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Abstract
Two important requirements when aggregating the
preferences of multiple agents are that the outcome
should be economically efficient and the aggrega-
tion mechanism should not be manipulable. In
this paper, we provide a computer-aided proof of a
sweeping impossibility using these two conditions
for randomized aggregation mechanisms. More
precisely, we show that every efficient aggregation
mechanism can be manipulated for all expected
utility representations of the agents’ preferences.
This settles a conjecture by Aziz et al. [2013b] and
strengthens a number of existing theorems, includ-
ing statements that were shown within the special
domain of assignment. Our proof is obtained by
formulating the claim as a satisfiability problem
over predicates from real-valued arithmetic, which
is then checked using an SMT (satisfiability mod-
ulo theories) solver. To the best of our knowledge,
this is the first application of SMT solvers in com-
putational social choice.

1 Introduction
Models and results from microeconomic theory, in particu-
lar from game theory and social choice, have proven to be
very valuable when reasoning about computational multia-
gent systems. Two fundamental notions in this context are
efficiency—no agent can be made better off without making
another one worse off—and strategyproofness—no agent can
obtain a more preferred outcome by manipulating his prefer-
ences. Gibbard [1973] and Satterthwaite [1975] have shown
that every strategyproof social choice function is either dic-
tatorial or imposing. Hence, strategyproofness can only be
achieved at the cost of discriminating among the agents or
among the alternatives. One natural possibility to restore fair-
ness, which is particularly popular in computer science, is
to allow for randomization. Functions that map a profile of
individual preferences to a probability distribution over al-
ternatives (a so-called lottery) are known as social decision
schemes (SDSs).

Generalizing his previous result, Gibbard [1977] proved
that the only strategyproof and ex post efficient social de-
cision schemes are randomizations over dictatorships. Gib-

bard’s notion of strategyproofness requires that no agent is
better off by manipulating his preferences for some expected
utility representation of the agents’ ordinal preferences. This
condition is quite demanding because an SDS may be deemed
manipulable just because it can be manipulated for a con-
trived and highly unlikely utility representation. In this paper,
we adopt a weaker notion of strategyproofness, first used by
Postlewaite and Schmeidler [1986] and popularized by Bo-
gomolnaia and Moulin [2001]. This notion requires that no
agent should be better off by manipulating his preferences
for all expected utility representations of the agents’ prefer-
ences. At the same time, we use a stronger notion of effi-
ciency than Gibbard [1977]. This notion is defined in anal-
ogy to our notion of strategyproofness and requires that no
agent can be made better off for all utility representations of
the agents’ preferences, without making another one worse
off for some utility representation. This type of efficiency
was introduced by Bogomolnaia and Moulin [2001] and is
also known as ordinal efficiency or SD-efficiency where SD
stands for stochastic dominance.

Our main result establishes that no anonymous and neu-
tral SDS satisfies efficiency and strategyproofness. This set-
tles a conjecture by Aziz et al. [2013b] and generalizes theo-
rems by Aziz et al. [2013b], Aziz et al. [2014], and Brandl
et al. [2016b]. It also strengthens related statements by
Zhou [1990], Bogomolnaia and Moulin [2001], and Katta and
Sethuraman [2006], which were shown within the special do-
main of assignment.

Our proof of this theorem heavily relies on computer-aided
solving techniques. Some of these have already been ap-
plied in computational social choice, where, due to the rig-
orous axiomatic foundation, computer-aided theorem prov-
ing appears to be a particularly promising line of research.
Perhaps the best known result in this context stems from
Tang and Lin [2009], who reduce well-known impossibility
results, such as Arrow’s theorem, to finite instances, which
can then be checked by a Boolean satisfiability (SAT) solver.
Their work has sparked a number of contributions which, be-
sides using this general idea for more complex settings or ax-
ioms, focus on proving novel results [Geist and Endriss, 2011;
Brandl et al., 2015; Brandt et al., 2016; Brandt and Geist,
2016].

In this paper, we go beyond the SAT-based techniques of
previous contributions by designing an SMT (satisfiability



modulo theories) encoding that captures axioms for random-
ized social choice. SMT can be viewed as an enriched form of
the satisfiability problem (SAT) where Boolean variables are
replaced by statements from a theory, such as specific data
types or arithmetics. Similar to SAT, there is a range of SMT
solvers developed by an active community that runs annual
competitions [Barrett et al., 2013]. Typically, SMT solvers
are used as backends for verification tasks such as the verifi-
cation of software. To capture axioms about lotteries, we use
the theory of (quantifier-free) linear real arithmetic. Solving
this version of SMT can be seen as an extension to linear pro-
gramming in which arbitrary Boolean operators are allowed
to connect (in-)equalities.

We follow the idea of Brandt and Geist [2016] and ex-
tract a minimal unsatisfiable set (MUS) of constraints in order
to verify our result. Despite its relatively complex 94 (non-
trivial) constraints, the MUS enables manual and computer-
aided verification of the encoding, and, hence, releases any
need to verify our program for generating it.

2 The Model
Let A be a finite set of m alternatives and N = {1, . . . , n}
a set of agents. A (weak) preference relation is a complete
and transitive binary relation on A. The preference relation
reported by agent i is denoted by %i, and the set of all pref-
erence relations by R. In accordance with conventional no-
tation, we write �i for the strict part of %i, i.e., x �i y
if x %i y but not y %i x, and ∼i for the indifference part
of %i, i.e., x ∼i y if x %i y and y %i x. A preference
relation %i is linear if x �i y or y �i x for all distinct
alternatives x, y ∈ A. We will compactly represent a prefer-
ence relation as a comma-separated list with all alternatives
among which an agent is indifferent placed in a set. For
example, x �i y ∼i z is represented by %i : x, {y, z}. A
preference profile R = (%1, . . . ,%n) is an n-tuple contain-
ing a preference relation %i for each agent i ∈ N . The set
of all preference profiles is thus given by RN . For a given
R ∈ RN and % ∈ R, Ri 7→% denotes a preference pro-
file identical to R except that %i is replaced with %, i.e.,
Ri 7→% = R \ {(i,%i)} ∪ {(i,%)}.

2.1 Social Decision Schemes
Our central objects of study are social decision schemes:
functions that map a preference profile to a lottery (or prob-
ability distribution) over the alternatives. The set of all lot-
teries over A is denoted by ∆(A), i.e., ∆(A) = {p ∈
RA≥0 :

∑
x∈A p(x) = 1}, where p(x) is the probability that

p assigns to x. Then, formally, a social decision scheme
(SDS) is a function f : RN → ∆(A). By supp(p) we de-
note the support of a lottery p ∈ ∆(A), i.e., the set of all
alternatives to which p assigns positive probability. Two com-
mon minimal fairness conditions for SDSs are anonymity
and neutrality, i.e., symmetry with respect to agents and al-
ternatives, respectively. Formally, anonymity requires that
f(R) = f(R ◦ σ) for all R ∈ RN and permutations
σ : N → N over agents. Neutrality, on the other hand, is de-
fined via permutations over alternatives. An SDS f is neutral

if f(R)(x) = f(π(R))(π(x)) for all R ∈ RN , permutations
π : A→ A, and x ∈ A.1

2.2 Efficiency and Strategyproofness
Many important properties of SDSs, such as efficiency and
strategyproofness, require us to reason about the preferences
that agents have over lotteries. This is commonly achieved
by assuming that in a preference profile R every agent i, in
addition to this preference relation %i, is equipped with a von
Neumann-Morgenstern (vNM) utility function uRi : A → R.
By definition, a utility function uRi has to be consistent with
the ordinal preferences, i.e., for all x, y ∈ A, uRi (x) ≥ uRi (y)
iff x %i y. A utility representation u then associates with
each preference profile R an n-tuple (uR1 , . . . , u

R
n ) of such

utility functions. Whenever the preference profile R is clear
from the context, the superscript will be omitted and we write
ui instead of the more cumbersome uRi .

Given a utility function ui, agent i prefers lottery p to lot-
tery q iff the expected utility for p is at least as high as that
of q. With slight abuse of notation the domain of utility func-
tions can be extended in the canonical way to ∆(A) by letting

ui(p) =
∑
x∈A

p(x)ui(x).

It is straightforward to define efficiency and strategyproofness
using expected utility. For a given utility representation u
and a preference profile R, a lottery p u-(Pareto-)dominates
another lottery q if

ui(p) ≥ ui(q) for all i ∈ N , and
ui(p) > ui(q) for some i ∈ N .

An SDS f is u-efficient if it never returns u-dominated lotter-
ies, i.e., for all R ∈ RN , f(R) is not u-dominated. The no-
tion of u-strategyproofness can be defined analogously: for a
given utility representation u, an SDS can be u-manipulated
if there are R ∈ RN , i ∈ N , and % ∈ R such that

uRi (f(Ri 7→%)) > uRi (f(R)).

An SDS is u-strategyproof if it cannot be u-manipulated.
The assumption that the vNM utility functions of all agents

(and thus their complete preferences over lotteries) are known
is quite unrealistic. Often even the agents themselves are un-
certain about their preferences over lotteries and only know
their ordinal preferences over alternatives.2 A natural way to
model this uncertainty is to leave the utility functions unspec-
ified and instead quantify over all utility functions that are
consistent with the agents’ ordinal preferences. This model
leads to much weaker notions of efficiency and strategyproof-
ness.

1π(R) is the preference profile obtained from π by replacing
%i with %πi for every i ∈ N , where π(x) %πi π(y) if and only if
x %i y.

2When assuming that all agents possess vNM utility functions,
these utility functions could be taken as inputs for the aggregation
function. Such aggregation functions are called cardinal decision
schemes [see, e.g., Dutta et al., 2007]. In addition to the fact that
concrete vNM utility functions are typically unavailable, their rep-
resentation may require infinite space.



Definition 1. An SDS is efficient if it never returns a lottery
that is u-dominated for all utility representations u.

As mentioned in the introduction, this notion of efficiency
is also known as ordinal efficiency or SD-efficiency [see, e.g.,
Bogomolnaia and Moulin, 2001; Aziz et al., 2014; 2015].
The relationship to stochastic dominance will be discussed
in more detail in Section 4.2.
Example 1. For illustration considerA = {a, b, c, d} and the
preference profile R = (%1, . . . ,%4),

%1 : {a, c}, {b, d}, %2 : {b, d}, {a, c},
%3 : {a, d}, b, c, %4 : {b, c}, a, d

Observe that the lottery 7/24 a+7/24 b+5/24 c+5/24 d, which is
returned by the well-known SDS random serial dictatorship
(RSD), is u-dominated by 1/2 a + 1/2 b for every utility rep-
resentation u. Hence, any SDS that returns this lottery for the
profile R would not be efficient. On the other hand, the lot-
tery 1/2 a+ 1/2 b is not u-dominated, which can, for instance,
be checked via linear programming (see Lemma 4).

We can also define a weak notion of strategyproofness in
analogy to our notion of efficiency.
Definition 2. An SDS is strategyproof if it cannot be u-
manipulated for all utility representations u.

Alternatively, there is a stronger version of strategyproof-
ness by Gibbard [1977], in which an SDS should not be u-
manipulable for some utility representation u.

For more information concerning the relationship between
sets of possible utility functions and preference extensions,
such as stochastic dominance, the reader is referred to Aziz
et al. [2015].

3 The Result
Our main result shows that efficiency and strategyproofness
are incompatible with basic fairness properties. Aziz et
al. [2013b] raised the question whether there exists an anony-
mous, efficient, and strategyproof SDS. When additionally
requiring neutrality, we can answer this question in the nega-
tive.
Theorem 1. If m ≥ 4 and n ≥ 4, there is no anonymous and
neutral SDS that satisfies efficiency and strategyproofness.

The proof of Theorem 1, which heavily relies on computer-
aided solving techniques, is discussed in Section 4. Let us
first discuss the independence of the axioms and relate the
result to existing theorems. RSD satisfies all axioms except
efficiency; another SDS known as maximal lotteries satisfies
all axioms except strategyproofness [cf. Aziz et al., 2013b].
Serial dictatorship, the deterministic version of RSD , satis-
fies neutrality, efficiency, and strategyproofness but violates
anonymity. It is unknown whether Theorem 1 still holds when
dropping the assumption of neutrality. Our proof, however,
only requires a technical weakening of neutrality (cf. Sec-
tion 4.1).

3.1 Related Results for Social Choice
Our result generalizes several existing results and is closely
related to a number of results in subdomains of social choice.

Aziz et al. [2013b] proved a weak version of Theorem 1 for
the rather restricted class of majoritarian SDSs, i.e., SDSs
whose outcome may only depend on the pairwise majority
relation. This statement has later been generalized by Aziz
et al. [2014] to all SDSs whose outcome only depends on
the weighted majority relation. More recently, Brandl et
al. [2016b] have shown that while random dictatorship is ef-
ficient and strategyproof on the domain of linear preferences,
it cannot be extended to the full domain of weak preferences
without violating at least one of these properties. Their theo-
rem, which also assumes anonymity and neutrality, is a direct
consequence of Theorem 1. Other impossibility results have
been obtained for stronger notions of efficiency and strat-
egyproofness, which weakens the corresponding statements
[Aziz et al., 2014].

3.2 Related Results for Assignment
A subdomain of social choice that has been thoroughly stud-
ied in the literature is the assignment (aka house allocation or
two-sided matching with one-sided preferences) domain. An
assignment problem can be associated with a social choice
problem by letting the set of alternatives be the set of deter-
ministic allocations and postulating that agents are indifferent
among all allocations in which they receive the same object
[see, e.g., Aziz et al., 2013a].3 Thus, impossibility results for
the assignment setting can be interpreted as impossibility re-
sults for the social choice setting because they even hold in a
smaller domain.

In the following we discuss impossibility results in the as-
signment domain which, if interpreted for the social choice
domain, can be seen as weaker versions of Theorem 1 be-
cause they are based on stronger notions of efficiency or strat-
egyproofness or require additional properties. In a very in-
fluential paper, Bogomolnaia and Moulin [2001] have shown
that no randomized assignment mechanism satisfies both effi-
ciency and a strong notion of strategyproofness while treating
all agents equally. The underlying notion of strategyproof-
ness is identical to the one used by Gibbard [1977] and pre-
scribes that the SDS cannot be u-manipulated for some util-
ity representation u. The result by Bogomolnaia and Moulin
even holds when preferences over objects are linear. (Nev-
ertheless, when transferred to the social choice domain, the
preferences over allocations will contain ties.) In a related
paper, Katta and Sethuraman [2006] proved that no assign-
ment mechanism satisfies efficiency, strategyproofness, and
envy-freeness for the full domain of preferences.

Settling a conjecture by Gale [1987], Zhou [1990] showed
that no cardinal assignment mechanism satisfies u-efficiency
and u-strategyproofness while treating all agents equally.4
The relationship between Zhou’s result and Theorem 1 is not
obvious because Zhou’s theorem concerns cardinal mecha-
nisms, i.e., functions that take a utility profile rather than a

3Note that this transformation turns assignment problems with
linear preferences over k objects into social choice problems with
non-linear preferences over k! allocations.

4The theorem by Zhou only requires that agents with the same
utility function receive the same amount of utility but not necessar-
ily the same assignment. Gale’s original conjecture assumed equal
treatment of equals.



preference profile as input. However, every cardinal assign-
ment mechanism can be associated with an ordinal assign-
ment mechanism. Hence, Theorem 1 implies that there is no
anonymous, neutral, u-efficient, and u-strategyproof cardinal
decision scheme.

4 Proving the Result
In this section, we first reduce the statement of Theorem 1
to the case of m = 4 and n = 4, which we then prove via
SMT solving. We present an encoding for any finite instance
of Theorem 1 as an SMT problem in the logic of (quantifier-
free) linear real arithmetic (QF LRA). For compatibility with
different SMT solvers our encoding adheres to the SMT-LIB
standard [Barrett et al., 2010]. In total, we are going to de-
sign the following four types of SMT constraints: lottery def-
initions (Lottery), the orbit condition which models a part
of neutrality (Orbit), strategyproofness (SP), and efficiency
(Efficiency). Other conditions such as anonymity are taken
care of by the representation of preference profiles.

We then, first, apply an SMT solver to show that this set of
constraints for the case of m = 4 and n = 4 is unsatisfiable,
i.e., no SDS f with the desired properties exists. Second, we
explain how the output of the solver can be used to obtain a
human-verifiable proof of this result.

But let us start with the reduction lemma before we turn to
the concrete encoding in the following subsections.

Lemma 1. If there is an anonymous and neutral SDS f that
satisfies efficiency and strategyproofness for |A| = m alter-
natives and |N | = n agents then we can also find an SDS
f ′ defined for m′ ≤ m alternatives and n′ ≤ n agents that
satisfies the same properties.

Proof. Let f be an anonymous and neutral SDS that satis-
fies efficiency and strategyproofness for m alternatives and n
agents. We define a projection f ′ of f onto A′ ⊆ A, |A′| =
m′ ≤ m and N ′ = {1, 2, . . . , n′} ⊆ N,n′ ≤ n that satisfies
all required properties:

For every preference profile R′ on A′ and N ′, let f ′(R′) =
f(R), where R is defined by the following conditions:

%i ∩ (A′ ×A′) = %′i for all i ∈ N ′, (1)

x �i y for all x ∈ A′, y ∈ A \A′ and i ∈ N ′, (2)

y ∼i z for all y, z ∈ A \A′ and i ∈ N ′, and (3)

y ∼i z for all y, z ∈ A and i ∈ N \N ′. (4)

Informally, by (1) agents in N ′ have the same preferences
over alternatives from A′ in R and R′. Moreover, by (2) they
like every alternative in A′ strictly better than every alterna-
tive not in A′ and by (3) they are indifferent between all al-
ternatives not in A′. Finally, by (4) all agents in N \ N ′ are
completely indifferent. With these conditions, R is uniquely
specified given R′, and only lotteries p with supp(p) ⊆ A′

are efficient in R. Thus, f ′ is well-defined and it is left to
show that f ′ inherits the relevant properties from f . The SDS
f ′ is anonymous since f is anonymous and agents in N can
only differ by their preferences over A′. Neutrality follows
as f is neutral and all agents are indifferent between all al-
ternatives not in A′. Efficiency is satisfied by f ′ since f is

efficient and the same set of lotteries is efficient in R and R′.
Finally, f ′ is strategyproof because f is strategyproof and the
outcomes of f ′ under the two profiles R′ and (R′)i 7→%′ are
equal to the outcomes of f under the two (extended) profiles
R and Ri 7→%, respectively.

4.1 Framework, Anonymity, and Neutrality
For a given number of agents n and set of alternatives A,
we encode an arbitrary SDS f : RN → ∆(A) by a set of
real-valued variables pR,x with R ∈ RN and x ∈ A. Each
pR,x then represents the probability with which alternative x
is selected for profile R, i.e., pR,x = f(R)(x).

This encoding of lotteries leads to the first simple con-
straints for our SMT encoding, which ensure that for each
preference profile R the corresponding variables pR,x, x ∈ A
indeed encode a lottery:∑

x∈A
pR,x = 1 for all R ∈ RN , and

pR,x ≥ 0 for all R ∈ RN and x ∈ A.
(Lottery)

We are now going to argue that, in conjunction with
anonymity and neutrality (see Section 2), it suffices to con-
sider these constraints for a subset of preference profiles.
This is because, in contrast to the other axioms, we directly
incorporate anonymity and neutrality into the structure of
the encoding rather than formulating them as actual con-
straints. Similar to the construction involving canonical tour-
nament representations by Brandt and Geist [2016], we model
anonymity and neutrality by computing for each preference
profile R ∈ RN a canonical representation Rc ∈ RN with
respect to these properties. In this representation, two pref-
erence profiles R and R′ are equal (i.e., Rc = R′c) iff one
can be transformed into the other by renaming the agents and
alternatives. Equivalently, Rc = R′c iff, for every anonymous
and neutral SDS f , the lotteries f(R) and f(R′) are equal
(modulo the renaming of the alternatives).

The SMT constraints and SMT variables are then instan-
tiated only for these canonical representations RNc ⊆ RN .
Apart from enabling an encoding of anonymous and neutral
SDSs without any explicit reference to permutations, this also
offers a substantial performance gain compared to consider-
ing the full domain RN of (non-anonymous and non-neutral)
preference profiles.

Technically, we compute the canonical representation Rc

as follows: Let R = (%1, . . . ,%n) ∈ RN be a preference
profile. First, we identifyRwith a function r : R→ N, which
we call anonymous preference profile, and which counts the
number of agents with a certain preference relation, i.e.,
r(%) = |{i ∈ N | %i = %}|, thereby ignoring the identity of
the agents. This representation fully captures anonymity.

To additionally enforce neutrality, we had to resort to
a computationally demanding, naive solution: given r, we
compute all anonymous preference profiles π(r) that can be
achieved via a permutation π : A→ A, and, among those pro-
files, choose the one πlexmin(r) with lexicographically mini-
mal values (for some fixed ordering of preference relations).
For the canonical representation Rc we then pick any prefer-
ence profile R ∈ RN which agrees with πlexmin(r), for in-
stance, by again using the same fixed ordering of preference



relations. Fortunately, this approach is still feasible for the
small numbers of alternatives with which we are dealing.

While this representation of preference profiles does
not completely capture neutrality—the orbit condition [see
Brandt and Geist, 2016] is missing—this weaker version suf-
fices to prove the impossibility. In favor of simpler proofs
we, however, include the simple constraints corresponding to
a randomized version of the orbit condition.

In our context, an orbit O of a preference profile R is an
equivalence class of alternatives. Two alternatives x, y ∈ A
are considered equivalent if π(x) = y for some permutation
π : A → A that maps the anonymous preference profile as-
sociated with R to itself (i.e., π is an automorphism of the
anonymous preference profile). In such a situation, every
anonymous and neutral SDS has to assign equal probabili-
ties to x and y. We hence require that, for each orbit O ∈ OR
of a (canonical) profile R, the probabilities pR,x are equal for
all alternatives x ∈ O. As an SMT constraint, this reads

pR,x = pR,y (Orbit)

for all R ∈ RNc , O ∈ OR, and x, y ∈ O.
Example 2. Consider the anonymous preference profile r
based on R from Example 1 and the permutation

π =

(
a b c d
b a d c

)
.

As π(r) = r (and since no other non-trivial permutation has
this property) the set of orbits of R is OR = {{a, b}, {c, d}}.

4.2 Stochastic Dominance
In order to avoid quantifying over utility functions, we
leverage well-known representations of efficiency and strat-
egyproofness via stochastic dominance (SD) [cf. Bogomol-
naia and Moulin, 2001; McLennan, 2002; Aziz et al., 2015].
A lottery p stochastically dominates a lottery q for an agent i
(short: p %SD

i q) if for every alternative x, lottery p is at least
as likely as lottery q to yield an alternative at least as good as
x. Formally,

p %SD
i q iff

∑
y%ix

p(y) ≥
∑
y%ix

q(y) for all x ∈ A.

When p %SD
i q and not q %SD

i p we write p �SD
i q.

As an example, consider the preference relation %i : a, b, c.
We then have that

(2/3 a+ 1/3 c) �SD
i (1/3 a+ 1/3 b+ 1/3 c)

while 2/3 a + 1/3 c and b are incomparable according to
stochastic dominance.
Lemma 2. A lottery p SD-dominates another lottery q for an
agent i iff u%i

i (p) ≥ u%i

i (q) for every utility function u%i

i . As
a consequence,

1. an SDS f is efficient iff, for all R ∈ RN , there is no
lottery p such that p %SD

i f(R) for all i ∈ N and p �SD
i

f(R) for some i ∈ N , and
2. an SDS f is manipulable iff there exist a preference pro-

file R, an agent i, and a preference relation % such that
f(Ri 7→%) �SD

i f(R).

In words, Lemma 2 shows that an SDS f is efficient if
and only if f(R) is Pareto-efficient with respect to stochas-
tic dominance for all preference profiles R. Secondly, f is
manipulable if and only if some agent can misrepresent his
preferences to obtain a lottery that he prefers to the lottery
obtained by sincere voting with respect to stochastic domi-
nance.

Encoding Strategyproofness
Starting from the above equivalence, encoding strategyproof-
ness as an SMT constraint is now a much simpler task. For
each (canonical) preference profile R ∈ RNc , agent i ∈ N ,
and preference relation % ∈ R, we encode that the manip-
ulated outcome f(Ri 7→%) is not SD-preferred to the truthful
outcome f(R) by agent i:

¬
(
f(Ri 7→%) �SD

i f(R)
)

≡ f(Ri 7→%) 6%SD
i f(R) ∨ f(R) %SD

i f(Ri7→%)

≡

(∃x ∈ A)
∑
y%ix

f(Ri 7→%)(y) <
∑
y%ix

f(R)(y)

∨
(∀x ∈ A)

∑
y%ix

f(Ri 7→%)(y)
(∗)

≤
∑
y%ix

f(R)(y)


≡

∨
x∈A

∑
y%ix

p
(Ri7→%)c,πRi7→%

c (y)
<
∑
y%ix

pR,y

∨
∧
x∈A

∑
y%ix

p
(Ri7→%)c,πRi7→%

c (y)

(∗∗)
=
∑
y%ix

pR,y

 ,

(SP)

where πR
i7→%

c stands for a permutation of alternatives that (to-
gether with a potential renaming of alternatives) leads from
Ri 7→% to (Ri 7→%)c. The inequality (∗) can be replaced by the
equality (∗∗) since the case of at least one strict inequality is
captured by the corresponding disjunctive condition one line
above.

Encoding Efficiency
While Lemma 2 helps to formulate efficiency as an SMT ax-
iom it is not yet sufficient since a quantification over the set
of all lotteries ∆(A) remains. In order to get rid of this quan-
tifier, we apply two lemmas by Aziz et al. [2015]. The first
lemma states that efficiency of a lottery only depends on its
support. The second lemma shows that deciding whether a
lottery is efficient reduces to solving a linear program; for this
statement we include a (slightly simplified) proof in favor of
a self-contained presentation.

Lemma 3 (Aziz et al., 2015). A lottery p ∈ ∆(A) is effi-
cient iff every lottery p′ ∈ ∆(A) with supp(p′) ⊆ supp(p) is
efficient.

Lemma 4 (Aziz et al., 2015). Whether a lottery p ∈ ∆(A) is
efficient for a given preference profile R can be computed in
polynomial time by solving a linear program.



Proof. Given the equivalence from Lemma 2, a lottery p is
easily seen to be efficient iff the optimal objective value of
the following linear program is zero (since then there is no
lottery q that SD-dominates p):

max
q,r

∑
i∈N

∑
x∈A

ri,x subject to∑
y%ix

qy − ri,x =
∑
y%ix

py for all x ∈ A, i ∈ N ,

∑
x∈A

qx = 1, qx ≥ 0 for all x ∈ A,

ri,x ≥ 0 for all x ∈ A, i ∈ N .

Recall that an SDS is efficient if it never returns a dom-
inated lottery. By Lemma 3, this is equivalent to never re-
turning a lottery with inefficient support. To capture this, we
encode, for each (canonical) preference profile R ∈ RNc , that
the probability for at least one alternative in every (inclusion-
minimal) inefficient support IR ⊆ A is zero:∨

x∈IR

pR,x = 0. (Efficiency)

4.3 Restricted Domains
Since RSD (cf. Section 3) is known to satisfy both strate-
gyproofness as well as efficiency for up to 3 alternatives, a
search for an impossibility has to start at m = 4 alternatives.
For n = 3 agents, the encoding is solved as satisfiable; for
n = 4, an encoding of the full domain, unfortunately, be-
comes prohibitively large. Hence, for m = 4 and n = 4, one
has to carefully optimize the domain under consideration, on
the one hand, to include a sufficient number of profiles for a
successful proof, and, on the other hand, not to include too
many profiles, which would prevent the solver from terminat-
ing within a reasonable amount of time.

The following incremental strategy was found to be suc-
cessful. We start with a specific profile R, from which we
only consider sequences of potential manipulations as long
as (in each step) the manipulated individual preferences are
not too distinct from the truthful preferences. To this end,
we measure the magnitude of manipulations by the Kendall
tau distance τ , which counts pairwise disagreements between
Ri and R′i [see also Sato, 2013]. A change in the individ-
ual preferences of an agent will be called a k-manipulation
if τ(Ri, R

′
i) ≤ k. Then, for example, strategically swapping

two alternatives is a 2-manipulation, and breaking or intro-
ducing a tie between two alternatives is a 1-manipulation.

On the domain which starts from the preference profile
R from Example 1 and allows sequences of (1, 2, 1, 2)-
manipulations, we were able to prove the result within a few
minutes of running-time.5,6 On similar, but smaller domains
(e.g., (1, 2, 2)) the axioms are still compatible.

5The SMT solver MathSAT [Cimatti et al., 2013] terminates
quickly within less than 3 minutes with the suggested competi-
tion settings, whereas z3 [de Moura and Bjørner, 2008] requires
some additional configuration, but then also supports core extrac-
tion within the same time frame.

6Showing the result on this domain implies a slightly stronger

4.4 Verification of Correctness
For verification of the result, one would ideally construct a
human-readable proof from the output of the SMT solver.
While the approach described by Brandt and Geist [2016] for
SAT solving—of finding a minimal unsatisfiable set (MUS) of
constraints, i.e., an inclusion-minimal set of constraints such
that this set is still unsatisfiable—is theoretically also appli-
cable to SMT solving, it is less clear how these “proof ingre-
dients” have to be combined.7 The proof object that z3 can
produce, which also contains information of how the MUS
constraints have to be combined, unfortunately, is too long
and complicated for humans to parse.

Hence two aspects of our approach still deserve verifica-
tion: the correctness of the constraints in the MUS and the
unsatisfiability of the MUS. In addition to manual inspection
of the constraints and some sanity-checks,8 we have certified
in Isabelle/HOL that all constraints logically follow from the
original axioms presented in Section 2. This also releases any
need to verify our program for generating the constraints. The
unsatisfiability of the MUS, on the other hand, has been ver-
ified by the solvers CVC4, MathSAT, Yices2, z3, and even
by the Isabelle/HOL kernel.

Furthermore, based on the MUS, a proof of Theorem 1
which no longer relies on SMT solving has been created in
Isabelle/HOL. This proof, however, is tedious to verify by
hand since it is rather large (more than 500 lines of code) and
offers little insight.

5 Conclusion
In this paper, we have leveraged computer-aided solving tech-
niques to prove a sweeping impossibility for randomized ag-
gregation mechanisms.

It seems unlikely that this proof would have been found
without the help of computers because manual proofs of sig-
nificantly weaker statements already turned out to be quite
complex. Nevertheless, now that the theorem has been estab-
lished, our computer-aided methods may guide the search for
related, perhaps even stronger statements that allow for more
intuitive proofs and provide more insights.

Generally speaking, we believe that SMT solving is ap-
plicable to a wide range of problems in randomized so-
cial choice. In particular, extending our result to the spe-
cial domain of assignment (see Section 3.2) is desirable
as this would strengthen a number of existing theorems.
Other interesting questions are whether the impossibility still
holds when weakening strategyproofness even further to BD-
strategyproofness [see, e.g., Aziz et al., 2014] or when omit-
ting neutrality.

statement where strategyproofness only applies to “small” lies (of at
most Kendall tau distance 2).

7Here we have an MUS of 94 constraints, not counting the (triv-
ial) lottery definitions. This MUS, annotated with e.g., the 47 re-
quired canonical preference profiles, is available as part of an arXiv
version of this paper [Brandl et al., 2016a].

8Such as running solvers on multiple variants of the encod-
ing which represent known theorems. This way, we reproduced
(amongst others) the results by Bogomolnaia and Moulin [2001]
and Katta and Sethuraman [2006], as well as the possibility result
for m < 4.
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