
Network Flow Optimization with Minimum
Quantities

Hans Georg Seedig
seedigh@in.tum.de

December 1st, 2010

Economies of scale often appear as decreasing marginal costs, but may also
occur as a constraint that at least a minimum quantity should be produced
or nothing at all. Taking the latter into account can support decisions about
keeping a production site, setting up a new one, establishing new routes in
logistics network, and many more. In our work, we define the corresponding
problem Minimum Cost Network Flow with Minimum Quantities
and prove its computational hardness. Following that, we devise a tailored
Branch-&-Bound algorithm with an efficient update step that usually affects
only small parts of the network. Experiments are conducted on real problems
and artificial networks. In our results, the update step made the inevitable
but well-studied subproblem of the initial computation of a minimum cost
network flow problem taking most of the actual total running time. As our
method does also compare favorably with a heuristic algorithm that has been
implemented before, we recommend it for practical use.

1 Introduction

The problem we study is derived form the classical Minimum Cost Net-
work Flow Problem (MCNF). Because of their immanent applicability to
cost-intensive tasks, MCNF and many of its variants have been studies exten-
sively in the past. Among these are the problems where the costs per unit
amount are increasing or decreasing (convex or concave costs) and where
the amount routed through a network changes on the way (generalized flow
problem). Treating other than fixed costs per unit amount often reflects the
real cost structure of a given real-world problem. Costs amortize with big-
ger amounts, for example at production sites. Having a factory building a
single car makes this car a lot more expensive compared to a factory where
hundreds of cars are built each day. On the other side, the marginal costs
might rise for for larger numbers. If the facilities are used to capacity, an

1

increase in output demands for the construction of new facilities, additional
work force and so on. These effects are often referred to as economy of scale.

A new question was raised recently where closing some production facilities
was considered favorably for lowering costs. While the fixed setup costs that
occur as soon as anything is produced at all could not be quantified, the
customer named a threshold amount of output from which on a location
was considered worth being kept. This amount is what we call Minimum
Quantity (or MQ).

So, the problem to solve deals only with constant marginal costs but re-
stricts the solution space as suggestions where a location had an output level
above zero but below the MQ would be considered ineligible.

2 Preliminaries

In this work, a network N = (V,E, u, c) is a digraph (V,E) equipped with a
capacity function u : E → R+ ∪{∞} and a cost function c : E → R.1 At the
nodes, a demand function b : V → R ∪ {−∞} is given. We call each node s
with b(s) > 0 a source, having supply, and every node t with b(t) < 0 a sink.
As every network with more than one source and/or more than one sink is
easily transformed to an equivalent one with a single source and a single sink,
we assume the latter to be the case. Let |V | =: n and |E| =: m.

A feasible flow in a network N is a function f : E → R+ satisfying the
capacity constraints for each e in E: f(e) ≤ u(e) and flow conservation
constraints ∑

e1=(v′,v)

f(e1)−
∑

e2=(v,v′′)

f(e2) = b(v) ∀ v ∈ V. (1)

Given a network N , we define the flow network NF (f) = (V,Ef , uf , cf)
where Ef is the set of all edges from N having a positive flow value in f , the
capacity uf equals f for all these edges and the costs on these edges are the
same as in N .

Similarly, the residual network NR(f) = (V,Ef
R, u

f
R) with costs cfR is the

network with capacities indicating how much flow can still be sent at which
price along an edge without violating the capacity bound and how much can
be sent back to a node without the flow being negative while reducing the
total costs.

3 Minimum Cost Network Flow

The central problem regarding network flows is that of finding a feasible flow
with minimum cost that satisfies all demands. For a network with one source

1We will use vector notation ue and ce to denote the capacity and cost of edge e.

2

s,one sink t, and demand d, the problem is defined as follows.

Minimum Cost Network Flow (MCNF)
Input: Network N = (V,E), s, t ∈ V , capacities ue and costs ce for all

e ∈ E and demands per node bt = −bs = d, bv = 0∀v ∈ V \ {s, t}
Task: Find a feasible flow f = (f1, . . . , fm) that minimizes∑

e∈E
ce · fe.

Different types of algorithms have been devised for MCNF with more than
one allowing a strongly polynomial running time. Today, the most popular
methods (see, e.g., [7, 4]) use a scaling approach of one kind or another. An
interesting optimality criterion for an optimal flow f∗ is that the residual
network NR(f∗) contains no cycles of total negative cost. This implies an
algorithm that successively identifies and eliminates such cycles by increasing
the flow along the cycle’s edges. When in each step the cycle with minimum
mean costs is canceled, a strongly polynomial bound can be achieved [5].

4 Minimum cost Network Flow with Minimum
Quantities

We define the problem of a minimum cost network flow with minimum quanti-
ties on the first layer or MCNFMQ as a mixed integer linear program (MILP).

MCNF with Minimum Quantities (MCNFMQ)
Input: Network N = (V,E) with s, t ∈ V , capacities ue∀ e ∈ E, a

demand d ∈ N
and minimum quantity lots λe 6= 0 on edges (s, v) ∈ E.

Task: Find x = (x1, . . . , xm) and a feasible flow f = (f1, . . . , fm) that
satisfies ∑

e=(s,u)∈E

fe =
∑

e=(w,t)∈E

fe = val(f) = d,

λexe ≤ fe ≤ xeue ∀ e ∈ E

and minimizes ∑
e∈E

ce · fe.

3

4.1 Complexity of MCNFMQ

To show the NP-completeness of MCNFMQ, we use the known completeness
of the problem SubsetSum for the reduction. SubsetSum is a variant of
the Knapsack problem and is indeed NP-complete as shown by [3].

SubsetSum
Input: A = {a1, . . . , an}, ai ∈ N

k ∈ N
Question: Does there exist an I ⊂ {1, . . . , n} such that

∑
i∈I ai = k?

Theorem 1. MCNFMQ is NP-complete.

Proof. Given an instance of SubsetSum, define an instance of MCNFMQ
as follows.

◦ V = {s, t, t0, v1, . . . , vn} nodes

◦ E × N2 = {(s, v1, a1, a1), . . . , (s, vn, an, an)} ∪ {(v1, t0, 0,∞), . . .
. . . , (vn, t0, 0,∞)}∪{(t0, t, 0, k)} edges with MQ lot and upper capacity.

For the network N = (V,E) with MQ lots and upper capacities as defined
and all ce = 0, it is straightforward to check that the given instance of
SubsetSum is a Yes instance if and only if there is a feasible flow in the
corresponding MCNFMQ.

4.2 Algorithm for MCNFMQ

Because of the computational hardness of MCNFMQ, it is justified to look
at possible super-polynomial algorithms. First, we introduce the notion of
a configuration which is a tuple of decision variables, one for each MQ-
constrained edge, forcing the flow on this edge to be zero or above the MQ
lot. Each such tuple defines a new problem that turns out to have an MCNF
equivalent. Our algorithm is a Branch-&-Bound method on this set of con-
figurations.

The algorithm works as follows. We start with a completely relaxed MC-
NFMQ (which is an MCNF) and efficiently compute its solution. On edges
where the solution violates the MQ constraint, we branch to obtain two new
configuration. After applying Wagner’s transformation [8] we have corre-
sponding MCNFs that can be solved efficiently with the methods discussed
earlier.

We increased the performance of our algorithm dramatically by imple-
menting an update step, using the previously computed solution of the par-
ent configuration for the new setting instead of computing the solution to
the new MCNFs from scratch. It is a rerouting procedure, where the flow is
increased (decreased) along shortest (longest) s-t-paths in the residual (flow)
network to first match the new MQ constraint, followed by the elimination of

4

cycles with total negative cost in the residual network to regain optimality,
and decrease (increase) the flow again along longest (shortest) s-t-paths in
the flow (residual) network to reach feasibility.

5 Experimental Results

We compared our Branch-&-Bound (B&B) method with an established heuris-
tic that has been used in the past. That method basically also starts with
a relaxed solution, but then only closes edges with violated MQ-constraints
and does no backtracking. As soon as a feasible solution is found, it is re-
turned but neither its optimality nor the discovery of any existing feasible
solution is guaranteed.

For our experiments, we had a data set of an international company to our
avail and did also generate similarly-structured artificial networks. These are
basically a fully connected graph where each of the vertices is to be thought of
as a depot and is connected to the source and the sink. The MQ-constrained
edges are the ones connected to the source and are all assigned the same MQ
lot. Costs and capacities of all edges were randomly chosen and above the
MQ lot where applicable.

Our findings are that the average optimality gap of the rather simple
heuristic is about 4% for our models, tested against the B&B method that is
guaranteed to compute the exact solution. The update procedure proved to
be effective as on average the time needed for all updates during the explo-
ration of the B&B tree roughly equaled the time needed for the inevitable
computation of the very first relaxed solution as can be seen Figure 1(a).
With this, the B&B method takes only slightly more time than the heuris-
tic in our experiments as depicted in Figure 1(b) while usually computing
solutions for about 3 times as many configurations during its execution.

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50

ru
n
ti

m
e

in
s

MQ edges

Initial Flow Computation
Update Flow Computations

(a) Execution time of B&B split into
computation of initial solution and up-
date phase

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

ru
n
ti

m
e

in
s

MQ edges

Branch&Bound
Edge-closing heuristic

(b) Comparison of B&B and edge-
closing heuristic considering execution
time of the update phase

Figure 1: Execution time comparisons on randomly gener-
ated networks with two models, averaged over 30
runs.

5

6 Conclusions and Outlook

We introduced a new type of constraints in the context of Minimum Cost Net-
work Flow that has obvious applications to real world problems. We were able
to prove the hardness of the general MCNFMQ problem and subsequently
devised a tailored Branch-&-Bound algorithm with an update method that
showed to be very efficient in practice. That way, the computational complex-
ity of real world instances was basically reduced to the well-studied classical
MCNF problem for which very fast algorithms have already been imple-
mented [4]. The same is true for the subproblem of identifying cycles of
negative length in the residual network we used for the update step [1]. This
makes our approach suitable for actual problems in logistics.

Possible future work is to investigate more on different cost models to
account for economies of scale or other effects. There has been some work
on complexity and algorithms for network flow problem with nonlinear cost
functions (,e.g., [6], [2]) but we think that this is worth extending. While
the resulting problems are mostly hard, it would still be interesting to devise
tailored algorithms for practical use.
We would be interested in seeing our approach extended to multi-commodity
problems where the constraints are coupled. It is also a remaining question
wether the hardness of MCNFMQ holds if all possible minimum quantity
lots are known to be the same.
Acknowledgement: The author thanks Prof. Dr. A. Taraz and Dr.

Mirko Eickhoff for helpful discussions. Part of this work was done while the
author was at Axxom Software AG, Munich, Germany.

References

[1] Boris Vasilievich Cherkassky and Andrew Vladislav Goldberg. Negative-
cycle detection algorithms. Mathematical Programming, 85:277–311,
1999.

[2] Dalila Benedita Machado Martins Fontes, Eleni Hadjiconstantinou, and
Nicos Christofides. A branch-and-bound algorithm for concave network
flow problems. Journal of Global Optimization, 34(1):127–155, 2006.

[3] Michael Randolph Garey and David Stifler Johnson. Computers and In-
tractability : A Guide to the Theory of NP-Completeness. W. H. Freeman,
January 1979.

[4] Andrew Vladislav Goldberg. An efficient implementation of a scaling
minimum-cost flow algorithm. Journal of Algorithms, 22:1–29, 1997.

[5] Andrew Vladislav Goldberg and Robert Endre Tarjan. Finding minimum-

6

cost circulations by canceling negative cycles. Journal of the ACM,
36(4):873–886, 1989.

[6] Dorit Simona Hochbaum. Complexity and algorithms for nonlinear opti-
mization problems. Annals of Operations Research, 153(1):257–296, 2007.

[7] James Berger Orlin. A faster strongly polynomial minimum cost flow
algorithm. Operations Research, 41(2):338–350, 1993.

[8] Harvey Maurice Wagner. On a class of capacitated transportation prob-
lems. Management Science, 5(3):304–318, 1959.

7

