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1. INTRODUCTION

Game-theoretic solution concepts, such as Nash equilibrium, are playing an ever
increasing role in the study of systems of autonomous agents. A common criticism
of Nash equilibrium is that its existence relies on the possibility of randomizing over
actions, which in many cases is deemed unsuitable, impractical, or even infeasible.

In work dating back to the early 1950s Lloyd Shapley proposed ordinal set-valued
solution concepts for zero-sum games that he refers to as saddles [Shapley, 1964].
Based on the elementary notions of dominance and stability, saddles are intuitively
appealing, they always exist, and are unique in important classes of games. In this
note, we survey recent results concerning the computational complexity of Shapley’s
saddles and identify some open problems [Brandt et al., 2009a,b].

2. PRELIMINARIES

A (finite) game in normal-form is a tuple Γ = (N, (Ai)i∈N , (pi)i∈N ), where N =
{1, 2, . . . , n} is a nonempty finite set of players and for each player i ∈ N , Ai is a
nonempty finite set of actions available to player i, and pi : (

∏
i∈N Ai) → R is a

function mapping each action profile (i.e., combination of actions) to a real-valued
payoff for player i.

A two-player game is called a zero-sum or matrix game, and can be represented by
a single matrix M that contains the payoffs for the first player, if p2(a, b) = −p1(a, b)
for all (a, b) ∈ A1×A2. ΓM will be used to denote the matrix game with matrix M .
A two-player game is called symmetric if A1 = A2 and p1(a, b) = p2(b, a) for all
a, b ∈ A1. Observe that ΓM is symmetric if and only if M is skew symmetric,
i.e., if MT = −M . We will assume that games are given explicitly, i.e., as a table
containing the payoffs for every possible action profile.

A saddle point of a matrix game ΓM is a pair (a, b) of actions a ∈ A1, b ∈ A2 such
that entry M(a, b) is maximal in column b and minimal in row a of M . Saddle points
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are one of the earliest solution concepts proposed in game theory. They happen
to coincide with the optimal outcome both players can guarantee in the worst case
and thus enjoy a very strong normative foundation. Unfortunately, however, not
every matrix game possesses a saddle point (the well-known Matching Pennies game
is a counterexample). To remedy this situation, von Neumann considered mixed,
i.e., randomized, strategies and proved that every matrix game has a mixed saddle
point (or equilibrium) that moreover maintains the appealing normative properties
of saddle points. The existence result was later generalized to arbitrary games by
Nash, at the expense of its normative foundation. As mentioned earlier, requiring
randomization in order to reach a stable outcome has been criticized on various
grounds.

Shapley showed that existence of saddles (and even uniqueness in the case of
matrix games) can also be guaranteed by moving to minimal sets of actions rather
than randomizations over them [Shapley, 1964]. Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a
game in normal-form and S = (S1, S2, . . . , Sn) with Si ⊆ Ai for all i ∈ N . Shapley’s
saddles generalize saddle points by requiring that for every action a of a player i ∈ N
that is not included in Si, there should be a reason for its exclusion, namely an
action in Si that dominates a with respect to S−i =

∏
j 6=i Sj . To formalize this

idea, we first define the notions of strict and weak dominance. For a player i ∈ N
and two actions a, b ∈ Ai,

a strictly dominates b with respect to S−i if pi(a, s−i) > pi(b, s−i) for all s−i ∈
S−i, and
a weakly dominates b with respect to S−i if pi(a, s−i) ≥ pi(b, s−i) for all s−i ∈
S−i, with at least one strict inequality.

Then, S is a generalized saddle point (GSP) of Γ if for each player i ∈ N and each
a ∈ Ai \ Si there exists s ∈ Si such that s strictly dominates a with respect to
S−i. A strict saddle is a GSP that contains no other GSP. Similarly, S is a weak
generalized saddle point (WGSP) of Γ if for each player i ∈ N and each a ∈ Ai \Si,
there exists s ∈ Si such that s weakly dominates a with respect to S−i. A weak
saddle is a WGSP that contains no other WGSP.

Strict saddles may be considered a “refinement” of iterated strict dominance as all
strict saddles of a normal-form game are contained in the subgame that one obtains
by iterated elimination of strictly dominated actions. Since strict dominance implies
weak dominance, every strict saddle is a WGSP and thus contains a weak saddle.
Consider for example the matrix game ΓM with

M =


4 2 3 5
2 4 5 3
2 2 3 6
1 3 1 4
2 1 6 1


and actions r1 through r5 for the row player and c1 through c4 for the column
player. The pair S = ({r1, r2, r3}, {c1, c2}) is a strict saddle and a WGSP. Since
both r1 and r2 weakly dominate r3 with respect to {c1, c2} and c2 and c1 weakly
(and even strictly) dominate c3 and c4, respectively, with respect to {r1, r2}, the
pair S′ = ({r1, r2}, {c1, c2}) is also a WGSP. Indeed, S′ does not contain a smaller
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WGSP and therefore is a weak saddle. Some reflection reveals that S and S′ are
in fact the unique strict and weak saddle of this game.

It is easy to see that every normal-form game has a strict and a weak saddle.
By definition, (A1, A2, . . . , An) is a GSP. Furthermore, every GSP that is not a
saddle must contain a GSP that is strictly smaller. Finiteness implies that there
exists a minimal GSP, i.e., a strict saddle. An analogous argument applies to
the weak saddle. We finally note that both strict and weak saddle are ordinal
solution concepts, i.e., they are invariant under order-preserving transformations of
the payoff functions. This is in contrast to mixed-strategy Nash equilibrium, for
which invariance holds only under positive affine transformations.

3. RESULTS AND OPEN PROBLEMS

Shapley [1964] has shown that every matrix game possesses a unique strict saddle
by pointing out that the set of GSPs in such games is closed under intersection.
He also describes an algorithm, attributed to Harlan Mills, to compute this saddle.
Uniqueness ceases to hold in general two-player games. It turns out, however, that
this does not have any serious consequences from a computational perspective:
Mills’ algorithm can be generalized to efficiently compute all strict saddles of an
arbitrary n-player game, of which there can be only polynomially many.

Theorem 1 [Brandt et al., 2009a]. All strict saddles of an n-player game can
be computed in polynomial time.

The computation of weak saddles turns out to be significantly more complicated, a
situation reminiscent of that for iterated weak and strict dominance. Somewhat sur-
prisingly, it is not even known whether weak saddles can be computed efficiently in
matrix games. A polynomial-time algorithm can however be given for the subclass
of symmetric matrix games in which the two players get the same payoff if and only
if they play the same action. Formally, a symmetric matrix game ΓM with action set
A is called a confrontation game if for all a, b ∈ A, M(a, b) = 0 if and only if a = b.
Duggan and Le Breton [1996] have shown that confrontation games contain a unique
weak saddle, which moreover contains the same actions for both players. It turns
out that this weak saddle can be computed in polynomial time.

Theorem 2 [Brandt et al., 2009a]. The weak saddle of a confrontation game
can be computed in polynomial time.

In general, symmetric matrix games can have an exponential number of weak sad-
dles. It follows immediately that even for this restricted class of games, computing
all weak saddles requires exponential time in the worst case.

For general games, including those with only two players, a number of hardness
results suggests that even a single weak saddle cannot be found in polynomial
time. The first of these results states that deciding whether a particular action is
contained in some weak saddle is hard for parallel access to NP, and thus not even
in NP, unless the polynomial hierarchy collapses.

Theorem 3 [Brandt et al., 2009b]. Deciding whether a given action is contained
in some weak saddle of a game is Θp

2-hard.
ACM SIGecom Exchanges, Vol. 8, No. 2, December 2009.



4 · Felix Brandt et al.

A gap remains between the lower bound of Θp
2 and the best known upper bound of

Σp
2 for the same problem.
The same techniques that lead to the previous theorem can be used to show that

it is NP-complete to decide whether a game has a nontrivial weak saddle, i.e., a
weak saddle that does not contain all actions.

Theorem 4 [Brandt et al., 2009b]. Deciding whether a game has a nontrivial
weak saddle is NP-complete.

This result has a number of interesting consequences.

Corollary 1. Deciding whether a game has a unique weak saddle is coNP-hard.
Recognizing a weak saddle is coNP-complete. Finding a weak saddle is NP-hard
under polynomial-time Turing reductions.

The last result leads to an interesting open problem: No stronger lower bound can
be derived using the same technique, by reducing from an NP-complete decision
problem, yet it is not clear how a weak saddle should be found in nondeterministic
polynomial time.

Analogous computational problems can also be defined for very weak saddles,
which use an even weaker version of dominance that does not require a strict in-
equality. While these problems are not connected in an obvious way to their coun-
terparts for weak saddles, most of the above results can be shown to apply to very
weak saddles as well [Brandt et al., 2009b]. Similarly, some of the above results
have been extended to mixed saddles, which are defined using dominance by mixed
strategies [Duggan and Le Breton, 2001, Brandt et al., 2009a].
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