied since and is now known simply as Kemeny’s rule. It exhibits majoritarian properties, so for
example if more than half of the input rankings are the same, then the output of the rule is the same ranking.

We observe that this behavior is undesirable in many rank aggregation settings. For example, when we
rank objects by different criteria (quality, price, etc.) and want to aggregate them with specified weights for
the criteria, then a criterion with weight 51% should have 51% influence on the output instead of 100%. We
show that the Squared Kemeny rule (i.e., the mean rule) behaves this way, by establishing a bound on the
distance of the output ranking to any input rankings, as a function of their weights. Furthermore, we give an
axiomatic characterization of the Squared Kemeny rule, which mirrors the existing characterization of the
Kemeny rule but replaces the majoritarian Condorcet axiom by a proportionality axiom. Finally, we discuss
the computation of the rule and show its behavior in a simulation study.
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1 INTRODUCTION New Haven: 37 properties found

New Haven: 37 properties found

Sort by: Price (lowest first)

—New Haven Mon 8 Jul Thu 11 Jul 1 adult · 0 children · 1 room Search

Top picks for solo travellers

Homes & apartments first

Price (lowest first)

Best reviewed and lowest price

Property rating (high to low)

Property rating (low to high)

Property rating and price

Distance from city centre

Top reviewed

Genius discounts first

Fig. 1. Sort options on
booking.com.

Many search engines allow users to sort results by several criteria. For
example, websites such as booking.com and expedia.com allow users
to sort hotels by their price, their review score, or their distance to the
city center. They also offer sorting by combinations of these criteria (for
example “best reviewed and lowest price”, see Figure 1). More generally,
they could allow users to specify weights over the different ways to sort
alternatives (e.g. 60% price, 30% reviews, 10% location) and then present
an aggregated ranking of hotels.
The task of combining several rankings (possibly with weights) into

one ranking is known as rank aggregation. The best-known and most
frequently discussed rule for this problem is Kemeny’s rule [Kemeny, 1959,
Kemeny and Snell, 1960], which minimizes the total distance to all input
rankings. To be precise, let𝐴 be a set of𝑚 alternatives (e.g., hotels), and let
R be the set of rankings (linear orders) on 𝐴. For two rankings ≻,▷ ∈ R,
the swap distance (or Kendall-tau distance) between them is the number
of pairs of alternatives on which they disagree: swap(≻,▷) = |{{𝑥,𝑦} ⊆
𝐴 : 𝑥 ≻ 𝑦 and 𝑦 ▷ 𝑥}|. A profile 𝑅 is a function that assigns to each linear
order ≻ a weight 𝑅(≻) ⩾ 0, with weights summing to 1. To aggregate the rankings in a profile into
a collective ranking, we use a social preference function (SPF ) 𝑓 , which selects for each profile 𝑅 a
set 𝑓 (𝑅) ⊆ R of output rankings (ideally just one ranking, but there may be ties). Finally, Kemeny’s
rule is the SPF that selects the rankings which minimize the average swap distance to the input:

Kemeny(𝑅) = arg min▷∈R
∑

≻∈R 𝑅(≻) · swap(≻,▷).
Kemeny’s rule is an attractive SPF for several reasons: it is the maximum likelihood estimator (MLE)
of the Mallow’s 𝜙 model [Young, 1988] which makes it a good fit for epistemic problems where we
wish to discover a ground truth ranking given noisy estimates. Further, the rule is axiomatically
characterized by a Condorcet-style axiom [Young and Levenglick, 1978]; in particular, when the
weight of some ranking exceeds 50%, then the output of Kemeny’s rule will be that ranking.

While this latter property is desirable in epistemic and electoral settings, for a hotel booking
website it is disqualifying. In the above example of a user wishing to sort hotels by 60% price, 30%
reviews, 10% location, the Kemeny output would just be the ranking by price, with review scores
and location having no influence. Instead, what the user wants is a ranking where a hotel can
compensate a lower position in the price ranking by a high position in the reviews and location
rankings. Thus, we need a rule that faithfully follows the desired weighting, and makes use of all
the information instead of ignoring low-weight criteria.

As it turns out, exactly such a rule was proposed under the name “mean rule” by Kemeny [1959]
and Kemeny and Snell [1960] in the same articles that introduced Kemeny’s rule. Our name for this
SPF is the Squared Kemeny rule as it is obtained by squaring the distances in the objective function:

SqK(𝑅) = arg min▷∈R
∑

≻∈R 𝑅(≻) · swap(≻,▷)2.

The Squared Kemeny rule appears to have been almost entirely ignored in the subsequent literature.
Young and Levenglick [1978, p. 290] quickly dismiss it, writing that “Kemeny left the problem
of which solution to choose unresolved. But from the standpoint of collective decision-making
there is ample reason to prefer the median, since it turns out that the median consensus leads to a
Condorcet method, while the mean does not.” We believe that this dismissal was too quick.

The contribution of this paper is showing that the Squared Kemeny rule is well-suited to perform
rank aggregation when we wish each input ranking to be reflected in the output ranking, to an
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Price 90% 80% 70% 60% 50% 40% 30% 20% 10% Score

La Quinta Graduate Graduate Graduate Graduate Graduate Graduate Graduate Graduate Graduate Graduate

Graduate La Quinta La Quinta La Quinta NHH NHH NHH H.Marcel H.Marcel H.Marcel The Study

NHH NHH NHH NHH La Quinta H.Marcel H.Marcel NHH The Study The Study H.Marcel

Omni Omni H.Marcel H.Marcel H.Marcel La Quinta The Study The Study NHH NHH NHH

H.Marcel H.Marcel Omni The Study The Study The Study La Quinta La Quinta La Quinta Omni Omni
The Study The Study The Study Omni Omni Omni Omni Omni Omni La Quinta La Quinta

Fig. 2. Squared Kemeny when mixing two criteria.

extent that is proportional to its weight.1 Such proportionality notions have recently attracted
significant attention in voting, in particular in the settings of multi-winner voting and participatory
budgeting [see, e.g., Aziz et al., 2017, Lackner and Skowron, 2023, Peters et al., 2021]. Following
the approach in that literature, we could formalize proportionality, for example, by saying that a
ranking that makes up 𝛼% of the weight should agree with the output ranking on at least roughly
𝛼% pairwise comparisons. While Squared Kemeny does not satisfy this in general, we will see that
it does in important special cases, and that it satisfies an approximate version in general. More
generally, we will show that Squared Kemeny behaves more like an average and thus is more
responsive to changes in its input than the Kemeny rule, which behaves more like a median.

Rank Aggregation With Two Criteria
To understand how the Squared Kemeny rule behaves, it is instructive to consider the problem
of aggregating just two different rankings with different weights. Let us again consider a hotel
booking example. In Figure 2, we show a ranking of 6 hotels offered on booking.com in New Haven,
Connecticut, for the nights 8–11 July 2024 (accessed 5 February 2024). At the very left, the hotels
are ranked by price, and at the very right, they are ranked by average user score. The figure shows
the output of Squared Kemeny (with ties broken consistently) when the two rankings are given
different weights; the top row shows the weight given to the price ranking.

We see that Squared Kemeny smoothly interpolates between the two rankings. Indeed, the price
and score rankings differ on exactly 10 pairwise comparisons, and going through the rankings from
left to right, we see that in each step one pairwise swap is performed. Thus, for example, when
the price ranking has weight 70% (and the score ranking has weight 30%), the Squared Kemeny
ranking agrees with the price ranking on 7 of the 10 disagreement comparisons, and it agrees with
the score ranking on 3 of 10.
This is true in general. We formalize this by saying that Squared Kemeny satisfies 2-Rankings-

Proportionality (2RP). This axiom says that for every profile 𝑅 containing just two rankings ≻1, ≻2
with positive weight that disagree on 𝑑 = swap(≻1, ≻2) pairwise comparisons, we have

▷ ∈ SqK(𝑅) ⇐⇒ 𝑑 − swap(≻𝑖 ,▷) ∈ round(𝑅(≻𝑖 ) · 𝑑) for both 𝑖 = 1 and 𝑖 = 2,

where round(𝑧) is the set of one or two integers closest to 𝑧 ∈ R. Thus, for profiles with two input
rankings, the Squared Kemeny rule chooses all “mean rankings” ▷ where the number of pairwise
agreements between ▷ and the input rankings is proportional to their weights.

Note that the Kemeny rule behaves very differently on profiles with two rankings – it just outputs
the input ranking with higher weight.

1Proportionality can be seen as a fairness notion with respect to voters (who have a guaranteed amount of influence on the
output ranking). The rank aggregation literature has studied distinct notions of fairness for candidates that come labelled as
belonging to protected groups [Chakraborty et al., 2022, Kuhlman and Rundensteiner, 2020, Wei et al., 2022]
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Our main result is an axiomatic characterization of the Squared Kemeny rule that uses the same
axioms as the famous characterization of the Kemeny rule by Young and Levenglick [1978], but
replaces their Condorcet axiom by the 2RP axiom. We also impose a mild continuity axiom.

Theorem 3.2. An SPF satisfies neutrality, reinforcement, continuity, and 2RP if and only if it is the
Squared Kemeny rule.

Neutrality is a standard symmetry condition. The reinforcement axiom is a consistency or
convexity axiom, which says that if a ranking ▷ is selected at two different profiles 𝑅1 and 𝑅2, i.e.,
▷ ∈ 𝑓 (𝑅1) ∩ 𝑓 (𝑅2), then ▷ is also selected for all convex combinations 𝜆𝑅1 + (1 − 𝜆)𝑅2 of the two
profiles (𝜆 ∈ (0, 1)), and that in addition 𝑓 (𝜆𝑅1 + (1− 𝜆)𝑅2) = 𝑓 (𝑅1) ∩ 𝑓 (𝑅2). This is a classic axiom
that has been used in many characterizations in social choice [e.g., Fishburn, 1978, Lackner and
Skowron, 2021, Myerson, 1995, Young, 1975].
Our proof operates within the space Q𝑚! of (generalized) profiles and uses reinforcement in

a standard way to obtain separating hyperplanes between the regions of profiles where some
particular output ranking is selected. However, unlike Young and Levenglick [1978], we cannot
pass to a lower-dimensional space of majority margins. Instead, we characterize the hyperplanes
by using 2RP to construct profiles where the rule chooses rankings that form a single-crossing
path, which allows us to deduce that the hyperplanes encode the Squared Kemeny rule.

General Proportionality Guarantee
The 2RP axiom applies only to profiles that contain two different rankings. Can we say anything
similar about Squared Kemeny in the general case? Inspired by the literature on proportionality in
multi-winner voting [Lackner and Skowron, 2023], we will consider groups of rankings and will
bound the maximum distance of the output ranking to the group as a function of the group’s size.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Actual

𝛼 =

no
rm

al
iz
ed

sw
ap

di
st
an
ce

(a) Kemeny

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Upper bound
Actual

𝛼 =

(b) Squared Kemeny

Fig. 3. The maximum swap distance (normalized to [0, 1]) between the output of the Kemeny or Squared
Kemeny rule to an input ranking, as a function of the weight 𝛼 of the input ranking, for𝑚 = 6 alternatives.

Our first question asks how large the swap distance can be between an input ranking ≻ with
weight 𝛼 ∈ [0, 1] and the output ranking ▷ of some rule 𝑓 , as a function of 𝛼 . For Kemeny, this
is easy to specify: for 𝛼 < 1

2 , Kemeny might output the reverse ranking of ≻ (if this ranking has
weight more than 1

2 ), and so the distance can be as large as
(
𝑚
2
)
=

𝑚 (𝑚−1)
2 (the highest possible swap

distance). When 𝛼 > 1
2 , the distance is guaranteed to be 0 by the Condorcet property of Kemeny.

For Squared Kemeny, we expect the bound to be smoother, giving some guaranteed influence
to rankings with weights below 1

2 . This is indeed the case. We can compute the exact worst-case
bound provided by Squared Kemeny for fixed small numbers𝑚 of alternatives (see Figure 3), and
we can see that it is approximately linear in 𝛼 , except for small 𝛼 . We can also prove a theoretical
upper bound that holds for all𝑚: the maximum distance of the Squared Kemeny output to an input
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ranking with weight 𝛼 is at most
√︁
(1 − 𝛼)/𝛼 ·

(
𝑚
2
)
(Theorem 4.1). This bound implies that Squared

Kemeny will never output the reverse ranking of an input ranking that has weight more than 1
2 .

For large𝑚, we prove another bound that shows this even for rankings with weight more than 1
4 .

Our second question is about giving a similar type of guarantee not to a single ranking, but to a
group of rankings. For example, there could be many similar rankings in the profile that each have
a small weight, but which collectively have a significant weight. We want to show that the Squared
Kemeny outcome cannot be too far away from those rankings, on average. Theorem 4.2 establishes
a bound that applies to all groups of rankings with total weight 𝛼 (whether these rankings are
similar or not), guaranteeing that the Squared Kemeny output has an average distance of at most√︁

1/(4𝛼) ·
(
𝑚
2
)
+ 𝑜 (𝑚1.5) to the rankings in the group, where the lower-order term vanishes quickly.

Empirical Analysis
We complement our theoretical analysis with results from simulations to better understand how
the Squared Kemeny rule compares to the Kemeny rule. Since we need to compute the outcomes of
the rules, we discuss their computational complexity in Section 5. In Section 6.1, we then perform a
detailed analysis of an example of using the rank aggregation rules to rank cities according to a
mixture of three criteria (GDP per capita, air quality, and sunniness).

Fig. 4. Euclidean profiles
with Kemeny (red) and
Squared Kemeny (green)
ranking locations shown

Next, we analyze in Section 6.2 the rankings chosen by Kemeny and
Squared Kemeny on random data. For example, we sample Euclidean
profiles, where criteria and alternatives correspond to points in 2D space,
and rankings are induced by sorting the alternatives by their distance to
each criterion. In more detail, for the example in Figure 4, we sampled 100
profiles with 40 rankings each, where 75% of the input rankings come from
aGaussian in the lower left corner and the other 25% from aGaussian in the
upper right corner. We then computed the output rankings of the Kemeny
rule (red diamonds) and of the Squared Kemeny rule (green squares), and
embed these rankings in the same Euclidean space. We observe in Figure 4
that the Kemeny rule is located within the larger of the two voter clusters,
while the Squared Kemeny rule interpolates between the two clusters.

Finally, in Section 6.3 we revisit our quantitative worst-case propor-
tionality bounds from an average-case perspective, and experimentally investigate the distance
between an output ranking and a group of input rankings, as a function of the total group weight.
The results confirm our theoretical predictions: the Kemeny rule ensures only that large groups are
satisfied, while the Squared Kemeny rule caters to all group sizes.

Applications of Proportional Rank Aggregation
Hotel booking websites are just one example where it makes sense to give users fine-grained
control over how to sort items and where proportional rank aggregation methods such as Squared
Kemeny are desirable. Further examples are lists of products in e-commerce (ranking by cost, rating,
delivery time, etc.), newsfeeds of social networks, and database display applications in general.

There are also less technical applications, such as producing university rankings. These rankings
are usually a result of aggregating rankings for several criteria (such as student satisfaction, % of
students employed after graduating, research output). These rankings could be weighted and then
be used to produce an aggregate ranking via Squared Kemeny as all criteria should be taken into
account. Similarly, one could produce rankings of cities by livability or suitability for remote work.

In all previous examples, the input rankings are criteria (which tend to be objective) and the whole
setup is essentially single-agent. However, there are also compelling multi-agent applications, where
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we can think of the input rankings as votes. An example might be a university hiring committee
needing to rank applicants. In such a scenario, each committee member can provide their personal
ranking. The output should be a ranking instead of a single winning candidate, because we do
not know which candidates will accept the job offer. Proportionality may be desirable in this
context to ensure that the output ranking reflects the diverse interests of the university department.
Other multi-agent examples are groups of friends wanting to produce rankings of favorite music,
restaurants, or travel destinations, a context in which a majoritarian method seems out of place.
In our example applications based on criteria, one may object that many criteria are numerical

in nature (e.g., hotel price and average user rating). Using only the induced ranking throws away
information, and taking a weighted average of the underlying numbers may produce a better result.
The advantage of the rank aggregation approach is that it does not require the aggregator to decide
on how to normalize the numerical values of different criteria. Normalization can be a difficult task
without principled solutions – consider that hotel prices are in the hundreds while user ratings
are between 0 and 10, and that for prices, lower is better, while for ratings, higher is better. Rank
aggregation sidesteps these problems, and it is also more robust to outlier values.

2 THE MODEL
Let 𝐴 be a finite set of𝑚 ⩾ 2 alternatives. A ranking ≻ is a complete, transitive, and anti-symmetric
binary relation on 𝐴. We denote by R the set of all rankings on 𝐴. In this paper, we study the
problem of aggregating rankings into a collective ranking. To this end, we define a (ranking) profile
𝑅 to be a function from R to weights in [0, 1] ∩ Q such that

∑
≻∈R 𝑅(≻) = 1. More intuitively,

a ranking profile specifies for each ranking a weight; these weights may, e.g., arise from a user
assigning importance to different criteria (as in the hotel example in the introduction) or represent
the fraction of voters who report a ranking in an election. The restriction that the weights are
rational is to ensure compatibility with electorate settings (where discrete voters report preference
relations) and does not affect our results. We denote the set of all rankings profiles 𝑅 by R∗. For a
profile 𝑅, we write supp(𝑅) = {≻ ∈ R : 𝑅(≻) > 0} for the set of rankings with positive weight.

Given a profile 𝑅, we want to derive an aggregate ranking. A social preference function (SPF) does
this, being a function 𝑓 : R∗ → 2R \ {∅} that for every profile 𝑅 ∈ R∗ returns a non-empty set of
chosen rankings 𝑓 (𝑅) ⊆ R. To help distinguish between input and output rankings, we will follow
a convention of denoting the input rankings by ≻ and the output rankings by ▷. For two rankings
≻,▷ ∈ R, their swap distance is the number of pairs of alternatives which they order differently,
i.e., swap(≻,▷) = |{𝑎, 𝑏 ∈ 𝐴 : 𝑎 ≻ 𝑏 and 𝑏 ▷ 𝑎}|.

We focus on two SPFs in this paper. The Kemeny rule is defined as the set of rankings minimizing
the (weighted) average swap distance between the input rankings and the output ranking, i.e.,
Kemeny(𝑅) = arg min▷∈R

∑
≻∈R 𝑅(≻) · swap(≻,▷). The Squared Kemeny rule is defined analo-

gously, but with the swap distance squared, i.e., SqK(𝑅) = arg min▷∈R
∑

≻∈R 𝑅(≻) · swap(≻,▷)2.
For a ranking ▷, we let 𝐶SqK (𝑅,▷) =

∑
≻∈R 𝑅(≻) · swap(≻,▷)2 be its Squared Kemeny cost in 𝑅.

3 AXIOMATIC ANALYSIS
We begin by analyzing the Squared Kemeny rule from an axiomatic perspective. First, we demon-
strate in Section 3.1 that this rule indeed behaves like an average for special profiles (profiles where
only two rankings have positive weight as well as single-crossing profiles). This means that the
Squared Kemeny rule is proportional on these profiles, and we use this insight to characterize this
SPF in Section 3.2. Finally, we also consider standard properties such as efficiency, participation, and
strategyproofness, and check which of them are satisfied by the Squared Kemeny rule in Section 3.3.
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3.1 2-Rankings-Proportionality and Single-Crossing Profiles
We start by showing that the Squared Kemeny rule is proportional in some special cases by defining
two properties that formalize what it means to “proportionally” aggregate rankings on important
classes of profiles. Our first property concerns cases where the rule must “average” two rankings
with specified weights, just like in the introduction’s hotel example. It requires that the output
ranking must agree with the input rankings on a proportional number of pairwise comparisons.

2-Rankings-Proportionality. An SPF 𝑓 satisfies 2-Rankings-Proportionality (2RP) if, for all profiles
𝑅 with supp(𝑅) = {≻1, ≻2} for two rankings ≻1 and ≻2 with 𝑑 = swap(≻1, ≻2), it holds that

𝑓 (𝑅) = {▷ ∈ R : 𝑑 − swap(≻𝑖 ,▷) ∈ round(𝑅(≻𝑖 ) · 𝑑) for 𝑖 ∈ {1, 2}},

or equivalently,

𝑓 (𝑅) = {▷ ∈ R : swap(≻𝑖 ,▷) ∈ round((1 − 𝑅(≻𝑖 )) · 𝑑) for 𝑖 ∈ {1, 2}},
where round(𝑧) denotes the set of closest integers to 𝑧.2 Less formally, this means that the higher
the weight of ≻1 (resp. ≻2), the closer the output rankings are to ≻1 (resp. ≻2).

For example, suppose that swap(≻1, ≻2) = 10, so the two rankings in 𝑅 disagree on 10 pairwise
comparisons and that 𝑅(≻1) = 30%. Then the output ranking ▷ should agree with ≻1 on 30% ·10 = 3
of those disagreement pairs, and disagree with ≻1 on (1 − 30%) · 10 = 7 of the disagreement pairs.
The Squared Kemeny rule satisfies 2RP, and in fact it satisfies a stronger property about single-

crossing profiles. A sequence of rankings ≻0, . . . , ≻𝑛∈ R is called single-crossing if for every pair of
alternative 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≻0 𝑏,

there exists 𝑖 ∈ {0, . . . , 𝑛} such that 𝑎 ≻0 𝑏, . . . , 𝑎 ≻𝑖 𝑏 and 𝑏 ≻𝑖+1 𝑎, . . . , 𝑏 ≻𝑛 𝑎.

Thus, scanning the rankings from left to right, the relative positions of every pair of alternatives
cross at most once. We say that a sequence is maximal single-crossing if every pair of alternatives
crosses exactly once (which implies that 𝑛 =

(
𝑚
2
)
and that ≻0 and ≻𝑛 are reverse rankings). As an

example, the rankings shown in Figure 5 form a maximal single-crossing sequence.

30% 0% 30% 0% 10% 0% 0% 0% 0% 0% 30%
≻0 ≻1 ≻2 ≻3 ≻4 ≻5 ≻6 ≻7 ≻8 ≻9 ≻10

a b b b b c c c d d e

b a c c c b d d c e d

c c a d d d b e e c c

d d d a e e e b b b b
e e e e a a a a a a a

Fig. 5. A single-crossing profile, on which Squared
Kemeny outputs ≻4 (the average of the voter loca-
tions) and Kemeny outputs ≻2 (the median).

We say that a profile 𝑅 is single-crossing if the
rankings in supp(𝑅) can be arranged in a single-
crossing sequence. On single-crossing profiles,
there is a natural definition of what it means to be
an average, because each input ranking is associ-
ated with a location 0, . . . , 𝑛 in a one-dimensional
space; thus the output ranking should be at the
weighted average of these locations. For example,
the profile in Figure 5 has 30% of the voters each
in locations 0, 2, and 10, with the remaining 10%
in location 4. This gives an average location of
0.3 · (0 + 2 + 10) + 0.1 · 4 = 4. Thus, the “average”
ranking for this profile is ≻4, and indeed this is the output ranking of Squared Kemeny. In contrast,
the Kemeny rule takes the median location, which is location 2, and so ≻2 is the Kemeny output.3

To formalize this behavior, let us say that 𝑅 is compatiblewith a maximal single-crossing sequence
≻0, . . . , ≻𝑛 if supp(𝑅) ⊆ {≻0, . . . , ≻𝑛}. We can now state an axiom specifying what it means to
proportionally aggregate rankings on a single-crossing profile.
2For 𝑘 ∈ Z, round(𝑘 + 𝑥 ) = {𝑘 } if 𝑥 ∈ [0, 0.5) , round(𝑘 + 0.5) = {𝑘, 𝑘 + 1}, and round(𝑘 + 𝑥 ) = {𝑘 + 1} if 𝑥 ∈ (0.5, 1].
3This is known as the representative voter theorem [Rothstein, 1991] which states that the majority relation of a single-crossing
profile (and hence the Kemeny ranking) coincides with the input ranking of the median voter.
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Single-Crossing-Proportionality. An SPF 𝑓 satisfies Single-Crossing-Proportionality if for every
single-crossing profile 𝑅 we have that a ranking ▷ is in 𝑓 (𝑅) if and only if there exists a maximal
single-crossing sequence ≻0, . . . , ≻𝑛 compatible with 𝑅 and ▷ = ≻𝑖 for 𝑖 ∈ round(∑𝑛

𝑗=1 𝑅(≻𝑗 ) · 𝑗).
It is straightforward to check that Single-Crossing-Proportionality implies 2RP, because any

profile in which only 2 rankings occur is single-crossing.

Theorem 3.1. The Squared Kemeny rule satisfies Single-Crossing-Proportionality and 2RP.

Proof. Since Single-Crossing-Proportionality implies 2RP, it is sufficient to prove that Squared
Kemeny satisfies the former.
For this, we fix a single-crossing profile 𝑅 and an arbitrary maximal single-crossing sequence

≻0, . . . , ≻𝑛 compatible with 𝑅. Also, let ▷ ∈ R be an arbitrary ranking and define 𝑑 = swap(≻0,▷).
Because of the triangle inequality, we can now compute that

swap(≻𝑖 ,▷) ⩾ swap(≻0,▷) − swap(≻0, ≻𝑖 ) = 𝑑 − 𝑖, for 𝑖 ∈ [𝑑], and
swap(≻𝑖 ,▷) ⩾ swap(≻0, ≻𝑖 ) − swap(≻0,▷) = 𝑖 − 𝑑, for 𝑖 ∈ [𝑛] \ [𝑑] . (1)

We will first show that if ▷ does not belong to any maximally single-crossing sequence compatible
with 𝑅, then at least one of Inequalities (1) for 𝑖 ∈ [𝑛] such that ≻𝑖 ∈ supp(𝑅) is strict. Assume
otherwise, i.e., swap(≻𝑖 ,▷) = |𝑑 − 𝑖 | for every 𝑖 ∈ [𝑛] such that ≻𝑖 ∈ supp(𝑅). If 𝑅(≻𝑑 ) > 0, this
implies that ▷ = ≻𝑑 , so ▷ belongs to the maximal single-crossing sequence ≻0, . . . , ≻𝑛 . Thus, let us
assume that 𝑅(≻𝑑 ) = 0. Then, let 𝑖 ∈ {0, . . . , 𝑑 − 1} be maximal and 𝑗 ∈ {𝑑 + 1, . . . , 𝑛} minimal such
that ≻𝑖 , ≻𝑗 ∈ supp(𝑅). By adding the respective equalities sidewise, we obtain that

swap(≻𝑖 ,▷) + swap(≻𝑗 ,▷) = (𝑑 − 𝑖) + ( 𝑗 − 𝑑) = 𝑗 − 𝑖 = swap(≻𝑖 , ≻𝑗 ).
By [Elkind et al., 2022, Proposition 4.6], this implies that ≻𝑖 , ▷, and ≻𝑗 form a single-crossing
sequence and ▷ is between ≻𝑖 and ≻𝑗 . This means that for every pair of alternatives 𝑥,𝑦 ∈ 𝐴 such
that 𝑥 ▷ 𝑦, it holds that 𝑦 ≻𝑖 𝑥 implies 𝑥 ≻𝑗 𝑦 and 𝑦 ≻𝑗 𝑥 implies 𝑥 ≻𝑖 𝑦. Consequently, the
sequence ≻0, . . . , ≻𝑖 ,▷, ≻𝑗 , . . . , ≻𝑛 is single-crossing, which contradicts the assumption that ▷ does
not belong to any maximally single-crossing sequence compatible with 𝑅.
Therefore, if ▷ does not belong to any maximally single-crossing sequence compatible with 𝑅,

we can show that there will be a ranking in such set, i.e., ≻𝑑 , for which 𝐶SqK (𝑅,▷) > 𝐶SqK (𝑅, ≻𝑑 ).
Indeed, from Inequalities (1) and the fact that one of them is strict, we get that

𝐶SqK (𝑅,▷) =
∑𝑛

𝑖=0 𝑅(≻𝑖 ) · swap(≻𝑖 ,▷)2 >
∑𝑛

𝑖=0 𝑅(≻𝑖 ) · (𝑖 − 𝑑)2 = 𝐶SqK (𝑅, ≻𝑑 ).
Thus, ▷ ∉ SqK(𝑅) and we know that the only rankings selected by the Squared Kemeny rule belong
to some maximally single-crossing sequence compatible with 𝑅.
Then, take an arbitrary ▷ ∈ SqK(𝑅) and again denote 𝑑 = swap(≻0,▷). This means that

𝐶SqK (𝑅,▷) =
∑𝑛

𝑖=0 𝑅(≻𝑖 ) · (𝑖 − 𝑑)2. Taking the derivative with respect to 𝑑 , we get that 𝐶SqK (𝑅,▷)
is minimized when

∑𝑛
𝑖=0 2𝑅(≻𝑖 ) · (𝑑 − 𝑖) = 0, which is equivalent to

∑𝑛
𝑖=0 𝑅(≻𝑖 ) · 𝑖 = 𝑑 . Since 𝑑

has to be an integer and a quadratic function grows symmetrically from its minimum (note that
a convex combination of quadratic functions is still a quadratic function), the rankings ≻𝑑 for
𝑑 ∈ round(∑𝑛

𝑖=0 𝑅(≻𝑖 ) · 𝑖) have the lowest Squared Kemeny cost among the rankings in ≻0, . . . , ≻𝑛 .
It remains to show that for ≻𝑑 selected in this way, the cost 𝐶SqK (𝑅, ≻𝑑 ) is the same no matter

which maximally single-crossing sequence we have chosen at the beginning. To this end, take two
arbitrary maximally single-crossing sequences ≻0, . . . , ≻𝑛 and ≻′

0, . . . , ≻′
𝑛 , both compatible with 𝑅.

Observe that there is a linear function ℓ (𝑥) = 𝑎𝑥 +𝑏, with 𝑎 ∈ {1,−1} such that ≻𝑖 = ≻′
ℓ (𝑖 ) for every

≻𝑖 ∈ supp(𝑅). Then, by the linearity of the mean, if ≻𝑑 minimizes 𝐶SqK (𝑅, ≻𝑗 ) among ≻0, . . . , ≻𝑛 ,
then ≻′

ℓ (𝑑 ) minimizes 𝐶SqK (𝑅, ≻′
𝑗 ) among ≻′

0, . . . , ≻′
𝑛 . Furthermore, we have that 𝐶SqK (𝑅, ≻𝑑 ) =∑𝑛

𝑖=0 𝑅(≻𝑖 ) · (𝑖 − 𝑑)2 =
∑𝑛

𝑖=0 𝑅(≻𝑖 ) · (ℓ (𝑖) − ℓ (𝑑))2 = 𝐶SqK (𝑅, ≻ℓ (𝑑 ) ), which concludes the proof. □
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3.2 Characterization of the Squared Kemeny Rule
We will next present our characterization of the Squared Kemeny rule, which combines 2RP with
three standard properties, namely neutrality, reinforcement, and continuity.

Neutrality. Neutrality is a mild symmetry condition that precludes a rule from depending on the
names of candidates. An SPF 𝑓 is neutral if 𝑓 (𝜏 (𝑅)) = {𝜏 (▷) : ▷ ∈ 𝑓 (𝑅)} for all profiles 𝑅 ∈ R∗ and
permutations 𝜏 : 𝐴 → 𝐴. Here, we denote by ▷′ = 𝜏 (▷) the ranking defined by 𝜏 (𝑥) ▷′ 𝜏 (𝑦) if and
only if 𝑥 ▷ 𝑦 for all 𝑥,𝑦 ∈ 𝐴 and 𝑅′ = 𝜏 (𝑅) is the profile defined by 𝑅′ (𝜏 (≻)) = 𝑅(≻) for all ≻ ∈ R.

Reinforcement. Reinforcement is a classic axiom in social choice theory which describes that
if some outcomes are chosen for two profiles, then precisely these common outcomes should be
chosen in a convex combination of these profiles. An SPF 𝑓 satisfies reinforcement if for all profiles
𝑅, 𝑅′ ∈ R∗ with 𝑓 (𝑅) ∩ 𝑓 (𝑅′) ≠ ∅, we have 𝑓 (𝜆𝑅 + (1 − 𝜆)𝑅′) = 𝑓 (𝑅) ∩ 𝑓 (𝑅′) for all 𝜆 ∈ (0, 1) ∩Q.

Continuity. Continuity requires that a group of rankings with sufficient weight can overrule any
other set of rankings and thus determine the outcome. Formally, an SPF 𝑓 is continuous if for all
profiles 𝑅, 𝑅′ ∈ R∗, there is a scalar 𝜆 ∈ (0, 1) ∩ Q such that 𝑓 (𝜆𝑅 + (1 − 𝜆)𝑅′) ⊆ 𝑓 (𝑅).
The above three axioms that have been frequently used in social choice theory to characterize

scoring rules in various contexts [e.g., Lackner and Skowron, 2021, Lederer, 2023, Myerson, 1995,
Skowron et al., 2019, Young, 1975]. Moreover, Kemeny’s rule has been characterized as the unique
SPF satisfying neutrality, reinforcement, and a Condorcet axiom [Young and Levenglick, 1978].

We can now state our characterization result.

Theorem 3.2. An SPF satisfies neutrality, reinforcement, continuity, and 2RP if and only if it is the
Squared Kemeny rule.

Like other reinforcement-based characterizations of SPFs, our proof is quite involved, and thus
we defer it to Appendix A. Using well-known techniques, the proof uses reinforcement to divide
the space of profiles into convex regions where a particular ranking is chosen by the SPF, and then
uses 2RP in combination with the other axioms to characterize the boundaries (hyperplanes) of
these regions. As for the independence of the axioms, we do not know if neutrality or continuity
can be dropped from the characterization. Without 2RP, the Kemeny rule satisfies the remaining
axioms. Without reinforcement, the rule that agrees with the Squared Kemeny rule on all profiles
in which two rankings jointly have more than 90% of the weight, and returns the set of all rankings
R for all other profiles, satisfies the remaining axioms.
To give more insights into the proof of Theorem 3.2, we will show a weaker statement that

is still of interest. To this end, we introduce the family of ranking scoring functions. These are
analogues of scoring rules in voting and are defined based on a cost function 𝑐 : R × R → R
that assigns to each pair of rankings ≻,▷ ∈ R a cost 𝑐 (≻,▷). Intuitively, we interpret the term
𝑐 (≻,▷) as the disutility that the outcome ranking ▷ would give to a voter with a preference
order ≻. The ranking scoring function 𝑓𝑐 based on 𝑐 returns the rankings with minimal total cost:
𝑓𝑐 (𝑅) = arg min▷∈R

∑
≻∈R 𝑅(≻) · 𝑐 (≻,▷) for every profile 𝑅. For example, 𝑓swap is the Kemeny rule

and 𝑓swap2 is the Squared Kemeny rule.
It is straightforward to check that every ranking scoring function satisfies reinforcement and

continuity. The class of (neutral) ranking scoring functions was introduced by Conitzer et al. [2009],
who conjectured that this class is in fact characterized by neutrality, reinforcement, and continuity.

We now give a proof that the only ranking scoring function that satisfies the 2RP axiom is the
Squared Kemeny rule. The proof uses a very similar strategy to the proof of our full axiomatic
characterization (Theorem 3.2) but avoids some of its overhead. Note that this version of the
characterization does not require neutrality.
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▷1

𝑅(▷1) = 1 − 1
2𝑑

▷2 ≻

𝑅(≻) = 1
2𝑑

1 𝑑 − 1
▷2

𝑅(▷2) = 1 − 1
𝑑max ▷1

▷3

◀2

𝑅(◀2) = 1
𝑑max1

1

𝑑max − 1

𝑑max − 1

Fig. 6. An illustration of Steps 1 (left) and 2 (right) of the proof of Theorem 3.2.

Theorem 3.3. A ranking scoring function satisfies 2RP if and only if it is the Squared Kemeny rule.

Proof. We already showed that the Squared Kemeny rule satisfies 2RP (Theorem 3.1), so we
need to show that it is the only ranking scoring function with that property. Hence, let 𝑓 denote a
ranking scoring function that satisfies 2RP and let 𝑐 be its cost function. Without loss of generality,
we can assume for every ranking ≻ ∈ R that 𝑐 (≻, ≻) = 0 because adding a constant to a cost
function, even a different constant for each first argument, does not affect the outcomes of a ranking
scoring function. For a profile 𝑅 and a ranking ▷, we define𝐶 (𝑅,▷) = ∑

≻∈R 𝑅(≻) ·𝑐 (≻,▷). We will
show that 𝑐 is proportional to the Squared Kemeny cost function 𝑐SqK (≻,▷) = swap(≻,▷)2, which
implies that 𝑓 is the Squared Kemeny rule. We prove this in three steps: first, we will show that for
every pair of rankings ▷1,▷2 ∈ R with swap distance 1, the difference in the costs of ▷1 and ▷2 with
respect to any other ranking is proportional to the difference in their Squared Kemeny costs, i.e.,
there exists a constant 𝛼▷1,▷2 > 0 such that 𝑐 (≻,▷1)−𝑐 (≻,▷2) = 𝛼▷1,▷2 (𝑐SqK (≻,▷1)−𝑐SqK (≻,▷2)) for
every ≻ ∈ R (Step 1). Next, we will prove that these constants are equal if two such pairs of rankings
intersect, i.e., 𝛼▷1,▷2 = 𝛼▷2,▷3 for all ▷1,▷2,▷3 ∈ R such that swap(▷1,▷2) = swap(▷2,▷3) = 1
(Step 2). Finally, we infer that all these constants are equal and derive that there is 𝛼 > 0 such that
𝑐 (≻,▷1) − 𝑐 (≻,▷2) = 𝛼 (𝑐SqK (≻,▷1) − 𝑐SqK (≻,▷2)) for all ≻,▷1,▷2 ∈ R. Since 𝑐 (▷,▷) = 𝑐SqK (▷,▷)
for all ▷ ∈ R, this means that 𝑐 is indeed proportional to 𝑐SqK (Step 3).

Step 1: Fix two rankings ▷1,▷2 ∈ R with swap(▷1,▷2) = 1 and define 𝛼▷1,▷2 = 𝑐 (▷1,▷2).
We will show that 𝛼▷1,▷2 > 0 and 𝑐 (≻,▷1) − 𝑐 (≻,▷2) = 𝛼▷1,▷2 (𝑐SqK (≻,▷1) − 𝑐SqK (≻,▷2)) for all
≻ ∈ R. Let us first prove that 𝛼▷1,▷2 is equal to 𝛼▷2,▷1 = 𝑐 (▷2,▷1). For this, we consider the profile
𝑅 with 𝑅(▷1) = 𝑅(▷2) = 1/2. 2RP requires that 𝑓 (𝑅) = {▷1,▷2}. Thus, from the definition of
ranking scoring functions and our assumption that 𝑐 (≻, ≻) = 0 for every ≻ ∈ R we derive that
𝑐 (▷1,▷2) = 𝑐 (▷2,▷1) and therefore

𝛼▷1,▷2 = 𝛼▷2,▷1 . (2)
To show that 𝛼▷1,▷2 > 0, consider another profile 𝑅′ with 𝑅′ (▷1) = 2/3 and 𝑅′ (▷2) = 1/3. By 2RP, we
get that 𝑓 (𝑅′) = {▷1} and thus that 2/3 · 𝑐 (▷1,▷1) + 1/3 · 𝑐 (▷2,▷1) < 2/3 · 𝑐 (▷1,▷2) + 1/3 · 𝑐 (▷2,▷2).
Because 𝑐 (▷1,▷2) = 𝑐 (▷2,▷1) and 𝑐 (▷1,▷1) = 𝑐 (▷2,▷2) = 0, we derive that 𝛼▷1,▷2 > 0.

Now, fix an arbitrary ranking ≻. Since swap(▷1,▷2) = 1, there is exactly one pair of alternatives
on which▷1 and▷2 disagree. Let us denote them by 𝑎 and𝑏, i.e., 𝑎 ▷1 𝑏 and𝑏 ▷2 𝑎. We subsequently
assume that 𝑏 ≻ 𝑎 and discuss the case that 𝑎 ≻ 𝑏 later. Let 𝑑 = swap(≻,▷1) and observe that
swap(≻,▷2) = 𝑑 − 1 (see Figure 6 for an illustration). Moreover, we define 𝑅 as the profile with
𝑅(≻) = 1/2𝑑 and𝑅(▷1) = 1−1/2𝑑. Since 1/2𝑑·swap(≻,▷1) = 1/2 and (1−1/2𝑑)·swap(≻,▷1) = 𝑑−1/2, 2RP
implies that▷1,▷2 ∈ 𝑓 (𝑅). Thus, by the definition of ranking scoring functions,𝐶 (𝑅,▷1) = 𝐶 (𝑅,▷2),
which further implies that 0 = 2𝑑 ·𝐶 (𝑅,▷1) − 2𝑑 ·𝐶 (𝑅,▷2). We can now compute that

0 = 𝑐 (≻,▷1) + (2𝑑 − 1)𝑐 (▷1,▷1) − 𝑐 (≻,▷2) − (2𝑑 − 1)𝑐 (▷1,▷2)
= 𝑐 (≻,▷1) − 𝑐 (≻,▷2) − (2𝑑 − 1)𝛼▷1,▷2 .

Since 𝑐SqK (≻,▷1) − 𝑐SqK (≻,▷2) = swap(≻,▷1)2 − swap(≻,▷2)2 = 𝑑2 − (𝑑 − 1)2 = 2𝑑 − 1, it follows
that 𝑐 (≻,▷1) − 𝑐 (≻,▷2) = 𝛼▷1,▷2 (𝑐SqK (≻,▷1) − 𝑐SqK (≻,▷2)).
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Lastly, let us consider the case of 𝑎 ≻ 𝑏. By analogous reasoning, we obtain that 𝑐 (≻,▷2) −
𝑐 (≻,▷1) = 𝛼▷2,▷1 (𝑐SqK (≻,▷2) − 𝑐SqK (≻,▷1)). By Equation (2) and sidewise multiplication by −1,
we hence infer the thesis of this Step also in this case.

Step 2: Consider three rankings ▷1,▷2,▷3 ∈ R with swap(▷1,▷2) = swap(▷2,▷3) = 1 and let
𝛼▷1,▷2 and 𝛼▷2,▷3 denote the constants derived in the previous step. We will show in this step that
𝛼▷1,▷2 = 𝛼▷2,▷3 . If𝑚 = 2, then necessarily ▷1 = ▷3 and our claim directly follows from Equation (2).
Thus, assume𝑚 ⩾ 3, let ◀2 denote the ranking that is completely reverse of ▷2, and let 𝑑max =(

𝑚
2
)
= swap(◀2,▷2). Furthermore, we define 𝑅 as the profile with 𝑅(◀2) = 1/𝑑max and 𝑅(▷2) =

1 − 1/𝑑max (see Figure 6 for an illustration). Observe that 1/𝑑max · swap(◀2,▷2) = 1 and (1 − 1/𝑑max) ·
swap(◀2,▷2) = 𝑑max−1. Hence, 2RP implies that all rankings in swap distance 1 from▷2 are selected
by 𝑓 . In particular, ▷1,▷3 ∈ 𝑓 (𝑅). By the definition of the ranking scoring function, this means
that 𝐶 (𝑅,▷1) = 𝐶 (𝑅,▷3), and therefore also 𝐶 (𝑅,▷1) −𝐶 (𝑅,▷2) = 𝐶 (𝑅,▷3) −𝐶 (𝑅,▷2). Next, Step
1 implies that 𝐶 (𝑅,▷1) −𝐶 (𝑅,▷2) = 𝛼▷1,▷2 (𝐶SqK (𝑅,▷1) −𝐶SqK (𝑅,▷2)) and 𝐶 (𝑅,▷3) −𝐶 (𝑅,▷2) =
𝛼▷3,▷2 (𝐶SqK (𝑅,▷3) −𝐶SqK (𝑅,▷2)). Since we have 𝐶SqK (𝑅,▷1) = 𝐶SqK (𝑅,▷1) = 1/𝑑max · (𝑑max − 1)2 +
(1 − 1/𝑑max) · 12 < 1/𝑑max · 𝑑2

max = 𝐶SqK (𝑅,▷2), we now derive that

𝛼▷1,▷2 =
𝐶 (𝑅,▷1) −𝐶 (𝑅,▷2)

𝐶SqK (𝑅,▷1) −𝐶SqK (𝑅,▷2)
=

𝐶 (𝑅,▷3) −𝐶 (𝑅,▷2)
𝐶SqK (𝑅,▷3) −𝐶SqK (𝑅,▷2)

= 𝛼▷3,▷2 .

Hence, by Equation (2), it follows that 𝛼▷1,▷2 = 𝛼▷2,▷3 .

Step 3: Finally, we will show that 𝑐 is proportional to 𝑐SqK, so that 𝑓 is the Squared Kemeny
rule. To this end, we first show that 𝛼▷,▷′ = 𝛼▷+,▷∗ , for all ▷,▷′,▷+,▷∗ ∈ R with swap(▷,▷′) =
swap(▷+,▷∗) = 1. To see this, observe that there exists a sequence of rankings ▷1,▷2, . . . ,▷𝑘 such
that ▷1 = ▷, ▷2 = ▷′, ▷𝑘−1 = ▷+, ▷𝑘 = ▷∗, and swap(▷𝑖 ,▷𝑖+1) = 1 for every 𝑖 ∈ {1, . . . , 𝑘 − 1}.
Then, Step 2 implies that 𝛼▷,▷′ = 𝛼▷1,▷2 = · · · = 𝛼▷𝑘−1,▷𝑘

= 𝛼▷+,▷∗ . We hence drop the index of these
constants and simply refer to them by 𝛼 .
Next, take arbitrary rankings ≻,▷,▷′ ∈ R and let ▷1, . . . ,▷𝑘 be a sequence of rankings such

that ▷1 = ▷, ▷𝑘 = ▷′, and swap(▷𝑖 ,▷𝑖+1) = 1 for every 𝑖 ∈ {1, . . . , 𝑘 − 1}. Using the “tele-
scoping sum” technique twice, we get that 𝑐 (≻,▷) − 𝑐 (≻,▷′) =

∑𝑘−1
𝑖=1 (𝑐 (≻,▷𝑖 ) − 𝑐 (≻,▷𝑖+1)) =

𝛼
∑𝑘−1

𝑖=1
(
𝑐SqK (≻,▷𝑖 ) − 𝑐SqK (≻,▷𝑖+1)

)
= 𝛼 (𝑐SqK (≻,▷) − 𝑐SqK (≻,▷′)) .

From this we get that 𝑐 is proportional to 𝑐SqK. Indeed, for every two rankings ≻,▷ ∈ R, we get
that 𝑐 (≻,▷) = 𝑐 (≻,▷) − 𝑐 (≻, ≻) = 𝛼 (𝑐SqK (≻,▷) − 𝑐SqK (≻, ≻)) = 𝛼 (𝑐SqK (≻,▷). Since 𝛼 > 0, this
means that 𝑓 is the Squared Kemeny rule. □

3.3 Efficiency, Participation, and Strategyproofness
We will next show that the Squared Kemeny rule satisfies desirable efficiency and participation
properties but violates strategyproofness. To define these axioms for SPFs, we first need to specify
how we compare two output rankings ▷1, ▷2 based on an input ranking ≻. Following the literature
[e.g., Athanasoglou, 2016, Bossert and Sprumont, 2014, Bossert and Storcken, 1992], we use the
swap distance between the input ranking and the output rankings: given an input ranking ≻, ▷1
is weakly preferred to ▷2 (denoted by ▷1 ¥ ▷2) if swap(≻,▷1) ⩽ swap(≻,▷2), and ▷1 is strictly
preferred to ▷2 (denoted by ▷1 ≻ ▷2) if swap(≻,▷1) < swap(≻,▷2). It does not make a difference
for these purposes whether we use the swap distance or the squared swap distance since they
induce the same preferences. Next, we will define efficiency, participation, and strategyproofness.

Efficiency. An outcome is (Pareto) efficient if it is not possible to make one voter better off without
making any other voter worse off. Formally, we say that a ranking ▷1 dominates another ranking
▷2 in a profile 𝑅 if ▷1 ¥ ▷2 for all ≻ ∈ supp(𝑅) and ▷1 ≻ ▷2 for some ≻ ∈ supp(𝑅). Moreover, a
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ranking ▷ is efficient for a profile 𝑅 if it is not dominated by any other ranking. Finally, an SPF 𝑓 is
efficient if, for every profile 𝑅, every ranking ▷ ∈ 𝑓 (𝑅) is efficient.4

Participation. The axiom of participation is typically formulated in electoral settings and intu-
itively requires that it is never better for a group of agents to abstain from an election than to
participate. In our context, participation can be seen as a consistency notion: if ▷1 is a winning
ranking in the profile 𝑅 and we add additional criteria to 𝑅 according to which ▷1 is better than ▷2,
then ▷2 should not be winning in the extended profile. More formally, we say an SPF 𝑓 satisfies
participation if there are no profiles 𝑅1, 𝑅2, a constant 𝜆 ∈ (0, 1) ∩ Q, and rankings ▷1 ∈ 𝑓 (𝑅1),
▷2 ∈ 𝑓 (𝜆𝑅1+(1−𝜆𝑅2)) such that▷1 ¥ ▷2 for all ≻ ∈ supp(𝑅2) and▷1 ≻ ▷2 for some ≻ ∈ supp(𝑅2).

Strategyproofness. As the last axiom of this section, we will consider strategyproofness. This
axiom is also typically studied in electoral settings and requires that agents should never be better
off by lying than by voting truthfully. We hence say an SPF 𝑓 is strategyproof if there are no profiles
𝑅1, 𝑅2, rankings ≻1 ∈ supp(𝑅1), ≻2 ∈ R, and a constant 𝜀 ∈ (0, 𝑅1 (≻1)] such that (i) 𝑓 (𝑅1) = {▷1}
and 𝑓 (𝑅2) = {▷2} for some rankings ▷1,▷2 with ▷2 ≻1 ▷1, and (ii) 𝑅2 (≻1) = 𝑅1 (≻1) − 𝜀, 𝑅2 (≻2) =
𝑅1 (≻2) + 𝜀, and 𝑅2 (≻) = 𝑅1 (≻) for all ≻ ∈ R \ {≻1, ≻2}.

Proposition 3.4. The Squared Kemeny rule satisfies efficiency and participation but violates
strategyproofness.

Proof. We first show that Squared Kemeny is efficient. For this, let 𝑅 be a profile and ▷1, ▷2 be
two rankings such that ▷1 dominates ▷2 in 𝑅. It is easy to check that𝐶SqK (𝑅,▷1) < 𝐶SqK (𝑅,▷2), so
▷2 ∉ SqK(𝑅), which implies that the Squared Kemeny rule is indeed efficient.

For participation, consider two profiles 𝑅1, 𝑅2, and two rankings ▷1, ▷2 such that ▷1 ∈ SqK(𝑅1),
▷1 ¥ ▷2 for all ≻ ∈ supp(𝑅2), and ▷1 ≻ ▷2 for some ≻ ∈ supp(𝑅2). Since ▷1 ∈ SqK(𝑅1), we
have𝐶SqK (𝑅1,▷1) ⩽ 𝐶SqK (𝑅1,▷2). Moreover, from the conditions on 𝑅2 we get that𝐶SqK (𝑅2,▷1) <
𝐶SqK (𝑅1,▷2). This implies for every 𝜆 ∈ (0, 1) ∩ Q that ▷2 ∉ SqK(𝜆𝑅1 + (1 − 𝜆)𝑅2) because
𝐶SqK (𝜆𝑅1 + (1 − 𝜆)𝑅2,▷1) = 𝜆𝐶SqK (𝑅1,▷1) + (1 − 𝜆)𝐶SqK (𝑅2,▷1)

> 𝜆𝐶SqK (𝑅1,▷2) + (1 − 𝜆)𝐶SqK (𝑅2,▷2) = 𝐶SqK (𝜆𝑅1 + (1 − 𝜆)𝑅2,▷2).
Hence, the Squared Kemeny rule indeed satisfies participation.

Finally, we turn to strategyproofness, and consider the following two profiles 𝑅1 and 𝑅2.

𝑅1:

1/3 5/9 1/9
𝑎 𝑏 𝑐

𝑏 𝑎 𝑎

𝑐 𝑐 𝑏

𝑅2:

1/3 4/9 1/9 1/9
𝑎 𝑏 𝑐 𝑐

𝑏 𝑎 𝑎 𝑏

𝑐 𝑐 𝑏 𝑎

It can be verified that Squared Kemeny uniquely chooses the ranking ▷1 = 𝑎 ▷1 𝑏 ▷1 𝑐 for 𝑅1 and
the ranking ▷2 = 𝑏 ▷2 𝑎 ▷2 𝑐 for 𝑅2. Since the profile 𝑅2 arises from the profile 𝑅1 by moving
probability 1/9 from ≻ = 𝑏 ≻ 𝑎 ≻ 𝑐 to 𝑐 ≻′ 𝑏 ≻′ 𝑎 and ▷2 ≻ ▷1, this shows that the Squared Kemeny
rule is manipulable. This example also shows that Squared Kemeny fails the weaker “betweenness”
version of strategyproofness of Bossert and Sprumont [2014], which Kemeny does satisfy. □

4 PROPORTIONALITY GUARANTEES
In our axiomatic treatment, we have discussed the behavior of the Squared Kemeny rule on profiles
with a lot of structure (single-crossing) and in particular those with only two rankings (2RP). Does
Squared Kemeny retain its behavior as an average in general? This is what we will quantify in
4Bossert and Sprumont [2014] show that if 𝑎 ≻ 𝑏 for all ≻ ∈ supp(𝑅) , then we also have 𝑎 ▷ 𝑏 whenever ▷ is efficient in 𝑅.
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≻1

≻2

≻3
(a) Kemeny

≻1

≻2

≻3
(b) Squared Kemeny

Fig. 7. The simplex of profiles in which the rankings ≻1 = 𝑎𝑏𝑐𝑑𝑒f𝑔ℎ, ≻2 = f𝑒𝑑𝑐𝑏𝑎ℎ𝑔, and ≻3 = 𝑏𝑎ℎ𝑔f𝑑𝑒𝑐 occur.
Each point of the simplex is colored according to the swap distance of the (a) Kemeny and (b) Squared Kemeny
ranking to the input rankings, with a point’s cyan (resp., magenta, yellow) component being more intense if
the output ranking is closer to ≻1 (resp., ≻2, ≻3). Both rules output ▷∗ = 𝑏𝑎f𝑒𝑑𝑐ℎ𝑔 (which is equidistant to
the three input rankings) when no input ranking has weight greater than 1

2 . Otherwise, Kemeny outputs the
majority ranking, while Squared Kemeny smoothly moves towards an input ranking as its weight increases.

this section. As an initial matter, we can check what Squared Kemeny does on profiles in which
three rankings occur. For a fixed set of three rankings, we can use a simplex of weights to picture
all profiles based on these rankings. For each point of the simplex (i.e., for each profile), we can
compute the Kemeny and Squared Kemeny outcomes, and we can color the point to indicate how
close the output rankings are to each of the input rankings. We show the result of this exercise in
Figure 7. This confirms our expectation that Squared Kemeny takes rankings with smaller weight
into account, while Kemeny frequently ignores them.
For general profiles with any number of rankings, we can ask about the maximum (over all

possible profiles) swap distance between the output ranking and an input ranking, as a function of
its weight 𝛼 ∈ [0, 1]. For an ideal proportional rule, there should be a roughly linear relationship
between these. For Kemeny, the distance can be as large as

(
𝑚
2
)
(the maximum possible swap

distance) when 𝛼 < 1
2 , and it is 0 when 𝛼 > 1

2 . For Squared Kemeny, we can compute its behavior
for fixed𝑚 using a linear program that searches for the worst-case profile, which yields the plot in
Figure 3 shown in the introduction. That function is approximately linear, except for a “hump” for
small 𝛼 , which indicates that Squared Kemeny can output the reverse of an input ranking which has
weight as large as 𝛼 ≈ 17%. We do not have a satisfactory explanation for these humps (the profiles
witnessing this worst-case behavior are very complicated), and we do not know how big the hump
is as𝑚 → ∞, but we do know it cannot exceed 𝛼 = 25% (by Theorem 4.2 below). In addition to
computing the exact worst-case behavior for fixed𝑚, we can also prove a theoretical upper bound
that works for any𝑚, which bounds the distance between the Squared Kemeny ranking and a
weight-𝛼 input ranking. This bound is also shown in Figure 3.

Theorem 4.1. Let 𝑅 be a profile and let ≻∗ ∈ R be a ranking with weight 𝑅(≻∗) = 𝛼 . Then

swap(≻∗,▷) ⩽
√︂

1 − 𝛼

𝛼
·
(
𝑚

2

)
for every ▷ ∈ SqK(𝑅).

Proof. Note that𝐶SqK (𝑅, ≻∗) ⩽ (1 − 𝛼) ·
(
𝑚
2
)2 since

(
𝑚
2
)
is the maximum swap distance between

two rankings, and an 𝛼 fraction of the profile has swap distance 0 to ≻∗. Let ▷ ∈ SqK(𝑅) be a
ranking selected by Squared Kemeny and write 𝑑 = swap(≻∗,▷). Then we have𝐶SqK (𝑅,▷) ⩾ 𝛼 ·𝑑2.
Because ▷ optimizes the Squared Kemeny cost, we have𝐶SqK (𝑅,▷) ⩽ 𝐶SqK (𝑅, ≻∗) and thus 𝛼 ·𝑑2 ⩽
(1 − 𝛼)

(
𝑚
2
)2. Solving for 𝑑 , we get 𝑑 ⩽

√︁
(1 − 𝛼)/𝛼 ·

(
𝑚
2
)
, as required. □
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The above bound makes sense for profiles with few rankings that are not very similar to each
other. But in contexts with many rankings, some of which are similar to each other, it would be
better to guarantee to groups of rankings that the output ranking should not be too far away from
them, on average. We will formalize this in a similar way to the work of Skowron and Górecki
[2022], by considering arbitrary groups of rankings, without making any cohesiveness assumptions
(that would say that the rankings in a group must be similar to each other). Note that such a setup
limits the guarantees we can give: for a group of size 𝛼 = 1 (i.e. all the rankings together), we cannot
guarantee that the output agrees with the group on more than half the pairwise comparisons on
average (consider for example a profile where one ranking and its reverse each have weight 1

2 ).
To state our result, given a profile 𝑅, we say that 𝑆 : R → [0, 1] ∩ Q is a subprofile of 𝑅 if

𝑆 (≻) ⩽ 𝑅(≻) for all rankings ≻ ∈ R. The size of 𝑆 is
∑

≻∈R 𝑆 (≻). We can think of 𝑆 as a group of
voters, and its size as the fraction of the entire electorate that they make up. We now provide a
bound on the average satisfaction of any group.

Theorem 4.2. Let 𝑅 be a profile and let 𝑆 be a subprofile of 𝑅 with size 𝛼 . Then

1
𝛼

∑︁
≻∈R

𝑆 (≻) · swap(≻,▷) ⩽
√︂

1
4𝛼 ·

(
𝑚

2

)
+ 𝑜 (𝑚1.5) for every ▷ ∈ SqK(𝑅) .

Proof. Let 𝑑max =
(
𝑚
2
)
be the maximum swap distance between two rankings. Fix any ranking

≻ ∈ R. For each 𝑖 ∈ {0, 1, . . . , 𝑑max}, let𝑀𝑖 be the number of rankings ▷ ∈ R with swap(≻,▷) = 𝑖 .
The values𝑀0, 𝑀1, . . . , 𝑀𝑑max are the Mahonian numbers and it is known [Ben-Naim, 2010] that

𝑑max∑︁
𝑖=0

𝑀𝑖 · 𝑖2 =𝑚!
(

1
4𝑑

2
max +

2𝑚3 + 3𝑚2 − 5𝑚
72

)
.

For a fixed profile 𝑅, the average Squared Kemeny cost 𝐶SqK (𝑅,▷) over all rankings ▷ is
1
𝑚!

∑︁
▷∈R

∑︁
≻∈R

𝑅(≻) · swap(≻,▷)2 =
1
𝑚!

∑︁
≻∈R

∑︁
▷∈R

𝑅(≻) · swap(≻,▷)2 =
1
𝑚! ·𝑚!

(
1
4𝑑

2
max +𝑂 (𝑚3)

)
.

Therefore, there exists a ranking ▷ ∈ R such that 𝐶SqK (𝑅,▷) ⩽ 𝑑2
max/4 +𝑂 (𝑚3). From minimality

of Squared Kemeny, we know that this is true for any ▷ ∈ SqK(𝑅). Since 𝑆 is a subprofile of 𝑅,
1
𝛼

∑︁
≻∈R

𝑆 (≻) · swap(≻,▷)2 ⩽
1
𝛼

∑︁
≻∈R

𝑅(≻) · swap(≻,▷)2 ⩽
1
𝛼
𝑑2

max/4 +𝑂 (𝑚3).

Finally, by Jensen’s inequality we get that (∑≻∈R 𝑆 (≻) · swap(≻,▷)/𝛼)2 ⩽ 𝑑2
max/(4𝛼) + 𝑂 (𝑚3),

since the square function is convex, which yields the thesis. □

0 0.2 0.4 0.6 0.8 1
0.5

0.75

1

𝛼 =

Upper bound

Squared Kemeny

Lower bound

Fig. 8. Bound of Theorem 4.2 for groups of rankings.

In Figure 8, we show the upper bound ob-
tained in Theorem 4.2 in terms of normalized
swap distance (so

(
𝑚
2
)
is mapped to 1). For

𝑚 = 6, we also show the actual worst-case per-
formance of Squared Kemeny, which can be
computed for fixed𝑚 using linear programs for
finding worst-case profiles that maximize the
distance between the output and some size-𝛼
group. The figure also shows a lower bound,
which is obtained by linear programs that find
profiles where all𝑚! output rankings are bad
simultaneously in the sense that some size-𝛼 group incurs at least the lower bound’s distance.
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5 COMPUTATION
The computational complexity of the Kemeny rule has been extensively studied. The problem of
deciding if there is a ranking with at most a given cost is NP-complete [Bartholdi, III et al., 1989],
even for a constant number of input rankings [Bachmeier et al., 2019, Biedl et al., 2009, Dwork
et al., 2001]. Thus, it is reasonable to expect that the analogous problem for the Squared Kemeny
rule is also NP-complete, and this is indeed the case, see Appendix B.1.
Theorem 5.1. The problem of deciding, given a profile 𝑅 and a number 𝐵, whether there exists a

ranking ▷ with 𝐶SqK (𝑅,▷) ⩽ 𝐵, is NP-complete, even for profiles with 4 rankings with equal weight.

The proof is by reduction from the problem for the Kemeny rule, and uses the same technique
used by Biedl et al. [2009] for showing that the egalitarian Kemeny rule (which selects the ranking
where the maximum swap distance to any input ranking is minimized) is NP-complete to compute.
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Fig. 9. The median running time of com-
puting the Squared Kemeny using Gurobi
for a given number of alternatives and 𝑛 =

{3, 4, 5} rankings occurring in the profile
with equal weights, drawn uniformly at ran-
dom. The values are based on 50 samples.

There exists an ILP formulation for computing the
Kemeny rule, which is reasonably efficient in practice
[Conitzer et al., 2006]. While this ILP formulation de-
pends on the linear nature of the Kemeny objective, it is
still possible to give an ILP formulation for the Squared
Kemeny rule, using the same trick used by Caragiannis
et al. [2019] for computing the maximum Nash welfare
solution for fair allocation, and generalized by Bredereck
et al. [2020] for various covering problems. The encoding
is described in Appendix B.2. We found that it allows us to
evaluate the Squared Kemeny rule reasonably efficiently
up to𝑚 = 80 (see Figure 9).5
The Kemeny rule also admits efficient approximation

algorithms [Ailon et al., 2008, Coppersmith et al., 2010,
Van Zuylen and Williamson, 2009] and even a PTAS
[Kenyon-Mathieu and Schudy, 2007]. The Squared Ke-
meny rule admits a simple 4-approximation algorithm
(output the input ranking that has the best score, see Appendix B.3). In addition, we can show that
the optimal Kemeny ranking provides a 2-approximation to the Squared Kemeny rule. Combining
this with the known PTAS for Kemeny, we obtain the following result, proved in Appendix B.4:
Theorem 5.2. For every constant 𝜀 > 0, there exists a polynomial-time (2 + 𝜀)-approximation to

the Squared Kemeny rule.

We believe, however, that such approximation algorithms have limited interest for our applica-
tions, since a ranking may have a good approximation factor to the optimum Squared Kemeny score
while not satisfying the desirable proportionality properties of the Squared Kemeny rule. Indeed,
the rankings returned by Kemeny and Squared Kemeny may be very far apart from each other (in
the extreme case, they may be opposite to each other except for 1 shared pairwise comparison,
see Appendix B.5), even though Kemeny provides a 2-approximation to Squared Kemeny. Still,
approximation algorithms may have their use, for example, as subroutines in branch and bound
algorithms. We leave the question of whether Squared Kemeny admits a PTAS to future work.

6 EMPIRICAL ANALYSIS
In this section, we compare the performance of the Squared Kemeny rule and the Kemeny rule
based on several empirical experiments.
5We note that outliers (with up to 9 times longer running time than the median) do occur.
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Rank GDP pc. (40%) Air Quality (30%) Sunniness (30%) Kemeny Sq. Kemeny

1. San Francisco New York City Dubai San Francisco San Francisco (−)
2. New York City Dublin Cairo New York City New York City (−)
3. Zurich Toronto Johannesburg Zurich Sydney (△2)
4. Dublin Buenos Aires San Francisco Dublin Toronto (△2)
5. Sydney London Lahore Sydney Dubai (△6)

6. Toronto Sydney Rome Toronto Rome (△6)
7. London Rio de Janeiro Sydney London Johannesburg (△6)
8. Paris San Francisco Mumbai Tokyo Buenos Aires (△6)
9. Hong Kong Zurich New York City Paris Rio de Janeiro (△6)
10. Tokyo Tokyo Mexico Hong Kong Zurich (▽7)

11. Dubai Rome Buenos Aires Dubai Dublin (▽7)
12. Rome Moscow Bangkok Rome London (▽5)
13. Seoul Paris Rio de Janeiro Johannesburg Tokyo (▽5)
14. Moscow Hong Kong Istanbul Buenos Aires Hong Kong (▽4)
15. Shanghai Mexico Seoul Rio de Janeiro Mexico (△3)

16. Johannesburg Johannesburg Toronto Seoul Seoul (−)
17. Rio de Janeiro Seoul Tokyo Moscow Moscow (−)
18. Istanbul Bangkok Shanghai Mexico Paris (▽9)
19. Buenos Aires Istanbul Lagos Bangkok Bangkok (−)
20. Mexico Lagos Hong Kong Istanbul Istanbul (−)

21. Bangkok Shanghai Moscow Shanghai Shanghai (−)
22. Mumbai Cairo Paris Cairo Cairo (−)
23. Cairo Dubai Zurich Mumbai Mumbai (−)
24. Lagos Mumbai London Lagos Lagos (−)
25. Lahore Lahore Dublin Lahore Lahore (−)

Table 1. The three input rankings of cities and the results of their aggregation using the Kemeny and Squared
Kemeny rule. In the rightmost column we also report how many positions a city has moved in the Squared
Kemeny ranking in comparison to the Kemeny ranking.

6.1 Aggregate City Ranking
Our first experiment is a detailed example. We selected 25 cities around the world and ranked them,
based on their Gross Domestic Product (GDP) per capita, air quality (measured by average PM 2.5
concentration), and sunniness (based on the average number of sunshine hours in a year). The
details of the sources used can be found in Appendix C.1. Then, we assigned weight 40% to GDP
per capita, 30% to air quality, and 30% to sunniness. We aggregated the rankings using the Kemeny
and Squared Kemeny rules. While Squared Kemeny selected a unique ranking, Kemeny selected 4
tied outputs, in which a few cities differ by 1 to 3 positions. When increasing the weight on the
GDP ranking by a small amount, only one of these outputs stays optimal, and we went with that
output. The aggregation results are presented in Table 1.

Note that the top-5 of the Kemeny ranking is identical to the top-5 of the GDP per capita ranking.
This includes Dublin and Zurich, which are both in the bottom-5 of the sunniness ranking. This is
exactly the behavior we would like to avoid in the proportional aggregation of rankings: focusing
mainly on one input ranking and disregarding another with still significant weight assigned to it.
In contrast, both Dublin and Zurich do not appear in the top-5 of the ranking selected by the

Squared Kemeny rule. Instead, its top-5 includes Toronto (which is in the middle of the sunniness
ranking and relatively high in both GDP per capita and air quality rankings) and Dubai (which,
although near the bottom of the air quality ranking, is the first according to sunniness and 11-th
based on GDP per capita). In this way, the top-5 of the Squared Kemeny rule output ranking
arguably offers more uniform representation of the highest ranked cities across all input rankings.
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Disc Circle Mallows Mxt.
𝜙1 = 𝜙2 = 0.5

Mallows Mxt.
𝜙1 = 0.7, 𝜙2 = 0.3

Breakfast Countries

Fig. 10. Maps of preferences. For the Kemeny rule the position of its output is denoted with a red diamond,
and for Squared Kemeny with a green square.

6.2 Drawing Embeddings of Rankings
Next, we visualize how the rankings output by the Kemeny and Squared Kemeny rules relate to the
input rankings, using two methods of embedding rankings into 2-dimensional Euclidean space.
The first method is called map of preferences, introduced by Faliszewski et al. [2023], and starts

by computing the swap distances between each pair of rankings present in a profile. Then, we
apply a classical multidimensional scaling algorithm [Torgerson, 1952] to put each ranking as a dot
on a plane in such a way that the Euclidean distances between the dots reflect the swap distances
between the rankings as well as possible. By the size of a dot we signify the weight of a given
ranking in the profile. In order to obtain the coordinates for the outputs of the Kemeny and Squared
Kemeny rules as well, we simply include them while computing the distance matrix.
Figure 10 presents maps of preferences of six profiles which we have generated using different

models. For each, we sampled 200 rankings, with possible repetitions, over 10 alternatives and
constructed the profile by assigning each ranking a weight proportional to the number of times it
was sampled. We have also verified that the behavior of Kemeny and Squared Kemeny visible on
these examples is consistent across different profiles generated in the same way.
The first two pictures present profiles drawn from the Euclidean model, in which we sample 10

alternative points and 200 voter points uniformly at random from the unit disc (the first picture)
or from its boundary, the unit circle (second picture). Then, for every voter point we record a
ranking of all alternatives in order of increasing distance from the voter. For the disc, the Kemeny
and Squared Kemeny rules select rankings very close to each other. However, for the circle, the
difference is significant. While Squared Kemeny chooses a ranking that is in the center, Kemeny
outputs a ranking that is similar to one of the input rankings on a circle. This is because for every
ranking on the circle, we also have the reversed (or close to the reversed) ranking on the opposite
side of the circle. Thus, all possible rankings have a similar average swap distance to the profile
and the smallest occurs on the part of the circle from which, by chance, we sampled more voter
points, which is then chosen by Kemeny. In contrast, since Squared Kemeny minimizes the average
squared swap distance, it tries to equalize the distances to all rankings present in the profile.

The next two pictures show the maps of preferences for profiles generated from the mixture of
two Mallows models [Mallows, 1957]. Given a central ranking ≻ and a noise parameter 𝜙 ∈ [0, 1],
we sample each ranking ≻′ with probability proportional to 𝜙 swap(≻,≻′ ) under the Mallows model.
Thus, for smaller 𝜙 , the distribution is more concentrated around ≻. We generated 55% of the
rankings using one Mallows model with the central ranking ≻1 and noise 𝜙1 and 45% using another
Mallows model with the central ranking ≻2 that is the complete reverse of ≻1 and noise 𝜙2. When
𝜙1 = 𝜙2 = 0.5 (the third picture), the Kemeny rule outputs ≻1, the central ranking of the Mallows
model responsible for 55% of the rankings while the Squared Kemeny rule selects a ranking in
between ≻1 and ≻2. Interestingly, if 𝜙2 is significantly smaller than 𝜙1 (the fourth picture), the
Kemeny rule outputs the central ranking of the smaller but more concentrated model, while Squared
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Fig. 11. Euclidean embeddings. For the Kemeny rule, the positions of its outputs are denoted with a red
diamond, and for Squared Kemeny with a green square.

Kemeny is still between ≻1 and ≻2. This confirms our intuition that Squared Kemeny works like an
average of rankings.
Finally, the last two pictures present the profiles drawn from models based on real-world data

from Preflib [Mattei and Walsh, 2013]: the breakfast dataset [Green and Rao, 1972] that contains 42
preference orders over 15 breakfast items; and the 2016 countries ranking dataset [Boehmer and
Schaar, 2023], where 107 countries are ranked according to 14 different criteria. For each dataset,
we sampled with replacement 200 rankings and then restricted each ranking to 10 randomly chosen
alternatives. For both profiles, Kemeny and Squared Kemeny choose similar rankings, with the
former closer to the most concentrated part, and the latter closer to the center of the picture.

The second method of visualizing the positions of rankings is specific to profiles drawn from the
Euclidean model. Given a profile specified by voter and alternative locations, and given an output
ranking ▷, we try to find a point in the same Euclidean space that would induce the ranking ▷. In
general, such a point may not exist, but using an ILP we can find a point that induces a ranking
with minimal possible swap distance to ▷.

In our experiments shown in Figure 11, we sample𝑚 = 10 candidate locations uniformly from
the unit square, and 𝑛 = 40 voter locations according to different distributions of interest. We then
compute the outputs of the Kemeny and Squared Kemeny rules and embed them as a point in
space. For each voter location distribution, we repeat this process 100 times and superimpose the
results for the 100 profiles in the same figure, showing voters as blue dots, Kemeny rankings as red
diamonds, and Squared Kemeny rankings as green squares.
The first voter distribution samples the voter locations uniformly from the unit disc, and we

see that both rules select central rankings, with somewhat more variance in the Kemeny rankings.
For the second and third picture, we sample voter locations from two Gaussians centered in the
bottom left and top right corners. In the second picture, we sample 20 voters each from the two
Gaussians and see that both rules select rankings roughly midway between the center points of the
Gaussians. In the third picture, we sample 30 voters from the bottom left and 10 voters from the top
right. Kemeny selects rankings located within the bigger cluster, while Squared Kemeny chooses
locations that interpolate between the two (while still being closer to the larger cluster). The fourth
and fifth picture repeat the same process with four Gaussians with voters uniformly distributed (in
the fourth picture) or with 25 voters in the bottom left and 5 voters each in the other three clusters.

6.3 Worst-Case Average Distance
Our final experiment revisits the problem studied in Section 4, where we considered the average
distance between the rankings of a group of voters and the output ranking. There, we bounded
the distance for the worst-case profile, while here we compute it for randomly sampled profiles.
Consider a profile 𝑅 and an output ranking ▷. For each size 𝛼 ∈ [0, 1], we look for the “unhappiest”
group 𝑆 (i.e., subprofile of 𝑅) of size 𝛼 , in the sense that the average distance between ▷ and the
rankings of 𝑆 is large. Formally, we define 𝜇𝛼 (𝑅,▷) = max𝑆⊆𝑅: |𝑆 |=𝛼

1
𝛼

∑
≻∈R 𝑆 (≻) · swap(≻,▷) for

this worst average distance, where 𝑆 ⊆ 𝑅 denote that 𝑆 is a subprofile of 𝑅 with size |𝑆 | = 𝛼 .
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Fig. 12. The maximal average distances be-
tween the subprofile of size𝛼 and the output
of the Kemeny (red) and Squared Kemeny
(green) rules, plus lower bound (gray).

For the experiment, we sampled 100 profiles with 8
alternatives and 50 rankings according to various distri-
butions. The results of our experiment for the Euclidean
disc model is presented in Figure 12. (See Appendix C.2
for other distributions.) For each profile and each size
𝛼 ∈ {1/50, 2/50, . . . , 1}, we put a red dot indicating the value
of 𝜇𝛼 (𝑅,▷) for Kemeny, and a green dot for Squared Ke-
meny. The lines show the average value for each 𝛼 .
Figure 12 also shows a lower bound. For each 𝛼 , this

is computed by finding the ranking ▷ that optimizes
𝜇𝛼 (𝑅,▷), and placing a gray dot at that value. Note that
different rankings may be optimum for different 𝛼 , and
so this lower bound is “unfair” to rules like Kemeny or
Squared Kemeny, which must choose a single ranking
which gets evaluated for all 𝛼 simultaneously.

We see that when 𝛼 is close to 1, Kemeny leads to smaller distances than Squared Kemeny. This
is to be expected, as Kemeny minimizes the overall average distance. However, for 𝛼 smaller than
0.8, it is Squared Kemeny that returns the lower values on average. Observe also that the difference
between the Kemeny and Squared Kemeny for 𝛼 close to 1 is negligible, while the differences for 𝛼
close to 0 are significant or even substantial depending on the considered model.

7 CONCLUSIONS AND FUTUREWORK
We have studied the Squared Kemeny rule and argued that it behaves more appropriately in contexts
where we want to aggregate rankings proportionally, compared to its better-known cousin the
Kemeny rule. In particular, we have shown a full characterization of the Squared Kemeny rule
based on a proportionality axiom, proved general proportionality guarantees for this rule, and
demonstrated in an experimental study that it behaves similar to a mean. Based on these results,
we conclude that the Squared Kemeny rule has the potential of providing a consensus ranking in
situations where a majoritarian rule such as Kemeny is undesirable.
There are many interesting directions for future work exploring the topic of proportional rank

aggregation. In particular, one could study new SPFs with the aim to find more proportional rules.
For instance, one could consider rules based on the Spearman footrule distance instead of the swap
distance [Diaconis and Graham, 1977, Viappiani, 2015], analogues of Proportional Approval Voting
[Aziz et al., 2017], or the family of “𝑝-Kemeny rules” that minimize the 𝑝-th power of the swap
distance. One could also derive other proportionality axioms that are not defined in terms of swap
distance. For example, following Skowron et al. [2017] who study proportional rankings based on
approval votes, one could phrase proportionality as requiring that every top-initial segment of the
output ranking, viewed as a set, should be a proportional committee. How to adapt this to ranking
input is not clear, though, since it is an open question whether axioms for proportional multi-winner
rules (such as Proportionality for Solid Coalitions, PSC, Aziz and Lee, 2020) are compatible with
committee monotonicity, which is necessary to adapt a multi-winner rule to output a ranking.
Finally, we note that the methods that we have introduced may prove useful in other contexts.

For example, we considered bounds on the maximum dissatisfaction of a voter, as a function of the
voter’s weight. Plotting and bounding these functions could provide insights in all kinds of collective
decision-making problems. Further, our work can be seen as proportional decision-making on
binary issues (“should 𝑎 be ranked above 𝑏?”) under constraints (in our case, transitivity). This
general topic has just started to be explored by researchers [Chandak et al., 2024, Lackner and Maly,
2023, Masařík et al., 2023, Skowron and Górecki, 2022].
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A PROOF OF THEOREM 3.2
In this appendix, we will provide a full proof of Theorem 3.2. To this end, we first note that the
direction from left to right is easy, especially since we have already shown that the Squared Kemeny
rule satisfies 2RP. We thus focus on the converse and suppose for this that 𝑓 is an SPF that satisfies
neutrality, continuity, reinforcement, and 2RP. To prove that 𝑓 is the Squared Kemeny rule, we
will use an equivalent formulation of this rule by exchanging the minimum with a maximum in
its definition: SqK(𝑅) = arg max▷∈R −∑

≻∈R 𝑅(≻) swap(≻,▷)2. Then, our goal is to show that 𝑓 is
the SPF that chooses the rankings that maximize −∑

≻∈R 𝑅(≻) swap(≻,▷)2. For this, we will use a
hyperplane argument as, e.g., showcased by Young and Levenglick [1978].

As a first step, we hence change the domain of 𝑓 from ranking profiles to a numerical space. To
this end, let 𝑏 : {1, . . . , |R |} → R denote an enumeration of all possible input rankings. Moreover,
we define T = {𝑣 ∈ Q𝑚! :

∑𝑚!
𝑖=1 𝑣𝑖 = 1 ∧ 𝑣𝑖 ⩾ 0 for all 𝑖 ∈ {1, . . . ,𝑚!}}. Using the enumeration 𝑏,

we can represent every profile 𝑅 as a vector 𝑣 ∈ T by defining 𝑣𝑖 = 𝑅(𝑏 (𝑖)) for all 𝑖 ∈ {1, . . . ,𝑚!}.
For simplicity, we will denote the vector associated with a profile 𝑅 by 𝑣 (𝑅). Moreover, for every
permutation 𝜏 : 𝐴 → 𝐴, we define the permutation of a vector 𝑣 by 𝜏 (𝑣)𝑖 = 𝑣 𝑗 for all 𝑖, 𝑗 such
that 𝜏 (𝑏 ( 𝑗)) = 𝑏 (𝑖). That is, if the ranking 𝑏 ( 𝑗) has weight 𝑣 𝑗 in the profile 𝑅, then the ranking
𝜏 (𝑏 ( 𝑗)) = 𝑏 (𝑖) has weight 𝜏 (𝑣)𝑖 = 𝑣 𝑗 in the permuted profile 𝜏 (𝑅). Hence, 𝜏 (𝑣 (𝑅)) = 𝑣 (𝜏 (𝑅)).

By the definition of SPFs and profiles, it is straightforward that there is a function𝑔 : T → 2R \{∅}
such that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) for all profiles 𝑅. Furthermore, 𝑔 inherits the desirable properties of 𝑓 :

• 𝑔 satisfies neutrality: it holds for all 𝑣 ∈ T and all permutations 𝜏 : 𝐴 → 𝐴 that 𝑔(𝜏 (𝑣)) =
{𝜏 (▷) : ▷ ∈ 𝑔(𝑣)}.

• 𝑔 satisfies reinforcement: it holds for all 𝑣, 𝑣 ′ ∈ T with 𝑔(𝑣) ∩𝑔(𝑣 ′) ≠ ∅ and all 𝜆 ∈ (0, 1) ∩Q
that 𝑔(𝜆𝑣 + (1 − 𝜆)𝑣 ′) = 𝑔(𝑣) ∩ 𝑔(𝑣 ′).

• 𝑔 satisfies continuity: it holds for all 𝑣, 𝑣 ′ ∈ T that there is a constant 𝜆 ∈ (0, 1) ∩ Q such
that 𝑔(𝜆𝑣 + (1 − 𝜆)𝑣 ′) ⊆ 𝑔(𝑣).

We next extend 𝑔 to the domain Q𝑚! while preserving its desirable properties.

Lemma A.1. There is a neutral, reinforcing, and continuous function 𝑔 : Q𝑚! → 2R \ {∅} such that
𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) for all profiles 𝑅 ∈ R∗.

Proof. Aswe observed before this lemma, there is a neutral, reinforcing, and continuous function
𝑔 : T → 2R \ {∅} such that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) for all 𝑅 ∈ R∗. We will prove this lemma by extending
𝑔 to Q𝑚!. To this end, we will first extend the domain of 𝑔 to T+ = {𝑣 ∈ Q𝑚! :

∑𝑚!
𝑖=1 𝑣𝑖 > 0 ∧ 𝑣𝑖 ⩾

0 for all 𝑖 ∈ {1, . . . ,𝑚!}} and then to Q𝑚!.

Step 1: Extension to T+

For extending 𝑔 to the domain T+, we let 𝑔(𝑣) = 𝑔(𝜆𝑣) for all 𝑣 ∈ T, where 𝜆 = 1∑𝑚!
𝑖=1 𝑣𝑖

is the
unique scalar such that

∑𝑚!
𝑖=1 𝜆𝑣𝑖 = 1. First, we note that 𝑔 is defined for all 𝑣 ∈ T+ as the only

difference between T and T+ is the assumption that
∑𝑚!

𝑖=1 𝑣𝑖 = 1 for all 𝑣 ∈ T, whereas
∑𝑚!

𝑖=1 𝑣𝑖 > 0
for all 𝑣 ∈ T+. Moreover, we note that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) = 𝑔(𝑣 (𝑅)) for all profiles 𝑅 as 𝑔(𝑣) = 𝑔(𝑣)
for all profiles 𝑅. Next, we will show that 𝑔 is neutral, continuous, and reinforcing. To this end, let
𝑣1 ∈ T+ denote an arbitrary vector and let 𝜆1 > 0 denote the scalar such that 𝑔(𝑣1) = 𝑔(𝜆1𝑣

1).
For neutrality, we note that 𝜏 (𝜆1𝑣

1) = 𝜆1𝜏 (𝑣1) for every permutation 𝜏 : 𝐴 → 𝐴, so it follows
that 𝑔(𝜏 (𝑣1)) = 𝑔(𝜆𝜏 (𝑣1)) = 𝑔(𝜏 (𝜆1𝑣

1)) = {𝜏 (▷) : ▷ ∈ 𝑔(𝜆1𝑣
1)} = {𝜏 (▷) : ▷ ∈ 𝑔(𝑣1)}. Here, the

third equality follows from the neutrality of 𝑔. This argument shows that 𝑔 is neutral.
Next, we turn to reinforcement and hence let 𝑣2 ∈ T+ denote a second vectorwith𝑔(𝑣1)∩𝑔(𝑣2) ≠ ∅

and 𝜆2 the scalar such that 𝑔(𝑣2) = 𝑔(𝜆2𝑣
2). We need to show that 𝑔(𝜅𝑣1 + (1−𝜅)𝑣2) = 𝑔(𝑣1) ∩𝑔(𝑣2)

for all 𝜅 ∈ (0, 1) ∩ Q. To this end, we fix such a 𝜅 and first note that there is by definition
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a scalar 𝜆3 > 0 such that 𝑔(𝜅𝑣1 + (1 − 𝜅)𝑣2) = 𝑔(𝜆3 (𝜅𝑣1 + (1 − 𝜅)𝑣2)). Next, we observe that
𝑔(𝑣1) ∩ 𝑔(𝑣2) = 𝑔(𝜆1𝑣

1) ∩ 𝑔(𝜆2𝑣
2), so we can infer from the reinforcement of 𝑔 that 𝑔(𝑣1) ∩ 𝑔(𝑣2) =

𝑔(𝜅′𝜆1𝑣
1 + (1 − 𝜅′)𝜆2𝑣

2) for every 𝜅′ ∈ (0, 1) ∩Q. To show that 𝑔 is reinforcing, it hence suffices to
find a 𝜅′ ∈ (0, 1) ∩Q such that 𝜆3 (𝜅𝑣1 + (1−𝜅)𝑣2) = 𝜅′𝜆1𝑣

1 + (1−𝜅′)𝜆2𝑣
2. To this end, we note that

𝜆3 (𝜅𝑣1+(1−𝜅)𝑣2) = ( 𝜆3
𝜆1
·𝜅)·𝜆1𝑣

1+( 𝜆3
𝜆2
·(1−𝜅))·𝜆2𝑣

2. Now, since
∑𝑚!

𝑖=1 𝜆3 (𝜅𝑣1
𝑖 +(1−𝜅)𝑣2

𝑖 ) =
∑𝑚!

𝑖=1 𝜆1𝑣
1
𝑖 =∑𝑚!

𝑖=1 𝜆1𝑣
2
𝑖 = 1, we can infer that 𝜆3

𝜆1
·𝜅 + 𝜆3

𝜆2
· (1−𝜅) = 1. Moreover, because 𝜆3

𝜆1
=

∑𝑚!
𝑖=1 𝑣

1
𝑖∑𝑚!

𝑖=1 𝑣
1
𝑖
+𝑣2

𝑖

∈ (0, 1) ∩Q

and 𝜅 ∈ (0, 1) ∩ Q, we can infer that both 𝜆3
𝜆1

· 𝜅 ∈ (0, 1) ∩ Q and 𝜆3
𝜆2

· (1 − 𝜅) ∈ (0, 1) ∩ Q.
Hence, we now define 𝜅′ = 𝜆3

𝜆1
· 𝜅 (which implies that 1 − 𝜅′ = 𝜆3

𝜆2
· (1 − 𝜅)). It then follows that

𝜆3 (𝜅𝑣1 + (1 − 𝜅)𝑣2) = 𝜅′𝜆1𝑣
1 + (1 − 𝜅′)𝜆2𝑣

2, thus proving that 𝑔 is reinforcing.
Finally, we turn to the continuity of 𝑔 and again consider a vector 𝑣2 ∈ T+ with its scalar 𝜆2.

Our goal is to show that there is 𝜅 ∈ (0, 1) ∩ Q such that 𝑔(𝜅𝑣1 + (1 − 𝜅)𝑣2) ⊆ 𝑔(𝑣1). This is
equivalent to finding a �̂� ∈ Q such that �̂� > 0 and 𝑔(�̂�𝑣1 + 𝑣2) ⊆ 𝑔(𝑣1). To see this equivalence,
we define 𝜅 = �̂�

�̂�+1 , 𝜆3 = 1
�̂�

∑𝑚!
𝑖=1 𝑣

1
𝑖
+∑𝑚!

𝑖=1 𝑣
2
𝑖

, and 𝜆3 = 1
𝜅

∑𝑚!
𝑖=1 𝑣

1
𝑖
+(1−𝜅 ) ∑𝑚!

𝑖=1 𝑣
2
𝑖

. It holds that 𝜆3 = 1
�̂�+1𝜆3,

so 𝑔(�̂�𝑣1 + 𝑣2) = 𝑔(𝜆3 (�̂�𝑣1 + 𝑣2)) = 𝑔(𝜆3 (𝜅𝑣1 + (1 − 𝜅)𝑣2)) = 𝑔(𝜅𝑣1 + (1 − 𝜅)𝑣2). Finally, to
infer a suitable �̂�, we note that 𝑔 itself is continuous. Hence, there is a 𝜅′ ∈ (0, 1) ∩ Q such
that 𝑔(𝜅′𝜆1𝑣

1 + (1 − 𝜅′)𝜆2𝑣
2) ⊆ 𝑔(𝜆𝑣1) = 𝑔(𝑣1). We thus define �̂� by �̂� =

𝜅′𝜆1
(1−𝜅′ )𝜆2

because then
𝑔(�̂�𝑣1 + 𝑣2) = 𝑔(𝜅′𝜆1𝑣

1 + (1 − 𝜅′)𝜆2𝑣
2) ⊆ 𝑔(𝑣1). This implies that 𝑔 is continuous.

Step 2: Extension to Q𝑚!

Next, we will extend 𝑔 to the domain Q𝑚!. To this end, we define 𝑣∗ as the vector with 𝑣∗𝑖 = 1
𝑚! for

all 𝑖 ∈ {1, . . . ,𝑚!}. Since 𝜏 (𝑣∗) = 𝑣∗ for every permutation 𝜏 : 𝐴 → 𝐴, it follows from the neutrality
of 𝑔 and 𝑔 that 𝑔(𝑣∗) = 𝑔(𝑣∗) = R. Now, to extend 𝑔 to Q𝑚!, we define 𝑔(𝑣) = 𝑔(𝑣 + 𝜆𝑣∗) for all
𝑣 ∈ Q𝑚!, where 𝜆 ∈ Q is a positive constant such that 𝑣 + 𝜆𝑣∗ ∈ T+.
As the first point, we will show that 𝑔 is well-defined despite the fact that we do not fully

specify 𝜆. To this end, let 𝑣 ∈ Q𝑚! and consider two distinct positive constants 𝜆1, 𝜆2 such that
𝑣 + 𝜆1𝑣

∗ ∈ T and 𝑣 + 𝜆2𝑣
∗ ∈ T. We need to prove that 𝑔(𝑣 + 𝜆1𝑣

∗) = 𝑔(𝑣 + 𝜆2𝑣
∗). Note for this that

𝑔 is by definition homogenous, i.e., it holds for every rational constant 𝜅 > 0 that 𝑔(𝑣 ′) = 𝑔(𝜅𝑣 ′)
because 𝑔 will rescale its input vector such that 𝛼

∑𝑚!
𝑖=1 𝑣

′
𝑖 = 1 and then apply 𝑔. Hence, we have

that 𝑔(𝑣 + 𝜆𝑖𝑣
∗) = 𝑔( 1

2𝑣 + 1
2𝜆𝑖𝑣

∗) for 𝑖 ∈ {1, 2}. Now, if 𝜆1 < 𝜆2, it follows that 𝑔(𝑣 + 𝜆1𝑣
∗) =

𝑔(𝑣 + 𝜆1𝑣
∗) ∩ 𝑔((𝜆2 − 𝜆1)𝑣∗) = 𝑔( 1

2𝑣 +
1
2𝜆1𝑣

∗) ∩ 𝑔( 1
2 (𝜆2 − 𝜆1)𝑣∗) = 𝑔( 1

2𝑣 +
1
2𝜆2𝑣

∗) = 𝑔(𝑣 + 𝜆2𝑣
∗). The

first equality here uses that 𝑔((𝜆2 − 𝜆1)𝑣∗) = R, the second one that 𝑔 is homogenous, and the third
one that 𝑔 is reinforcing. Since an analogous argument works if 𝜆1 > 𝜆2, it now follows that 𝑔 is
well-defined. Moreover, we note that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅) + 0𝑣∗) = 𝑔(𝑣 (𝑅)) for all profiles 𝑅.

It remains to show that 𝑔 is neutral, reinforcing, and continuous. For this, let 𝑣1 denote a vector in
Q𝑚! and let 𝜆1 denote a positive scalar inQ such that 𝑣1 +𝜆1𝑣

∗ ∈ T+. For neutrality, let 𝜏 additionally
denote a permutation on 𝐴. Due to the neutrality of 𝑔, it holds that 𝑔(𝜏 (𝑣1)) = 𝑔(𝜏 (𝑣1) + 𝜆1𝑣

∗) =
𝑔(𝜏 (𝑣1 + 𝜆1𝑣

∗)) = {𝜏 (▷) : ▷ ∈ 𝑔(𝑣1 + 𝜆1𝑣
∗)} = {𝜏 (▷) : ▷ ∈ 𝑔(𝑣1)}. This shows that 𝑔 is neutral.

For reinforcement, let 𝑣2 denote a vector in Q𝑚! and 𝜆2 a scalar such that 𝑣2 + 𝜆2𝑣
∗ ∈ T+ and

𝑔(𝑣1)∩𝑔(𝑣2) = 𝑔(𝑣1+𝜆1𝑣
∗)∩𝑔(𝑣2+𝜆2𝑣

∗) ≠ ∅. Since𝑔 is reinforcing, it follows for every𝜅 ∈ (0, 1)∩Q
that𝑔(𝜅𝑣1+(1−𝜅𝑣2)) = 𝑔(𝜅 (𝑣1+𝜆1𝑣

∗)+(1−𝜅) (𝑣2+𝜆2𝑣
∗)) = 𝑔(𝑣1+𝜆1𝑣

∗)∩𝑔(𝑣2+𝜆2𝑣
∗) = 𝑔(𝑣1)∩𝑔(𝑣2).

This proves that 𝑔 is also reinforcing.
Finally, for continuity, we let 𝑣2 ∈ Q𝑚! again denote a second vector and 𝜆2 a corresponding scalar.

We need to show that there is 𝜅 ∈ (0, 1)∩Q such that𝑔(𝜅𝑣1+(1−𝜅)𝑣2) ⊆ 𝑔(𝑣1). To this end, we note
that there is𝜅′ ∈ (0, 1)∩Q such that𝑔(𝜅′ (𝑣1+𝜆1𝑣

∗)+(1−𝜅′) (𝑣2+𝜆2𝑣
∗)) ⊆ 𝑔(𝑣1+𝜆1𝑣

∗) = 𝑔(𝑣1). It now
follows from the definition of𝑔 that𝑔(𝜅′𝑣1+(1−𝜅′)𝑣2) = 𝑔(𝜅′𝑣1+(1−𝜅′)𝑣2+(𝜅′𝜆1+(1−𝜅′)𝜆2)𝑣∗) ⊆
𝑔(𝑣1). This shows that 𝑔 is also continuous and hence completes the proof of this lemma. □



24 Patrick Lederer, Dominik Peters, and Tomasz Wąs

We note that our SPF 𝑓 uniquely entails the function 𝑔 and that 𝑔 fully describes 𝑓 . Hence, we
aim to describe the function 𝑔 based on a scoring function 𝑠 (≻,▷). To this end, we first note that 𝑔
is homogenous (i.e., 𝑔(𝑣) = 𝑔(𝜆𝑣) for every 𝑣 ∈ Q𝑚! and 𝜆 ∈ Q with 𝜆 > 0). To see this, we recall
that 𝑔 is by definition homogeneous and let 𝑣 ∈ Q𝑚! denote an arbitrary vector and 𝜅 ∈ Q a positive
scalar. Moreover, let 𝜆 denote a scalar such that 𝑣 + 𝜆𝑣∗ ∈ T+. Then, the homogeneity of 𝑔 follows
as 𝑔(𝑣) = 𝑔(𝑣 + 𝜆𝑣∗) = 𝑔(𝜅 (𝑣 + 𝜆𝑣∗)) = 𝑔(𝜅𝑣).
Next, we further modify the representation of 𝑓 by considering the sets 𝑅▷𝑖

= {𝑣 ∈ Q𝑚! : ▷𝑖 ∈
𝑔(𝑣)} for all ▷𝑖 ∈ R. All sets 𝑅▷𝑖

are symmetric to each other (i.e., if 𝑣 ∈ 𝑅▷𝑖
, then 𝜏 (𝑣) ∈ 𝑅𝜏 (▷𝑖 ) )

and Q-convex (i.e, if 𝑣, 𝑣 ′ ∈ 𝑅▷𝑖
, then 𝜆𝑣 + (1 − 𝜆)𝑣 ′ ∈ 𝑅▷𝑖

for all 𝜆 ∈ (0, 1) ∩Q) because 𝑔 is neutral
and reinforcing. Moreover, since the domain of 𝑔 is Q𝑚!, it follows that

⋃
▷𝑖 ∈R 𝑅▷𝑖

= Q𝑚!. Further,
we denote with 𝑅▷𝑖

the closure of 𝑅▷𝑖
with respect to R𝑚!. In particular, the sets 𝑅▷𝑖

are convex
and symmetric to each other and

⋃
▷𝑖 ∈R 𝑅▷𝑖

= R𝑚! (see Young [1975]). As the last point, we note
that 𝑔(𝑣) = {▷𝑖 ∈ R : 𝑣 ∈ 𝑅▷𝑖

} ⊆ {▷𝑖 ∈ R : 𝑣 ∈ 𝑅▷𝑖
} for all 𝑣 ∈ Q𝑚!.

We next aim to find a suitable representation for the sets 𝑅▷𝑖
and use for this the separating

hyperplane theorem for convex sets. In the next lemmas, we write 𝑢𝑣 =
∑𝑘

𝑖=1 𝑢𝑖𝑣𝑖 for the standard
scalar product between two vectors 𝑢, 𝑣 ∈ R𝑘 .

Lemma A.2. For all distinct rankings ▷𝑖 ,▷ 𝑗 ∈ R, there is a non-zero vector 𝑢▷𝑖 ,▷ 𝑗 ∈ R𝑚! such that
𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 if 𝑣 ∈ 𝑅▷𝑖

and 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩽ 0 if 𝑣 ∈ 𝑅▷ 𝑗
.

Proof. Consider two distinct rankings ▷𝑖 ,▷ 𝑗 ∈ R and their respective sets 𝑅▷𝑖
and 𝑅▷ 𝑗

. First,
we recall that

⋃
≻𝑘 ∈R 𝑅▷𝑘

= R𝑚! and that all these sets are symmetric to each other. Since there
are only a finitely many such sets, this implies that all 𝑅▷𝑘

are fully dimensional. Consequently,
int 𝑅▷𝑖

≠ ∅ and int 𝑅▷ 𝑗
≠ ∅.

We will next show that int 𝑅▷𝑖
∩ int 𝑅▷ 𝑗

= ∅. Assume for contradiction that this is not the
case. Then, there is a vector 𝑣 ∈ int 𝑅▷𝑖

∩ int 𝑅▷ 𝑗
∩ Q𝑚!. In particular, these conditions entail that

▷𝑖 ,▷ 𝑗 ∈ 𝑔(𝑣). Next, consider the profile 𝑅 such that 𝑅(▷𝑖 ) = 𝑚 (𝑚−1)
𝑚 (𝑚−1)+1 and 𝑅(▷ 𝑗 ) = 1)

𝑚 (𝑚−1)+1 , and
let 𝑣 ′ = 𝑣 (𝑅) denote the corresponding vector. By 2RP, we have that 𝑓 (𝑅) = 𝑔(𝑣 ′) = {▷𝑖 } because

swap(▷𝑖 ,▷ 𝑗 ) ·
1

𝑚(𝑚 − 1) + 1 ⩽

(
𝑚
2
)

𝑚(𝑚 − 1) + 1 <
1
2 .

The homogeneity of 𝑔 then shows that 𝑔(𝜆𝑣 ′) = {▷𝑖 } for every 𝜆 ∈ Q with 𝜆 > 0. Moreover,
reinforcement shows that 𝑔(𝑣 + 𝜆𝑣 ′) = 𝑔( 1

2𝑣 +
1
2𝜆𝑣

′) = 𝑔(𝑣) ∩ 𝑔(𝜆𝑣 ′) = {▷𝑖 } for all 𝜆 ∈ Q with
𝜆 > 0. However, 𝑣 ∈ int 𝑅▷𝑖

∩ int 𝑅▷ 𝑗
∩ Q𝑚! implies that there is 𝜆 ∈ Q with 𝜆 > 0 such that

▷𝑖 ,▷ 𝑗 ∈ 𝑔(𝑣 + 𝜆𝑣 ′), contradicting our previous insight. Hence, our initial assumption must have
been wrong and the sets int 𝑅▷𝑖

and int 𝑅▷ 𝑗
are indeed disjoint.

Now, by the separating hyperplane theorem for convex sets, there is a non-zero vector 𝑢▷𝑖 ,▷ 𝑗

such that 𝑣𝑢▷𝑖 ,▷ 𝑗 > 0 if 𝑣 ∈ int 𝑅▷𝑖
and 𝑣𝑢▷𝑖 ,▷ 𝑗 < 0 if 𝑣 ∈ int 𝑅▷ 𝑗

. In particular, note that the
constant on the right side of our inequalities must be 0 as 𝑅▷𝑖

and 𝑅▷ 𝑗
are cones. This implies that

𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 for all 𝑣 ∈ 𝑅▷𝑖
and 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩽ 0 for all 𝑣 ∈ 𝑅▷ 𝑗

. □

We say that a non-zero vector 𝑢 separates a set 𝑅▷𝑖
from another set 𝑅▷ 𝑗

if 𝑣𝑢 ⩾ 0 for all 𝑣 ∈ 𝑅▷𝑖

and 𝑣𝑢 ⩽ 0 for all 𝑣 ∈ 𝑅▷ 𝑗
. Our interest in these vectors comes from the next lemma which states

that the vectors that separate 𝑅▷𝑖
from any other set 𝑅▷ 𝑗

fully describe the set 𝑅▷𝑖
.

Lemma A.3. Let ▷𝑖 ∈ R denote an arbitrary ranking and let 𝑢▷𝑖 ,▷ 𝑗 denote non-zero vectors that
separates 𝑅▷𝑖

from 𝑅▷ 𝑗
for every ▷ 𝑗 ∈ R \ {▷𝑖 }. It holds that

𝑅▷𝑖
= {𝑣 ∈ R𝑚! : ∀▷ 𝑗 ∈ R \ {▷𝑖 } : 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0}.
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Proof. Fix a ranking ▷𝑖 and the vectors 𝑢▷𝑖 ,▷ 𝑗 for all ▷ 𝑗 ∈ R \ {▷𝑖 }. For a simpler notation,
we define 𝑆▷𝑖

= {𝑣 ∈ R𝑚! : ∀▷ 𝑗 ∈ R \ {▷𝑖 } : 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0}, and we will show that 𝑆▷𝑖
⊆ 𝑅▷𝑖

and
𝑅▷𝑖

⊆ 𝑆▷𝑖
. The second subset relation is straightforward by the definition of the vectors 𝑢▷𝑖 ,▷ 𝑗 : if

𝑣 ∈ 𝑅▷𝑖
, then 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 for all ▷ 𝑗 ≠ ▷𝑖 and therefore 𝑣 ∈ 𝑆▷𝑖

.
For the converse direction, we first note that int 𝑆▷𝑖

is non-empty as 𝑅▷𝑖
⊆ 𝑆▷𝑖

and int 𝑅▷𝑖
≠ ∅.

Now, let 𝑣 ∈ int 𝑆▷𝑖
, which means that 𝑣𝑢▷𝑖 ,▷ 𝑗 > 0 for all ▷ 𝑗 ∈ R \ {▷𝑖 }. By the definition of the

vectors 𝑢▷𝑖 ,▷ 𝑗 , it thus follows that 𝑣 ∉ 𝑅▷ 𝑗
for all ▷ 𝑗 ∈ R \ {▷𝑖 }. Since

⋃
▷𝑖 ∈R 𝑅▷𝑖

= R𝑚!, we derive
that 𝑣 ∈ 𝑅▷𝑖

, so int 𝑆▷𝑖
⊆ 𝑅▷𝑖

. Because 𝑅▷𝑖
is a closed set, we finally conclude that 𝑆▷𝑖

⊆ 𝑅▷𝑖
, which

completes the proof of this lemma. □

Lemma A.3 states that the vectors 𝑢▷𝑖 ,▷ 𝑗 fully describe the sets 𝑅▷𝑖
which, in turn, describe our

function 𝑔 because 𝑔(𝑣) ⊆ {▷𝑖 ∈ R : 𝑣 ∈ 𝑅▷𝑖
} for all 𝑣 ∈ Q𝑚! as 𝑅▷𝑖

⊆ 𝑅▷𝑖
. We show next that the

subset relation between 𝑔(𝑣) and {▷𝑖 ∈ R : 𝑣 ∈ 𝑅▷𝑖
} is an equality for vectors in Q𝑚!.

Lemma A.4. It holds for all 𝑣 ∈ Q𝑚! that 𝑣 ∈ 𝑅▷𝑖
if and only if ▷𝑖 ∈ 𝑔(𝑣).

Proof. Consider an arbitrary vector 𝑣 ∈ Q𝑚!. First, it immediately follows from the definition of
the sets 𝑅▷𝑖

that 𝑣 ∈ 𝑅▷𝑖
if ▷𝑖 ∈ 𝑔(𝑣). For the other direction, suppose for contradiction that there

is 𝑣 ∈ Q𝑚! and ▷𝑖 ∈ R such that ▷𝑖 ∉ 𝑔(𝑣) but 𝑣 ∈ 𝑅▷𝑖
. In this case, we consider the vectors 𝑢▷𝑖 ,▷ 𝑗

that separate 𝑅▷𝑖
from 𝑅▷ 𝑗

for all ▷ 𝑗 ∈ R. Due to the definitions of these vectors, we derive that
𝑣𝑢▷𝑖 ,▷ 𝑗 = 0 for all ▷ 𝑗 ∈ 𝑔(𝑣) because 𝑣 ∈ 𝑅▷ 𝑗

if ▷ 𝑗 ∈ 𝑔(𝑣). Next, we note that there is a profile 𝑅
such that 𝑔(𝑣 (𝑅)) = 𝑓 (𝑅) = {▷𝑖 } because of 2RP. By the continuity of 𝑔, there is for every vector
𝑣 ′ ∈ Q𝑚! a 𝜆 ∈ (0, 1) ∩Q such that 𝑔(𝜆𝑣 (𝑅) + (1 − 𝜆)𝑣 ′) = {▷𝑖 }. This shows that 𝑣 (𝑅) ∈ int 𝑅▷𝑖

. By
Lemma A.3, it thus follows that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 > 0 for all ▷ 𝑗 ∈ R \ {▷𝑖 }. Now, using again continuity,
there is 𝜆 ∈ (0, 1) ∩ Q such that 𝑔(𝜆𝑣 + (1 − 𝜆)𝑣 (𝑅)) ⊆ 𝑔(𝑣). However, if we consider the vectors
𝑢▷𝑖 ,▷ 𝑗 , we infer for all ▷ 𝑗 ∈ 𝑔(𝑣) that 𝑣 (𝜆𝑣 + (1 − 𝜆)𝑣 (𝑅))𝑢▷𝑖 ,▷ 𝑗 = (1 − 𝜆)𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 > 0, which
contradicts that 𝑣 ∈ 𝑅▷ 𝑗

for ▷ 𝑗 ∈ 𝑔(𝑣). Hence, our assumption that 𝑣 ∈ 𝑅▷𝑖
and ▷𝑖 ∉ 𝑔(𝑣) is

wrong. □

Lemmas A.3 and A.4 show that it suffices to determine the vectors 𝑢▷𝑖 ,▷ 𝑗 to characterize 𝑔 and
thus 𝑓 . We start the analysis of these vectors for rankings that only differ in a single swap. Recall
for the next lemma that 𝑏 is the function that enumerates all possible rankings. We moreover note
that the subsequent lemma is very similar to Step 1 in the proof of Theorem 3.3.

Lemma A.5. Let ▷𝑖 ,▷ 𝑗 ∈ R denote two rankings such that swap(▷𝑖 ,▷ 𝑗 ) = 1. The vector 𝑢 defined
by 𝑢𝑘 = − swap(▷𝑖 , 𝑏 (𝑘))2 + swap(▷ 𝑗 , 𝑏 (𝑘))2 for all 𝑘 ∈ {1, . . . ,𝑚!} separates 𝑅▷𝑖

from 𝑅▷ 𝑗
.

Proof. Consider two arbitrary rankings ▷𝑖 ,▷ 𝑗 ∈ R such that swap(▷𝑖 ,▷ 𝑗 ) = 1 and let 𝑎, 𝑏
denote the alternatives with 𝑎 ▷𝑖 𝑏 and 𝑏 ▷ 𝑗 𝑎. Moreover, let 𝑢▷𝑖 ,▷ 𝑗 denote the non-zero vector
that separates 𝑅▷𝑖

from 𝑅▷ 𝑗
given by Lemma A.2. Based on 𝑢▷𝑖 ,▷ 𝑗 , we will show that the vector 𝑢

defined in this lemma also separates 𝑅▷𝑖
from 𝑅▷ 𝑗

.
As a first step, we consider the profiles 𝑅 and 𝑅′ with 𝑅(▷𝑖 ) = 𝑅(▷ 𝑗 ) = 1

2 , and 𝑅
′ (▷1) = 2

3 and
𝑅′ (▷2) = 1

3 . 2RP implies for the profile 𝑅 that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) = {▷𝑖 ,▷ 𝑗 }, so we conclude that
𝑣 (𝑅) ∈ 𝑅▷𝑖

∩ 𝑅▷ 𝑗
. This means that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 = 0 and hence 𝑢▷𝑖 ,▷ 𝑗

𝑖
= −𝑢▷𝑖 ,▷ 𝑗

𝑗
(we assume here that

𝑏 (𝑖) = ▷𝑖 , and 𝑏 ( 𝑗) = ▷ 𝑗 for simplicity). By contrast, 2RP requires for 𝑅′ that 𝑓 (𝑅′) = 𝑔(𝑣 (𝑅′)) =
{▷𝑖 }. Thus, Lemma A.4 entails that 𝑣 (𝑅) is only contained in the set 𝑅▷𝑖

. Moreover, based on
continuity, it is easy to show that 𝑣 (𝑅) is even in int 𝑅▷𝑖

. Consequently, Lemma A.3 implies that
𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 > 0. Since 𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 = 2

3𝑢
▷𝑖 ,▷ 𝑗

𝑖
+ 1

3𝑢
▷𝑖 ,▷ 𝑗

𝑗
and 𝑢▷𝑖 ,▷ 𝑗

𝑖
= −𝑢▷𝑖 ,≻𝑗

𝑗
, we can now conclude

that 𝑢▷𝑖 ,▷ 𝑗

𝑖
> 0 and 𝑢▷𝑖 ,▷ 𝑗

𝑗
< 0. Because every rescaling of 𝑢▷𝑖 ,▷ 𝑗 also separates 𝑅▷𝑖

from 𝑅▷ 𝑗
, we

assume from now on that
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𝑢
▷𝑖 ,▷ 𝑗

𝑖
= 1 = − swap(▷𝑖 ,▷𝑖 )2 + swap(▷𝑖 ,▷ 𝑗 ) and

𝑢
▷𝑖 ,▷ 𝑗

𝑗
= −1 = − swap(▷ 𝑗 ,▷𝑖 )2 + swap(▷ 𝑗 ,▷ 𝑗 ).

Next, we consider an arbitrary index 𝑘 such that 𝑏 ≻ 𝑎 for the ranking ≻ = 𝑏 (𝑘). Moreover,
we define 𝑑 = swap(≻,▷𝑖 ) and consider the profile 𝑅 with 𝑅(≻) = 1

2𝑑 and 𝑅(▷𝑖 ) = 2𝑑−1
2𝑑 . For this

profile, it holds that 𝑑 · (1 − 𝑅(≻)) = 𝑑 − 1
2 and 𝑑 · (1 − 𝑅(▷𝑖 )) = 1

2 . Hence, 2RP requires that
𝑓 (𝑅) = {▷ ∈ R : (swap(≻,▷) = 𝑑 and swap(▷𝑖 ,▷) = 0)

or (swap(≻,▷) = 𝑑 − 1 and swap(▷𝑖 ,▷) = 1)}.
Thus, ▷𝑖 ∈ 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) because swap(▷𝑖 , ≻) = 𝑑 and swap(▷𝑖 ,▷𝑖 ) = 0, and ▷ 𝑗 ∈ 𝑓 (𝑅) because
swap(▷ 𝑗 , ≻) = 𝑑 − 1 and swap(▷𝑖 ,▷ 𝑗 ) = 1. This means that 𝑣 (𝑅) ∈ 𝑅▷𝑖

∩ 𝑅▷ 𝑗
and the definition of

the vector 𝑢▷𝑖 ,▷ 𝑗 therefore implies that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 = 0. We thus infer that

𝑢
▷𝑖 ,▷ 𝑗

𝑘
= −(2𝑑 − 1)𝑢▷𝑖 ,▷ 𝑗

𝑖
= −2(𝑑 − 1) = −𝑑2 + (𝑑 − 1)2 = swap(𝑏 (𝑘),▷𝑖 )2 − swap(𝑏 (𝑘),▷ 𝑗 )2. (3)

Finally, we can infer the entries 𝑢▷𝑖 ,▷ 𝑗

ℓ
for every input ranking ≻ = 𝑏 (ℓ) with 𝑎 ≻ 𝑏 based on

a symmetric argument by exchanging the roles of ▷𝑖 and ▷ 𝑗 . In more detail, we first compute
𝑑 = swap(≻,▷ 𝑗 ), then consider the profile𝑅 with𝑅(≻) = 1

2𝑑 and𝑅(▷ 𝑗 ) = 2𝑑−1
2𝑑 , and lastly determine

the output for this profile based on 2RP. This approach yields that

𝑢
▷𝑖 ,▷ 𝑗

ℓ
= − swap(𝑏 (ℓ),▷𝑖 )2 + swap(𝑏 (ℓ),▷ 𝑗 )2.

This completes the proof as we have shown that the vector 𝑢 with 𝑢𝑘 = − swap(𝑏 (𝑘),▷𝑖 )2 +
swap(𝑏 (𝑘),▷ 𝑗 ))2 indeed separates 𝑅▷𝑖

from 𝑅▷ 𝑗
. □

For the sake of readability, we assume from now on that

𝑢
▷𝑖 ,▷ 𝑗

𝑘
= − swap(𝑏 (𝑘),▷𝑖 )2 + swap(𝑏 (𝑘),▷ 𝑗 )2

for all output rankings ▷𝑖 ,▷ 𝑗 with swap(▷𝑖 ,▷ 𝑗 ) = 1 and all 𝑘 ∈ {1, . . . ,𝑚!}. Put differently, this
means that the vectors that separate adjacent rankings are described by the score function of the
Squared Kemeny rule.
We next aim to extend this insight to pairs of rankings ▷𝑖 ,▷ 𝑗 with larger swap distance. To

this end, we proceed as follows: first, we investigate some general consequences of 2RP for the
vector 𝑢▷𝑖 ,▷ 𝑗 . Next, we start to investigate single-crossing swap sequences. Formally, a swap
sequence ▷1, . . . ,▷𝑘 (of length 𝑘) is a sequence of rankings such that swap(▷𝑖 ,▷𝑖+1) = 1 for all
𝑖 ∈ {1, . . . , 𝑘 − 1}. Moreover, this sequence is single-crossing if every pair of alternatives is swapped
at most once. The motivation for these single-crossing swap sequences is Lemma A.7: we can find
a single-crossing swap sequence from ▷𝑖 to ▷ 𝑗 of length swap(▷𝑖 ,▷ 𝑗 ) + 1 for any pair of ▷𝑖 , ▷ 𝑗 .
Finally, we show in Lemmas A.8 to A.10 that 𝑓 omits for every single-crossing swap sequence a
profile such that 𝑓 (𝑅) contains precisely the rankings in our sequence. Based on this insight, we
then show that 𝑢▷𝑖 ,▷ 𝑗 can be represented as

∑𝑡−1
𝑘=0 𝑢

▷𝑖𝑘
,▷𝑖𝑘+1 for a single-crossing swap sequence

▷𝑖1 , . . . ,▷𝑖𝑡 from ▷𝑖 to ▷ 𝑗 .
We start this analysis by proving some consequences of 2RP for arbitrary pairs of rankings.

Lemma A.6. Consider two arbitrary rankings ▷𝑖 ,▷ 𝑗 ∈ R such that swap(▷𝑖 ,▷ 𝑗 ) ⩾ 1. For all
𝑏 (𝑘) ∈ R, it holds that

(1) 𝑢▷𝑖 ,▷ 𝑗

𝑘
= 0 if swap(𝑏 (𝑘),▷𝑖 ) = swap(𝑏 (𝑘),▷ 𝑗 ),

(2) 𝑢▷𝑖 ,▷ 𝑗

𝑘
⩾ 0 if swap(𝑏 (𝑘),▷𝑖 ) < swap(𝑏 (𝑘),▷ 𝑗 ),

(3) 𝑢▷𝑖 ,▷ 𝑗

𝑘
> 0 if 𝑏 (𝑘) = ▷𝑖 .
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Proof. Consider two arbitrary rankings ▷𝑖 ,▷ 𝑗 ∈ R with swap(▷𝑖 ,▷ 𝑗 ) ⩾ 1 and let ≻ = 𝑏 (𝑘)
denote an arbitrary input ranking. Moreover, we define ≻̄ as the ranking that is completely inverse
to ≻. We prove each of our three claims separately.

Claim 1): Assume that swap(≻,▷𝑖 ) = swap(≻,▷ 𝑗 ). This implies also that
swap(≻̄,▷𝑖 ) =

(
𝑚
2
)
− swap(≻,▷𝑖 )

=
(
𝑚
2
)
− swap(≻,▷ 𝑗 )

= swap(≻̄,▷ 𝑗 ).
Moreover, since swap(≻,▷𝑖 ) = swap(≻,▷ 𝑗 ), we can conclude that ≻ ≠ ▷𝑖 and ≻ ≠ ▷ 𝑗 . Now,

consider the profiles 𝑅 and 𝑅′ defined by

𝑅(≻̄) = swap(≻,▷𝑖 )(
𝑚
2
) 𝑅(≻) =

(
𝑚
2
)
−swap(≻,▷𝑖 )(

𝑚
2
)

𝑅′ (≻̄) = swap(≻,▷𝑖 )(
𝑚
2
) − 𝜀 𝑅′ (≻) =

(
𝑚
2
)
−swap(≻,▷𝑖 )(

𝑚
2
) + 𝜀;

𝜀 > 0 denotes here a rational constant such that round(
(
𝑚
2
)
(1 − 𝑅(≻̄))) = {

(
𝑚
2
)
− swap(≻,▷𝑖 ))}

and round(
(
𝑚
2
)
(1 − 𝑅(≻))) = {swap(≻,▷𝑖 ))}. 2RP thus implies that

𝑓 (𝑅) = 𝑓 (𝑅′) = {▷ ∈ R : swap(≻,▷) = swap(≻,▷𝑖 ) and swap(≻̄,▷) = swap(≻̄,▷𝑖 )}.

Consequently, ▷𝑖 and ▷ 𝑗 are both chosen for 𝑅 and 𝑅′. Hence, 𝑣 (𝑅), 𝑣 (𝑅′) ∈ 𝑅▷𝑖
∩ 𝑅▷ 𝑗

and
𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 = 𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 = 0 by the definitions of the sets 𝑅▷ and the vector 𝑢▷𝑖 ,▷ 𝑗 . Finally, let
𝜆 =

𝑅′ ( ≻̄ )
𝑅 ( ≻̄ ) . It is now easy to verify that

0 = (𝑣 (𝑅′) − 𝜆𝑣 (𝑅))𝑢▷𝑖 ,▷ 𝑗 = (𝑅′ (≻) − 𝜆𝑅(≻))𝑢▷𝑖 ,▷ 𝑗

𝑘
.

Since 𝑅′ (≻) > 𝑅(≻) and 0 < 𝜆 < 1, this implies that 𝑢▷𝑖 ,▷ 𝑗

𝑘
= 0, which completes the proof of

this claim.
Claim 2): Next, assume that swap(≻,▷𝑖 ) < swap(≻,▷ 𝑗 ). In this case, we consider the following

two profiles 𝑅 and 𝑅′:

𝑅(≻̄) = swap(≻,▷𝑖 )(
𝑚
2
) 𝑅(≻) =

(
𝑚
2
)
−swap(≻,▷𝑖 )(

𝑚
2
)

𝑅′ (≻̄) = swap(≻,▷ 𝑗 )(
𝑚
2
) 𝑅′ (≻) =

(
𝑚
2
)
−swap(≻,▷ 𝑗 )(

𝑚
2
) .

Using 2RP, it can be verified that ▷𝑖 ∈ 𝑓 (𝑅) and ▷ 𝑗 ∉ 𝑓 (𝑅), and ▷𝑖 ∈ 𝑓 (𝑅′) and ▷ 𝑗 ∉ 𝑓 (𝑅′).
Consequently, 𝑣 (𝑅) ∈ 𝑅▷𝑖

and 𝑣 (𝑅′) ∈ 𝑅▷ 𝑗
, which implies that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 and 𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 ⩽ 0.

Finally, we define 𝜆 =
𝑅 ( ≻̄ )
𝑅′ ( ≻̄ ) and note that 0 ⩽ 𝜆 < 1. Since −𝜆𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 ⩾ 0, we derive that

0 ⩽ (𝑣 (𝑅) − 𝜆𝑣 (𝑅′))𝑢▷𝑖 ,▷ 𝑗 = (𝑅(≻) − 𝜆𝑅′ (≻))𝑢▷𝑖 ,▷ 𝑗

𝑘
.

Since 𝑅(≻) > 𝑅′ (≻) (as swap(≻,▷𝑖 ) < swap(≻,▷ 𝑗 )) and 0 ⩽ 𝜆 < 1, this inequality shows that
𝑢
▷𝑖 ,▷ 𝑗

𝑘
⩾ 0.

Claim 3): For our last claim, we assume that ≻ = ▷𝑖 , which means that swap(≻,▷𝑖 ) = 0 and
swap(≻,▷ 𝑗 ) > 0. By Claim 2), we know that 𝑢▷𝑖 ,▷ 𝑗

𝑘
⩾ 0 and we only need to show that this

inequality is strict. For doing so, consider the profile 𝑅 with 𝑅(≻) = 1− 𝜀 and 𝑅(≻̄) = 𝜀, where 𝜀 > 0
is so small that round(

(
𝑚
2
)
(1 − 𝑅(≻))) = {0}. As a consequence, 2RP implies that 𝑓 (𝑅) = {▷𝑖 }. By

Lemma A.4, this means that 𝑣 (𝑅) ∈ 𝑅▷𝑖
and 𝑣 (𝑅) ∉ 𝑅▷′ for all ▷′ ∈ R \ {▷𝑖 }. Lemma A.3, in turn,
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implies that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 and that there is for every ▷𝑘 ∈ R \ {▷𝑖 } another ranking 𝜙 (▷𝑘 ) such
that 𝑣 (𝑅)𝑢▷𝑘 ,𝜙 (▷𝑘 ) < 0.
We will next show that 𝑢▷𝑖 ,▷ 𝑗 > 0 and assume thus for contradiction that 𝑢▷𝑖 ,▷ 𝑗 = 0. Moreover,

let 𝑣 ′ denote a vector such that 𝑣 ′𝑢▷𝑖 ,▷ 𝑗 < 0; such a vector exists as 𝑢▷𝑖 ,▷ 𝑗 is non-zero. We then
define 𝑣∗ = 𝑣 (𝑅) + 𝛿𝑣 ′, where 𝛿 > 0 is so small that 𝑣 (𝑅)𝑢▷1,▷2 < 0 implies that 𝑣∗𝑢▷1,▷2 < 0 for
all ▷1,▷2 ∈ R. In particular, this means that 𝑣∗𝑢▷𝑘 ,𝜙 (▷𝑘 ) < 0 for all ▷𝑘 ∈ R \ {▷𝑖 }, so 𝑣∗ ∉ 𝑅▷𝑘

for these rankings. Moreover, 𝑣∗𝑢▷𝑖 ,▷ 𝑗 = 𝛿𝑣 ′𝑢▷𝑖 ,▷ 𝑗 < 0, so 𝑣 ′ ∉ 𝑅▷𝑖
. However, this contradicts that⋃

▷𝑘 ∈R 𝑅▷𝑘
= R𝑚!, so it must hold that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 > 0.

As the last point, we observe that 𝑣 (𝑅)𝑢▷𝑖 ,▷ 𝑗 > 0 is only possible if 𝑢▷𝑖 ,▷ 𝑗

𝑘
> 0 or 𝑢▷𝑖 ,▷ 𝑗

𝑘 ′ > 0 (𝑘 ′

denotes here the index such that ≻̄ = 𝑏 (𝑘 ′)). Now, assume for contradiction that 𝑢▷𝑖 ,▷ 𝑗

𝑘
⩽ 0, so

𝑢
▷𝑖 ,▷ 𝑗

𝑘 ′ > 0. By Claim 2), we know that 𝑢▷𝑖 ,▷ 𝑗

𝑘
⩾ 0 and thus 𝑢▷𝑖 ,▷ 𝑗

𝑘
= 0. Finally, consider the profile

𝑅′ in the proof of Claim 2) with ▷ 𝑗 ∈ 𝑓 (𝑅′). In particular, this means that 𝑣 (𝑅′) ∈ 𝑅▷ 𝑗
. However,

if 𝑢▷𝑖 ,▷ 𝑗

𝑘
= 0 and 𝑢▷𝑖 ,▷ 𝑗

𝑘 ′ > 0, then 𝑣 (𝑅′)𝑢▷𝑖 ,▷ 𝑗 > 0 which contradicts that 𝑣 (𝑅′) ∈ 𝑅▷ 𝑗
. Hence, the

assumption that 𝑢▷𝑖 ,▷ 𝑗

𝑘
⩽ 0 is wrong and our third claim follows. □

As explained before, we now turn our focus to swap sequences. For the sake of completeness,
we will next show that for every pair of rankings ▷𝑖 ,▷ 𝑗 , there is a swap sequence from ▷𝑖 to ▷ 𝑗 of
length swap(▷𝑖 ,▷ 𝑗 ) + 1.

Lemma A.7. Let ▷𝑖 ,▷ 𝑗 ∈ R denote two rankings such that swap(▷𝑖 ,▷ 𝑗 ) = 𝑘 for some 𝑘 ∈ N. There
is a swap sequence ▷̂1, . . . , ▷̂𝑘+1 of length 𝑘 + 1 such that ▷̂1 = ▷𝑖 and ▷̂𝑘+1 = ▷ 𝑗 .

Proof. We prove the claim by induction over the swap distance swap(▷𝑖 ,▷ 𝑗 ) = 𝑘 for our two
considered rankings ▷𝑖 ,▷ 𝑗 . For the induction basis, assume that 𝑘 = 1. This means that there is a
single pair of alternatives 𝑎, 𝑏 such that 𝑎 ▷𝑖 𝑏 and 𝑏 ▷ 𝑗 𝑎. This is only possible if we can transform
▷𝑖 to ▷ 𝑗 by simply swapping 𝑎 and 𝑏 and thus, ▷𝑖 ,▷ 𝑗 forms our swap sequence of length 𝑘 + 1.
Now, suppose that we can construct a swap sequence of length 𝑘 between any two rankings

with ▷𝑖 ,▷ 𝑗 with swap(▷𝑖 ,▷ 𝑗 ) = 𝑘 − 1. We will prove that the same holds for rankings ▷𝑖 ,▷ 𝑗 with
swap(▷𝑖 ,▷ 𝑗 ) = 𝑘 . To this end, let 𝐷 = {(𝑎, 𝑏) ∈ ▷𝑖 \ ▷ 𝑗 } and note that |𝐷 | = 𝑘 by definition. For
proving the lemma, let 𝑥𝑘 denote the 𝑘-th best alternative in ▷𝑖 and 𝑦𝑘 the 𝑘-th best alternative in
▷ 𝑗 for every 𝑘 ∈ {1, . . . ,𝑚}. Since ▷𝑖 ≠ ▷ 𝑗 , there is an integer 𝑘 such that 𝑥𝑘 ≠ 𝑦𝑘 and we let 𝑘∗
denote the largest such integer. Put differently, this means that 𝑥𝑘 = 𝑦𝑘 for all 𝑘 > 𝑘∗. Consequently,
there is an integer ℓ < 𝑘∗ such that 𝑥ℓ = 𝑦𝑘∗ . We claim that (𝑥ℓ , 𝑥ℓ+1) ∈ 𝐷 . If this was not the case,
then 𝑥ℓ ▷ 𝑗 𝑥ℓ+1, so there is an index 𝑘 ′ > 𝑘∗ such that 𝑥ℓ+1 = 𝑦𝑘 ′ . However, this contradicts that
𝑥𝑘 ′ = 𝑦𝑘 ′ , so (𝑥ℓ , 𝑥ℓ+1) ∈ 𝐷 is true.

Next, let▷′
𝑖 denote the ranking derived from▷𝑖 by swapping𝑥ℓ and𝑥ℓ+1. It holds that swap(▷′

𝑖 ,▷ 𝑗 ) =
𝑘 − 1, so there is a swap sequence ▷̂1, . . . , ▷̂𝑘 of length 𝑘 from ▷′

𝑖 to ▷ 𝑗 by the induction hypothesis.
Finally, ▷𝑖 , ▷̂1, . . . , ▷̂𝑘 is then a swap sequence of length 𝑘 + 1 connecting ▷𝑖 and ▷ 𝑗 . □

We note that the swap sequences constructed in Lemma A.7 are minimal: for any pair of rankings
▷𝑖 ,▷ 𝑗 with swap(▷𝑖 ,▷ 𝑗 ) = 𝑘 , there cannot be a swap sequence of length less than𝑘+1 that connects
these two rankings. In particular, this means that the constructed sequences are single-crossing.

We next aim to show that 𝑓 admits for every single-crossing swap sequence ▷𝑖0 , . . . ,▷𝑖𝑡 a profile
𝑅 such that 𝑓 (𝑅) = {▷𝑖0 , . . . ,▷𝑖𝑡 }. To this end, we analyze the linear independence of the vectors
𝑢▷𝑖𝑘

,▷𝑖𝑘+1 for 𝑘 ∈ {0, . . . , 𝑡 − 1}. Since all these vectors separate rankings that differ only in a single
swap, Lemma A.5 applies and shows that they can be described by the scores assigned by the
Squared Kemeny rule. Hence, we will first analyze the Squared Kemeny rule in more detail. In
particular, we will show that the Squared Kemeny rule admits for every single-crossing swap
sequence ▷0, . . . ,▷𝑡 a profile 𝑅 such that SqK(𝑅) = {▷0, . . . ,▷𝑡 }.
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Lemma A.8. Let ▷0, . . . ,▷𝑡 denote a single-crossing swap sequence. There is a profile 𝑅 such that
SqK(𝑅) = {▷0, . . . ,▷𝑡 }.

Proof. We will first show the lemma for a single-crossing swap sequence ▷0, . . . ,▷𝑡 of length
𝑡 + 1 =

(
𝑚
2
)
+ 1. To this end, we introduce some auxiliary notation: for every ranking ≻, we define

𝑅≻ as the profile with 𝑅≻ (≻) = 1 and 𝑅−≻ as the profile with 𝑅−≻ (≻′) = 1
𝑚!−1 for all ≻′∈ R \ {≻}.

Moreover, we recall that 𝐶SqK (𝑅,▷) =
∑

≻∈R 𝑅(≻) swap(≻,▷)2 denotes the Squared Kemeny cost
of a ranking ▷ in the profile 𝑅. It immediately follows that 𝐶SqK (𝑅≻,▷) = swap(≻,▷)2 for all
≻,▷ ∈ R. Next, for determining 𝐶SqK (𝑅−≻,▷), we first consider the profile 𝑅 with 𝑅(≻) = 1

𝑚!
for all ≻ ∈ R. Due to the symmetry of this profile, it holds that 𝐶SqK (𝑅,▷) = 𝐶SqK (𝑅,▷′) for
all ▷ ∈ R and we thus define 𝑐 = 𝑚! · 𝐶SqK (𝑅,▷) =

∑
≻∈R swap(≻,▷)2. We then compute that

(𝑚! − 1)𝐶SqK (𝑅−≻,▷) = ∑
≻′∈R swap(≻′,▷)2 − swap(≻,▷)2 = 𝑐 − swap(≻,▷)2 for all ≻,▷ ∈ R.

Based on these insights, we now define the profile 𝑅∗ as convex combination of profiles 𝑅≻ and
𝑅−≻ for ≻ ∈ {▷0, . . . ,▷𝑡 }. In more detail, if 𝑡 is odd, then

𝑅∗ =
1
𝑍

(
(𝑚! − 1) 𝑡 − 1

2 (𝑅−▷0 + 𝑅−▷𝑡 ) +
𝑡−1∑︁
𝑘=1

𝑅▷𝑘
)
,

and if 𝑡 is even, then

𝑅∗ =
1
𝑍

(
(𝑚! − 1) 𝑡2 (𝑅

−▷0 + 𝑅−▷𝑡 ) + 𝑅▷𝑡/2 +
𝑡−1∑︁
𝑘=1

𝑅▷𝑘
)
.

For both cases, 𝑍 denotes a normalization constant such that
∑

≻∈R 𝑅∗ (≻) = 1. Based on our
previous insights, we can compute for all rankings ▷ that

𝑍 ·𝐶SqK (𝑅∗,▷) = (𝑡 − 1)𝑐 − 𝑡 − 1
2 (swap(▷0,▷)2 + swap(▷𝑡 ,▷)2) +

𝑡−1∑︁
𝑘=1

swap(▷𝑘 ,▷)2

if 𝑡 is odd, and

𝑍 ·𝐶SqK (𝑅∗,▷) = 𝑡𝑐 − 𝑡

2 (swap(▷0,▷)2 + swap(▷𝑡 ,▷)2) + swap(▷𝑡/2,▷)2 +
𝑡−1∑︁
𝑘=1

swap(▷𝑘 ,▷)2

if 𝑡 is even.
We will next show that SqK(𝑅∗) = {▷0, . . . ,▷𝑡 }. As a first point, we will show that 𝑓 (𝑅∗) ⊆

{▷0, . . . ,▷𝑡 }. For this, let ▷ denote a ranking that is not on our swap sequence. In particular,
this means that 𝑑 = swap(▷0,▷) > 0 and swap(▷𝑡 ,▷) > 0. Moreover, since our swap sequence
▷0, . . . ,▷𝑡 has maximal length, we know that ▷0 and ▷𝑡 are completely inverse. This implies that
swap(▷𝑡 ,▷) =

(
𝑚
2
)
−𝑑 , so 𝑑 <

(
𝑚
2
)
. Now, let ▷𝑑 denote the ranking in our swap sequence such that

swap(▷0,▷𝑑 ) = 𝑑 and swap(▷𝑡 ,▷𝑑 ) =
(
𝑚
2
)
−𝑑 ; we will show that 𝑍 ·𝐶SqK (𝑅∗,▷𝑑 ) < 𝑍 ·𝐶SqK (𝑅∗,▷).

We hence note that swap(▷0,▷𝑑 ) = swap(▷0,▷) and swap(▷𝑡 ,▷𝑑 ) = swap(▷𝑡 ,▷), so the cost
caused by ▷0 and ▷𝑡 does not matter for comparing these rankings. Moreover, it is obvious that
swap(▷𝑑 ,▷𝑑 ) = 0 < swap(▷𝑑 ,▷). Further, consider an arbitrary ranking ▷𝑘 in our swap sequence
with 𝑘 ∈ {1, . . . , 𝑑 − 1}. It holds that swap(▷𝑘 ,▷) + swap(▷𝑘 ,▷0) ⩾ swap(▷0,▷), so we can infer
that swap(▷𝑘 ,▷) ⩾ 𝑑 − 𝑘 = swap(▷𝑘 ,▷𝑑 ). Since a symmetric argument holds for all ▷𝑘 with
𝑘 ∈ {𝑑 + 1, . . . , 𝑡 − 1}, we can now conclude that

∑𝑡−1
𝑘=1 swap(▷𝑘 ,▷)2 >

∑𝑡−1
𝑘=1 swap(▷𝑘 ,▷𝑑 )2, which

implies that ▷ ∉ SqK(𝑅).
Next, we need to show that 𝐶SqK (𝑅,▷) = 𝐶SqK (𝑅,▷′) for all ▷,▷′ ∈ {▷0, . . . ,▷𝑡 }. For this, we

define ℓ = 𝑡
2 − 1 if 𝑡 is even and ℓ = 𝑡−3

2 if 𝑡 is odd. Moreover, we consider the auxiliary profiles 𝑅𝑖
(for 𝑖 ∈ {0, . . . , ℓ}) defined by
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𝑅𝑖 =
1
𝑍 𝑖

(
(𝑚! − 1) (𝑅−▷𝑖 + 𝑅−▷𝑡−𝑖 ) + 𝑅▷𝑖+1 + 𝑅▷𝑡−(𝑖+1)

)
,

where 𝑍 𝑖 is again a normalization constant. Now, we recall that (𝑚! − 1)𝑅−▷ + 𝑅▷ =𝑚!𝑅 for all
▷, where 𝑅 is the profile in which every ranking has weight 1

𝑚! . Hence, we infer that
ℓ∑︁

𝑖=0
(ℓ + 1 − 𝑖) · 𝑍 𝑖 · 𝑅𝑖 =

ℓ∑︁
𝑖=0

(ℓ + 1 − 𝑖) ·
(
(𝑚! − 1) (𝑅−▷𝑖 + 𝑅−▷𝑡−𝑖 ) + 𝑅▷𝑖+1 + 𝑅▷𝑡−(𝑖+1)

)
=

ℓ∑︁
𝑖=1

(ℓ + 1 − 𝑖) (𝑚! − 1) (𝑅−𝑖 ) (𝑅−▷𝑖 + 𝑅−▷𝑡−𝑖 ) + (ℓ + 2 − 𝑖) (𝑅▷𝑖 + 𝑅▷𝑡−𝑖 )

+ (ℓ + 1) (𝑚! − 1) (𝑅−▷0 + 𝑅−▷𝑡 )

=

ℓ∑︁
𝑖=1

𝑅▷𝑖 + 𝑅▷𝑡−𝑖 + 2(ℓ + 1 − 𝑖)𝑚!𝑅 + (ℓ + 1) (𝑚! − 1) (𝑅−▷0 + 𝑅−▷𝑡 )

= 𝑍𝑅∗ + ℓ ′𝑚!𝑅.

Here, we define ℓ ′ = 2
∑ℓ

𝑖=1 (ℓ+1−𝑖) for simplicity. Since𝐶SqK (𝑅,▷) = 𝐶SqK (𝑅,▷′) for all rankings
▷,▷′, we infer from this equation that 𝐶SqK (𝑅∗,▷) = 𝐶SqK (𝑅∗,▷′) if and only if 𝐶SqK (

∑ℓ
𝑖=0 (ℓ + 1 −

𝑖) · 𝑍 𝑖 · 𝑅𝑖 ,▷) = 𝐶SqK (
∑ℓ

𝑖=0 (ℓ + 1 − 𝑖) · 𝑍 𝑖 · 𝑅𝑖 ,▷′) for all rankings ▷,▷′. In turn, the latter equality
holds if𝐶SqK (𝑅𝑖 ,▷) = 𝐶SqK (𝑅𝑖 ,▷′) for all 𝑖 ∈ {0, . . . , ℓ}. We thus consider now an arbitrary ranking
▷𝑑 ∈ {▷0, . . . ,▷𝑡 } and such a profile 𝑅𝑖 . First, we note that swap(▷ 𝑗 ,▷𝑑 )2 = (𝑑 − 𝑗)2 for every
ranking ▷ 𝑗 in our swap sequence. Hence, we compute that

(𝑚 − 1)!𝐶SqK (𝑅−▷𝑖 ,▷𝑑 ) = 𝑐 − swap(▷𝑖 ,▷𝑑 )2 = 𝑐 − (𝑑 − 𝑖)2

(𝑚 − 1)!𝐶SqK (𝑅−▷𝑡−𝑖 ,▷𝑑 ) = 𝑐 − swap(▷𝑡−𝑖 ,▷𝑑 )2 = 𝑐 − (𝑑 − (𝑡 − 𝑖))2

𝐶SqK (𝑅▷𝑖+1 ,▷𝑑 ) = swap(▷𝑖+1,▷𝑑 ) = (𝑑 − (𝑖 + 1))2

𝐶SqK (𝑅▷𝑡−(𝑖+1) ,▷𝑑 ) = swap(▷𝑡−(𝑖+1) ,▷𝑑 ) = (𝑑 − (𝑡 − (𝑖 + 1)))2

Our central observation is now that

− (𝑑 − 𝑖)2 − (𝑑 − (𝑡 − 𝑖))2 + (𝑑 − (𝑖 + 1))2 + (𝑑 − (𝑡 − (𝑖 + 1)))2

= −(𝑑 − 𝑖)2 − (𝑑 − (𝑡 − 𝑖))2 + (𝑑 − 𝑖 − 1)2 + (𝑑 − (𝑡 − 𝑖) + 1)2

= −(𝑑 − 𝑖)2 − (𝑑 − (𝑡 − 𝑖))2 + (𝑑 − 𝑖)2 − 2(𝑑 − 𝑖) + 1 + (𝑑 − (𝑡 − 𝑖))2 + 2(𝑑 − (𝑡 − 𝑖)) + 1
= 2 + 4𝑖 − 2𝑡 .

Hence, 𝐶SqK (𝑅𝑖 ,▷𝑑 ) = 1
𝑍 𝑖 (2𝑐 + 2 + 4𝑖 − 2𝑡) for all ▷𝑑 ∈ {▷0, . . . ,▷𝑡 } and all 𝑖 ∈ {0, . . . , ℓ}, so we

can conclude that SqK(𝑅∗) = {▷0, . . . ,▷𝑡 }.
As the last point, we need to extend our argument to swap sequence of length 𝑡 ′+1 < 𝑡+1 =

(
𝑚
2
)
+1.

Hence, consider a single-crossing swap sequence ▷0, . . . ,▷𝑡 ′ for 𝑡 ′ < 𝑡 . First, if 𝑡 ′ = 0, then there
is clearly a profile 𝑅 such that SqK(𝑅) = {▷0} due to 2RP. We hence suppose that 𝑡 ′ ⩾ 1. We can
extend this sequence to a single-crossing swap sequence ▷′

0, . . . ,▷
′
𝑡 of length 𝑡 +1 using Lemma A.7.

This means that ▷′
𝑖 = ▷𝑖 for all 𝑖 ∈ {0, . . . , 𝑡 ′} and the remaining rankings form a path to ▷′

𝑡 (which
is completely inverse to ▷0). Now, let ▷̄ denote the completely inverse ranking of every ▷ (i.e.,
▷′
𝑡 = ▷̄0). It is easy to see that

▷̄′
𝑡−𝑖 , ▷̄

′
𝑡−𝑖+1, . . . , ▷̄

′
𝑡−1, ▷̄

′
𝑡 = ▷′

0,▷
′
1, . . . ,▷

′
𝑖



The Squared Kemeny Rule for Averaging Rankings 31

is a single-crossing swap sequence for every 𝑖 . Moreover, our construction yields for every 𝑖 a
profile 𝑅𝑖 such that the Squared Kemeny rule chooses exactly the given swap sequence. Now, con-
sider the profile𝑅0 (for which SqK(𝑅0) = {▷′

0, . . . ,▷
′
𝑡 }) and the profile𝑅𝑡−𝑡

′ (for which SqK(𝑅𝑡−𝑡 ′ ) =
{▷̄′

𝑡−𝑡 ′ , . . . ▷̄
′
𝑡 ,▷

′
1, . . . ,▷

′
𝑡 ′ }). It can be verified that SqK(𝑅0)∩SqK(𝑅𝑡−𝑡 ′ ) = {▷′

0, . . . ,▷
′
𝑡 ′ }, so SqK( 1

2𝑅
0+

1
2𝑅

𝑡−𝑡 ′ ) = {▷′
0, . . . ,▷

′
𝑡 ′ } as the Squared Kemeny rule is reinforcing. □

Based on Lemma A.8, we next show that the vectors 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 are linearly independent
for every swap sequence ▷0, . . . ,▷𝑡 .
Lemma A.9. Consider a single-crossing swap sequence ▷0, . . . ,▷𝑡 . The vectors 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡

are linearly independent.

Proof. Let ▷0, . . . ,▷𝑡 denote a single-crossing swap sequence and let 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 denote
the vectors that separate 𝑅▷𝑖

from 𝑅▷𝑖+1 . Since any two consecutive rankings in our sequence
only differ in a swap, we know that 𝑢▷𝑖 ,▷𝑖+1

𝑘
= − swap(▷𝑖 , 𝑏 (𝑘))2 + swap(▷𝑖+1, 𝑏 (𝑘))2 for all 𝑖 ∈

{0, . . . , 𝑡 − 1} and 𝑘 ∈ {1, . . . ,𝑚!} (see Lemma A.5). In particular, this means that 𝑣 (𝑅)𝑢▷𝑖 ,▷𝑖+1 = 0
for every profile 𝑅 in which ▷𝑖 and ▷𝑖+1 have the same Squared Kemeny score. Now, by Lemma A.8,
there are profiles 𝑅 𝑗 such that SqK(𝑅 𝑗 ) = {▷0, . . . ,▷ 𝑗 } for all 𝑗 ∈ {1, . . . , 𝑡}. By the definition of the
Squared Kemeny rule, this means that 𝑣 (𝑅 𝑗 )𝑢▷𝑖 ,▷𝑖+1 = 0 for all 𝑖 < 𝑗 and 𝑣 (𝑅 𝑗 )𝑢▷ 𝑗 ,▷ 𝑗+1 > 0.
We will now use these profiles to inductively show that the considered vectors are linearly

independent. For the induction basis, let 𝑗 = 1 and note that the set {𝑢▷0,▷1 } is trivially linearly
independent. Now, assume that the set {𝑢▷0,▷1 , . . . , 𝑢▷ 𝑗−1,▷ 𝑗 } is linearly independent for some 𝑗 ⩽ 𝑡−
1. For the set {𝑢▷0,▷1 , . . . , 𝑢▷ 𝑗 ,▷ 𝑗+1 }, the linear independence follows by considering the vector 𝑣 (𝑅 𝑗 )
because 𝑣 (𝑅 𝑗 )𝑢▷𝑖 ,▷𝑖+1 = 0 for all 𝑖 < 𝑗 and 𝑣 (𝑅 𝑗 )𝑢▷ 𝑗 ,▷ 𝑗+1 > 0. This is only possible if𝑢▷ 𝑗 ,▷ 𝑗+1 is linearly
independent of the remaining vectors in our set. Moreover, since the set {𝑢▷0,▷1 , . . . , 𝑢▷ 𝑗−1,▷ 𝑗 } is
linearly independent by the induction hypothesis, the full set {𝑢▷0,▷1 , . . . , 𝑢▷ 𝑗 ,▷ 𝑗+1 } is linearly
independent and the lemma follows. □

As the next step, we show that Lemma A.8 also holds for our SPF 𝑓 : for every single-crossing
swap sequence ▷0, . . . ,▷𝑡 , there is a profile 𝑅 such that 𝑓 (𝑅) = {▷0, . . . ,▷𝑡 }. As it will turn out,
the same profiles as for the Squared Kemeny rule show this claim.

Lemma A.10. Let ▷0, . . . ,▷𝑡 denote a single-crossing swap sequence. There is a profile 𝑅 such that
𝑓 (𝑅) = {▷0, . . . ,▷𝑡 }.
Proof. We will prove the lemma only for single-crossing swap sequences ▷0, . . . ,▷𝑡 with

𝑡 =
(
𝑚
2
)
; since 𝑓 satisfies 2RP and reinforcement, we can shorten the sequence as demonstrated in

Lemma A.8. Hence, consider such a sequence, and let 𝑅∗ denote the corresponding profile defined
in Lemma A.8.
We will first show that 𝑓 (𝑅∗) ⊆ {▷0, . . . ,▷𝑡 }. To this end, consider an arbitrary ranking ▷ not

in our sequence. Moreover, we define 𝑑 = swap(▷,▷0) and note that 0 < 𝑑 <
(
𝑚
2
)
as 𝑑 ∉ {▷0,▷𝑡 }.

Now, let ▷𝑑 denote the 𝑑-th ranking in our sequence. We will show that 𝑣𝑢▷𝑑 ,▷ > 0 for the vector
𝑣 = 𝑣 (𝑅∗). This shows that 𝑣 ∉ 𝑅▷ which, in turn, implies that ▷ ∉ 𝑔(𝑣) = 𝑓 (𝑅∗) due to Lemma A.4.
To this end, we first note that swap(▷0,▷𝑑 ) = 𝑑 = swap(▷0,▷) and swap(▷𝑡 ,▷𝑑 ) = 𝑡 −

𝑑 = swap(▷𝑡 ,▷). Hence, it holds by Claim 1) of Lemma A.6 that 𝑢▷𝑑 ,▷
𝑘

= 𝑢
▷𝑑 ,▷
𝑘 ′ = 0 for the

indices 𝑘, 𝑘 ′ with 𝑏 (𝑘) = ▷0 and 𝑏 (𝑘 ′) = ▷𝑡 . Next, let 𝑣 ′ denote the vector with 𝑣 ′𝑖 = 1
𝑚!−1 for

all 𝑖 ∈ {1, . . . ,𝑚!} and note that 𝑣 ′ ∈ 𝑅▷′ for all ▷′ ∈ R due to the symmetry of this vector.
Hence, 𝑣 ′𝑢▷𝑑 ,▷ = 0. We can now compute that 𝑣 (𝑅−▷0 )𝑢▷𝑑 ,▷ = 𝑣 ′𝑢▷𝑑 ,▷ − 1

𝑚!−1𝑢
▷𝑑 ,▷
𝑘

= 0 and
𝑣 (𝑅−▷𝑡 )𝑢▷𝑑 ,▷ = 𝑣 ′𝑢▷𝑑 ,▷ − 1

𝑚!−1𝑢
▷𝑑 ,▷
𝑘 ′ = 0.

Moreover, an analogous analysis as in the proof of Lemma A.8 shows that swap(▷𝑖 ,▷𝑑 ) ⩽
swap(▷𝑖 ,▷) for every ranking ▷𝑖 in our swap sequence. By Claims 1) and 2) in Lemma A.6, this
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means that 𝑢▷𝑑 ,▷
𝑘

⩾ 0 for the index 𝑘 with 𝑏 (𝑘) = ▷𝑖 . Finally, 𝑅∗ (▷𝑑 ) > 0 and we know by Claim
3) in Lemma A.6 that 𝑢▷𝑑 ,▷

𝑘
> 0 for the corresponding index. Since 𝑣 (𝑅▷𝑖 )𝑢▷𝑑 ,▷ = 𝑢

▷𝑑 ,▷𝑘

𝑘
for all ▷𝑖

in our swap sequence and the corresponding index 𝑘 = 𝑏 (▷𝑖 ), we can now infer that 𝑣𝑢▷𝑑 ,▷ > 0
as 𝑅∗ is a convex combination of 𝑅−▷0 , 𝑅−▷𝑡 , and all 𝑅▷𝑖 for 𝑖 ∈ {1, . . . , 𝑡 − 1}. This proves that
𝑓 (𝑅▷0,...,▷𝑡 ) ⊆ {▷0, . . . ,▷𝑡 }.
Next, we need to show that 𝑓 (𝑅∗) = {▷0, . . . ,▷𝑡 }. Assume for a contradiction that this is not the

case, i.e., there is a ranking ▷𝑖 in our sequence that is not chosen. By Lemma A.4, this means that
𝑣 ∉ 𝑅▷𝑖

. Moreover, by combining Lemmas A.3 and A.4, we know that, for every ▷ 𝑗 ∉ 𝑓 (𝑅∗), there is
another ranking𝜙 (▷ 𝑗 ) such that 𝑣𝑢▷ 𝑗 ,𝜙 (▷ 𝑗 ) < 0. Next, we note that SqK(𝑅∗) = {▷0, . . . ,▷𝑡 } because
of Lemma A.8. Combined with Lemma A.5, this implies that 𝑣𝑢▷ 𝑗 ,▷ 𝑗+1 = 0 for all 𝑗 ∈ {0, . . . , 𝑡 − 1}.
Finally, all these vectors 𝑢▷ 𝑗 ,▷ 𝑗+1 are linearly independent of each other (see Lemma A.9). Hence,
the matrix𝑀 that contains these vectors as rows has full (row) rank, which equivalently means
that its image has full dimension. As a consequence, there is a vector 𝑣 ′ ∈ R𝑚! such that

𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 < 0 for all 𝑗 ∈ {0, . . . , 𝑖 − 1}, and
𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 > 0 for all 𝑗 ∈ {𝑖, . . . , 𝑡 − 1}.

Finally, we consider the vector 𝑣 + 𝜀𝑣 ′, where 𝜀 > 0 is so small that (𝑣 + 𝜀𝑣 ′)𝑢▷ 𝑗 ,𝜙 (▷ 𝑗 ) < 0 still
holds for all ▷ 𝑗 ∉ 𝑓 (𝑅∗). This shows that 𝑣 + 𝜀𝑣 ′ ∉ 𝑅▷ 𝑗

for any ▷ 𝑗 ∉ 𝑓 (𝑅∗). Next, it holds that
(𝑣 + 𝜀𝑣 ′)𝑢▷ 𝑗 ,▷ 𝑗+1 = 𝜀𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 < 0 for all 𝑗 ∈ {0, . . . , 𝑖 − 1}, and
(𝑣 + 𝜀𝑣 ′)𝑢▷ 𝑗 ,▷ 𝑗+1 = 𝜀𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 > 0 for all 𝑗 ∈ {𝑖, . . . , 𝑡 − 1}.

Hence, we also have that 𝑣 + 𝜀𝑣 ′ ∉ 𝑅▷ 𝑗
for all ▷ 𝑗 ∈ {▷0, . . . ,▷𝑡 } \ {▷𝑖 }. However, since ▷𝑖 ∉

𝑓 (𝑅∗) by assumption, this means that 𝑣 + 𝜀𝑣 ′ ∉ 𝑅▷ 𝑗
for every ▷ 𝑗 ∈ R. This contradicts that⋃

▷ 𝑗 ∈R 𝑅▷ 𝑗
= R𝑚!, so our initial assumption that 𝑓 (𝑅∗) ⊊ {▷0, . . . ,▷𝑡 } must have been wrong and

𝑓 (𝑅∗) = {▷1, . . . ,▷𝑡 }. □

We are now ready to fully generalize Lemma A.5 to all vectors𝑢▷𝑖 ,▷ 𝑗 . We note that the subsequent
lemma is the equivalent of Step 3 in the proof of Theorem 3.3.

Lemma A.11. Consider a single-crossing swap sequence ▷0, . . . ,▷𝑡 for some 𝑡 ⩾ 1. There is 𝜆 > 0
such that 𝑢▷0,▷𝑡

𝑘
= 𝜆(− swap(▷0, 𝑏 (𝑘))2 + swap(▷𝑘 , 𝑏 (𝑘))2) for all 𝑘 ∈ {1, . . . ,𝑚!}.

Proof. First, we note that the lemma follows immediately from Lemma A.5 if 𝑡 = 1, so we
focus subsequently on the case that 𝑡 ⩾ 2. We denote by ▷0, . . . ,▷𝑡 a given single-crossing swap
sequence and prove the lemma in multiple steps. In particular, we first show the vector 𝑢▷0,▷𝑡 is
linearly dependent on the vectors 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 , which means that there are scalars 𝜆𝑖 , not
all of which are 0, such that 𝑢▷0,▷𝑡 =

∑𝑡−1
𝑖=0 𝜆𝑖𝑢

▷𝑖 ,▷𝑖+1 . The lemma now follows by showing that all
scalars 𝜆𝑖 are non-negative and equal since not all of them are 0. We thus prove in the second step
all 𝜆𝑖 are non-negative. In the third step, we then prove the lemma for the case that 𝑡 = 2 and finally
generalize the lemma to arbitrary 𝑡 in the last step.
Step 1: As first step, we show that 𝑢▷0,▷𝑡 is linearly dependent on 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 . Assume

for contradiction that this is not the case, which means that the set {𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 , 𝑢▷0,▷𝑡 } is
linearly independent. We consider now the matrix𝑀 that contains all these vectors as rows. By
basic linear algebra, this matrix has full (row) rank, so its image has full dimension. This implies
that there is a vector 𝑣 ′ such that 𝑣 ′𝑢▷0,▷𝑡 < 0 and 𝑣𝑢▷𝑖 ,▷𝑖+1 > 0 for all 𝑖 ∈ {0, . . . , 𝑡 − 1}. By the
definition of these vectors, this means that 𝑣 ′ ∉ 𝑅▷𝑖

for any ▷𝑖 ∈ {▷0, . . . ,▷𝑡 }.
Moreover, by Lemma A.10, there is a profile 𝑅 such that 𝑓 (𝑅) = {▷0, . . . ,▷𝑡 }. Next, by Lemma A.4,

it follows for 𝑣 = 𝑣 (𝑅) that 𝑣 ∈ 𝑅▷𝑖
if and only if ▷𝑖 ∈ {▷0, . . . ,▷𝑡 }. By Lemma A.3, this means that
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there is a mapping 𝜙 from R \ 𝑓 (𝑅) to R such that 𝑣𝑢▷,𝜙 (▷) < 0 for all ▷ ∈ R \ 𝑓 (𝑅). Moreover, it
holds that 𝑣 ∈ 𝑅▷𝑖

for all ▷𝑖 ∈ 𝑓 (𝑅). By the definition of the vectors 𝑢▷𝑖 ,▷ 𝑗 , it hence follows that
𝑣𝑢▷𝑖 ,▷ 𝑗 = 0 for all ▷𝑖 ,▷ 𝑗 ∈ {▷0, . . . ,▷𝑡 }.

Finally, we can find as sufficiently small 𝜀 > 0 such that (𝑣 + 𝜀𝑣 ′)𝑢▷,𝜙 (▷) < 0 still holds for
every ▷ ∈ R \ 𝑓 (𝑅). It is also straightforward to verify that (𝑣 + 𝜀𝑣 ′)𝑢▷𝑖 ,▷ 𝑗 = 𝜀𝑣 ′𝑢▷𝑖 ,▷ 𝑗 for all
▷𝑖 ,▷ 𝑗 ∈ {▷0, . . . ,▷𝑡 }. By the definition of 𝑣 ′, this means that (𝑣 + 𝜀𝑣 ′) ∉ 𝑅▷𝑖

for any ▷𝑖 ∈ R, which
contradicts that

⋃
▷𝑖 ∈R 𝑅▷𝑖

= R𝑚!. Hence, the initial assumption is wrong and 𝑢▷0,▷𝑡 is linearly
depending on 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 .

Step 2: We next show that all 𝜆𝑖 are non-negative. Assume for contradiction that this is not true,
i.e., there is an index 𝑖 with 𝜆𝑖 < 0. Now, recall that the vectors 𝑢▷𝑖 ,▷𝑖+1 for 𝑖 ∈ {0, . . . , 𝑡 − 1} are
linearly independent, so there is a vector 𝑣 ′ such that

𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 =

{
𝜀 for all 𝑗 ∈ {0, . . . , 𝑡 − 1} \ {𝑖},
1 for 𝑗 = 𝑖 .

In particular, we can choose 𝜀 > 0 so small that

−𝜆𝑖𝑣 ′𝑢▷𝑖 ,▷𝑖+1 >
∑𝑡−1

𝑗=0, 𝑗≠𝑖 𝜆 𝑗𝑣
′𝑢▷ 𝑗 ,▷ 𝑗+1 .

This means that 𝑣𝑢▷0,▷𝑡 < 0. However, it follows now that 𝑣 ′ ∉ 𝑅▷𝑖
for all ▷𝑖 ∈ {▷0, . . . ,▷𝑡 }.

Analogous to the last step, we can combine 𝑣 ′ againwith the vector 𝑣 ∈ Q𝑚! with𝑔(𝑣) = {▷0, . . . ,▷𝑡 }
to derive a vector 𝑣 + 𝜀′𝑣 ′ such that 𝑣 + 𝜀𝑣 ′ ∉ 𝑅▷𝑖

for all ▷𝑖 ∈ R. This gives the same contradiction
as in the last step, so 𝜆𝑖 ⩾ 0 for all 𝑖 ∈ {0, . . . , 𝑡 − 1}.

Step 3: In our third step, we prove the lemma for the case that 𝑡 = 2 and hence let ▷0,▷1,▷2
denote the considered sequence. By the first two steps, we know that 𝑢▷0,▷2 = 𝜆0𝑢

▷0,▷1 + 𝜆1𝑢
▷1,≻2

for some values 𝜆0, 𝜆1 such that both are non-negative and at least one is strictly positive. We hence
only need to show that 𝜆0 = 𝜆1. To this end, we note that ▷0 differs from ▷2 either in two disjoint
swaps, or we shift an alternative 𝑥 by two positions.
We continue with a case distinction with respect to these two options and first assume that ▷0

differs from ▷2 in two disjoint swaps. In this case, let ≻1 and ≻2 denote the rankings where we
have swapped precisely one of these two pairs. In more detail, we assume subsequently that

▷0 = . . . , 𝑎, 𝑏, . . . , 𝑐, 𝑑, . . .

▷2 = . . . , 𝑏, 𝑎, . . . , 𝑑, 𝑐, . . .

≻1 = . . . , 𝑏, 𝑎, . . . , 𝑐, 𝑑 . . .

≻2 = . . . , 𝑎, 𝑏, . . . , 𝑑, 𝑐, . . .

for some alternatives𝑎, 𝑏, 𝑐, 𝑑 . It is easy to check that swap(▷0, ≻1) = swap(▷0, ≻2) = 1, swap(▷2, ≻1) =
swap(▷2, ≻2) = 1, and either swap(▷1, ≻1) = 0 and swap(▷1, ≻2) = 2, or swap(▷1, ≻1) = 2 and
swap(▷1, ≻2) = 0. Next, it follows from 2RP that 𝑓 (𝑅) = {▷0,▷2} for the profile 𝑅 with 𝑅(≻1) = 1

2
and 𝑅(≻2) = 1

2 . Moreover, using Lemma A.5, we derive that

𝑣 (𝑅)𝑢▷0,▷1 =
1
2 (− swap(▷0, ≻1)2 + swap(▷1, ≻1)2 − swap(▷0, ≻2)2 + swap(▷1, ≻2)2)

=
1
2 (−2 + 4)

= 1
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and

𝑣 (𝑅)𝑢▷1,▷2 =
1
2 (− swap(▷1, ≻1)2 + swap(▷2, ≻1)2 − swap(▷1, ≻2)2 + swap(▷2, ≻2)2)

=
1
2 (−4 + 2)

= −1.
Finally, since ▷0,▷2 ∈ 𝑓 (𝑅) = 𝑔(𝑣), we have that 𝑣 (𝑅)𝑢▷0,▷2 = 𝜆0𝑣𝑢

▷0,▷1 + 𝜆1𝑣𝑢
▷1,▷2 = 𝜆0 − 𝜆1 = 0.

This is only true if 𝜆0 = 𝜆1 which proves our third step in this case.
Next, suppose that we derive ▷2 from ▷0 by shifting an alternative 𝑎 by two positions. We assume

that ▷2 is derived from ▷0 by shifting an alternative 𝑎 down as the case of shifting an alternative
up is symmetric. Hence, let

▷0 = . . . , 𝑎, 𝑏, 𝑐, . . .

▷1 = . . . , 𝑏, 𝑎, 𝑐, . . .

▷2 = . . . , 𝑏, 𝑐, 𝑎, . . . .

Now, let ≻ = . . . , 𝑐, 𝑎, 𝑏, . . . and consider the profile 𝑅 such that 𝑅(▷0) = 𝑅(▷2) = 𝑅(≻) = 1
3 . First,

we note that 𝑣 (𝑅) ∉ 𝑅▷ for any ▷ that differs from ▷0 in any other pair as (𝑎, 𝑏), (𝑏, 𝑐), and (𝑎, 𝑐).
Indeed, if such a pair exists in ▷, there is also a pair (𝑥 ′, 𝑦′) such that 𝑥 ′ ▷ 𝑦′, 𝑦′ ▷0 𝑥

′, and 𝑥 ′ and
𝑦′ are adjacent in ▷. Using Lemma A.5, we can then infer that 𝑣 (𝑅)𝑢▷,▷′

< 0 for the ranking ▷′ in
which we swapped 𝑥 ′ and 𝑦′, which implies that 𝑣 (𝑅) ∉ 𝑅▷ . This is true because the rankings ▷0,
▷2, and ≻ agree on the order of all alternatives except 𝑎, 𝑏, 𝑐 and thus swap(▷′, ≻′) < swap(▷, ≻′)
for all ≻′ ∈ {▷0,▷2, ≻}.
Furthermore, it holds for the ranking ▷1 that 𝑣 (𝑅)𝑢▷0,▷1 > 0 as we can simply compare the

Squared Kemeny costs of both rankings (▷0 has a cost of 8
3 in 𝑅, ▷𝑖1 of 11

3 ). Analogously, we
can infer that 𝑣 (𝑅)𝑢▷2,▷′

2 > 0 for the ranking ▷′
2 = . . . , 𝑐, 𝑏, 𝑎, . . . , and that 𝑣 (𝑅)𝑢≻,≻′

> 0 for the
ranking ≻′ = . . . , 𝑎, 𝑐, 𝑏, . . . . Due to Lemmas A.3 and A.4 and neutrality, we can now infer that
𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) = {▷0,▷2, ≻}. This means that 𝑣 (𝑅)𝑢▷0,▷2 = 0. Furthermore, we can compute that

𝑣 (𝑅)𝑢▷0,▷1 =
1
3 (− swap(▷0,▷0)2 − swap(▷0, ≻)2 − swap(▷0,▷2)2)

+ 1
3 (swap(▷1,▷0)2 + swap(▷1, ≻)2 + swap(▷1,▷2)2)

=
1
3 (−0 − 4 − 4 + 1 + 1 + 9) = 1,

and an analogous calculation shows that 𝑣 (𝑅)𝑢▷1,▷2 = −1. Since
𝑣 (𝑅)𝑢▷0,▷2 = 𝜆0𝑣 (𝑅)𝑢▷0,▷1 + 𝜆1𝑣 (𝑅)𝑢▷1,▷2 ,

we can now infer that 𝜆0 = 𝜆1. This completes the case that 𝑡 = 2.
Step 4: Finally, we consider the case that 𝑡 > 2. First, we assume for contradiction that there is

𝑖 ∈ {0, . . . , 𝑡 − 2} such that 𝜆𝑖 < 𝜆𝑖+1. Clearly, this means that there is 𝑘 such that 𝑘 (𝜆𝑖+1 − 𝜆𝑖 ) >∑
𝑗∈{0,...,𝑡−1}\{𝑖+1} 𝜆𝑖 . Since the vectors 𝑢▷0,▷1 , . . . , 𝑢▷𝑡−1,▷𝑡 are linearly independent, we can find a

vector 𝑣 ′ such that 𝑣 ′𝑢▷𝑖 ,▷𝑖+1 = 𝑘 + 1, 𝑣 ′𝑢▷𝑖+1,▷𝑖+2 = −𝑘 , and 𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 = 1 for all other vectors. By
the linear dependence of 𝑢▷0,▷𝑡 , we derive that

𝑣 ′𝑢▷0,▷𝑡 =
∑

𝑗∈{0,...,𝑡−1} 𝜆 𝑗𝑣
′𝑢▷ 𝑗 ,▷ 𝑗+1

= −𝑘𝜆𝑖+1 + 𝑘𝜆𝑖 +
∑

𝑗∈{0,...,𝑡−1}\{𝑖+1} 𝜆 𝑗

< 0.
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This means that 𝑣 ∉ 𝑅▷0 . Furthermore, it holds for all ▷ 𝑗 with 𝑗 ≠ 𝑖 + 2 that 𝑣 ′𝑢▷ 𝑗−1,▷ 𝑗 > 0, which
implies that 𝑣 ′ ∉ 𝑅▷ 𝑗

either. Finally, for ▷𝑖+2, we use the fact that 𝑢▷𝑖 ,▷𝑖+2 = 𝛼 (𝑢▷𝑖 ,▷𝑖+1 + 𝑢▷𝑖+1,▷𝑖+2 )
for some 𝛼 > 0 (see Step 3) to derive that

𝑣 ′𝑢▷𝑖 ,▷𝑖+2 = 𝛼 (𝑣 ′𝑢▷𝑖 ,▷𝑖+1 + 𝑣 ′𝑢▷𝑖+1,▷𝑖+2 ) = 𝛼 (𝑘 + 1 − 𝑘) > 0,

so 𝑣 ′ ∉ 𝑅▷𝑖+2 either. Just as in Steps 2 and 3, we can now infer a contradiction by combining 𝑣 ′ with
the vector 𝑣 ∈ Q𝑚! which guarantees that 𝑔(𝑣) = {▷0, . . . ,▷𝑡 }. In particular, there is a sufficiently
small 𝜀 > 0 such that 𝑣 + 𝜀𝑣 ′ ∉ 𝑅▷ 𝑗

for all ▷ 𝑗 ∈ R. This contradicts that ⋃
▷ 𝑗 ∈R 𝑅▷ 𝑗

= R𝑚!, so
we infer that hold that 𝜆0 ⩾ 𝜆1 ⩾ . . . ⩾ 𝜆𝑡−1. Finally, we note that the case 𝜆𝑖 > 𝜆𝑖+1 follows
symmetrically by simply changing the “direction” of our construction: we now choose 𝑣 ′ such that

𝑣 ′𝑢▷𝑖 ,▷𝑖+1 = 𝑘,

𝑣 ′𝑢▷𝑖+1,▷𝑖+2 = −(𝑘 + 1),
𝑣 ′𝑢▷ 𝑗 ,▷ 𝑗+1 = −1 for all other 𝑗 .

An analogous analysis as in the last case leads to a contradiction and the lemma follows. □

Finally, we are ready to show our main result.

Theorem 3.2. An SPF satisfies neutrality, reinforcement, continuity, and 2RP if and only if it is the
Squared Kemeny rule.

Proof. Consider an SPF 𝑓 that satisfies all our requirements. By Lemma A.1, there is a function
𝑔 : Q𝑚! → 2R \ {∅} such that 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) for all profiles 𝑅 ∈ R∗. Now, let 𝑅▷𝑖

= {𝑣 ∈ Q𝑚! : ▷𝑖 ∈
𝑔(𝑣)} for every ▷𝑖 ∈ R and let 𝑅▷𝑖

denote the closure of 𝑅▷𝑖
with respect to R𝑚!. By Lemma A.2,

we know that there are non-zero vectors 𝑢▷𝑖 ,▷ 𝑗 for all ▷𝑖 ,▷ 𝑗 ∈ R such that 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾ 0 if 𝑣 ∈ 𝑅▷𝑖

and 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩽ 0 if 𝑣 ∈ 𝑅▷ 𝑗
. Moreover, by Lemma A.5 and Lemma A.11, we also know these vectors

can be represented as follows: there is 𝜆 > 0 such that

𝑢
▷𝑖 ,▷ 𝑗

𝑘
= 𝜆(− swap(▷𝑖 , 𝑏 (𝑘))2 + swap(▷ 𝑗 , 𝑏 (𝑘))2)

for all 𝑘 ∈ {1, . . . ,𝑚!}. In turn, Lemma A.3 shows that 𝑅▷𝑖
= {𝑣 ∈ R𝑚! : ∀▷ 𝑗 ∈ R \ {▷𝑖 } : 𝑣𝑢▷𝑖 ,▷ 𝑗 ⩾

0}.
Now, let 𝑠 (𝑣,▷𝑖 ) =

∑𝑚!
𝑘=1 −𝑣𝑘 swap(▷𝑖 , 𝑏 (𝑘))2 for every vector 𝑣 ∈ R𝑚! and every ▷𝑖 ∈ R. Since

our normal vectors are invariant under scaling, it is easy to see that

𝑅▷𝑖
= {𝑣 ∈ R𝑚! : ∀▷ 𝑗 ∈ R \ {▷𝑖 } : 𝑠 (𝑣,▷𝑖 ) ⩾ 𝑠 (𝑣,▷ 𝑗 )}.

Finally, Lemma A.4 shows for all 𝑣 ∈ Q𝑚! that

𝑔(𝑣) = {▷𝑖 ∈ R : 𝑣 ∈ 𝑅▷𝑖
} = {▷𝑖 ∈ R : ∀▷ 𝑗 ∈ R \ {▷𝑖 } : 𝑠 (𝑣,▷𝑖 ) ⩾ 𝑠 (𝑣,▷ 𝑗 )}.

Hence, 𝑓 (𝑅) = 𝑔(𝑣 (𝑅)) = arg max▷∈R 𝑠 (𝑣 (𝑅),▷) = arg min▷∈R 𝐶SqK (𝑅,▷) for all profiles 𝑅 ∈ R∗.
This proves that 𝑓 is the Squared Kemeny rule. □

B ADDITIONAL MATERIAL FOR SECTION 5
B.1 Proof of Theorem 5.1
Before we prove the NP-completeness of computing the Squared Kemeny rule, we should clarify
how the input profiles are to be encoded: they should be given as a list of rankings that occur in
the profile, together with their weights.

Theorem 5.1. The problem of deciding, given a profile 𝑅 and a number 𝐵, whether there exists a
ranking ▷ with 𝐶SqK (𝑅,▷) ⩽ 𝐵, is NP-complete, even for profiles with 4 rankings with equal weight.
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Proof. Recall a standard inequality between the 1- and 2-norms:

∥𝑥 ∥2 ⩽ ∥𝑥 ∥1 ⩽
√
𝑛 · ∥𝑥 ∥2 for all 𝑥 ∈ R𝑛,

where ∥𝑥 ∥2 =
√︃
𝑥2

1 + · · · + 𝑥2
𝑛 and ∥𝑥 ∥1 =

∑𝑛
𝑖=1 |𝑥𝑖 |. We will use this inequality with 𝑛 = 4:

∥𝑥 ∥1 ⩽ 2 · ∥𝑥 ∥2 (4)
Write𝐶K (𝑅,▷) =

∑
≻∈R 𝑅(≻) · swap(≻,▷) for the Kemeny score of the ranking ▷ in profile 𝑅. It

is well-known that the following problem of computing the Kemeny rule on profiles with 4 voters
is NP-complete [Bachmeier et al., 2019, Biedl et al., 2009, Dwork et al., 2001].

Input: Profile 𝑅 in which exactly 4 rankings occur with equal weight, target score 𝑘
Question: Does there exist ▷ with 𝐶K (𝑅,▷) ⩽ 𝑘?
By reducing from that problem, we will show that the following problem is NP-complete:
Input: Profile 𝑅 in which exactly 4 rankings occur with equal weight, target score 𝑠
Question: Does there exist ▷ with 𝐶SqK (𝑅,▷) ⩽ 𝑠?

Consider an instance (𝑅, 𝑘) of the Kemeny problem, with 𝑅 defined on alternative set𝐴with |𝐴| =
𝑚 and with rankings ≻1, ≻2, ≻3, ≻4 occurring in 𝑅 with weights 1/4 each. We construct an instance
of the Squared Kemeny problem. Our alternative set is going to be 𝐴′ =

⋃
𝑎∈𝐴{𝑎 (1) , 𝑎 (2) , 𝑎 (3) , 𝑎 (4) },

consisting of 4 copies of each alternative 𝑎 ∈ 𝐴. Thus |𝐴| = 4𝑚. The profile 𝑅′ on 𝐴′ consists of the
following 4 rankings, each with weight 1/4:6

≻′
𝑎 = ≻ (1)

1 · ≻ (2)
2 · ≻ (3)

3 · ≻ (4)
4

≻′
𝑏
= ≻ (1)

2 · ≻ (2)
3 · ≻ (3)

4 · ≻ (4)
1

≻′
𝑐 = ≻ (1)

3 · ≻ (2)
4 · ≻ (3)

1 · ≻ (4)
2

≻′
𝑑
= ≻ (1)

4 · ≻ (2)
1 · ≻ (3)

2 · ≻ (4)
3

This notation is to be understood as follows: ≻ ( 𝑗 )
𝑖

refers to the ranking induced by ≻𝑖 applied to the
alternatives {𝑎 ( 𝑗 ) : 𝑎 ∈ 𝐴}, i.e., the 𝑗-th copy of 𝐴. Rankings separated by a dot are concatenated.
Thus, each ranking in 𝑅′ has in its top𝑚 positions the alternatives from the first copy of 𝐴, in the
next𝑚 positions the alternatives from the second copy of 𝐴, and so on. However, the rankings in
𝑅′ differ in how they order each copy; for example ≻𝑎 ranks the first copy in the same way that ≻1
ranks 𝐴. Our target score is going to be 𝑠 = 1

4𝑘
2.

We show that there exist a ranking ▷ with 𝐶K (𝑅,▷) ⩽ 𝑘 if and only if there exists a ranking ▷′

with 𝐶SqK (𝑅′,▷′) ⩽ 𝑠 .
=⇒ : Let ▷ be such that 𝐶K (𝑅,▷) ⩽ 𝑘 . Let ▷′ = ▷ (1) · ▷ (2) · ▷ (3) · ▷ (4) , i.e., the concatenation

of 4 copies of ▷. Note that we have
swap(≻′

𝑎,▷
′) = swap(≻1,▷) + swap(≻2,▷) + swap(≻3,▷) + swap(≻4,▷) = 𝐶K (𝑅,▷) ⩽ 𝑘.

Similarly, swap(≻′
𝑏
,▷′) = swap(≻′

𝑐 ,▷
′) = swap(≻′

𝑑
,▷′) ⩽ 𝑘 . Hence

𝐶SqK (𝑅′,▷′) ⩽ 1
4 (𝑘

2 + 𝑘2 + 𝑘2 + 𝑘2) = 1
4𝑘

2 = 𝑠 .

⇐= : Let ▷′ be such that 𝐶SqK (𝑅′,▷′) ⩽ 𝑠 = 1
4𝑘

2.
Consider an optimum Kemeny ranking ▷ in 𝑅, and let 𝑡 = 𝐶K (𝑅,▷) be its Kemeny score. We

want to show that 𝑡 ⩽ 𝑘 .
6The same profile construction is used in the reduction in Theorem 6 of Biedl et al. [2009] (showing that egalitarian Kemeny
is NP-complete).
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It is easy to see that ▷∗ = ▷ (1) · ▷ (2) · ▷ (3) · ▷ (4) is an optimum Kemeny ranking in 𝑅′, and it
has Kemeny score 𝐶K (𝑅′,▷′) = 𝑡 because swap(≻𝑥 ,▷∗) = 𝑡 for 𝑥 = 𝑎, 𝑏, 𝑐, 𝑑 . Now, we have

𝑡 = 𝐶K (𝑅′,▷∗)
opt
⩽ 𝐶K (𝑅′,▷′)

(4)
⩽ 2 ·

√︃
𝐶SqK (𝑅′,▷′) ⩽ 2 ·

√
𝑠 = 2 ·

√︃
1
4𝑘

2 = 𝑘,

and thus 𝑡 ⩽ 𝑘 , as required. □

B.2 ILP Formulation
Here, we present an Integer Linear Programming formulation for computing the Squared Kemeny
rule. Let 𝑅 be a profile with 𝑛 different rankings. Then the ILP formulation will contain

(
𝑚
2
)
binary

variables, 2𝑛 continuous variables, and 𝑂 (𝑚3 + 𝑛) constraints. To transform swap distances into
squared swap distances, we use the trick described by Caragiannis et al. [2019] for computing the
maximum Nash welfare solution for fair allocation, and generalized by Bredereck et al. [2020] to
other ILPs with convex or concave objective functions.

In the formulation, for every pair 𝑎, 𝑏 ∈ 𝐴 of distinct alternatives, we have a binary variable 𝑥𝑎,𝑏
encoding whether 𝑎 ▷ 𝑏 in the output ranking ▷. The first type of constraint encodes completeness
of the binary relation ▷, while the second encodes transitivity of ▷. For each ranking ≻ appearing
in the profile 𝑅, the formulation includes a (continuous) variable dist≻ which is constrained to
equal swap(≻,▷).7 There is also a continuous variable sqdist≻ which is constrained to be at least
swap(≻,▷)2. It will equal that value in the optimum solution.

minimize
∑

≻∈R 𝑅(≻) · sqdist≻
subject to 𝑥𝑎,𝑏 + 𝑥𝑏,𝑎 = 1 for all 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏

𝑥𝑎,𝑏 + 𝑥𝑏,𝑐 + 𝑥𝑐,𝑎 ⩽ 2 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, all distinct
dist≻ =

∑
𝑎,𝑏∈𝐴 : 𝑎≻𝑏 𝑥𝑏,𝑎 for all ≻ ∈ R

sqdist≻ ⩾ 𝑘2 + ((𝑘 + 1)2 − 𝑘2) · (dist≻ − 𝑘) for all ≻ ∈ R and all 𝑘 ∈ [
(
𝑚
2
)
]

𝑥𝑎,𝑏 ∈ {0, 1} for all 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏

B.3 4-Approximation to Squared Kemeny
Theorem B.1. There is a polynomial-time 4-approximation algorithm for the Squared Kemeny rule.

Proof. Let𝑅 be a profile and let▷∗ ∈ SqK(𝑅) be some Squared Kemeny output ranking. Consider
the expected Squared Kemeny cost of a random ranking ▷ drawn according to the weights in 𝑅

(i.e., viewing 𝑅 as a probability distribution). We have
E▷∼𝑅 [𝐶SqK (𝑅,▷)] = E▷∼𝑅 [E≻∼𝑅 [swap(≻,▷)2]] (definition)

= E≻∼𝑅 [E▷∼𝑅 [swap(≻,▷)2]] (linearity of expectation)
⩽ E≻∼𝑅 [E▷∼𝑅 [(swap(≻,▷∗) + swap(▷∗,▷))2]] (triangle inequality)
⩽ E≻∼𝑅 [E▷∼𝑅 [2 swap(≻,▷∗)2 + 2 swap(▷∗,▷)2]] ((𝑎 + 𝑏)2 ⩽ 2𝑎2 + 2𝑏2)
= E≻∼𝑅 [E▷∼𝑅 [2 swap(≻,▷∗)2]] + E≻∼𝑅 [E▷∼𝑅 [2 swap(▷∗,▷)2]] (linearity)
= E≻∼𝑅 [2 swap(≻,▷∗)2] + E▷∼𝑅 [2 swap(▷∗,▷)2] (E[const.] = const.)
= 4 ·𝐶SqK (𝑅,▷∗). (definition)

Thus, it follows that there exists ▷ ∈ supp(𝑅) with
𝐶SqK (𝑅,▷) ⩽ 4 ·𝐶SqK (𝑅,▷∗).

7This variable can be eliminated from the formulation by replacing its value in the constraints placed on sqdist≻ .
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Thus, the algorithm that goes through all rankings ▷ in supp(𝑅) and outputs one with minimum
𝐶SqK (𝑅,▷) is a 4-approximation of the Squared Kemeny rule. □

The same proof strategy has been used to obtain a 2-approximation to the Kemeny rule [Ailon
et al., 2008].

B.4 Proof of Theorem 5.2
Theorem 5.2. For every constant 𝜀 > 0, there exists a polynomial-time (2 + 𝜀)-approximation to

the Squared Kemeny rule.

Proof. Fix an arbitrary profile 𝑅 and ranking ▷ ∈ R. Also, let ▷SqK ∈ SqK(𝑅) be a ranking
selected by the Squared Kemeny rule. Furthermore, let 𝛼 ⩾ 1 be such that

∑
≻∈R 𝑅(≻) · swap(≻

,▷) = 𝛼
∑

≻∈R 𝑅(≻) · swap(≻,▷SqK). Observe that we can always find such an 𝛼 : if the (weighted)
average swap distance to ▷ is smaller than to ▷SqK, we can set 𝛼 = 1, and otherwise we can set it
as the ratio between the distances.

It is sufficient to prove that

𝐶SqK (𝑅,▷) ⩽ 2𝛼2 ·𝐶SqK (𝑅,▷SqK).

Indeed, if ▷ is a (
√︁

1 + 𝜀/2)-approximation of Kemeny (and as e.g., (1 + 𝜀2) <
√︁

1 + 𝜀/2 for small
enough values of 𝜀, we can find such a ranking in polynomial time [Kenyon-Mathieu and Schudy,
2007]), then surely 𝛼 ⩽ (

√︁
1 + 𝜀/2), thus ▷ is a (2 + 𝜀)-approximation of Squared Kemeny as well.

Observe that this inequality is equivalent to 𝐶SqK (𝑅,▷) − 𝛼2 ·𝐶SqK (𝑅,▷SqK) ⩽ 𝛼2 ·𝐶SqK (𝑅,▷SqK).
Which, using the 𝑥2 − 𝑦2 = (𝑥 + 𝑦) (𝑥 − 𝑦) formula, we can write as∑

≻∈R 𝑅(≻)(swap(≻,▷) + 𝛼 swap(≻,▷SqK)) (swap(≻,▷) − 𝛼 swap(≻,▷SqK)) ⩽∑
≻∈R 𝑅(≻) · (𝛼 swap(≻,▷SqK))2 . (5)

We will prove Inequality (5) using the following lemma.

Lemma B.2. Given real numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛 ⩾ 0, 𝑦1, 𝑦2, . . . , 𝑦𝑛 ⩾ 0 and 𝑧1, 𝑧2, . . . , 𝑧𝑛 such that
𝑥1 + 𝑥2 + · · · + 𝑥𝑛 = 1, 𝑥1𝑧1 + 𝑥2𝑧2 + · · · + 𝑥𝑛𝑧𝑛 ⩽ 0 and 𝑧𝑖 ⩽ 𝑦 𝑗 for every 𝑖, 𝑗 ∈ [𝑛], it holds that

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖𝑧𝑖 ⩽
1
4

(
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

)2

.

Proof. Without loss of generality, let us assume that𝑦1 ⩾ 𝑦2 ⩾ . . . ⩾ 𝑦𝑛 ⩾ 0. Then, the condition
that 𝑧𝑖 ⩽ 𝑦 𝑗 , for every 𝑖, 𝑗 ∈ [𝑛], means simply that 𝑧𝑖 ⩽ 𝑦𝑛 , for every 𝑖 ∈ [𝑛].
We will first show that for fixed values of 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 the sum

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 is maximized

if 𝑧𝑖 = 𝑦𝑛 , for every 𝑖 ∈ [𝑛 − 1], and 𝑧𝑛 = (1 − 𝑥𝑛)𝑦𝑛 . To this end, take 𝑧1, . . . , 𝑧𝑛 defined like that
and arbitrary 𝑧′1, . . . , 𝑧′𝑛 such that 𝑥1𝑧

′
1 + · · · + 𝑥𝑛𝑧′𝑛 = 1 and 𝑧′𝑖 ⩽ 𝑦𝑛 , for every 𝑖 ∈ [𝑛]. We will show

that
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 ⩾
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖𝑧
′
𝑖 . Since for every 𝑖 ∈ [𝑛 − 1] it holds that 𝑦𝑖 ⩾ 𝑦𝑛 and 𝑧′𝑖 ⩽ 𝑦𝑛 = 𝑧𝑖 we

get that
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖𝑧𝑖 −
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖𝑧
′
𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 (𝑧𝑖 − 𝑧′𝑖 ) ⩾ 𝑦𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 (𝑧𝑖 − 𝑧′𝑖 ).

Furthermore, we have that
∑𝑛

𝑖=1 𝑥𝑖𝑧𝑖 = 0 and
∑𝑛

𝑖=1 𝑥
′
𝑖𝑧𝑖 ⩽ 0, hence

∑𝑛
𝑖=1 𝑥𝑖 (𝑧𝑖 −𝑧′𝑖 ) ⩾ 0. Thus, indeed∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 ⩾
∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖𝑧
′
𝑖 .

In the remainder of the proof of this lemma, let us show that with such values of 𝑧1, . . . 𝑧𝑛
maximizing the sum

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 , the upper bound from the thesis still holds. Observe that for such
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values of 𝑧1, . . . , 𝑧𝑛 we have
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖𝑧𝑖 =

𝑛−1∑︁
𝑖=1

𝑥𝑖𝑦𝑖𝑦𝑛 − (1 − 𝑥𝑛)𝑦2
𝑛 = 𝑦𝑛

(
𝑛−1∑︁
𝑖=1

(𝑥𝑖𝑦𝑖 ) − (1 − 𝑥𝑛)𝑦𝑛

)
= 𝑦𝑛

(
𝑛∑︁
𝑖=1

(𝑥𝑖𝑦𝑖 ) − 𝑦𝑛

)
.

Now, assume that the sum
∑𝑛

𝑖=1 (𝑥𝑖𝑦𝑖 ) is a constant equal to 𝑆 . What, given the value of 𝑆 , would
be the value of 𝑦𝑛 that would maximize the

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖? The one that would maximize the term

𝑦𝑛 (𝑆 − 𝑦𝑛), which is a quadratic function with roots in 0 and 𝑆 . Hence, since it is concave, the
maximum is obtained halfway between the roots at 𝑦𝑛 = 𝑆/2. Thus, we obtain that

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖𝑧𝑖 ⩽

1/2 · ∑𝑛
𝑖=1 (𝑥𝑖𝑦𝑖 ) · 1/2 · ∑𝑛

𝑖=1 (𝑥𝑖𝑦𝑖 ), form which the thesis of the lemma follows. □

Now, let us use Lemma B.2 in order to prove Inequality (5), by showing that 𝑥≻ = 𝑅(≻), 𝑦≻ =

(swap(≻,▷) + 𝛼 swap(≻,▷SqK)), and 𝑧≻ = (swap(≻,▷) − 𝛼 swap(≻,▷SqK)) would satisfy the
conditions of the lemma. To this end, observe that indeed

∑
≻∈R 𝑥≻ =

∑
≻∈R 𝑅(≻) = 1. Moreover,

by the definition of 𝛼 ,∑︁
≻∈R

𝑥≻𝑧≻ =
∑︁
≻∈R

𝑅(≻) · swap(≻,▷) − 𝛼
∑︁
≻∈R

𝑅(≻) · swap(≻,▷SqK) ⩽ 0.

Thus, it suffices to show that for every ≻, ≻′∈ R it holds that 𝑧≻ ⩽ 𝑦≻′ , i.e., swap(≻,▷) −𝛼 swap(≻
,▷SqK) ⩽ swap(≻′,▷) + 𝛼 swap(≻′,▷SqK). For this, observe that using triangle inequality for swap
distance two times, we get that

swap(≻,▷) ⩽ swap(≻′,▷) + swap(≻, ≻′) ⩽ swap(≻′,▷) + swap(≻,▷SqK) + swap(≻′,▷SqK).
Since, as we assumed, 𝛼 ⩾ 1, we get the desired inequality. Therefore, we can indeed use Lemma B.2
to show that∑

≻∈R 𝑅(≻)(swap(≻,▷) + 𝛼 swap(≻,▷SqK)) (swap(≻,▷) − 𝛼 swap(≻,▷SqK)) ⩽
1
4
(∑

≻∈R 𝑅(≻)(swap(≻,▷) + 𝛼 swap(≻,▷SqK))
)2
. (6)

Observe that from the definition of 𝛼 , we can bound the right-hand side of Inequality (6) by

1
4

(∑︁
≻∈R

𝑅(≻)(swap(≻,▷) + 𝛼 swap(≻,▷SqK))
)2

⩽ 𝛼2

(∑︁
≻∈R

𝑅(≻) swap(≻,▷SqK)
)2

.

Next, observe that
∑

≻∈R 𝑅(≻) swap(≻,▷SqK) is a weighted average, hence from Jensen’s inequality,
we get that

1
4

(∑︁
≻∈R

𝑅(≻)(swap(≻,▷) + 𝛼 swap(≻,▷SqK))
)2

⩽ 𝛼2
∑︁
≻∈R

𝑅(≻) swap(≻,▷SqK)2.

Combining this with Inequality (6), yields Inequality (5). □

B.5 Distance Between Kemeny and Squared Kemeny
There are profiles where the outputs of the Kemeny and the Squared Kemeny rules are almost
reverse to each other, namely have distance

(
𝑚
2
)
− 1. Write 𝐴 = {𝑎1, . . . , 𝑎𝑚}, 𝑚 ⩾ 4, let ≻1 be

the ranking 𝑎1 ≻ · · · ≻ 𝑎𝑚 , and let ≻2 be the ranking 𝑎2 ≻ 𝑎1 ≻ 𝑎3 ≻ · · · ≻ 𝑎𝑚 . Note that
swap(≻1, ≻2) = 1.

Let 𝜀 > 0. Consider the profile 𝑅 with
𝑅(≻1) = 2 + 𝜀, 𝑅(≻2) = 0, and 𝑅(≻) = 1 for all ≻ ∈ R \ {≻1, ≻2}.

Note that these weights sum up to more than 1, but we can normalize the weights without changing
the argument.
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Now, let us discuss the outputs of the Kemeny and Squared Kemeny rules for such profile 𝑅. To
this end, consider an arbitrary ranking ▷ ∈ R and denote the sum of distances from ▷ to every
other ranking in R by 𝐷1 =

∑
≻∈R swap(≻,▷). Observe that the Kemeny rule cost of ranking ▷ is

equal to
𝐶Kemeny (𝑅,▷) = 𝐷1 + (1 + 𝜀) · swap(≻1,▷) − swap(≻2,▷).

Since ≻1 and ≻2 differ only on the ordering of the pair of alternatives, 𝑎1, 𝑎2, we get that

swap(≻1,▷) − swap(≻2,▷) =
{

1, if 𝑎2 ▷ 𝑎1, and
−1, otherwise.

(7)

Thus, we obtain

𝐶Kemeny (𝑅,▷) =
{
𝐷1 + 𝜀 · swap(≻1,▷) + 1, if 𝑎2 ▷ 𝑎1, and
𝐷1 + 𝜀 · swap(≻1,▷) − 1, otherwise,

which is minimized for ▷ = ≻1. Thus, Kemeny(𝑅) = {≻1} for every 𝜀 > 0.
Now, let us consider the output of the Squared Kemeny rule. To this end, let us denote 𝐷2 =∑
≻∈R swap(≻,▷)2 and observe that

𝐶SqK (𝑅,▷) = 𝐷2 + (1 + 𝜀) · swap(≻1,▷)2 − swap(≻2,▷)2.

Let us denote 𝑑 = min(swap(≻1,▷), swap(≻2,▷)) and observe that swap(≻1,▷) + swap(≻2,▷) =
2𝑑 + 1. Hence, by Equation (7), we get

swap(≻1,▷)2−swap(≻2,▷)2 = (2𝑑+1) (swap(≻1,▷)−swap(≻2,▷)) =
{

2𝑑 + 1, if 𝑎2 ▷ 𝑎1, and
−2𝑑 − 1, otherwise.

Therefore, we obtain that

𝐶SqK (𝑅,▷) =
{
𝐷2 + 𝜀 · swap(≻1,▷)2 + 2𝑑 + 1, if 𝑎2 ▷ 𝑎1, and
𝐷2 + 𝜀 · swap(≻1,▷)2 − 2𝑑 − 1 otherwise.

For 𝜀 <
(
𝑚
2
)−2, the term 𝜀 · swap(≻1,▷)2 will be strictly smaller than 1. Hence, the value𝐶SqK (𝑅,▷)

will be minimized for a ranking ▷ such that 𝑎1 ▷ 𝑎2 and the value of 𝑑 is maximized. This will be
the case for the ranking ▷∗ such that 𝑎𝑚 ▷∗ 𝑎𝑚−1 ▷∗ · · · ▷∗ 𝑎3 ▷∗ 𝑎1 ▷∗ 𝑎2. Thus, SqK(𝑅) = {▷∗}.
Since swap(≻1,▷∗) =

(
𝑚
2
)
− 1, we see that for the profile 𝑅 with 0 < 𝜀 <

(
𝑚
2
)−2, the Kemeny and

Squared Kemeny rules indeed output almost reversed rankings.

C ADDITIONAL MATERIAL FOR SECTION 6
C.1 City Experiment Data
Table 2 presents the data we have used for the city ranking experiment in Section 6.1. The GDP
per capita data is taken from Wikipedia.8 The air quality ranking is based on the average PM 2.5
concentration for the year 2018. This was the year for which the data was the most complete,
however in a few cases we had to use the data from different year (as noted in the table). Themajority
of the PM 2.5 concentration data comes from the World Health Organization database [WHO, 2024]
(the only exception is the data for Cairo and Lagos that comes from an online article [Oğuz, 2023]).
Finally, the sunniness ranking is based on the average number of hours of sunshine per year. The
data for this was gathered from the Wikipedia articles about each city on 6 February 2024.

8https://en.wikipedia.org/wiki/List_of_cities_by_GDP, accessed: 6 February 2024

https://en.wikipedia.org/wiki/List_of_cities_by_GDP
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City GDP per capita (US$) Avg. PM 2.5 conc. (𝜇g/m3) Avg. Sunshine h. per year

Bangkok 12, 670 23.142019 2, 212
Buenos Aires 14, 024 10.262015 2, 384
Cairo 8, 685 47.402022,† 3, 451
Dubai 47, 557 53.93 3, 570
Dublin 104, 394 7.89 1, 452
Hong Kong 52, 431 20.09 1, 829
Istanbul 14, 989 28.78 2, 181
Johannesburg 16, 033 22.69 3, 124
Lagos 3, 607 36.102022,† 1, 844
Lahore 2, 878 123.882019 3, 034
London 66, 108 10.49 1, 675
Mexico 13, 798 22.00 2, 526
Moscow 29, 012 14.002016 1, 731
Mumbai 10, 651 75.45 2, 612
New York City 114, 293 7.65 2, 535
Paris 63, 119 14.01 1, 717
Rio de Janeiro 15, 742 11.452015 2, 182
Rome 40, 535 13.98 2, 724
San Francisco 157, 704 11.65 3, 062
Seoul 36, 677 22.93 2, 143
Shanghai 26, 672 37.66 1, 851
Sydney 73, 034 11.272019 2, 639
Tokyo 51, 124 12.91 1, 927
Toronto 69, 110 8.00 2, 066
Zurich 108, 104 12.13 1, 694

Table 2. The data used to the city ranking analysis in Section 6.1. The year in a superscript of the values PM
2.5 concentration column signifies that the data used was from a year that is different from 2018 (since for
2018 no data was available). Also, † signifies a different source of data.

C.2 Worst-Case Average Distance
Figure 13 presents the plots described in Section 6.3 for the profiles sampled from models described
in Section 6.2.
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(a) Disc (b) Circle (c) Countries

(d) Mallows Mxt. (𝜙1 = 𝜙2 = 0.5) (e)MallowsMxt. (𝜙1 = 0.7, 𝜙2 = 0.3) (f) Breakfast

Fig. 13. The maximal average distances between the subprofile of size 𝛼 and the output of the Kemeny (red)
and Squared Kemeny (green) rules, plus lower bound (gray).
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