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Abstract
We study the bidding behavior of spiteful agents
who, contrary to the common assumption of self-
interest, maximize a convex combination of their
own profit and their competitors’ losses. The mo-
tivation for this assumption stems from inherent
spitefulness or, for example, from competitive sce-
narios such as in closed markets where the loss of a
competitor will likely result in future gains for one-
self. We derive symmetric Bayes Nash equilibria
for spiteful agents in 1st-price and 2nd-price sealed-
bid auctions. In 1st-price auctions, bidders become
“more truthful” the more spiteful they are. Surpris-
ingly, the equilibrium strategy in 2nd-price auctions
does not depend on the number of bidders. Based
on these equilibria, we compare the revenue in both
auction types. It turns out that expected revenue
in 2nd-price auctions is higher than expected rev-
enue in 1st-price auctions in the case of even the
most modestly spiteful agents, provided they still
care at least at little for their own profit. In other
words, revenue equivalence only holds for auctions
in which all agents are either self-interested or com-
pletely malicious. We furthermore investigate the
impact of common knowledge on spiteful bidding.
Divulging the bidders’ valuations reduces revenue
in 2nd-price auctions, whereas it has the opposite
effect in 1st-price auctions.

1 Introduction
Over the last few years, game theory has widely been adopted
as a tool to formally model and analyze interactions between
rational agents in the field of AI. One of the fundamental as-
sumptions in game theory is that agents are self-interested,
i.e., they maximize their own utility without considering the
utility of other agents. However, there is some evidence that
certain types of behavior in the real world as well as in arti-
ficial societies can be better explained by models in which
agents have other-regarding preferences. While there are
settings where agents exhibit altruism, there are also others
where agents intend to degrade competitors in order to im-
prove their own standing. This is typically the case in com-
petitive situations such as in closed markets where the loss of

a competitor will likely result in future gains for oneself (e.g.,
when a competitor is driven out of business) or, more gen-
erally, when agents intend to maximize their relative rather
than their absolute utility. To give an example, consider the
popular Trading Agent Competition (TAC) where an agent’s
goal (in order to win the competition) should be to accumu-
late more revenue than his competitors instead of maximiz-
ing his own revenue. Other examples include the German
3G mobile phone spectrum license auction1 in 2000, where
one of the network providers (German Telekom) kept rais-
ing the price in an (unsuccessful) attempt to crowd out one
of the weaker competitors (Grimm et al., 2002), and spon-
sored search auctions where similar behavior has been re-
ported (Zhou and Lukose, 2006). Clearly, a reduced number
of competitors is advantageous for the remaining companies
because it increases their market share.

Sealed-bid auctions are an example of well-understood
competitive economic processes where questioning the as-
sumption of self-interest is particularly pertinent. For in-
stance, in a 2nd-price auction, it is a dominant strategy for
a self-interested agent to truthfully submit his valuation, even
if he is informed about the other bids. However, a compet-
itive agent who knows he cannot win might feel tempted to
place his bid right below the winning bid in order to mini-
mize the winner’s profit. In order to account for the behavior
of such spiteful agents, which are interested in minimizing
the returns to their competitors as well as in maximizing their
own profits, we incorporate other-regarding preferences in the
utility function. To this end, we define a new utility measure
for agents with negative externalities (Section 3). The trade-
off between both goals is controlled by a parameter α called
spite coefficient. Setting α to zero yields self-interested agents
whereas a spite coefficient of one defines completely mali-
cious agents, whose only goal is to reduce others’ profit. We
find that the well-known equilibria for 1st- and 2nd-price auc-
tions no longer apply if α > 0. In Sections 4 and 5, respec-
tively, we derive symmetric Bayes Nash equilibria of both
auction types in the case of spiteful agents. With respect to
these equilibria, we obtain further results on auction revenue
and the impact of common knowledge in Section 6. The pa-
per concludes with Section 7.

1With respect to the revenue generated (50.8 billion Euro), this
auction is one of the most successful auctions to date.



2 Related Work
Numerous authors in experimental economics (Fehr and
Schmidt, 2006; Saijo and Nakamura, 1995; Levine, 1998),
game theory (Sobel, 2005), social psychology (Messick and
Sentis, 1985; Loewenstein et al., 1989), and multiagent sys-
tems (Brainov, 1999) have observed and explored other-
regarding preferences, usually with an emphasis on altruism.
Levine (1998) introduced a model in which utility is defined
as a linear function of both the agent’s monetary payoff and
his opponents’ payoff, controlled by a parameter called “al-
truism coefficient”. This model was used to explain data ob-
tained in ultimatum bargaining and centipede experiments.
One surprising outcome of that study was that an overwhelm-
ing majority of individuals possess a negative altruism co-
efficient, corresponding to spiteful behavior. He concludes
that “one explanation of spite is that it is really ‘competitive-
ness’, that is, the desire to outdo opponents” (Levine, 1998).
Most papers, including Levine’s, also consider elements of
fairness in the sense that agents are willing to be more al-
truistic/spiteful to an opponent who is more altruistic/spiteful
towards them. Brainov (1999) defines a generic type of “an-
tisocial” agent by letting ∂Ui

∂u j
< 0 for any j , i (using the

notation defined in Section 3.1). A game-theoretic model in
which buyers have negative identity-dependent externalities
which “can stand for expected profits in future interaction”
has been studied by Jehiel et al. (1996).

We extend our previous work on spitefulness in auc-
tions (Brandt and Weiß, 2001), where we have already given
an equilibrium strategy for spiteful agents in 2nd-price auc-
tions with complete information. Recently, other authors have
studied the effects of negative externalities in auctions (Mor-
gan et al., 2003; Maasland and Onderstal, 2003). Perhaps
closest to our work is the work by Morgan et al. (2003). Al-
though we derived our results independently, there are some
similarities as well as differences, and so we should make
both clear. In contrast to Morgan et al., we model spite as
a convex combination of utilities which allows us to capture
malicious agents who possess no self-interest at all (permit-
ting results like Corollary 1). Morgan et al.’s definition ap-
proaches this case in the limit, but such limits are not consid-
ered in their paper. The main benefit of our definition of spite
is the re-translation of bidding equilibria from bulky inte-
grals to more intuitive conditional expectations which in turn
greatly facilitates the proof of the main result (Theorem 3).
Furthermore, we quantify the difference of revenue in both
auctions types (Theorem 4), analyze the impact of common
knowledge by computing equilibria for the complete infor-
mation setting (Section 6.2), and find that the difference in
revenue stems from the uncertainty about others’ valuations.
Morgan et al., on the other hand, also provide an equilibrium
strategy for English auctions and discuss risk aversion, inter-
personal comparisons, and “the love of winning” as alterna-
tive explanations for overbidding in auctions.

Interestingly, a special case of our results—the Bayes Nash
equilibrium for two spiteful bidders in Vickrey auctions with
a uniform prior (see Corollary 3)—was found independently
by an algorithmic best-response solver (Reeves and Wellman,
2004).

3 Preliminaries
In this section, we define the utility function of rational spite-
ful agents and the framework of our auction setting.

3.1 Spiteful Agents
A spiteful agent i maximizes the weighted difference of his
own utility ui and his competitors’ utilities u j for all j , i. In
general, it would be reasonable to take the average or max-
imum of the competitors’ utilities. However, since we only
consider single-item auctions where all utilities except the
winner’s are zero, we can simply employ the sum of all re-
maining agents’ utilities.

Definition 1 The utility of a spiteful agent is given by

Ui = (1 − αi) · ui − αi ·
∑
j,i

u j

where αi ∈ [0, 1] is a parameter called spite coefficient.

In the following, we speak of “utility” when referring to spite-
ful utility Ui and use the term “profit” to denote conventional
utility ui. Obviously, setting αi to zero yields a self-interested
agent (whose utility equals his profit) whereas αi = 1 defines
a completely malicious agent whose only goal is to minimize
the profit of other agents. When αi =

1
2 , we say an agent is

balanced spiteful.2
As mentioned in Section 2, other authors have suggested

utility functions with a linear trade-off between self-interest
and others’ well-being. In contrast to these proposals, our
definition differs in that the weight of one’s own utility is not
normalized to 1, allowing us to capture malicious agents who
have no self-interest at all. This opens interesting avenues for
future research like the possibility to analyze the robustness
of mechanisms in the presence of worst-case adversaries.

3.2 Auction Setting
Except for a preliminary result in Section 6.3, we assume that
bidders are symmetric, in particular they all have the same
spite coefficient α. Before each auction, private values vi are
drawn independently from a commonly known probability
distribution over the interval [0, 1] defined by the cumulative
distribution function (cdf) F(v). The cdf is defined as the
probability that a random sample V drawn from the distribu-
tion does not exceed v: F(v) = Pr(V ≤ v). Its derivative, the
probability density function (pdf), is denoted by f (v).

Once the auction starts, each bidder submits a bid based on
his private value. The bidder who submitted the highest bid
wins the auction. In a 1st-price auction, he pays the amount
he bid whereas in a 2nd-price (or Vickrey) auction he pays
the amount of the second highest bid. Extending the notation
of Krishna (2002), we will denote equilibrium strategies of
1st- and 2nd-price auctions by bI

α(v) and bII
α (v), respectively.

When bidders are self-interested (α = 0), there are well-
known equilibria for both auction types. The unique Bayes
Nash equilibrium strategy for 1st-price auctions is to bid at the
expectation of the second highest private value, conditional

2In the case of only two balanced spiteful agents, the game at
hand becomes a zero-sum game.



on one’s own value being the highest, bI
0(v) = E[X | X < v]

where X is distributed according to G(x) = F(x)n−1 (Vick-
rey, 1961; Riley and Samuelson, 1981). 2nd-price auctions
are strategy-proof, i.e., bII

0 (v) = v for any distribution of val-
ues (Vickrey, 1961). Vickrey also first made the observa-
tion that expected revenue in both auction types is identical
which was later generalized to a whole class of auctions in
the revenue equivalence theorem (Myerson, 1981; Riley and
Samuelson, 1981).

4 First-Price Auctions
As is common in auction theory, we study symmetric equilib-
ria, that is, equilibria in which all bidders use the same bid-
ding function (mapping from valuations to bids). Symmetric
equilibria are considered the most reasonable equilibria, but
in principle need not be the only ones (we will later provide an
asymmetric equilibrium in auctions with malicious bidders).
Furthermore, we guess that the bidding function is strictly
increasing and differentiable over [0, 1]. These assumptions
impose no restriction on the general setting. They are only
made to reduce the search space.

Theorem 1 A Bayes Nash equilibrium for spiteful bidders in
1st-price auctions is given by the bidding strategy

bI
α(v) = E[X | X < v]

where X is drawn from GI
α(x) = F(x)

n−1
1−α .

Proof: We start by introducing some notation. Let Wi =(
bi(vi) > b(1)(v−i)

)
be the event that bidder i wins the auc-

tion, b(1)(v−i) be the highest of all bids except i’s, v(1) be the
highest private value, and v̄i(b) denote the inverse function of
bi(v). We will use the short notation v̄ for v̄(1)(bi(vi)) to im-
prove readability. It is important to keep in mind that v̄ is a
function of bi(vi), e.g., when taking the derivative of the ex-
pected utility.

Recall that agent i knows his own private value vi, but only
has probabilistic beliefs about the remaining n−1 private val-
ues (and bids). Thus, the expected utility of a spiteful agent
in a 1st-price auction is given by

E
[
Ui(bi(vi))

]
= (1 − α) · Pr(Wi) ·

(
vi − bi(vi)

)
−

α · (1 − Pr(Wi)) ·
(
E
[
v(1) | ¬Wi

]
−

E
[
b(1)(v−i) | ¬Wi

])
.

(1)

We can ignore ties in this formulation because they are zero
probability events in the continuous setting we consider. By
definition, the probability that any private value is lower than
i’s value is given by F(vi). Since all values are independently
distributed, the probability that bidder i has the highest pri-
vate value is F(vi)n−1. Thus, the probability that i submits the
highest bid can be expressed by using the inverse bid function

Pr(Wi) = F(v̄)n−1. (2)

The cd f of the highest of n − 1 private values is F(1)(v) =
F(v)n−1. The associated pd f is f(1)(v) = (n − 1)F(v)n−2 · f (v).
Using standard formulas for the conditional expectation (see

Appendix A), this allows us to compute both expectation val-
ues on the right-hand side of Equation 1. The expectation of
the highest private value is

E
[
v(1) | ¬Wi

]
=

1
1 − F(v̄)n−1

∫ 1

v̄
t ·(n−1)F(t)n−2 · f (t) dt (3)

whereas the expectation of the highest bid is

E
[
b(1)(v−i) | ¬Wi

]
=

1
1 − F(v̄)n−1

∫ bi(1)

bi(vi)
t · (n − 1)·

F(v̄(t))n−2 · f (v̄(t)) · v̄′(t) dt.
Inserting these expectations in Equation 1 and simplifying the
result yields

E
[
Ui(bi(vi))

]
= (1 − α)(F(v̄)n−1vi − F(v̄)n−1bi(vi))−

α(n − 1)
(∫ 1

v̄
t · F(t)n−2 · f (t) dt−∫ bi(1)

bi(vi)
t · F(v̄(t))n−2 · f (v̄(t)) · v̄′(t) dt

)
.

When taking the derivative with respect to bi(vi), both inte-
grals vanish due to the fundamental theorem of calculus and
the observation that

∂
∫ 1

v̄(b) g(t) dt

∂b
=
∂
(
G(1) −G

(
v̄(b)

))
∂b

= 0−g
(
v̄(b)

)
· v̄′(b). (4)

In order to obtain the strategy that generates maximum utility
we take the derivative and set it to zero. Thus,

0 = (1 − α)
(
(n − 1)F(v̄)n−2 · f (v̄) · v̄′ · vi−

(n − 1)F(v̄)n−2 · f (v̄) · v̄′ · bi(vi) − F(v̄)(n−1)
)
−

α(n − 1)
((

0 − v̄ · F(v̄)n−2 · f (v̄) · v̄′
)
−(

0 − bi(vi) · F(v̄)n−2 · f (v̄) · v̄′
))

.

From this point on, we treat vi as a variable (instead of
bi(vi)) and assume that all bidding strategies are identical,
i.e., v̄ = v̄(1)(bi(vi)) = vi. Using the fact that the derivative
of the inverse function is the reciprocal of the original func-
tion’s derivative (v̄′(bi(vi)) = 1

b′i (vi)
), we can rearrange terms to

obtain the differential equation

b(v) = v −
(1 − α) · F(v) · b′(v)

(n − 1) · f (v)
. (5)

It follows that b(v) ≤ v because the fraction on the right-hand
side is always non-negative (recall that the bidding function
is strictly increasing). Since we assume that there are no neg-
ative bids, this yields the boundary condition b(0) = 0. The
solution of Equation 5 with boundary condition b(0) = 0 is

b(v) =
1

F(v)
n−1
1−α

∫ v

0
t ·

n − 1
1 − α

· F(t)
n−1
1−α−1 · f (t) dt.

Strikingly, the right-hand side of this equation is a conditional
expectation (see Appendix A). More precisely, it is the expec-
tation of the highest of n−1

1−α private values below v (ignoring
the fact n−1

1−α is not necessarily an integer), i.e.,
b(v) = E[X | X < v]

where the cd f of X is given by GI
α(x) = F(x)

n−1
1−α . It remains

to be shown that the resulting strategy is indeed a mutual best
response. We omit this step for reasons of limited space. �



In 1st-price auctions, bidders face a tradeoff between the
probability of winning and the profit conditional on winning.
An intuition behind the equilibrium for spiteful agents is that
the more spiteful a bidder is, the less emphasis he puts on
his expected profit. Whereas a self-interested bidder bids at
the expectation of the highest of n − 1 private values below
his own value, a balanced spiteful agents bids at the expecta-
tion of the highest of 2(n − 1) private values below his value.
Interestingly, agents are “least truthful” when they are self-
interested. Any level of spite makes them more truthful. Fur-
thermore, parameter α defines a continuum of Nash equilib-
ria between the well-known standard equilibria of 1st-price
and 2nd-price auctions. Even though GI

α(x) is not defined for
α = 1, it can easily be seen from Equation 5, that bI

1(v) = v.

Corollary 1 The 1st-price auction is (Bayes Nash) incentive-
compatible for malicious bidders (α = 1).

This result is perhaps surprising because one might expect
that always bidding 1 is an optimal strategy for malicious bid-
ders. The following consideration shows why this is not the
case. Assume that all agents are bidding 1. Agent i’s expected
utility depends on the tie resolution policy. If another bidder
is chosen as the winner, i’s expected utility is positive. If he
wins the auction, his utility is zero. By bidding less than 1,
he can ensure that his expected utility is always positive.

Curiously, there are other, asymmetric, equilibria for ma-
licious bidders, e.g., a “threat” equilibrium where one des-
ignated bidder always bids 1 and everybody else bids some
value below his private value. It is well-known that asymmet-
ric equilibria like this exist in 2nd-price auctions (see Blume
and Heidhues, 2004, for a complete characterization). How-
ever, asymmetric equilibria in 2nd-price auctions are (weakly)
dominated whereas the one given above is not, making it
more reasonable.

One way to gain more insight in the equilibrium strategy is
to instantiate F(v) with the uniform distribution.

Corollary 2 A Bayes Nash equilibrium for spiteful bidders in
1st-price auctions with uniformly distributed private values is
given by the bidding strategy

bI
α(v) =

n − 1
n − α

· v.

Whereas one can get full intuition in the extreme points of the
strategy (α ∈ {0, 1}), the fact that the scaling between both
endpoints of the equilibrium spectrum is not linear in α, even
for a uniform prior, is somewhat surprising.

5 Second-Price Auctions
In this section, we derive an equilibrium strategy for spiteful
agents in 2nd-price auctions using the same set of assumptions
made in Section 4.

Theorem 2 A Bayes Nash equilibrium for spiteful bidders in
2nd-price auctions is given by the bidding strategy

bII
α (v) = E[X | X > v]

where X is drawn from GII
α (x) = 1 − (1 − F(x))

1
α .

Proof: We use the same notation introduced in the proof of
Theorem 1. The expected utility of spiteful agent i in 2nd-
price auctions can be described as follows. There are two
general cases depending on whether bidder i wins or loses.
In the former case, the utility is simply vi minus the expected
highest bid (except i’s). In the latter case, we have to compute
the expectations of the winner’s private value and the selling
price. In order to specify the selling price, we need to distin-
guish between two subcases: If bidder i submitted the second
highest bid, the selling price is his bid bi. Otherwise, i.e., if
the second highest of all remaining bids is greater than bi, we
can again give a conditional expectation. Thus, the overall
expected utility of agent i is

E
[
Ui(bi(vi))

]
= (1−α) · Pr(Wi) ·

(
vi − E[b(1)(v−i) | Wi]

)
−

α ·
(
(1 − Pr(Wi)) · E

[
v(1) | ¬Wi

]
−

Pr
(
(bi(vi) < b(1)(v−i)) ∧ (bi(vi) > b(2)(v−i))

)
· bi(vi)−

Pr(bi(vi) < b(2)(v−i)) · E[b(2)(v−i) | bi < b(2)(v−i)]
)
. (6)

According to the formula given in Appendix A, the condi-
tional expectation of the remaining highest bid, in case bidder
i wins, is

E
[
b(1)(v−i) | Wi

]
=

1
F(v̄)n−1

∫ bi(vi)

bi(0)
t · (n − 1)F(v̄(t))n−2 · f (v̄(t)) · v̄′(t) dt.

(7)

We have already given a formula for E
[
v(1) | ¬Wi

]
in Equa-

tion 3. The probability that bi is the second highest bid equals
the probability that exactly one bid is greater than bi and n−2
bids are less than bi. Depending on who submitted the high-
est bid, there are n− 1 different ways in which this can occur,
yielding

Pr
(
(bi(vi) < b(1)(v−i)) ∧ (bi(vi) > b(2)(v−i))

)
=

(n − 1)F(v̄)n−2 · (1 − F(v̄)).

The cd f of the second highest private value (of n − 1 values)
can be derived by computing the probability that the second
highest value is less than or equal to a given v. Either all n−1
values are lower than v, or n − 2 values are lower and one is
greater than v. As above, there are n− 1 different possibilities
in the latter case. Thus,

F(2)(v) = F(v)n−1 + (n − 1)F(v)n−2(1 − F(v)) =

(n − 1)F(v)n−2 − (n − 2)F(v)n−1.

It follows that the pd f is f(2)(v) = (n − 1) · (n − 2) · (1 −
F(v)) · F(v)n−3 · f (v). Finally, the conditional expectation of
the second highest bid times the probability of this bid being
higher than bi is

Pr(bi(vi) < b(2)(v−i)) · E[b(2)(v−i) | bi < b(2)(v−i)] =

(n−1)·(n−2)·
∫ bi(1)

bi(vi)
t·(1−F(v̄(t)))·F(v̄(t))n−3· f (v̄(t))·v̄′(t) dt.



Inserting both expectations and the probability of winning
(see Equation 2) into Equation 6 yields

E
[
Ui(bi(vi))

]
= (1 − α) ·

(
F(v̄)n−1vi−

(n − 1) ·
∫ bi(vi)

bi(0)
t · F(v̄(t))n−2 · f (v̄(t)) · v̄′(t) dt

)
−

α · (n − 1) ·
(∫ 1

v̄
t · F(t)n−2 · f (t) dt−

F(v̄)n−2 · (1 − F(v̄)) · bi(vi)−

(n−2)·
∫ bi(1)

bi(vi)
t·(1−F(v̄(t)))·F(v̄(t))n−3· f (v̄(t))·v̄′(t) dt

)
.

As in the previous section, we now take the derivative with
respect to bi(vi) and set it to zero. All integrals vanish due to
the Fundamental Theorem of Calculus and the formula given
in Equation 4. We get

0 = (1 − α) ·
(
(n − 1)F(v̄)n−2 · f (v̄) · v̄′ · vi−

(n − 1)(bi(vi) · F(v̄)n−2 · f (v̄) · v̄′)
)
−

α · (n − 1) ·
((

0 − v̄ · F(v̄)n−2 · f (v̄) · v̄′
)
−(

(n − 2) · F(v̄)n−3 · f (v̄) · v̄′ · bi(vi) + F(v̄)n−2−

(n − 1) · F(v̄)n−2 · f (v̄) · v̄′ · bi(vi) − F(v̄)n−1)−
(n − 2) · (0 − bi(vi) · (1 − F(v̄)) · F(v̄)n−3 · f (v̄) · v̄′

)
.

Using the fact that the derivative of the inverse function is the
reciprocal of the original function’s derivative (v̄′(bi(vi)) =

1
b′i (vi)

) and v̄ = vi, we can simplify and rearrange terms to
obtain the differential equation

b(v) = v +
α · (1 − F(v)) · b′(v)

f (v)
. (8)

It turns out that b(0) = 0 does not hold for 2nd-price auctions.
However, a boundary condition can easily be obtained by let-
ting v = 1. By definition, F(1) = 1 which yields b(1) = 1.
Given this boundary condition, the solution of Equation 8 is

b(v) =
1

(1 − F(v))
1
α

∫ 1

v

t · (1 − F(t))
1
α−1 · f (t)

α
dt. (9)

Like in proof of Theorem 1, the right-hand side of Equation 9
resembles a conditional expectation. In fact, the bidding strat-
egy can be reformulated as the expectation of some random
variable X, given that X > v,

b(v) = E[X | X > v]

where the cd f of X is given by GII
α (x) = 1 − (1 − F(x))

1
α .

It can easily be checked that GII
α (x) is indeed a valid cd f

(GII
α (0) = 0, GII

α (1) = 1, and GII
α (x) is non-decreasing and dif-

ferentiable). By inserting this cd f in Equation 12, we obtain
the equilibrium bidding strategy. The resulting expectation is
the expected value of the lowest of 1

α
values above v. GII

α (x)
is not defined for α = 0, but the correct, well-known, equi-
librium can quickly be read from Equation 8. It remains to
be shown that the resulting strategy is indeed a mutual best
response. We omit this step for reasons of limited space. �

Remarkably, the resulting equilibrium strategy is indepen-
dent of the number of bidders n (though it does depend on the
prior distribution of private values). For example, a balanced
spiteful bidder bids at the expectation of the lowest of two pri-
vate values above his own value. As in the previous section,
we try to get more insight in the equilibrium by instantiating
the uniform distribution.

Corollary 3 A Bayes Nash equilibrium for spiteful bidders in
2nd-price auctions with uniformly distributed private values is
given by the bidding strategy

bII
α (v) =

v + α
1 + α

For example, given a uniform prior, the optimal strategy for
balanced spiteful agents is b(v) = 2

3 · v +
1
3 , regardless of the

number of bidders. As in the 1st-price auction setting, the sur-
prising equilibrium strategies are those for 0 < α < 1. There
is no linear scaling between both extreme points of the equi-
librium spectrum. As we will see in the following section,
this leads to important consequences on auction revenue.

6 Consequences
In order to obtain instructive results from these equilibria,
we compare a key measure in auction theory—the seller’s
revenue—and investigate the impact of common knowledge
on bidding and revenue.

6.1 Revenue Comparison
The well-known revenue equivalence theorem, which states
that members of a large class of auctions all yield the same
revenue under certain conditions, does not hold when agents
are spiteful. Figure 1 shows the expected revenue in both
auction types when agents are balanced spiteful and private
values are uniformly distributed.

It can be shown that the revenue gap visible in the figure
exists for any prior and spite coefficient as long as agents are
neither self-interested nor malicious.

Theorem 3 For the same spite coefficient 0 < α < 1, the 2nd-
price auction yields more expected revenue than the 1st-price
auction. When α ∈ {0, 1}, expected revenue in both auction
types is equal in the symmetric equilibrium.

Proof: The statement can be deduced from the following
three observations:
• When agents are malicious, expected revenue in both

auction types is identical.
In the 1st-price auction, truthful bidding is in equilib-
rium. In the 2nd-price auction, the second highest bidder
bids at the expectation of the highest private value. In
both cases, revenue equals the expectation of the highest
value.
• bI

α(v) and bII
α (v) are strictly increasing in α.

In the 1st-price auction, bidders bid at the (conditional)
expectation of the highest value of a number of pri-
vate values that increases as α grows. In the 2nd-price
auction, bidders bid at the expectation of the lowest
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Figure 1: Expected revenue (interpolated for non-integer n)

value of a number of private values that decreases as α
grows. Obviously, both expectations are increasing in α.
More formally, GI

α stochastically dominates GI
β and GII

α

stochastically dominates GII
β for any α > β.

• bI
α(v) is convex in α. bII

α (v) is concave in α.
Since both equilibria are symmetric, we just need to con-
sider the curvature of expectations distributed according
to GI

α(X) and GII
α (X) for variable α. Bids in 1st-price auc-

tions are the (conditional) expectation of the highest of
1

1−α values. The slope of this expectation increases as
α rises. In 2nd-price auctions, bids are the expectation
of the lowest of 1

α
values. If it were the highest value,

the slope would be increasing too. However, since it is
the expectation of the lowest value, the slope is strictly
decreasing in α.

Let E[RI
α] and E[RII

α ] be the expected revenue in 1st- and 2nd-
price auctions, respectively, and consider these as functions
of α. So far, we know that both functions are equal for α ∈
{0, 1} and strictly increasing. Furthermore, E[RI

α] is convex
and E[RII

α ] is concave. These facts imply that E[RII
α ] > E[RI

α]
for any 0 < α < 1 (see Figure 2). �

Naturally, more revenue for the seller results in less profit
for the bidders. However, if you look at (spiteful) utility, the
utility of winning bidders in 2nd-price auctions is lower than
in 1st-price auctions, whereas the utility of losing bidders is
higher in 2nd-price auctions. As a consequence, social welfare
(if one is willing to consider such a notion in a setting of
spitefulness) is higher in 2nd-price auctions than in 1st-price
auctions if the number of bidders is sufficiently large.

Revenue inequalities for other special conditions such as
when bidders or the seller are risk-averse have been used to
argue in favor of one auction form over another. Hence, The-
orem 3 can be interpreted as an advantage of the 2nd-price
auction (from the perspective of a seller) because it yields
more revenue than the 1st-price auction whenever bidders ex-
hibit the slightest interest in reducing their competitors’ profit
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Figure 2: Expected revenue for n = 2 and varying α

(and they still care about their own profit). On the other hand,
the difference in expected revenue is relatively small, even for
just few bidders. For example, the difference in expected rev-
enue for ten bidders with uniformly distributed private values
is less than 2% for any α. Interestingly, the revenue difference
is maximal for some α slightly below 0.5.

Theorem 4 The difference in expected revenue between 2nd-
price and 1st-price auctions is maximal for some α ≤ 0.5
that approaches 1

1+
√

2
≈ 0.4142 in the limit as n rises, when

private values are uniformly distributed.

Proof: By definition, the revenue difference is the difference
of the expectation of the second highest bid in 2nd-price auc-
tions minus the highest expected bid in 1st-price auctions. In-
stantiating with the uniform distribution, we get

E
[
RII
α

]
− E

[
RI
α

]
= bII

α

(
E[v(2)]

)
− bI
α

(
E[v(1)]

)
=

n−1
n+1 + α

1 + α
−

n − 1
n − α

·
n

n + 1
=

(1 − α) · α
(α + 1) · (n − α)

≥ 0.

(10)

In order to obtain the maximal revenue difference, we take the
derivative of the expression given in Equation 10 with respect
to α and set it to zero:

0 =
∂

∂α
·

(1 − α) · α
(α + 1) · (n − α)

=
∂

∂α
·

α2 − α

α − n + α2 − α · n
=

−
(α2 − α)(2 · α − n + 1)
(α2 + α − n − α · n)2 +

2 · α − 1
α2 + α − n − α · n

=⇒ αmax =
n

n +
√

2 ·
√

n · (n − 1)
.

When there are only two bidders, αmax = 0.5. αmax is strictly
decreasing as n increases and

lim
n→∞
αmax =

1

1 +
√

2
≈ 0.4142.

�



6.2 Complete Information
In this section, we give bidding equilibria for spiteful agents
in a model with complete information, i.e., all private values
are common knowledge. This allows us to examine the influ-
ence of uncertainty on spiteful bidding.

Theorem 5 A Nash equilibrium for both 1st- and 2nd-price
auctions in a model of complete information is given by the
bidding strategy profile

bI
i,α = bII

i,α = v2 + α(v1 − v2) for i ∈ {1, 2} and

bI
i,α = bII

i,α < v2 + α(v1 − v2) for i ∈ {3, 4, . . . , n}

where 1 and 2 are the indices of the bidder with the highest
and second highest valuation, respectively.3

Proof: Let us first consider why bidder 1 and 2 would not
deviate from the given strategy profile in a 1st-price auction.
Bidder 1’s utility for bidding b1, given that bidder 2 bids ac-
cording to the equilibrium strategy is

UI
α(b1) =

−α(v2 − bI
2,α) if b1 ≤ bI

1,α
(1 − α)(v1 − b1) if b1 ≥ bI

1,α

=

α2(v1 − v2) if b1 ≤ bI
1,α

(1 − α)(v1 − b1) if b1 ≥ bI
1,α

.

Bidder 1 cannot increase his utility by deviating from the
equilibrium strategy. If he bids less, his utility stays the
same. If he bids more, his utility is diminishing (it is less
than (1 − α)2(v1 − v2)). The same holds for bidder 2 whose
utility is

UI
α(b2) =

−α(v1 − bI
1,α) if b2 ≤ bI

2,α
(1 − α)(v2 − b2) if b2 ≥ bI

2,α

=

−(1 − α)α(v1 − v2)) if b2 ≤ bI
2,α

(1 − α)(v2 − b2) if b2 ≥ bI
2,α

.

The equilibrium point is exactly the strategy for which bidder
2 is indifferent between winning and losing since both payoffs
are equal. It also coincides with his maximin strategy, i.e., the
strategy that guarantees the highest payoff regardless of other
players’ rationality (see also Brandt and Weiß, 2001). It fol-
lows that the remaining bidders have no incentive to interfere
(by bidding at least as much as bidder 1 and 2) because their
utility would only decrease.

In 2nd-price auctions, the argumentation is analogous.
When the other bidders employ the equilibrium strategy, bid-
der 1’s utility is

UII
α (b1) =

−α(v2 − b1) if b1 ≤ bII
1,α

(1 − α)(v1 − bII
2,α) if b1 ≥ bII

1,α

=

−α(v2 − b1) if b1 ≤ bII
1,α

(1 − α)2(v1 − v2)) if b1 ≥ bII
1,α

.

3Handling ties introduces some unnecessary complications to the
equilibrium strategy (involving the minimum bid increment ε). We
brush aside these complications by assuming that whenever α < 0.5,
bidder 1 wins and whenever α > 0.5, bidder 2 wins in the case of a
tie. If α = 0.5, ties can be resolved either way.

Bidding more will not change anything and bidding less re-
sults in less utility (UII

α (b1) < α2(v1− v2)). Like above, bidder
2, whose utility is

UII
α (b2) =

−α(v1 − b2) if b2 ≤ bII
2,α

(1 − α)(v2 − bII
1,α) if b2 ≥ bII

2,α

=

−α(v1 − b2) if b2 ≤ bII
2,α

(1 − α)α(v1 − v2) if b2 ≥ bII
2,α

,

is indifferent between winning and losing in equilibrium. �

Since the main purpose of considering the complete infor-
mation model is a comparison with the equilibria given in
Sections 4 and 5, we just provided an equilibrium for sym-
metric spite. Computing equilibria for any given profile of
spite coefficients is straightforward in the complete informa-
tion model.

Apparently, equilibria for 1st- and 2nd-price auctions are
identical and scale linearly between the second highest and
highest valuation (see Figure 2). This has interesting conse-
quences on the availability of information and expected rev-
enue: Whereas revealing private values increases expected
revenue in 1st-price auctions, it decreases revenue in 2nd-price
auctions, whenever 0 < α < 1. This effect is quite surprising
because expected revenue in a setting with self-interested bid-
ders is identical in the incomplete and complete information
model (see e.g., Osborne, 2004).

6.3 Asymmetries
An important extension of our setting is one that deals with
asymmetries in spitefulness. For example, it would be very
desirable to extend the revenue inequality (Theorem 3) to ar-
bitrary profiles of spite coefficients (α1, α2, . . . , αn) or a gen-
eral prior from which each αi is drawn. A first step towards
this direction can be made by observing that the equilibrium
strategies of self-interested bidders are in a sense “robust”
against spiteful bidding.

Proposition 1 Rational self-interested bidders will stick with
their bidding strategy when other agents bid according to the
strategies given in Theorems 1 and 2, respectively, and pri-
vate values are uniformly distributed.

Proof: The statement for 1st-price auctions follows from a
result by Porter and Shoham (2003) who proved that bidders
in 1st-price auctions will stick with their equilibrium strategy
even when other bidders bid constant fractions of their private
value larger than n−1

n · v (in the case of a uniform prior). This
holds for a certain class of probability distributions, including
the uniform distribution.
The statement for 2nd-price auctions trivially follows from the
fact that bidding truthfully is a dominant strategy for self-
interested agents and therefore holds for any given prior. �

The previous proposition can be interpreted as a setting in
which there are self-interested and spiteful agents participat-
ing in the same auction. Self-interested agents are aware of
this asymmetry whereas spiteful agents believe that every-
body is spiteful.



7 Conclusion
We studied the bidding behavior of spiteful agents who, con-
trary to the common assumption of self-interest, maximize
a convex combination of their own profit and their competi-
tors’ losses. We derived symmetric Bayes Nash equilibria for
spiteful agents in 1st-price and 2nd-price sealed-bid auctions.
The main results are as follows. In 1st-price auctions, bidders
become “more truthful” the more spiteful they are. When bid-
ders are completely malicious, truth-telling is in Nash equi-
librium. Surprisingly, the equilibrium strategy in 2nd-price
auctions does not depend on the number of bidders. Based
on these equilibria, we compared the revenue in both auction
types. It turned out that revenue equivalence breaks down for
this setting. Expected revenue in 2nd-price auctions is higher
than revenue in 1st-price auctions whenever the spite coeffi-
cient α satisfies 0 < α < 1. However, revenue equivalence
holds at each extreme: auctions where all agents are self-
interested (α = 0) and auction where all agents are malicious
(α = 1). We showed that the difference in revenue stems from
the uncertainty about others’ valuations. Whereas revealing
private values increases expected revenue in 1st-price auc-
tions, it decreases revenue in 2nd-price auctions if 0 < α < 1.

There are several open problems left for future work. Most
importantly, we intend to extend the revenue inequality (The-
orem 3) to settings with asymmetric spite and investigate the
mechanism design problem for spiteful agents.
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A Conditional Expectations
Let X be a random variable drawn from the interval [0, 1]
according to the cumulative distribution function F(x). The

expectation of X is E[X] =
∫ 1

0
t · f (t) dt. The conditional

expectation that X is smaller or greater than some constant x,
respectively, is given by

E[X | X < x] =
1

F(x)

∫ x

0
t · f (t)dt, and (11)

E[X | X > x] =
1

1 − F(x)

∫ 1

x
t · f (t)dt. (12)
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