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Social decision schemes (SDSs) map the preferences of a group of voters
over some set of m alternatives to a probability distribution over the al-
ternatives. A seminal characterization of strategyproof SDSs by Gibbard
(1977) implies that there are no strategyproof Condorcet extensions and
that only random dictatorships satisfy ex post efficiency and strategyproof-
ness. The latter is known as the random dictatorship theorem. We relax
Condorcet-consistency and ex post efficiency by introducing a lower bound
on the probability of Condorcet winners and an upper bound on the prob-
ability of Pareto-dominated alternatives, respectively. We then show that
the randomized Copeland rule is the only anonymous, neutral, and strate-
gyproof SDS that guarantees the Condorcet winner a probability of at least
2/m. Secondly, we prove a continuous strengthening of Gibbard’s random
dictatorship theorem: the less probability we put on Pareto-dominated al-
ternatives, the closer to a random dictatorship is the resulting SDS. Finally,
we show that the only anonymous, neutral, and strategyproof SDSs that
maximize the probability of Condorcet winners while minimizing the proba-
bility of Pareto-dominated alternatives are mixtures of the uniform random
dictatorship and the randomized Copeland rule.

1. Introduction

A pervasive phenomenon in collective decision making is strategic manipulation: voters
may be better off by lying about their preferences than reporting them truthfully. This
is problematic for a number of reasons: for one, spending resources on finding out other
voters’ preferences and identifying beneficial manipulations is rewarded. These resources
are typically not spread evenly across society and thus, voting becomes unfair. Perhaps
more importantly, when a voting rule is manipulable, all of its desirable properties are
in doubt because they were shown to hold under the assumption that all voters submit
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their preferences truthfully. Hence, it is desirable that voting rules incentivize voters to
report their true preferences. Unfortunately, Gibbard (1973) and Satterthwaite (1975)
have shown independently that dictatorships are the only non-imposing voting rules that
are immune to strategic manipulations. However, these voting rules are unacceptable for
most applications as they invariably return the most preferred alternative of a fixed voter.

A natural follow-up question is whether more positive results can be obtained when
allowing for randomization. Instead of choosing a single winner deterministically, ran-
domized voting rules return a lottery over the alternatives and the final winner is drawn
according to this lottery. Gibbard (1977) calls these randomized voting rules social
decision schemes (SDSs) and motivates them as follows:

“What is meant here by a combination of voting with chance? Suppose a
decision is made in the following way: first, voting of some kind is used to
pick out a set of one or more winning alternatives; then, in case there is more
than one such winner, one of them is chosen by lot. Such a scheme, in effect,
uses the way people vote to determine the probability each alternative has
of being adopted. This I shall take as the defining feature of a scheme which
combines voting with chance: on the basis of the way people vote, it assigns
to each alternative a probability of being adopted.” (Gibbard, 1977, p. 665)

Gibbard defined SDSs to be strategyproof if no voter can obtain more expected utility
for any utility representation that is consistent with his ordinal preference relation. He
then gave a complete characterization of strategyproof SDSs in terms of convex combi-
nations of two types of restricted SDSs, so-called unilaterals and duples. An important
consequence of this result is the random dictatorship theorem: random dictatorships are
the only ex post efficient and strategyproof SDSs. Random dictatorships are convex
combinations of dictatorships, i.e., each voter is selected with some fixed probability,
and the top choice of the chosen voter is returned.

While this result may seem like an extension of the Gibbard-Satterthwaite theorem
to the randomized context, it is in fact much more positive. In contrast to deterministic
dictatorships, the uniform random dictatorship, in which every agent is picked with the
same probability, enjoys a high degree of fairness and is in fact used in subdomains of
social choice that are concerned with the allocation of private goods (see, e.g., Abdulka-
diroğlu and Sönmez, 1998; Che and Kojima, 2010). Gibbard’s theorem has been the
point of departure for a large body of follow-up work. In addition to several alterna-
tive proofs of the theorem (e.g., Duggan, 1996; Nandeibam, 1997; Tanaka, 2003), there
have been extensions with respect to manipulations by groups (Barberà, 1979a), cardinal
preferences (e.g., Hylland, 1980; Dutta et al., 2007; Nandeibam, 2013), weaker notions
of strategyproofness (e.g., Benoît, 2002; Sen, 2011; Aziz et al., 2018; Brandl et al., 2018;
Brandt et al., 2023a), and restricted domains of preferences (e.g., Dutta et al., 2002;
Chatterji et al., 2014; Brandt et al., 2023b).
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1.1. Objectives

The goal of this paper is to investigate whether there are attractive strategyproof SDSs
other than random dictatorships when relaxing classic axioms. A problem of random
dictatorships is that they do not allow for compromise. For example, suppose that voters
strongly disagree on the best alternative but have a common second best alternative. In
such a scenario, it seems reasonable to choose the second best alternative, but this alter-
native would never be considered by random dictatorships. On a formal level, this ob-
servation is related to the fact that random dictatorships violate Condorcet-consistency,
which demands that an alternative that beats all other alternatives in pairwise majority
comparisons should be selected. Unfortunately, it is a simple consequence of Gibbard’s
work that no strategyproof SDS satisfies Condorcet-consistency. Our first objective thus
is to study how much probability a strategyproof SDS can guarantee to the Condorcet
winner.

The point of departure for our second objective is that the random dictatorship the-
orem demands that Pareto-dominated alternatives always receive probability 0. In par-
ticular, Gibbard’s theorem does not preclude the possibility of a strategyproof SDS that
is axiomatically attractive except that it will select Pareto-dominated alternatives with
astronomically small probability. If this probability is, for example, 10−100, the SDS will
be ex post efficient for all practical matters and virtually indistinguishable from an ex
post efficient SDS. We thus investigate whether letting Pareto-dominated alternatives
be selected with negligible probability allows for more interesting SDSs than random
dictatorships.

1.2. Contribution

In order to formally study these problems, we introduce relaxations of Condorcet-
consistency and ex post efficiency. In more detail, we say that an SDS is α-Condorcet-
consistent if a Condorcet winner will be selected with a probability of at least α and
β-ex post efficient if a Pareto-dominated alternative will be selected with a probability
no more than β. Moreover, we say a strategyproof SDS is γ-randomly dictatorial if it
can be represented as a convex combination of two strategyproof SDSs, one of which is
a random dictatorship that will be selected with probability γ. All of these axioms are
discussed in more detail in Section 2.2.

Building on a characterization of strategyproof SDSs by Barberà (1979b), we then
prove the following results (m is the number of alternatives and n the number of voters).

• Let m,n ≥ 3. There is no strategyproof SDS that satisfies α-Condorcet-consistency
for α > 2/m. Moreover, the randomized Copeland rule, which assigns probabili-
ties proportional to Copeland scores, is the only strategyproof SDS that satisfies
anonymity, neutrality, and 2/m-Condorcet-consistency (Theorem 4).

• Let 0 ≤ ε ≤ 1 and m ≥ 3. Every strategyproof SDS that is 1−ε
m -ex post efficient is

γ-randomly dictatorial for γ ≥ ε. If we additionally require anonymity and m ≥ 4,

3



β

α

0 1
m

2(m−2)
m(m−1)

1
m

2
m

D

C

B
U

β

γ

0 1
m

2(m−2)
m(m−1)

1

1
D

C

B

U

Figure 1: Graphical summary of our results. Points in the graphs correspond to SDSs. In both
graphs the horizontal axis indicates the value of β for which the considered SDS is β-ex
post efficient. In the left graph, the vertical axis represents the α for which the consid-
ered SDSs are α-Condorcet-consistent, and in the right graph, it represents the γ for
which SDSs are γ-randomly dictatorial. Theorems 4 and 6 show that no strategyproof
SDS lies in the grey area of the left graph. Theorem 5 shows that no strategyproof
SDS lies in the grey area below the diagonal in the right graph. Furthermore, no SDS
lies in the grey area above the diagonal since a γ-randomly dictatorial SDS can put no
more than probability 1 − γ on Pareto-dominated alternatives. Finally, the following
SDSs are marked in the graphs: D corresponds to all random dictatorships, C to the
randomized Copeland rule, B to the randomized Borda rule, and U to the uniform
lottery rule.

then only mixtures of the uniform random dictatorship and the uniform lottery
rule satisfy this bound tightly (Theorem 5).

• Let m ≥ 4 and n ≥ 5. No strategyproof SDS that is α-Condorcet-consistent is
β-ex post efficient for β < m−2

m−1α. If we additionally require anonymity and neu-
trality, then only mixtures of the uniform random dictatorship and the randomized
Copeland rule satisfy β = m−2

m−1α (Theorem 6).

Our findings, which are summarized in Figure 1, show that two strategyproof SDSs
perform particularly well with respect to α-Condorcet-consistency and β-ex post effi-
ciency: the uniform random dictatorship (and random dictatorships in general), and the
randomized Copeland rule.

In more detail, the first statement characterizes the randomized Copeland rule as
the “most Condorcet-consistent” SDS that satisfies strategyproofness, anonymity, and
neutrality. In fact, no strategyproof SDS can guarantee more than probability 2/m on
the Condorcet winner, even when dropping anonymity and neutrality. Conversely, this
means that every strategyproof SDS satisfies α-Condorcet-consistency for some α ∈
[0, 2/m].
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The second result can be interpreted as a continuous strengthening of Gibbard’s ran-
dom dictatorship theorem: the less probability we put on Pareto-dominated alternatives,
the more randomly dictatorial is the resulting SDS. In other words, any hope for attrac-
tive strategyproof SDSs by relaxing ex post efficiency is in vain: strategyproof SDSs
that almost never select Pareto-dominated alternatives are almost equivalent to random
dictatorships. An interesting consequence of this result is that every strategyproof SDS
that has no random dictatorship component is as “inefficient” as the uniform lottery rule
which always returns the uniform lottery over all alternatives. The second part of the
theorem characterizes the SDSs that optimize β-ex post efficiency subject to being strat-
egyproof, anonymous, and γ-randomly dictatorial for some γ ∈ [0, 1]: these are mixtures
of the uniform random dictatorship and the uniform lottery rule.

The last statement identifies a tradeoff between α-Condorcet-consistency and β-ex
post efficiency: the more probability a strategyproof SDS guarantees to the Condorcet
winner, the less efficient it is. Thus, we can either only maximize the α-Condorcet-
consistency or minimize the β-ex post efficiency of a strategyproof SDS, which again
highlights the antipodal roles of the randomized Copeland rule and random dictatorships.
Furthermore, we characterize the SDSs that optimize this tradeoff under the additional
assumptions of anonymity and neutrality.

2. The Model

Let N = {1, 2, . . . , n} be a finite set of voters and let A = {a, b, . . . } be a finite set of
m alternatives. Every voter i has a preference relation ≻i, which is an anti-symmetric,
complete, and transitive binary relation on A. We write x ≻i y if voter i prefers x
strictly to y and x ≽i y if x ≻i y or x = y. The set of all preference relations is
denoted by R. A preference profile R ∈ Rn contains the preference relation of each
voter i ∈ N . We define the supporting size nxy(R) = |{i ∈ N : x ≻i y}| for x against
y in the preference profile R as the number of voters that prefer x to y. Moreover,
the rank r(x,≻i) = |{y ∈ A : y ≽i x}| of an alternative x in the preference relation
of a voter i is the number of alternatives that are weakly preferred to x by voter i.
Finally, the rank vector r∗(x,R) of an alternative x in a preference profile R is the
vector that contains the rank of x with respect to every voter in increasing order, i.e.,
r∗(x,R) = (r(x,≻i1), r(x,≻i2), . . . , r(x,≻in)) where the voters i1, . . . , in are ordered such
that r(x,≻i1) ≤ r(x,≻i2) ≤ · · · ≤ r(x,≻in).

Given a preference profile, we are interested in the winning chance of each alternative.
We therefore analyze social decision schemes (SDSs) which map each preference profile
to a lottery over the alternatives. A lottery p is a probability distribution over the
set of alternatives A, i.e., it assigns each alternative x a probability p(x) ≥ 0 such
that

∑
x∈A p(x) = 1. The set of all lotteries over A is denoted by ∆(A). Formally, a

social decision scheme (SDS) is a function f : Rn → ∆(A). We denote by f(R, x) the
probability assigned to alternative x by f for the preference profile R. The winner will
eventually be selected according to these probabilities.

Two basic fairness conditions are anonymity and neutrality. Anonymity requires that
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voters are treated equally. Formally, an SDS f is anonymous if f(R) = f(π(R)) for
all preference profiles R and permutations π : N → N . Here, R′ = π(R) denotes the
profile with ≻′

π(i) = ≻i for all voters i ∈ N . Neutrality guarantees that alternatives are
treated equally and formally requires for an SDS f that f(R, x) = f(τ(R), τ(x)) for all
preference profiles R and permutations τ : A → A. This time, R′ = τ(R) is the profile
derived by permuting the alternatives in R according to τ , i.e., τ(x) ≻′

i τ(y) if and only
if x ≻i y for all alternatives x, y ∈ A and voters i ∈ N .

2.1. Stochastic Dominance and Strategyproofness

This paper is concerned with strategyproof SDSs, i.e., social decision schemes in which
voters cannot benefit by lying about their preferences. In order to make this formally
precise, we need to specify how voters compare lotteries. To this end, we leverage
the well-known notion of stochastic dominance: a voter i (weakly) prefers a lottery p
to another lottery q, written as p ≽i q, if

∑
y∈A:y≻ix

p(y) ≥
∑

y∈A:y≻ix
q(y) for every

alternative x ∈ A. In other words, a voter prefers a lottery p to a lottery q if, for every
alternative x ∈ A, p returns a better alternative than x with as least as much probability
as q. Stochastic dominance does not induce a complete order on the set of lotteries, i.e.,
there are lotteries p and q such that a voter i neither prefers p to q nor q to p.

Based on stochastic dominance, we can now formalize strategyproofness. An SDS f
is strategyproof if f(R) ≽i f(R

′) for all preference profiles R and R′ and voters i ∈ N
such that ≻j = ≻′

j for all j ∈ N \ {i}. In other words, strategyproofness requires
that every voter prefers the lottery obtained by voting truthfully to any lottery that
he could obtain by voting dishonestly. Conversely, we call an SDS f manipulable if it
is not strategyproof. While there are other ways to compare lotteries with each other,
stochastic dominance is the most common one (see, e.g, Gibbard, 1977; Barberà, 1979b;
Bogomolnaia and Moulin, 2001; Ehlers et al., 2002; Aziz et al., 2018). This is mainly
due to the fact that p ≽i q implies that the expected utility of p is at least as high as the
expected utility of q for every vNM utility function that is ordinally consistent with voter
i’s preferences. Hence, if an SDS is strategyproof, no voter can manipulate regardless
of his exact utility function (see, e.g., Sen, 2011; Brandl et al., 2018). This observation
immediately implies that the convex combination h = λf +(1−λ)g (for some λ ∈ [0, 1])
of two strategyproof SDSs f and g is again strategyproof: a manipulator who obtains
more expected utility from h(R′) than h(R) prefers f(R′) to f(R) or g(R′) to g(R).

Gibbard (1977) shows that every strategyproof SDS can be represented as convex
combinations of unilaterals and duples.1 The terms “unilateral” and “duple” refer to
special classes of SDSs: a unilateral is a strategyproof SDS that only depends on the
preferences of a single voter i, i.e., f(R) = f(R′) for all preference profiles R and R′ such
that ≻i = ≻′

i. A duple, on the other hand, is a strategyproof SDS that only chooses
between two alternatives x and y, i.e., f(R, z) = 0 for all preference profiles R and
alternatives z ∈ A \ {x, y}.

1In order to simplify the exposition, we slightly modify Gibbard’s terminology by requiring that duples
and unilaterals have to be strategyproof.

6



Theorem 1 (Gibbard, 1977). An SDS is strategyproof if and only if it can be represented
as a convex combination of unilaterals and duples.

Since duples and unilaterals are by definition strategyproof, Theorem 1 only states
that strategyproof SDSs can be decomposed into a mixture of strategyproof SDSs, each
of which must be of a special type. In order to circumvent this restriction, Gibbard
proves another characterization of strategyproof SDSs.

Theorem 2 (Gibbard, 1977). An SDS is strategyproof if and only if it is non-perverse
and localized.

Non-perversity and localizedness are two axioms describing the behavior of an SDS.
For defining these axioms, we denote by Ri:yx the profile derived from R by only reinforc-
ing y against x in voter i’s preference relation. Note that this requires that x ≻i y and
that there is no alternative z ∈ A such that x ≻i z ≻i y. Then, an SDS f is non-perverse
if f(Ri:yx, y) ≥ f(R, y) for all preference profiles R, voters i ∈ N , and alternatives
x, y ∈ A. Moreover, an SDS is localized if f(Ri:yx, z) = f(R, z) for all preference profiles
R, voters i ∈ N , and distinct alternatives x, y, z ∈ A. Intuitively, non-perversity—which
is now often referred to as monotonicity—requires that the probability of an alternative
only increases if it is reinforced, and localizedness that the probability of an alternative
does not depend on the order of the other alternatives. Together, Theorem 1 and Theo-
rem 2 show that each strategyproof SDS can be represented as a mixture of unilaterals
and duples, each of which is non-perverse and localized.

Since Gibbard’s results can be quite difficult to work with, we now state another char-
acterization of strategyproof SDSs due to Barberà (1979b). This characterization shows
that every strategyproof SDS that satisfies anonymity and neutrality can be represented
as a convex combination of a supporting size SDS and a point voting SDS. A point voting
SDS is defined by a scoring vector (a1, a2, . . . , am) that satisfies a1 ≥ a2 ≥ · · · ≥ am ≥ 0
and

∑
i∈{1,...,m} ai =

1
n . The probability assigned to an alternative x by a point voting

SDS f is f(R, x) =
∑

i∈N ar(x,≻i). Furthermore, supporting size SDSs also rely on a
scoring vector (bn, bn−1, . . . , b0) with bn ≥ bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i =

2
m(m−1)

for all i ∈ {0, . . . , n} to compute the outcome. The probability assigned to an alternative
x by a supporting size SDS f is then f(R, x) =

∑
y∈A\{x} bnxy(R). Point voting SDSs

can be seen as a generalization of deterministic positional scoring rules and supporting
size SDSs can be seen as a variant of Fishburn’s C2 functions (Fishburn, 1977).

Theorem 3 (Barberà, 1979b). An SDS is anonymous, neutral, and strategyproof if
and only if it can be represented as a convex combination of a point voting SDS and a
supporting size SDS.

Many well-known SDSs can be represented as point voting SDSs or supporting size
SDSs. For example, the uniform random dictatorship fRD , which chooses one voter
uniformly at random and returns his best alternative, is the point voting SDS defined
by the scoring vector

(
1
n , 0, . . . , 0

)
. An instance of a supporting size SDS is the random-

ized Copeland rule fC , which assigns probabilities proportional to the Copeland scores
c(x,R) = |{y ∈ A \ {x} : nxy(R) > nyx(R)}| + 1

2 |{y ∈ A \ {x} : nxy(R) = nyx(R)}|.
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This SDS is the supporting size SDS defined by the vector b = (bn, bn−1, . . . , b0), where
bi =

2
m(m−1) if i > n

2 , bi = 1
m(m−1) if i = n

2 , and bi = 0 otherwise. Furthermore, there
are SDSs that can be represented both as point voting SDSs and supporting size SDSs.
An example is the randomized Borda rule fB, which randomizes proportional to the
Borda scores of the alternatives. This SDS is the point voting SDS defined by the vector(

2(m−1)
nm(m−1) ,

2(m−2)
nm(m−1) , · · · ,

2
nm(m−1) , 0

)
and equivalently the supporting size SDS defined

by the vector
(

2n
nm(m−1) ,

2(n−1)
nm(m−1) , · · · ,

2
nm(m−1) , 0

)
.2

2.2. Classic Axioms and Their Relaxations

An alternative x Pareto-dominates another alternative y in a preference profile R if
x ≻i y for all i ∈ N . The standard notion of ex post efficiency then demands that
Pareto-dominated alternatives should have no chance of winning, i.e., f(R, x) = 0 for
all preference profiles R and alternatives x that are Pareto-dominated in R. Gibbard
(1977) showed that Theorem 1 implies a simple characterization of strategyproof and ex
post efficient SDSs. This result is commonly known as the random dictatorship theorem.

Corollary 1 (Gibbard, 1977). The only strategyproof SDSs that satisfy ex post efficiency
are random dictatorships, i.e., each voter is selected with a fixed probability and the most
preferred alternative of this voter is returned as the winner.

When insisting on anonymity, Corollary 1 turns into a complete characterization of
fRD . However, Corollary 1 breaks down once we allow that Pareto-dominated alter-
natives can have a non-zero chance β > 0 of being selected. To illustrate this point,
consider a random dictatorship d and another strategyproof SDS g. Then, the SDS
f∗ = (1 − β)d + βg is strategyproof for every β ∈ (0, 1] and no random dictatorship,
but assigns a probability of at most β to Pareto-dominated alternatives. We call the
last property β-ex post efficiency: an SDS f is β-ex post efficient if f(R, x) ≤ β for all
preference profiles R and alternatives x that are Pareto-dominated in R.

Our first objective is to study which strategyproof SDSs satisfy β-ex post efficiency for
small values of β because sufficiently small values of β may be acceptable to accomplish
other design goals. As it turns out, Corollary 1 is quite robust in the sense that all
SDSs that satisfy β-ex post efficiency for β < 1

m are “similar” to random dictatorships.
In order to formalize this phenomenon, we introduce γ-randomly dictatorial SDSs: a
strategyproof SDS f is γ-randomly dictatorial if γ ∈ [0, 1] is the maximal value such that
f can be represented as f = γd + (1 − γ)g, where d is a random dictatorship and g is
another strategyproof SDS. In particular, we require that g is strategyproof as otherwise,
SDSs that seem “non-randomly dictatorial” are not 0-randomly dictatorial. For instance,
the uniform lottery rule fU , which always assigns probability 1

m to all alternatives, is
not 0-randomly dictatorial if g is not required to be strategyproof because it can be
represented as fU = 1

mdi +
m−1
m g, where di is the dictatorial SDS of voter i and g is the

2Both the randomized Copeland rule and the randomized Borda rule were rediscovered several times by
authors who were apparently unaware of Barberà’s pioneering work (see Heckelman, 2003; Conitzer
and Sandholm, 2006; Procaccia, 2010).
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Figure 2: Condorcet-consistent SDSs violate strategyproofness when m = n = 3. Due to the
symmetry of R′, we may assume without loss of generality that f(R′, a) > 0. It
follows from Condorcet-consistency that f(R, c) = 1. Since it is not the case that
f(R) ≽ f(R′), the left-most voter can manipulate by swapping c and b in R.

SDS that randomizes uniformly over all alternatives but voter i’s favorite one. Moreover,
it should be mentioned that the maximality of γ implies that g is 0-randomly dictatorial
if γ < 1. Otherwise, we could also represent g as a mixture of a random dictatorship
and some other strategyproof SDS h, which means that f is γ′-randomly dictatorial for
γ′ > γ.

The following characterization of γ-randomly dictatorial SDSs is very useful. Recall
that Ri:yx denotes the profile derived from R by only reinforcing y against x in voter i’s
preference relation.

Lemma 1. A strategyproof SDS f is γ-randomly dictatorial if and only if
there are non-negative values γ1, . . . , γn such that

∑
i∈N γi = γ, and γi =

minx,y∈AminR∈Ri:xy f(Ri:yx, y)− f(R, y) where Ri:xy ⊆ Rn denotes the set of profiles in
which voter i prefers x the most and y the second most.

The proof of this lemma can be found in the appendix. Lemma 1 provides an intuitive
interpretation of γ-randomly dictatorial SDSs: it requires that there are voters who
increase the winning probability of an alternative by at least γi by swapping their two
top-ranked alternatives. For small values of γ, this axiom seems uncontroversial and can
be seen as a strict monotonicity property. However, for larger values of γ, γ-randomly
dictatorial SDSs become more similar to random dictatorships. Furthermore, the proof
of Lemma 1 shows that the decomposition of γ-randomly dictatorial SDSs is completely
determined by the values γ1, . . . , γn: given these values for a strategyproof SDS f , it can
be represented as f =

∑
i∈N γidi + (1−

∑
i∈N γi)g, where g is a strategyproof SDS and

di the dictatorial SDS of voter i. Thus, Lemma 1 directly provides a way to compute
the value γ for a given SDS f : we only need to determine the values γ1, . . . , γn of f by
computing γi = minx,y∈AminR∈Ri:xy f(Ri:yx, y)− f(R, y) because then γ =

∑
i∈N γi.

Finally, we consider Condorcet-consistency. A Condorcet winner in a profile R is
an alternative x that wins every majority comparison in R, i.e., nxy(R) > nyx(R) for
all y ∈ A \ {x}. Condorcet-consistency demands that f(R, x) = 1 for all preference
profiles R and alternatives x such that x is the Condorcet winner in R. Unfortunately,
Condorcet-consistency is in conflict with strategyproofness, which can easily be derived
from Gibbard’s work. A simple two-profile proof for this fact when m = n = 3 is given in
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SDS α-Condorcet-cons. β-ex post efficiency γ-random dictatorship

fRD 0 0 1

fU
1
m

1
m 0

fB
1
m + 2−(n mod 2)

mn
2(m−2)
m(m−1)

2
m(m−1)

fC
2
m

2(m−2)
m(m−1) 0

Table 1: Values of α, β, and γ for which specific strategyproof SDSs are α-Condorcet-consistent,
β-ex post efficient, and γ-randomly dictatorial. Each row shows the values of α, β, and
γ for which the SDS satisfies the corresponding axioms. fRD stands for the uniform
random dictatorship, fU for the uniform lottery rule, fB for the randomized Borda rule,
and fC for the randomized Copeland rule.

Figure 2. To circumvent this impossibility, we relax Condorcet-consistency. Instead of
requiring that the Condorcet winner always obtains probability 1, we only require that
it receives a probability of at least α. An SDS f is α-Condorcet-consistent if f(R, x) ≥ α
for all profiles R and alternatives x ∈ A such that x is the Condorcet winner in R. For
small values of α, this axiom is clearly compatible with strategyproofness and therefore,
we are interested in the maximum value of α such that there are α-Condorcet-consistent
and strategyproof SDSs.

2.3. Examples of Strategyproof SDSs

To illustrate the notions of α-Condorcet-consistency, β-ex post efficiency, and γ-
random dictatorships, let us discuss some of the values in Table 1. The uniform
random dictatorship is 1-randomly dictatorial and 0-ex post efficient by definition.
Moreover, it is 0-Condorcet-consistent because a Condorcet winner may not be top-
ranked by any voter. The same values of α, β, and γ are also attained by non-
uniform (and thus non-anonymous) random dictatorships. The randomized Borda
rule is 2(m−2)

m(m−1) -ex post efficient because it assigns this probability to an alternative
that is second-ranked by every voter. Moreover, it is 2

m(m−1) -randomly dictatorial

as we can represent it as 2
m(m−1)fRD +

(
1− 2

m(m−1)

)
g, where fRD is the uniform

random dictatorship and g is the point voting SDS defined by the scoring vector(
2(m−2)

n(m(m−1)−2) ,
2(m−2)

n(m(m−1)−2) ,
2(m−3)

n(m(m−1)−2) , . . . , 0
)
. Finally, the randomized Copeland rule

is 0-randomly dictatorial because for every voter there is a profile in which he can swap
his two best alternatives without affecting the outcome. Moreover, it is 2

m -Condorcet-
consistent because a Condorcet winner x satisfies that nxy(R) > n

2 for all y ∈ A \ {x}
and hence, fC(R, x) =

∑
y∈A\{x} bnxy(R) = (m− 1) 2

m(m−1) =
2
m .

The randomized Copeland and the randomized Borda rule can be interpreted as rules
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where two alternatives are drawn uniformly at random (see Remark 4). In the random-
ized Copeland rule, the majority-preferred of the two alternatives is selected, whereas in
the randomized Borda rule, a randomly selected voter picks his preferred alternative. It
is possible to define non-neutral variants of these rules, in which the two alternatives are
not drawn independently (see Remark 3). As long as the total probability of drawing
each alternative is still 2

m , the resulting rules achieve the same values of α, β, and γ as
their neutral counterparts in Table 1.

Note that Table 1 also contains a row corresponding to the uniform lottery rule fU
which always selects every alternative with probability 1

m . We consider this SDS as
a threshold with respect to α-Condorcet-consistency and β-ex post efficiency because
we can compute it without knowledge about the voters’ preferences. Hence, if an SDS
performs worse than the uniform lottery rule with respect to α-Condorcet-consistency
or β-ex post efficiency, we could as well dismiss the voters’ preferences.

3. Results

We are now ready to state our results about α-Condorcet-consistent and β-ex post effi-
cient strategyproof SDSs.

3.1. α-Condorcet-consistency

Our first result shows that no strategyproof SDS satisfies α-Condorcet-consistency for
α > 2

m . Conversely, this means that strategyproof SDSs can only be α-Condorcet-
consistent for α ∈ [0, 2

m ]. This bound is tight as the randomized Copeland rule fC is
2
m -Condorcet-consistent, which means that it is one of the “most Condorcet-consistent”
strategyproof SDSs. Even more, we turn this observation into a characterization of
fC by additionally requiring anonymity and neutrality: the randomized Copeland rule
is the only strategyproof SDS that satisfies 2

m -Condorcet-consistency, anonymity, and
neutrality.

To prove these results, we derive several auxiliary lemmas. As the first step, we show in
Lemma 2 that we can “symmetrize” any given strategyproof and α-Condorcet-consistent
SDS.

Lemma 2. Let α ∈ [0, 1]. If there is a strategyproof and α-Condorcet-consistent SDS,
there is also a strategyproof and α-Condorcet-consistent SDS that satisfies anonymity
and neutrality.

Proof. Let f denote an arbitrary strategyproof SDS that is α-Condorcet-consistent for
some α ∈ [0, 1]. In the sequel, we construct an anonymous and neutral SDS f∗ that
satisfies strategyproofness and α-Condorcet-consistency for the same α as f . For this,
we define the SDSs fπτ for all permutations π : N → N and τ : A → A as follows.
First, fπτ permutes the voters in the input profile R according to π and the alternatives
according to τ . Next, we compute f on the resulting profile τ(π(R)) and finally, we
define fπτ (R, x) as the probability assigned to τ(x) by f in τ(π(R)). More formally,

11



fπτ is defined as fπτ (R, x) = f(τ(π(R)), τ(x)), where the profile τ(π(R)) satisfies for all
i ∈ N and x, y ∈ A that τ(x) ≻π(i) τ(y) in τ(π(R)) if and only if x ≻i y in R. Note
that fπτ is strategyproof for all permutations π and τ because every manipulation of
fπτ implies a manipulation of f . Furthermore, fπτ is α-Condorcet-consistent because
for every preference profile R with Condorcet winner x, τ(x) is the Condorcet winner
in τ(π(R)). Hence, if fπτ violates α-Condorcet-consistency in some profile R, then f
violates this axiom in the profile τ(π(R)).

Finally, we define the SDS f∗ by averaging over fπτ for all permutations π and τ .
Hence, let Π denote the set of all permutations on N and let T denote the set of all
permutations on A. Then, f∗ is defined as follows.

f∗(R, x) :=
∑
π∈Π

1

|Π|
∑
τ∈T

1

|T|
fπτ (R, x)

=
∑
π∈Π

∑
τ∈T

1

n!m!
f(τ(π(R)), τ(x))

Next, we show that f∗ satisfies all axioms required by the lemma. First, f∗ is strat-
egyproof since all SDSs fπτ are strategyproof. The α-Condorcet-consistency of f∗ is
shown by the following inequality, where R denotes a profile in which x is the Condorcet
winner.

f∗(R, x) =
∑
π∈Π

∑
τ∈T

1

n!m!
f(τ(π(R)), τ(x)) ≥

∑
π∈Π

∑
τ∈T

1

n!m!
α = α

Furthermore, observe that f∗ is anonymous because it averages over all possible per-
mutations of the voters, i.e., for all permutations of the voters π ∈ Π : f∗(R) = f∗(π(R)).
It follows from a similar argument that f∗ is neutral: since f∗ averages over all permuta-
tions of the alternatives, it holds that f∗(R, x) = f∗(τ(R), τ(x)) for every τ ∈ T. Hence,
f∗ is strategyproof, α-Condorcet-consistent, anonymous, and neutral.

We next investigate the α-Condorcet-consistency of strategyproof SDSs that satisfy
anonymity and neutrality because Lemma 2 turns an upper bound on the α-Condorcet-
consistency of such SDSs into an upper bound for all strategyproof SDSs. Since Theo-
rem 3 shows that every strategyproof, anonymous, and neutral SDS can be decomposed
in a point voting SDS and a supporting size SDS, we analyze these two classes sepa-
rately in the following two lemmas. First, we bound the α-Condorcet-consistency of
point voting SDSs.

Lemma 3. No point voting SDS is α-Condorcet-consistent for α ≥ 2
m if n ≥ 3 and

m ≥ 3.

Proof. Let f be a point voting SDS for m ≥ 3 alternatives and n ≥ 3 voters, and let
a = (a1, . . . , am) be the scoring vector that defines f . Moreover, let α ∈ [0, 1] be the
maximal value such that f is α-Condorcet-consistent. We will show that α < 2

m . The
central observation for this is that f(R, x) = f(R′, x) for all profiles R,R′ with r∗(x,R) =
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r∗(x,R′) as f assigns probability ai to x whenever it is ranked i-th. As a consequence
of this insight, we will focus on Condorcet winner candidates which are alternatives that
can be made into the Condorcet winner without changing their rank vector. The reason
for this is that Condorcet winner candidates must also have a probability of α due to
our previous insights. Hence, we will construct profiles with ⌈m2 ⌉ Condorcet winner
candidates because then each Condorcet winner candidate has a probability of at most
2
m . Otherwise,

∑
x∈A f(R, x) > 1, which contradicts the definition of an SDS. This

shows that f is only α-Condorcet-consistent for α ≤ 2
m and, by investigating our profiles

in more detail, we can also deduce that α ̸= 2
m .

For constructing the required profiles with k = ⌈m2 ⌉ Condorcet winner candidates
x1, . . . , xk, we use a case distinction with respect to the parity of n and m. Moreover,
we first focus on cases with fixed n, and provide in the end an argument for generalizing
our base profiles to all n ≥ 3. Figure 3 illustrates our constructions for n,m ∈ {3, 4}.

Case 1: n = 3 and m is odd
In this case, we consider the profile R1 which is defined as follows: for every i ∈

{1, . . . , k}, voters 1 and 2 rank alternative xi at position i, and voter 3 ranks it at
position m+ 2− 2i. The remaining alternatives can be be ranked arbitrarily. The sum
of ranks of xi in R1 is then equal to

∑
j∈{1,2,3} r(xi,≻j) = 2i + m + 2 − 2i = m + 2,

which means that only m − 1 alternatives can be ranked above xi. Hence, for every
i ∈ {1, . . . , k}, we can reorder the alternatives in A \ {xi} such that each alternative
y ∈ A \ {xi} is preferred to xi by a single voter. So, xi is a Condorcet winner candidate
in R1 and f(R1, xi) ≥ α for all i ∈ {1, . . . , k}. Since m is odd and k = ⌈m2 ⌉ =

m+1
2 , this

implies that α ≤ 2
m+1 < 2

m .

Case 2: n = 3 and m is even
Next, suppose that n = 3 and m is even. In this case, we first choose m−1 candidates

from A and construct the profile R1 of Case 1. Then, we add the last alternative z as
the last-ranked one of voters 1 and 2 and as the first-ranked one of voter 3 to derive
the profile R2. The candidates x1, . . . , xk are Condorcet winning candidates in R2 as
they are in R1 and only voter 3 prefers z to xi. Hence, there are m

2 Condorcet winner
candidates and an analogous argument as in the last case shows that α ≤ 2

m . As the last
step, we will show that α ̸= 2

m . Otherwise, each of the m
2 Condorcet winner candidates

has a probability of 2
m , which entails that the other alternatives have a probability of 0.

In particular, f(R2, z) = 0 even though voter 3 reports z as his best alternative. This
implies for the scoring vector a = (a1, . . . , am) of f that a1 = 0. However, this is not
possible because the scoring vector a satisfies

∑m
i=1 ai =

1
n and ai ≥ aj if i ≤ j. Hence,

α < 2
m .

Case 3: n = 4 and m is odd
As third case, we suppose n = 4 and m is odd and construct the profile R3 as follows:

for every i ∈ {1, . . . , k}, voters 1 and 2 rank alternative xi at position i, and voters 3
and 4 rank it at position m+1

2 + 1 − i. The remaining alternatives can again be placed
arbitrarily. For each xi, it holds that

∑
j∈{1,2,3,4} r(xi,≻j) = 2i+2

(
m+1
2 + 1− i

)
= m+3.

Consequently, only m − 1 alternatives can be ranked above xi for every i ∈ {1, . . . , k},
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2 1

x1 x2
x2 x3
x3 x1

R1

2 1

x1 x4
x2 x2
x3 x3
x4 x1

R2

2 2

x1 x2
x2 x1
x3 x3

R3

2 1 1

x1 x2 x4
x2 x1 x2
x3 x3 x1
x4 x4 x3

R4

Figure 3: Profiles used in the base cases of the proof of Lemma 3 if m ∈ {3, 4}. The profile Rk

shows the profile corresponding to case k.

and all xi thus are Condorcet winner candidates. We can now derive that α ≤ 2
m+1 < 2

m

as there are m+1
2 Condorcet winner candidates.

Case 4: n = 4 and m is even
In the last case, we construct the profile R4 with k = m

2 Condorcet winner candidates
as follows: we choose an alternative z, and apply the construction of Case 3 to the
alternatives in A \ {z}. Then, voters 1 to 3 add z as their least preferred alternative
and voter 4 adds it as his best alternative. Every alternative that is a Condorcet winner
candidate before adding z is also a Condorcet winner candidate after adding this alter-
native because z is the least preferred alternative of three voters. Hence, there are m

2
Condorcet winner candidates in R4, which implies that α ≤ m

2 . Finally, if α = 2
m , then

f(R4, z) = 0, which, analogous to Case 2, conflicts with the definition of point voting
SDSs since voter 4 reports z as his favorite choice. Therefore, we infer again that α < 2

m .

Case 5: Generalizing the impossibility to larger n
Finally, we explain how to generalize the last four cases to an arbitrary number of

voters n ≥ 3. For this, we choose the suitable base case and add repeatedly pairs of voters
with inverse preferences until there are n voters. Note that voters with inverse preferences
do not change the majority margins, and therefore they do not change whether an
alternative is a Condorcet winner candidate. Hence, every alternative that is a Condorcet
winner candidate in the base case is also a Condorcet winner candidate in the extended
profile, which means that the arguments in the base cases also apply to larger numbers of
voters. Therefore, no point voting SDS satisfies α-Condorcet-consistency for α ≥ 2

m .

The last ingredient for the proof of Theorem 4 is that no supporting size SDS can
assign a probability of more than 2

m to any alternative. This immediately implies that
no supporting size SDS satisfies α-Condorcet-consistency for α > 2

m .

Lemma 4. No supporting size SDS can assign more than probability 2
m to an alternative.

Proof. Let f be a supporting size SDS and let b = (bn, . . . , b0) be the scoring vector that
defines f . Recall that the definition of a supporting size SDS requires that bn ≥ · · · ≥
b0 ≥ 0 and bi + bn−i =

2
m(m−1) for all i ∈ {0, . . . , n}. This implies that bi ≤ 2

m(m−1) for
all i ∈ {0, . . . , n} and hence f(R, x) =

∑
y∈A\{x} bnxy(R) ≤ (m − 1) 2

m(m−1) = 2
m for all

preference profiles R and alternatives x ∈ A.
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We now have all lemmas required to prove our first theorem.

Theorem 4. The randomized Copeland rule is the only strategyproof SDS that satisfies
anonymity, neutrality, and 2

m -Condorcet-consistency if m ≥ 3 and n ≥ 3. Moreover, no
strategyproof SDS satisfies α-Condorcet-consistency for α > 2

m if n ≥ 3.

Proof. The theorem consists of two claims: the characterization of the randomized Con-
dorcet rule fC and the fact that no other strategyproof SDS can attain α-Condorcet-
consistency for a larger α than fC . We prove these claims separately.

Claim 1: The randomized Copeland rule is the only strategyproof SDS
that satisfies 2

m-Condorcet-consistency, anonymity, and neutrality.
The randomized Copeland rule fC is a supporting size SDS and satisfies there-

fore anonymity, neutrality, and strategyproofness. Furthermore, it satisfies also 2
m -

Condorcet-consistency because a Condorcet winner x wins every pairwise majority
comparison in R. Hence, nxy(R) > n

2 for all y ∈ A \ {x}, which implies that
fC(R, x) =

∑
y∈A\{x} bnxy(R) = (m− 1) 2

m(m−1) =
2
m .

Next, let f be an SDS satisfying anonymity, neutrality, strategyproofness, and 2
m -

Condorcet-consistency. We show that f is the randomized Copeland rule. Since f
is anonymous, neutral, and strategyproof, we can apply Theorem 3 to represent f as
f = λfpoint + (1 − λ)fsup , where λ ∈ [0, 1], fpoint is a point voting SDS, and fsup is a
supporting size SDS. Lemma 3 states that there is a profile R with Condorcet winner x
such that fpoint(R, x) < 2

m , and it follows from Lemma 4 that fsup(R, x) ≤ 2
m . Hence,

f(R, x) = λfpoint(R, x) + fsup(R, x) < 2
m if λ > 0. Therefore, f is a supporting size SDS

as it satisfies 2
m -Condorcet-consistency.

Next, we show that f has the same scoring vector as the randomized Copeland rule.
Since f is a supporting size SDS, there is a scoring vector b = (bn, . . . , b0) with bn ≥
bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i =

2
m(m−1) for all i ∈ {1, . . . , n} such that f(R, x) =∑

y∈A\{x} bnxy(R). Moreover, f(R, x) = 2
m if x is the Condorcet winner in R because of

2
m -Condorcet-consistency and Lemma 4. We derive from the definition of supporting size
SDSs that the Condorcet winner x can only achieve this probability if bnxy(R)

= 2
m(m−1)

for every other alternatives y ∈ A \ {x}. Moreover, observe that the Condorcet winner
needs to win every majority comparison but is indifferent about the exact supporting
sizes. Hence, it follows that bi =

2
m(m−1) for all i > n

2 as otherwise, there is a profile
in which the Condorcet winner does not receive a probability of 2

m . We also know that
bi + bn−i =

2
m(m−1) , so bi = 0 for all i < n

2 . If n is even, then bn
2
= 1

m(m−1) is required
by the definition of supporting size SDSs as n

2 = n − n
2 . Hence, the scoring vector of f

is equal to the scoring vector of fC , which proves that f is fC .

Claim 2: No strategyproof SDS satisfies α-Condorcet-consistency for α >
2
m .

The claim is trivially true if m ≤ 2 because α-Condorcet-consistency for α > 1 is
impossible. Hence, let f denote a strategyproof SDS for m ≥ 3 alternatives. We show in
the sequel that f cannot satisfy α-Condorcet-consistency for α > 2

m . As a first step, we
use Lemma 2 to construct a strategyproof SDS f∗ that satisfies anonymity, neutrality,
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and α-Condorcet-consistency for the same α as f . Since f∗ is anonymous, neutral, and
strategyproof, it follows from Theorem 3 that f∗ can be represented as a mixture of a
point voting SDS fpoint and a supporting size SDS fsup , i.e., f∗ = λfpoint + (1− λ)fsup
for some λ ∈ [0, 1].

Next, we consider fpoint and fsup separately. Lemma 3 implies for fpoint that there is
a profile R with a Condorcet winner a such that fpoint(R, a) < 2

m . Moreover, Lemma 4
shows that fsup(R, a) ≤ 2

m . Thus, we derive the following inequality, which shows that
f∗ fails α-Condorcet-consistency for α > 2

m . Hence, no strategyproof SDS satisfies
α-Condorcet-consistency for α > 2

m when n ≥ 3.

α ≤ f∗(R, a) = λfpoint(R, a) + (1− λ)fsup(R, a) ≤ λ
2

m
+ (1− λ)

2

m
=

2

m

Remark 1. Lemma 2 can be applied to properties other than α-Condorcet-consistency
as well. For example, given a strategyproof and β-ex post efficient SDS, one can construct
another SDS that satisfies anonymity and neutrality on top of these axioms. In general,
our construction maintains all axioms that can be described by linear inequalities and
that are themselves closed under permutations of voters and alternatives.

Remark 2. Point voting SDSs can be interpreted as positional scoring rules that ran-
domize in proportion to the assigned scores. A result by Smith (1973) shows that for
large n, every scoring rule except Borda’s rule can assign the Condorcet winner the low-
est score. Hence, for every point voting SDS except the randomized Borda rule, there
is a profile where the Condorcet winner receives less than probability 1

m . On the other

hand, the randomized Borda rule fB is
(

1
m + 2−(n mod 2)

nm

)
-Condorcet-consistent. This

argument gives a more restrictive bound on the α-Condorcet-consistency of point voting
SDSs when there is a large number of voters. Moreover, it shows that fB is a point voting
SDS that maximizes the α-Condorcet-consistency when considering large electorates.

Remark 3. All axioms in the characterization of the randomized Copeland rule are
independent of each other. The SDS that picks the Condorcet winner with probability
2
m if one exists and distributes the remaining probability uniformly between the other
alternatives only violates strategyproofness. The randomized Borda rule satisfies all
axioms of Theorem 4 but 2

m -Condorcet-consistency. An SDS that satisfies anonymity,
strategyproofness, and 2

m -Condorcet-consistency can be defined based on an arbitrary
order of alternatives x0, . . . , xm−1. Then, we pick an index i ∈ {0, . . . ,m− 1} uniformly
at random and return the winner of the majority comparison between xi and xi+1 mod m

(if there is a majority tie, a fair coin toss decides the winner). Furthermore, we can
use the randomized Copeland rule fC to construct an SDS that fails only anonymity for
even n: we just ignore one voter when computing the outcome of fC . If n is even and x
is the Condorcet winner in R, then nxy(R) ≥ n+2

2 for all y ∈ N \ {x} and x remains the
Condorcet winner after removing a single voter. Finally, the impossibility in Theorem 4
does not hold when there are only n = 2 voters because random dictatorships are
strategyproof and Condorcet-consistent in this case.
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Remark 4. The randomized Copeland rule has various interesting interpretations.
Firstly, it can be defined as a supporting size SDS as shown in Section 2.1. Alter-
natively, it can be defined as the SDS that picks two alternatives uniformly at random
and then picks the majority winner between them; majority ties are broken by a fair
coin toss. Next, Theorem 4 shows that the randomized Copeland rule is the SDS that
maximizes the value of α for α-Condorcet-consistency among all anonymous, neutral,
and strategyproof SDSs. Finally, the randomized Copeland rule is the only strategyproof
SDS that satisfies anonymity, neutrality, and assigns probability 0 to a Condorcet loser
(i.e., an alternative that loses all pairwise comparisons) whenever it exists.

3.2. β-ex post Efficiency and γ-Random Dictatorships

In this section, we show that the random dictatorship theorem (Corollary 1) is rather
robust by identifying a tradeoff between β-ex post efficiency and γ-random dictatorships.
More formally, we prove that for every ε ∈ [0, 1], all strategyproof and 1−ε

m -ex post
efficient SDSs are γ-randomly dictatorial for γ ≥ ε. If we set ε = 1, we obtain Corollary 1.
Conversely, our result also entails that γ-randomly dictatorial SDSs can only satisfy
1−ε
m -ex post efficiency for ε ≤ γ. Moreover, one can derive from this theorem that every
0-randomly dictatorial and strategyproof SDS is β-ex post efficient for β ≥ 1

m , i.e., every
such SDS is at least as inefficient as the uniform lottery rule. Finally, we also investigate
the SDSs that optimize the tradeoff between being both γ-randomly dictatorial and β-ex
post efficient for small values of γ and β. In particular, from our first claim, we know
that a strategyproof and 1−ε

m -randomly dictatorial SDS is β-ex post efficient for β ≥ ε,
and we show for every ε ∈ [0, 1] that mixtures of the uniform random dictatorship and
the uniform lottery rule are the only SDSs that satisfy β = ε when additionally requiring
anonymity and m ≥ 4. These results demonstrate that relaxing ex post efficiency does
not lead to interesting strategyproof SDSs.

For proving the tradeoff between β-ex post efficiency and γ-random dictatorships, we
first investigate the efficiency of 0-randomly dictatorial strategyproof SDSs. In more
detail, we prove next that every such SDS fails β-ex post efficiency for β < 1

m . In
particular, this means that every 0-randomly dictatorial SDS is as ”inefficient” as the
uniform lottery rule and we thus interpret Proposition 1 as a negative result.

Proposition 1. No strategyproof SDS that is 0-randomly dictatorial satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

The proof of this result is deferred to the appendix because it is rather involved;
instead, we only give a short summary here. First, we note that we cannot apply
Lemma 2 as convex combinations of 0-randomly dictatorial SDSs may not be 0-randomly
dictatorial. Hence, we work with Theorem 1 and decompose a strategyproof SDS into
a mixture of duples and a mixture of unilaterals. For both classes, we show that if
the considered SDS is 0-randomly dictatorial, it fails β-ex post efficiency for β < 1

m .
Next, we consider an arbitrary 0-randomly dictatorial SDS f and aim to show that
there are a profile R and a Pareto-dominated alternative x ∈ A such that f(R, x) ≥ β.
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Even though Theorem 1 allows us to represent f as the convex combination of a 0-
randomly dictatorial mixture of unilaterals funi and a 0-randomly dictatorial mixture
of duples fduple , our previous observations have no direct consequences for the β-ex post
efficiency of f as funi and fduple may violate β-ex post efficiency for different profiles or
alternatives. We solve this problem by transforming f into a more symmetric SDS f∗

while preserving 0-random dictatorship and β-ex post efficiency. We then decompose f∗

into a 0-randomly dictatorial mixture of unilaterals f∗
uni and a 0-randomly dictatorial

mixture of duples f∗
duple , and due to the symmetry of f∗, we identify a profile R where f∗

uni

and f∗
duple assign both at least probability 1

m to the same Pareto-dominated alternative.
Consequently, f∗ fails β-ex post efficiency for β < 1

m , which implies that also f violates
this axiom.

Based on Proposition 1, we next formalize the tradeoff between ex post efficiency and
the similarity to random dictatorships in Theorem 5.

Theorem 5. For every ε ∈ [0, 1], every strategyproof and 1−ε
m -ex post efficient SDS is

γ-randomly dictatorial for γ ≥ ε if m ≥ 3. Moreover, when m ≥ 4, every strategyproof
and ε-randomly dictatorial SDS that satisfies anonymity and 1−ε

m -ex post efficiency is a
mixture of the uniform random dictatorship and the uniform lottery rule.

Proof. Just as for Theorem 4, we need to show two claims: (i) for every ε ∈ [0, 1], there is
no strategyproof and 1−ε

m -ex post efficient SDS that is γ-randomly dictatorial for γ < ε,
and (ii) every strategyproof and ε-randomly dictatorial SDS that satisfies anonymity,
neutrality, and 1−ε

m -ex post efficiency is a mixture of the uniform random dictatorship
and the uniform lottery rule.

Claim 1: Every strategyproof and 1−ε
m -ex post efficient SDS is γ-randomly

dictatorial for γ ≥ ε.
Consider an arbitrary SDS f that is strategyproof and 1−ε

m -ex post efficient for some
ε ∈ [0, 1]. By the definition of γ-randomly dictatorial SDSs, there is a maximal γ ∈ [0, 1]
such that f can be represented as f = γd+ (1− γ)g, where d is a random dictatorship
and g is another strategyproof SDS. We need to show that γ ≥ ε. If γ = 1, this is
trivially the case since ε ∈ [0, 1]. On the other hand, if γ < 1, the maximality of γ
entails that the SDS g is 0-randomly dictatorial. Hence, Proposition 1 shows that g is at
most 1

m -ex post efficient, i.e., there is a profile R with a Pareto-dominated alternative x
such that g(R, x) ≥ 1

m . Since f is 1−ε
m -ex post efficient, we derive therefore the following

inequality.
1− ε

m
≥ f(R, x) = γd(R, x) + (1− γ)g(R, x) ≥ 1− γ

m

This inequality is equivalent to ε ≤ γ and therefore proves the claim.

Claim 2: Every strategyproof and ε-randomly dictatorial SDS that satisfies
anonymity and 1−ε

m -ex post efficiency is a mixture of the uniform random
dictatorship and the uniform lottery rule.

Consider an arbitrary ε ∈ [0, 1] and let f denote an SDS for m ≥ 4 alternatives that
satisfies all axioms listed above. In particular, f is ε-randomly dictatorial and therefore,
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it can be represented a f = εd+(1−ε)g, where d is a random dictatorship and g another
strategyproof SDS. As a first step, we show that d is the uniform random dictatorship.
Note for this that anonymity implies that the values γ1, . . . , γn introduced in Lemma 1
are equal for all voters, i.e., γi = γj for all i, j ∈ N . A close inspection of the proof
of Lemma 1 then reveals that d is the uniform random dictatorship because we prove
for this lemma that, given the values γi, f can be represented as f =

∑
i∈N γidi + (1−∑

i∈N γi)g. Here, di denotes the dictatorial SDS of voter i. Hence, f is the uniform
random dictatorship if ε = 1, so our claim holds in this case.

Next, assume that ε < 1. In this case, the maximality of ε implies that the SDS
g is 0-randomly dictatorial. Furthermore, g needs to satisfy 1

m -ex post efficiency as
otherwise, there is a profile R with a Pareto-dominated alternative x such that f(R, x) =
εd(R, x) + (1 − ε)g(R, x) > 1−ε

m . This contradicts, however, the assumption that f is
1−ε
m -ex post efficient. As the last point on g, observe that it is also anonymous as both
d and f satisfy this axiom.

Since g is strategyproof, we can use Theorem 1 to represent g as a convex combination
of unilateral SDSs and duple SDSs, i.e., g = λfuni + (1 − λ)fduple for some λ ∈ [0, 1],
mixture of unilateral SDSs funi , and mixture of duple SDSs fduple . We will show that
both funi and fduple always return the uniform lottery.

We start with the proof for fduple = fU and assume for contradiction that this is not
the case. Then, a profile R and alternative x exists such that fduple(R, x) > 1

m . Let R′

denote the profile derived from R by pushing x to the top of the preferences of all voters,
and let Rx denote an arbitrary profile in which all voters unanimously rank x first. By
strategyproofness, 1

m < fduple(R, x) ≤ fduple(R
′, x) = fduple(R

x, x). Furthermore, for all
alternatives y ∈ A and profiles Ry, we have fduple(R

y, y) ≥ 1
m as otherwise 1

m -ex post
efficiency is violated for some alternative z ∈ A \ {y}.

Next, we apply Lemma 2 to fduple to construct a new SDS f∗
duple . By construction,

f∗
duple is a mixture of duples that satisfies anonymity, neutrality, strategyproofness, and
1
m -ex post-efficiency. Hence, we derive from Theorem 3 that f∗

duple is a supporting size
SDS. Let b = (bn, . . . , b0) be the scoring vector such that f∗

duple(R, x) =
∑

y∈A\{x} bnxy(R)

and recall that b satisfies bn ≥ · · · ≥ b0 ≥ 0 and bi+ bn−i =
2

m(m−1) for all i ∈ {0, . . . , n}.
Now, since fduple(R

y, y) ≥ 1
m for all y ∈ A and fduple(R

x, x) > 1
m for some x ∈ A, it

follows that f∗
duple(R

z, z) > 1
m for all alternatives z and profiles Rz as the construction of

Lemma 2 only averages the probabilities of fduple . In particular, this means that f∗
duple

is not the uniform lottery.
We will now derive a contradiction to f∗

duple ̸= fU . For this, let Rxy be the profile in
which all agents rank x first and y second. By 1

m -ex post efficiency and the definition
of supporting size SDSs, 1

m ≥ f∗
duple(R

xy, y) =
∑

z∈A\{y} bnyz(R) = b0 + (m− 2)bn. This

implies that 1
m ≥ b0 + (m − 2)

(
2

m(m−1) − b0

)
= −(m − 3)b0 +

2(m−2)
m(m−1) . Solving for b0

then results in b0 ≥ 1
m(m−1) ; in particular, m ≥ 4 prevents that m − 3 = 0. Since the

definition of supporting size schemes requires that b0+ bn = 2
m(m−1) and bi ≥ bj if i > j,

we can now infer that bi =
1

m(m−1) for all i ∈ {0, . . . , n}. Hence, f∗
duple is the uniform

lottery rule, which contradicts our previous observations. Therefore, fduple must also be
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the uniform lottery.
Next, we turn to funi . First, we note that funi must be anonymous, 0-randomly

dictatorial, and 1
m -ex post efficient since f satisfies these axioms and fduple is the

uniform lottery rule. Now, since funi is anonymous, there is a unilateral f∗ such
that funi(R) =

∑
i∈N

1
nf

∗(≻i). This follows from the following averaging argu-
ment: given some weights λi ≥ 0 and unilaterals f i such that funi =

∑
i∈N λif

i,
we can construct a new representation of funi by averaging the f i over all permuta-
tions π : N → N , i.e., f̄ i =

∑
π∈Π

1
n!f

π(i). Since funi is anonymous, it holds that
funi(R) =

∑
π∈Π

1
n!funi(π(R)) =

∑
i∈N

1
n f̄

i. Finally, it can be checked that f̄ i = f̄ j for
all i, j ∈ N , which shows that funi(R) =

∑
i∈N

1
nf

∗(≻i).
For showing that funi = fU , we will prove that f∗ always returns the uniform lottery.

Hence, we focus from now on a single voter i. Note here that f∗ is 1
m -ex post efficient

and 0-randomly dictatorial as otherwise, funi fails these properties, too. Hence, there
are alternatives x, y ∈ A and a preference relation ≻i with r(x,≻i) = 1 and r(y,≻i) = 2
such that f∗(≻i) = f∗(≻i:yx

i ). Moreover, strategyproofness shows that this equality also
holds if voter i reorders the alternatives z ∈ A \ {x, y}. Now, let ≻a1

i = a1 ≻ . . . , ≻a1a2
i =

a1 ≻i a2 ≻i . . . , and ≻a1a2a3
i = a1 ≻i a2 ≻i a3 ≻i . . . denote the preference relations in

which voter i prefers the alternatives in the superscript the most. In particular, note
that f∗(≻xy

i , a) = f∗(≻yx
i , a) for a ∈ {x, y}.

Now, consider an arbitrary preference relation ≻z
i . We will show that f∗(≻z

i , z) =
1
m

because 1
m -ex post efficiency then requires that f∗(≻z

i ) is the uniform lottery. Note for
this that this axiom immediately entails that f∗(≻z

i , z) ≥ 1
m because otherwise, there is

a Pareto-dominated alternative z′ such that f∗(≻z
i , z

′) > 1
m . First, suppose that z = x.

Then, it holds that f∗(≻x
i , x) = f∗(≻xy

i , x) = f∗(≻yx
i , x) ≤ 1

m , where the first equality
follows from strategyproofness, the second one from the definition of x and y, and the
final inequality from 1

m -ex post efficiency. Together with our lower bound, we thus have
that f∗(≻x

i , x) =
1
m . An analogous argument also holds for all preference relations ≻y

i .
Hence, suppose now that z ̸∈ {x, y} and consider the preference relations ≻xzy

i ,
≻yzx

i , ≻zxy
i , and ≻zyx

i . By the last case, it holds that f∗(≻xzy
i , a) = f∗(≻yzx

i , a) = 1
m

for all a ∈ A. Localizedness thus implies that f∗(≻zxy
i , y) = f∗(≻xzy

i , y) = 1
m and

f∗(≻zyx
i , x) = f∗(≻yzx

i , x) = 1
m . On the other hand, non-perversity requires that f∗(≻zxy

i

, x) ≥ f∗(≻zyx
i , x) = 1

m . Finally, since f∗(≻xzy
i , a) = 1

m for all a and since we can go from
≻xzy

i to ≻zxy
i by only swapping x and z, localizedness requires that f∗(≻zxy

i , z) ≤ 1
m .

Hence, our lower bounds requires again that f∗(≻z
i ) = f∗(≻zxy

i , z) = 1
m , which proves

that f∗ always returns the uniform lottery. Thus, funi = fU .
Since fduple and funi are both the uniform lottery rule, g itself is also the uniform

lottery rule. So, the original SDS f is indeed a mixture of the uniform lottery rule and
the uniform random dictatorship.

Remark 5. All axioms of the characterization in Theorem 5 are independent of each
other if ε ∈ (0, 1). Mixtures of the uniform random dictatorship and the Condorcet
rule (chooses the Condorcet winner if there is one, otherwise return the uniform lottery)
satisfy all axioms except strategyproofness. Without anonymity, the uniform random
dictatorship can be replaced with other random dictatorships. If we drop the constraint
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that ε = γ or when m = 3 the randomized Copeland rule also satisfies all required
axioms and the uniform lottery rule thus is not the unique choice.

Remark 6. Theorem 5 shows that the uniform lottery rule is the only strategyproof
SDS that is 0-randomly dictatorial, 1

m -ex post efficient, and anonymous. This insight
strengthens the negative consequences of Proposition 1 as it demonstrates that every
other anonymous and strategyproof 0-random dictatorship is strictly less efficient than
the uniform lottery rule. We interpret this (as well as Proposition 1) as an impossibility
result stating that no strategyproof and 0-randomly dictatorial SDS performs well with
respect to β-ex post efficiency.

Remark 7. Another natural variant of β-ex post efficiency is to bound the sum of
probabilities assigned to Pareto-dominated alternatives. When requiring anonymity and
neutrality, it is easy to show that every strategyproof and 0-randomly dictatorial SDS
assigns at least a total probability of 1

2 to Pareto-dominated alternatives. Based on
such a result, one can then also generalize Theorem 5. On the other hand, if we drop
anonymity and neutrality, things become much more difficult, and the bound of 1

2 does no
longer hold. For example, consider the following SDS f for m alternatives and n =

(
m
2

)
voters: each voter is associated with a unique pair of alternatives x, y and if x or y is his
first choice, the voter assigns probability 1

2n to both his best and second best alternative;
otherwise, he assigns probability 1

n to his best alternative. It can be checked that f is
strategyproof, 0-randomly dictatorial, and always assigns strictly less than probability 1

2
to Pareto-dominated alternatives. Thus, contrary to all of our results, the availability of
anonymity and neutrality plays an important role for a bound on the sum of probabilities
of Pareto-dominated alternatives.

3.3. β-ex post Efficiency and α-Condorcet-consistency

As our last result, we identify a tradeoff between α-Condorcet-consistency and β-ex post
efficiency: every α-Condorcet-consistent and strategyproof SDS fails β-ex post efficiency
for β < m−2

m−1α. Or, put differently, every stategyproof and α-Condorcet-consistent SDS
satisfies β-ex post efficiency only for β ≥ m−2

m−1α. This result follows essentially from
the correlation between β-ex post efficiency and γ-random dictatorships identified in
Theorem 5: since every 1−ε

m -ex post efficient SDS f is at least ε-randomly dictatorial
and since random dictatorships are 0-Condorcet-consistent, it follows immediately that
f is at most (1− ε)-Condorcet-consistent. In our next theorem, we thus determine the
exact tradeoff between α-Condorcet-consistency and β-ex post efficiency. Moreover, we
also characterize the anonymous, neutral, and strategyproof SDSs that optimize this
tradeoff as mixtures of the uniform random dictatorship and the randomized Copeland
rule. This result highlights the antipodal roles of the randomized Copeland rule and the
uniform random dictatorship.

Theorem 6. Every strategyproof SDS that satisfies anonymity, neutrality, α-Condorcet-
consistency, and β-ex post efficiency with β = m−2

m−1α is a mixture of the uniform random
dictatorship and the randomized Copeland rule if m ≥ 4, n ≥ 5. Furthermore, no
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strategyproof SDS satisfies α-Condorcet-consistency and β-ex post efficiency for β <
m−2
m−1α if m ≥ 4, n ≥ 5.

Proof. We again show the two claims of the theorem separately and start with the upper
bound on β-ex post efficiency.

Claim 1: No strategyproof SDS is α-Condorcet-consistent and β-ex post
efficient for β < m−2

m−1α.
Let f be a strategyproof SDS that satisfies α-Condorcet-consistency for some α ∈

[0, 2
m ] and let β ∈ [0, 1] denote the minimal value such that f is β-ex post efficient. As

the first step, we apply Lemma 2 to construct an SDS f∗ that satisfies strategyproofness,
anonymity, neutrality, α-Condorcet-consistency, and β-ex post efficiency. We will show
that β ≥ m−2

m−1α.
For this, we apply Theorem 3 to represent f∗ as a mixture of a supporting size SDS

fsup and a point voting SDS fpoint , i.e., f∗ = λfpoint + (1 − λ)fsup for some λ ∈ [0, 1].
Let (a1, . . . , am) and (b0, . . . , bn) denote the scoring vectors describing fpoint and fsup , re-
spectively. Next, we derive a lower bound for α and an upper bound for β by considering
specific profiles. First, consider the profile R1 in which every voter reports x as his best
alternative and y as his second best alternative; the remaining alternatives can be ordered
arbitrarily. It follows from the definition of point voting SDSs that fpoint(R

1, y) = na2
and from the definition of supporting size SDS that fsup(R

1, y) = (m− 2)bn + b0. Since
x Pareto-dominates y in R1, it holds that β ≥ f(R1, y) = λna2+(1−λ)((m−2)bn+ b0).

For the upper bound on α, we will construct a profile R2 in which alternative x is
the Condorcet winner, wins all pairwise comparisons by a minimal margin, and is never
ranked first. For this, we denote the alternatives as A = {x, x1, . . . , xm−1}. Now, R2 is
defined as follows: the voters i ∈ {1, 2, 3} rank the alternatives Xi := {xk ∈ A \ {x} : k
mod 3 = i − 1} above x and all other alternatives below. The exact order of the
alternatives in A \ {x} does not matter. Since m ≥ 4, no voter i ∈ {1, 2, 3} ranks x
first. Next, if the number of voters n is even, we duplicate voters 1, 2, and 3. As the
last step, we add pairs of voters with inverse preferences such that no voter prefers x
the most until R2 consists of n voters. Since alternative x is never top-ranked in R2,
it follows that fpoint(R

2, x) ≤ na2. Furthermore, nxy(R
2) = ⌈n+1

2 ⌉ for all y ∈ A \ {x}
and therefore fsup(R

2, x) = (m − 1)b⌈n+1
2

⌉. Finally, we derive that α ≤ f(R2, x) ≤
λna2 + (1− λ)(m− 1)b⌈n+1

2
⌉ because x is by construction the Condorcet winner in R2.

Using these bounds, we finally show that β ≥ m−2
m−1α, which proves our first claim.

In the subsequent calculation, the first and last inequality follow from our previous
analysis. The second inequality is true since m−2

m−1 ≤ 1 and m−2
m−1(m − 1) = m − 2. The
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third inequality uses the definition of supporting size SDSs.

β ≥ λna2 + (1− λ)((m− 2)bn + b0)

≥ m− 2

m− 1
λna2 +

m− 2

m− 1
(1− λ)((m− 1)bn + b0)

≥ m− 2

m− 1
λna2 +

m− 2

m− 1
(1− λ)(m− 1)b⌈n+1

2
⌉

≥ m− 2

m− 1
α (1)

Claim 2: Every strategyproof SDS that satisfies anonymity, neutrality, α-
Condorcet-consistency, and β-ex post efficiency with β = m−2

m−1α is a mixture
of the uniform random dictatorship and the randomized Copeland rule.

Next, suppose that f is a strategyproof SDS that satisfies anonymity, neutrality, α-
Condorcet-consistency, and β-ex post efficiency with β = m−2

m−1α. By Theorem 3, f can be
represented as mixture of a point voting scheme fpoint and a supporting size scheme fsup ,
i.e., there is λ ∈ [0, 1] such that f = λfpoint+(1−λ)fsup . Now, by considering the profiles
R1 and R2 of Claim 1, we infer that Equation (1) must also hold for f . Even more, since
β = m−2

m−1α, all inequalities must be tight. For the second inequality, this is only the
case if a2 = 0 and b0 = 0, and for the third one if bn = b⌈n+1

2
⌉. These observations fully

specify the scoring vectors of fpoint and fsup . For the point voting SDS, a2 = 0 implies
ai = 0 for all i ≥ 2 and a1 = 1

n , i.e., fpoint is the uniform random dictatorship. Next,
b0 = 0 and bn = b⌈n+1

2
⌉ imply that bi =

2
m(m−1) for all i ∈ {⌈n+1

2 ⌉, . . . , bn} and bi = 0

for all i ∈ {0, . . . , ⌊n−1
2 ⌋}. Moreover, if n is even, the definition of supporting size SDSs

requires that bn
2
= 1

m(m−1) . Hence, f is a mixture of the uniform random dictatorship
and the randomized Copeland rule.

Remark 8. All axioms of the characterization in Theorem 6 are independent of each
other. Every mixture of a non-uniform random dictatorship and the randomized
Copeland rule only violates anonymity. An SDS that only violates neutrality can be
constructed by using a variant of the randomized Copeland rule that does not split
the probability equally if there is a majority tie. Finally, the correlation between α-
Condorcet-consistency and β-ex post efficiency is required since the uniform lottery rule
satisfies all other axioms. Moreover, all bounds on m and n in Theorem 6 are tight. If
there are only n = 2 voters, m = 3 alternatives, or m = 4 alternatives and n = 4 voters,
the uniform random dictatorship is not 0-Condorcet-consistent since a Condorcet winner
is always ranked first by at least one voter. Hence, the bound on β does not hold in
these cases. By contrast, our proof shows that Theorem 6 is also true when n = 3.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft under grant BR 2312/12-1.
Results from this article were presented at the 8th International Workshop on Computational
Social Choice (June 2021), the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems (May 2022), and the 16th Meeting of the Society of Social Choice and Welfare

23



(June 2022). We thank Dominik Peters for stimulating discussions and the anonymous reviewers
for their helpful feedback.

References

A. Abdulkadiroğlu and T. Sönmez. Random serial dictatorship and the core from random
endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.

H. Aziz, F. Brandl, F. Brandt, and M. Brill. On the tradeoff between efficiency and
strategyproofness. Games and Economic Behavior, 110:1–18, 2018.

S. Barberà. A note on group strategy-proof decision schemes. Econometrica, 47(3):
637–640, 1979a.

S. Barberà. Majority and positional voting in a probabilistic framework. Review of
Economic Studies, 46(2):379–389, 1979b.

J.-P. Benoît. Strategic manipulation in voting games when lotteries and ties are permit-
ted. Journal of Economic Theory, 102(2):421–436, 2002.

A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem.
Journal of Economic Theory, 100(2):295–328, 2001.

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the incompatibility of efficiency
and strategyproofness via SMT solving. Journal of the ACM, 65(2):1–28, 2018.

F. Brandt, P. Lederer, and W. Suksompong. Incentives in social decision schemes with
pairwise comparison preferences. Games and Economic Behavior, 142:266–291, 2023a.

F. Brandt, P. Lederer, and S. Tausch. Strategyproof social decision schemes on super
Condorcet domains. In Proceedings of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 1734–1742, 2023b.

S. Chatterji, A. Sen, and H. Zeng. Random dictatorship domains. Games and Economic
Behavior, 86:212–236, 2014.

Y.-K. Che and F. Kojima. Asymptotic equivalence of probabilistic serial and random
priority mechanisms. Econometrica, 78(5):1625–1672, 2010.

V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually hard to
manipulate. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), pages 627–634, 2006.

J. Duggan. A geometric proof of Gibbard’s random dictatorship theorem. Economic
Theory, 7(2):365–369, 1996.

B. Dutta, H. Peters, and A. Sen. Strategy-proof probabilistic mechanisms in economies
with pure public goods. Journal of Economic Theory, 106(2):392–416, 2002.

24



B. Dutta, H. Peters, and A. Sen. Strategy-proof cardinal decision schemes. Social Choice
and Welfare, 28(1):163–179, 2007.

L. Ehlers, H. Peters, and T. Storcken. Strategy-proof probabilistic decision schemes
for one-dimensional single-peaked preferences. Journal of Economic Theory, 105(2):
408–434, 2002.

P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathe-
matics, 33(3):469–489, 1977.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):
587–601, 1973.

A. Gibbard. Manipulation of schemes that mix voting with chance. Econometrica, 45
(3):665–681, 1977.

J. C. Heckelman. Probabilistic Borda rule voting. Social Choice and Welfare, 21:455–468,
2003.

A. Hylland. Strategyproofness of voting procedures with lotteries as outcomes and
infinite sets of strategies. Mimeo, 1980.

S. Nandeibam. An alternative proof of Gibbard’s random dictatorship result. Social
Choice and Welfare, 15(4):509–519, 1997.

S. Nandeibam. The structure of decision schemes with cardinal preferences. Review of
Economic Design, 17(3):205–238, 2013.

A. D. Procaccia. Can approximation circumvent Gibbard-Satterthwaite? In Proceedings
of the 24th AAAI Conference on Artificial Intelligence (AAAI), pages 836–841, 2010.

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187–217, 1975.

A. Sen. The Gibbard random dictatorship theorem: a generalization and a new proof.
SERIEs, 2(4):515–527, 2011.

J. H. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):
1027–1041, 1973.

Y. Tanaka. An alternative proof of Gibbard’s random dictatorship theorem. Review of
Economic Design, 8:319–328, 2003.

25



A. Omitted proofs

In the following, we present the proofs of Lemma 1 and Proposition 1. Since the proof
of the latter lemma is rather involved, we organize the appendix in two subsections: Ap-
pendix A.1 discusses the proof of Lemma 1 and Appendix A.2 the proof of Proposition 1.
Proof sketches explaining the main ideas for these proofs can be found in the main body.

A.1. Proof of Lemma 1

We start with the proof of Lemma 1. Recall for this proof that Ri:yx is the profile derived
from R by letting voter i reinforce y against x.

Lemma 1. A strategyproof SDS f is γ-randomly dictatorial if and only if
there are non-negative values γ1, . . . , γn such that

∑
i∈N γi = γ, and γi =

minx,y∈AminR∈Ri:xy f(Ri:yx, y)− f(R, y) where Ri:xy ⊆ Rn denotes the set of profiles in
which voter i prefers x the most and y the second most.

Proof. We first note that γi = minx,y∈AminR∈Ri:xy f(Ri:yx, y)−f(R, y) if and only if the
following two conditions hold:

i) f(Ri:yx, y)− f(R, y) ≥ γi for all alternatives x, y ∈ A and preference profiles R in
which voter i prefers x the most and y the second most, and

ii) there are alternatives x, y ∈ A and a profile R such that voter i prefers x the most
and y the second most in R, and f(Ri:yx, y)− f(R, y) = γi.

We use these equivalent conditions in this proof.
“⇐”: Assume that f is a strategyproof SDS for which there are values γ1, . . . , γn such

that f(Ri:yx, y)−f(R, y) ≥ γi ≥ 0 for all alternatives x, y ∈ A, voters i ∈ N , and profiles
R such that voter i prefers x the most and y the second most in R. Furthermore,
we assume that for every voter i ∈ N , this inequality is tight for at least one pair of
alternatives x, y ∈ A and one profile R. We show next that f is γ-randomly dictatorial
for γ =

∑
i∈N γi.

As the first step, note that f(R, x) ≥
∑

i∈S γi for every profile R, alternative x ∈ A,
and set of voters S ⊆ N such that all voters in S report x as their favorite alternative.
This follows by letting the voters i ∈ S one after another swap x with their second best
alternative y (note that y might be a different alternative for every voter i ∈ S). Using
our assumption on f , the probability of y has to increase by at least γi during such a
step, which means that the probability of x decreases by γi because of localizedness.
Furthermore, it holds that f(R′, x) ≥ 0, where R′ is the profile derived by letting all
voters in S swap their best two alternatives. Combining these two facts then implies
that f(R, x) ≥

∑
i∈S γi. Moreover, this observation also shows that γ ≤ 1 because f

fails the definition of an SDS otherwise. Moreover, f is a random dictatorship if γ = 1.
This follows from the following reasoning: for all profiles R and alternatives x ∈ A, it
holds that f(R, x) ≥

∑
i∈Sx

γi, where Sx denotes the set of voters who prefer x the most
in R. Since the sets Sx partition N and γ = 1, this inequality must be tight for every
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alternative; otherwise,
∑

x∈A f(R, x) >
∑

x∈A
∑

i∈Sx
γi = 1, contradicting the definition

of an SDS. Hence, if γ = 1, f is 1-randomly dictatorial as f =
∑

i∈N γidi, where di
denotes the dictatorial SDS of voter i.

As next case, suppose that γ < 1 and define g = 1
1−γ

(
f −

∑
i∈N γidi

)
. Note

that g is a well-defined SDS: for all profiles R and alternatives x ∈ A, it holds that
g(R, x) ≥ 0 because f(R, x) ≥

∑
i∈Sx

γi. Moreover,
∑

x∈A g(R, x) = 1
1−γ

∑
x∈A f(R, x)−∑

x∈A
∑

i∈N
γi

1−γdi(R, x) = 1
1−γ − γ

1−γ = 1 for all profiles R. Next, we show that g

is strategyproof, which implies that f is γ′-randomly dictatorial for γ′ ≥ γ because
f =

∑
i∈N γidi + (1 − γ)g. For this, it suffices to prove that g is localized and non-

perverse because of Theorem 2. Now, g is localized because the SDS f and all SDSs di
are localized. Hence, swapping two alternatives in the preferences of a voter only affects
the probabilities of these alternatives. For seeing that g is non-perverse, consider a voter
i, two alternatives x, y ∈ A and a profile R such that x is voter i’s k-th best alternative
and y is his k + 1-th best one. We will show that g(Ri:yx, y) ≥ g(R, y). Note for this
that dj(R

i:yx) = dj(R) for all j ∈ N \ {i} because the preferences of these voters did
not change, and f(Ri:yx, y)− f(R, y) ≥ 0 because f is strategyproof. If x and y are not
the two best alternatives of voter i, then di(R

i:yx) = di(R) = 0. Hence, it immediately
follows that g(Ri:yx, y)−g(R, y) = 1

1−γ

(
f(Ri:yx, y)−f(R, y)

)
≥ 0. On the other hand, if

x and y are voter i’s best and second best alternatives, we have that di(Ri:yx, y) = 1 and
di(R, y) = 0. Moreover, our assumptions imply that f(Ri:yx, y) − f(R, y) ≥ γi. Thus,
we calculate that g(Ri:yx, y) − g(R, y) = 1

1−γ

(
f(Ri:yx, y) − f(R, y) − γi(di(R

i:yx, y) −

di(R, y))
)
≥ 1

1−γ

(
γi − γi

)
= 0. This means that g is non-perverse.

Finally, we show that f cannot be γ′-randomly dictatorial for γ′ > γ. If this was the
case, we can represent f as f =

∑
i∈N γ′idi+(1−γ′)g′, where γ′i ≥ 0 are values such that∑

i∈N γ′i = γ′ and g′ is a strategyproof SDS. Since γ′ > γ, there is a voter i with γ′i > γi.
Furthermore, our assumptions state that there are a profile R and alternatives x, y such
that voter i prefers x the most and y the second most in R, and f(Ri:yx, y)−f(R, y) = γi.
This means that

(
f(Ri:yx, y) −

∑
j∈N γ′jdj(R

i:yx, y)
)
−

(
f(R, y) −

∑
j∈N γ′jdj(R, y)

)
=

γi − γ′i < 0 because di(R
i:yx, y) − di(R, y) = 1 and dj(R

i:yx, y) − dj(R, y) = 0 for all
j ∈ N \ {i}. Consequently, g′(Ri:yx, y) − g′(R, y) < 0 which means that g′ violates
non-perversity and therefore also strategyproofness. Hence, the assumption that f is
γ′-randomly dictatorial for γ′ > γ is wrong and f is γ-randomly dictatorial.

“⇒”: Let f be a strategyproof γ-randomly dictatorial SDS. We show next that there
are values γi that satisfy the requirements of the lemma. Since f is γ-randomly dictato-
rial, it can be represented as f = γd+ (1− γ)g, where d is a random dictatorship and g
is another strategyproof SDS. Moreover, as d is a random dictatorship, there are values
δ1, . . . , δn such that δi ≥ 0 for all i ∈ N ,

∑
i∈N δi = 1, and d =

∑
i∈N δidi. Combining

these two equations, we derive that f = γ
∑

i∈N δidi + (1 − γ)g. We will show in the
sequel that the values γi = γδi satisfy all requirements of our lemma. First, note that
the conditions γi ≥ 0 for all i ∈ N and

∑
i∈N γi = γ are obviously true.

Next, consider two alternatives x, y ∈ A, an arbitrary voter i ∈ N , and a profile R
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in which voter i reports x as his best alternative and y as his second best one. It holds
that g(Ri:yx, y) − g(R, y) ≥ 0 because g is strategyproof and therefore non-perverse,
dj(R

i:yx, y) − dj(R, y) = 0 for all j ∈ N \ {i} because ≻i:yx
j = ≻j , and di(R

i:yx, y) −
di(R, y) = 1 as y is voter i’s best alternative in Ri:yx but not in R. Hence, f(Ri:yx, y)−
f(R, y) ≥ γδi = γi for all voters i ∈ N , alternatives x, y ∈ A, and preference profiles R
in which voter i reports x as his best and y as his second best alternative.

Finally, it remains to show that there is for every voter i ∈ N a pair of alternatives
x, y ∈ A and a profile R such that voter i prefers x the most and y the second most
in R and f(Ri:yx, y) − f(R, y) = γi. Assume this is not the case for some voter i, i.e.,
that f(Ri:yx, y) − f(R, y) > γi for all alternatives x, y ∈ A and profiles R in which
x is voter i’s best alternative and y his second best one. Hence, let γ′i > γi denote
γ′i = minx,y∈AminR∈Ri:xy f(Ri:yx, y)−f(R, y). Moreover, we define γ′ = γ′i+

∑
j∈N\{i} γj .

We can now apply the arguments for the inverse direction to derive that f is γ′′-randomly
dictatorial for some γ′′ ≥ γ′ > γ. This contradicts our assumption that f is γ-randomly
dictatorial as γ must be the maximal value such that f can be represented as f =
γd + (1 − γ)g, where d is a random dictatorship and g is another strategyproof SDS.
Hence, it follows that for every voter i ∈ N , there are a profile R and two alternatives
x, y ∈ A such that f(Ri:yx, y)− f(R, y) = γi and voter i reports x as his best alternative
and y as his second best one in R. So, our choice of γi satisfies all requirements of the
lemma.

A.2. Proofs of Proposition 1

Finally, we present proof of Proposition 1, i.e., we discuss our lower bound for the β-ex
post efficiency of strategyproof 0-randomly dictatorial SDSs. Since Theorem 1 allows us
to represent strategyproof SDSs as mixtures of duples and unilaterals, we focus next on
these two classes. To simplify the proof we put these two cases in auxiliary lemmas.

First, we investigate the β-ex post efficiency of duples. Recall therefore that a duple
is a strategyproof SDS fxy such that fxy(R, z) = 0 for all alternatives z ∈ A \ {x, y}.
Moreover, a mixture of duples f is defined as f(R, x) =

∑
y∈A\{x} λxyfxy(R, x), where

fxy = fyx and λxy = λyx denote non-negative weights that sum up to 1. Finally, note
that one duple for every pair is sufficient to represent every mixture of duples because
two duples fxy and f ′

xy can be merged into one.

Lemma 5. No SDS that can be represented as a mixture of duples satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

Proof. Let f(R, x) =
∑

y∈A\{x} λxyfxy(R, x) be an SDS represented as a convex combi-
nation of duples, where fxy = fyx is the duple SDS for the pair x and y and λxy = λyx is
the weight of fxy. Furthermore, we define Rx,y as a profile where all voters report x as
best alternative and y as worst one; all other alternatives can be ranked arbitarily. First,
note that f(Rx,y, x) = f(Rx,z, x) and f(Ry,x, x) = f(Rz,x, x) for all distinct x, y, z ∈ A.
Thus, we also write Rx,· and R·,x to indicate that alternative x is unanimously top-ranked
or bottom-ranked, respectively.
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As first step, we want to bound the average probability f(Rx,y, x) + f(Rx,y, y)
over all x, y ∈ A. In more detail, the subsequent equation shows that∑

x∈A
∑

y∈A\{x}

(
f(Rxy, x) + f(Rxy, y)

)
= 2(m− 1).

∑
x∈A

∑
y∈A\{x}

f(Rx,y, x) + f(Rx,y, y)

= (m− 1)
∑
x∈A

f(Rx,·, x) + (m− 1)
∑
y∈A

f(R·,y, y)

= (m− 1)
∑
x∈A

∑
y∈A\{x}

λxyfxy(R
x,y, x) + λxyfxy(R

x,y, y)

= (m− 1)
∑
x∈A

∑
y∈A\{x}

λxy

= 2(m− 1)

The first equality follows because f(Rx,y, x) = f(Rx,·, x), f(Rx,y, y) = f(R·,y, y)
for all alternatives x, y ∈ A and every alternative x is both unanimously top-ranked
and unanimously bottom-ranked in exactly (m − 1) of the considered preferences pro-
files. For the second equality, we replace f(Rx,·, x) with

∑
y∈A\{x} λxyfxy(R

x,y, x)
and f(R·,y, y) with

∑
x∈A\{y} λxyfxy(R

x,y, y) according to the definition of f . Fur-
thermore, we swap the order of the sum for the second term. We derive the third
equality from the fact that fxy(R, x) + fxy(R, y) = 1 for all profiles R. Finally, the
last equality uses that

∑
x∈A

∑
y∈A\{x} λxy = 2, which follows from

∑
x∈A f(R, x) =∑

x∈A
∑

y∈A\{x} λxyfxy(R, x) = 1 and fxy(R, x) + fxy(R, y) = 1 for all profiles R.
As a consequence of this observation, there is a pair of alternatives x, y ∈ A such

that f(Rx,y, x) + f(Rx,y, y) ≤ 2
m . Otherwise, it holds that

∑
x∈A

∑
y∈A\{x} f(R

x,y, x) +

f(Rx,y, y) >
∑

x∈A
∑

y∈A\{x}
2
m = 2(m− 1) contradicting our previous equation. Hence,∑

z∈A\{x,y} f(R
x,y, z) ≥ m−2

m . Since all alternatives z ∈ A \ {x, y} are Pareto-dominated
by x, this entails that one of these alternative receives a probability of at least m−2

m(m−2) =
1
m . We conclude therefore that f fails β-ex post efficiency for β < 1

m .

Next, we aim to show that no 0-randomly dictatorial SDS that can be represented as
a mixture of unilaterals satisfies β-ex post efficiency for β < 1

m . For this, we will first dis-
cuss a construction that allows us to construct a strategyproof, 0-randomly dictatorial,
and β-ex post efficient SDS that satisfies several symmetry properties based on another
strategyproof, 0-randomly dictatorial, and β-ex post efficient SDS. Unfortunately, we
cannot use Lemma 2 here as this lemma does not preserve the 0-random dictatorship
of an SDS. For demonstrating this point, let A = {x1, . . . , xm} denote the alternatives
and consider the SDS f for n ≥ 3 voters and m = n alternatives in which every voter
i ∈ N assigns probability 1

n to his favorite alternative in A \ {xi}. Lemma 1 shows
that this SDS is 0-randomly dictatorial because for all i ∈ N , the probability of xi does
not increase if voter i reinforces it to his best alternative. However, applying the con-
struction of Lemma 2 to f results in the point voting SDS defined by the scoring vector
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(m−1
nm , 1

nm , 0, . . . , 0). This SDS is not 0-randomly dictatorial as pushing an alternative
from second place to first place increases its probability always by m−2

nm > 0.
Therefore, we discuss another construction in the next lemma that preserves 0-random

dictatorships while introducing new symmetries. Note that we require some additional
terminology for Lemma 6: we say that voter i or his unilateral SDS fi is 0-randomly
dictatorial for alternatives x, y if f(R) = f(Ri:yx) for all preference profiles R in which
x is voter i’s best alternative and y is his second best alternative.

Lemma 6. Let f be a strategyproof and 0-randomly dictatorial SDS that satisfies β-ex
post efficiency for some β ∈ [0, 1] and that can be represented as a mixture of unilaterals.
Then, there is a strategyproof and 0-randomly dictatorial SDS f∗ for

(
m
2

)
voters that can

be represented as a mixture of unilaterals and that is β-ex post efficient for the same β
as f . Moreover, f∗ satisfies the following conditions:

(i) For every voter i ∈ N , there is a set {xi, yi} such that voter i is 0-randomly
dictatorial for xi, yi and {xi, yi} ≠ {xj , yj} if i ̸= j.

(ii) There is a constant δ such that f∗(Ri:cb, c) − f∗(R, c) = δ for all voters i ∈ N ,
alternatives {a, b} = {xi, yi}, c ∈ A \ {xi, yi}, and preference profiles R such that
voter i reports a as his best alternative, b as his second best one, and c as his third
best one.

(iii) If every voter i ∈ N reports xi and yi as their two best alternatives, there is a
scoring vector a = (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0, and
f∗(R, x) =

∑
i∈N ar(x,≻i).

Proof. Let β ∈ [0, 1] and let f denote a strategyproof 0-randomly dictatorial SDS that is
β-ex post efficient and that can be represented as a mixture of unilaterals. In the sequel,
we use f to construct the SDS f∗ that satisfies all requirements of the lemma. Note that
this proof is quite involved and therefore, we use some auxiliary claims that are proven
in the end.

We start by representing f as f(R) =
∑

i∈N λifi(≻i), where fi denotes the unilateral
SDS of voter i and λi ≥ 0 is its weight. Note that we interpret unilaterals in this proof as
SDSs that take a single preference relation as input. This is possible as unilaterals only
rely on the preferences of a single voter. Claim 1 states that for every voter i ∈ N there
are alternatives x, y such that fi is 0-randomly dictatorial for x and y. Even though a
voter can be 0-randomly dictatorial for multiple pairs of alternatives, we associate from
now on every voter i with exactly one such pair xi, yi. This pair can be chosen arbitrarily
as it will not affect the rest of the proof.

Next, we define the unilaterals f τ
i as f τ

i (R, x) = fi(τ(R), τ(x)) for all voters i ∈ N
and permutations τ : A → A. Claim 2 states that every SDS f τ

i is strategyproof and
0-randomly dictatorial for τ−1(xi), τ−1(yi), where τ−1 is the inverse permutation of τ
and xi and yi are the alternatives associated with fi. Just as the SDSs fi, each f τ

i

can be 0-randomly dictatorial for multiple pairs of alternatives, but we associate f τ
i

from now on only with the pair τ−1(xi), τ−1(yi). Then, we partition the SDSs f τ
i with

respect to the alternatives τ−1(xi), τ−1(yi). In more detail, let Fxy = {f τ
i : i ∈ N, τ ∈
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T, {τ−1(xi), τ
−1(yi)} = {x, y}} denote the multi-set of SDSs f τ

i that are associated with
x and y. Note that all unilaterals in Fxy are 0-randomly dictatorial for x, y. Furthermore,
these multi-sets partition the SDSs f τ

i as each f τ
i is only associated with a single pair

of alternatives. Even more, there are for every fi exactly 2(m− 2)! permutations τ such
that {τ−1(xi), τ

−1(yi)} = {x, y}. Hence, we derive that each set Fxy contains 2n(m−2)!
unilaterals.

In the next step, we merge all unilaterals in a multi-set Fxy into a single unilateral.
Thus, we define the unilateral fxy(≻j) as fxy(≻j) =

∑
fτ
i ∈Fxy

λi
2(m−2)!f

τ
i (≻j), i.e., fxy

chooses each SDS f τ
i ∈ Fxy with a probability proportional to λi. Observe that fxy

is strategyproof because it is a mixture of strategyproof SDSs and it is 0-randomly
dictatorial for x, y because all unilaterals in Fxy are 0-randomly dictatorial for these
alternatives. Based on the SDS fxy, we can finally define the SDS f∗ for n∗ =

(
m
2

)
voters. To this end, let N∗ denote the electorate of f∗. We associate each voter j ∈ N∗

with a different pair of alternatives x, y ∈ A and set f∗
j = fxy. Then, the SDS f∗

chooses one of the voters j ∈ N∗ uniformly at random and returns f∗
j (≻j) = fxy(≻j),

i.e., f∗(R) = 1
n∗

∑n∗

j=1 f
∗
j (≻j). Clearly, f∗ is strategyproof because it is a mixture of

strategyproof SDSs. Moreover, it is 0-randomly dictatorial because every voter j ∈ N∗

is 0-randomly dictatorial for the pair of alternatives x, y with which he is associated.
Furthermore, Claim 3 shows that f∗ is β-ex post efficient for the same β as f .

It remains to show that the SDS f∗ satisfies the properties (i), (ii), and (iii). First,
note that it satisfies (i) by construction as every voter is 0-randomly dictatorial for a
different pair of alternatives. For (ii) and (iii), we show first the auxiliary claim that
fxy(R, x) = fτ(x)τ(y)(τ(R), τ(x)) for all permutations τ : A → A, preference profiles
R, and alternatives x ∈ A. Hence, we fix two arbitrary alternatives x, y and a per-
mutation τ : A → A. Moreover, consider an arbitrary SDS f τ ′

i ∈ Fxy and note that
f τ ′
i (R, x) = fi(τ

′(R), τ ′(x)) = f(τ ′(τ−1(τ(R))), τ ′(τ−1(τ(x)))) = f τ ′◦τ−1

i (τ(R), τ(x)).
Next, observe that f τ ′◦τ−1 ∈ Fτ(x),τ(y). This is true because f τ ′

i ∈ Fxy implies that
{τ ′−1(xi), τ

′−1(yi)} = {x, y} or equivalently that {τ ′(x), τ ′(y)} = {xi, yi}. Therefore,
{τ ′(τ−1(τ(x))), τ ′(τ−1(τ(y)))} = {xi, yi} which shows that f τ ′◦τ−1 ∈ Fτ(x)τ(y). Finally,
we derive the following equality for all profiles R and alternatives x ∈ A.

fxy(R, x) =
∑

fτ ′
i ∈Fxy

λi

2(m− 2)!
f τ ′
i (R, x)

=
∑

fτ ′
i ∈Fxy

λi

2(m− 2)!
f τ ′◦τ−1

i (τ(R), τ(x))

=
∑

f τ̂
i ∈Fτ(x)τ(y)

λi

2(m− 2)!
f τ̂
i (τ(R), τ(x))

= fτ(x)τ(y)(τ(R), τ(x)).

In the third step of this equation, we define τ̂ = τ ′ ◦ τ−1. Moreover, we use here the
fact that τ ′ ◦τ−1 ̸= τ ′′ ◦τ−1 if τ ′ ̸= τ ′′, which implies that every SDS f τ

i ∈ Fxy is mapped
to a unique element f τ̂

i ∈ Fτ(x)τ(y). This proves the auxiliary claim.
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Subsequently, we show that f∗ satisfies condition (ii) and consider therefore an ar-
bitrary voter i ∈ N∗. Moreover, let xi, yi denote the alternatives associated with f∗

i ,
i.e., f∗

i = fxiyi . Finally, consider a profile R in which voter i prefers xi the most, yi the
second most, and some arbitrary alternative zi ∈ A \ {xi, yi} the third most. We define
δ = f∗(Ri:ziyi , zi)−f∗(R, zi). First, note that Ri:ziyi and R only differ in the preferences
of voter i and thus, f∗(Ri:ziyi , zi)−f∗(R, zi) = f∗

i (≻
i:ziyi
i , zi)−f∗

i (≻i, zi). Next, consider
a second voter j ∈ N∗ (j = i is possible), let xj and yj denote the alternatives which
are associated with f∗

j , and let zj ∈ A \ {xj , yj} denote another alternative. Moreover,
define R′ as a profile such that voter j ranks xj first, yj second, and zj third in R′, and
let R+ = (R′)j:zjyj . We show in the sequel that f∗(R+, zj)−f∗(R′, zj) = δ, which proves
claim (ii). Thus, note that f∗(R+, zj)− f∗(R′, zj) = f∗

j (≻
+
j , zj)− f∗

j (≻′
j , zj) because f∗

is a mixture of unilaterals and only voter j changes his preference relation. Next, let τ
denote a permutation such that τ(≻′

j) = ≻i, which means in particular that τ(xj) = xi,
τ(yj) = yi, and τ(zj) = zi. Now, our auxiliary claim proves (ii) since

f∗
j (≻+

j , zj)− f∗
j (≻′

j , zj) = fxjyj ((≻′
j)

j:zjyj , zj)− fxjyj (≻′
j , zj)

= fτ(xj)τ(yj)(τ((≻
′
j)

j:zjyj ), τ(zj))− fτ(xj)τ(yj)(τ(≻
′
j), τ(zj))

= fxiyi(≻
i:ziyi
i , zi)− fxiyi(≻i, zi)

= δ.

Finally, we discuss why f∗ satisfies condition (iii). For this, consider two voters
i, j ∈ N∗ and let xi, yi and xj , yj denote the alternatives associated with f∗

i and f∗
j ,

respectively. We explicitly allow that i = j. Furthermore, consider two preference
relations ≻i and ≻j such that xi and yi are top-ranked in ≻i and xj and yj are top-
ranked in ≻j . Finally, let τ denote a permutation such that ≻i = τ(≻j) and let zki
and zkj denote the k-th ranked alternative of voter i and j, respectively. Our auxiliary
claim shows immediately that f∗

i (≻i, z
k
i ) = f∗

j (≻j , z
k
j ). This means that for every k ∈

{1, . . . ,m}, the k-th ranked alternative receives the same probability from every voter
if they report the alternatives xi, yi as their favorite choice. Hence, there is a scoring
vector a = (a1, . . . , am) such that f∗(R, x) =

∑
i∈N ar(x,≻i) for such profiles. Moreover,

it follows from strategyproofness that a3 ≥ a4 ≥ . . . am and from the definition of an SDS
that ai ≥ 0 for all i ∈ {1, . . . ,m}. Finally, a1 = a2 since for all i ∈ N∗, the unilateral f∗

i

is 0-randomly dictatorial for xi and yi. Hence, there is a scoring vector that meets all
requirements of (iii).

Claim 1: For every voter i, there exists a pair of alternatives xi, yi such
that f(R) = f(Ri:yixi) for all preference profiles R in which voter i reports xi
as best alternative and yi as second best one.

Since f is a strategyproof and 0-randomly dictatorial SDS, Lemma 1 shows that for
every voter i ∈ N , there is a pair of alternatives xi, yi and a preference profile R such
that f(R, y) = f(Ri:yixi , y), voter i top-ranks xi in R, and second-ranks yi. First, note
that localizedness immediately generalizes this claim to f(R) = f(Ri:yixi). Moreover,
since only voter i’s preference changes and f is a mixture of unilaterals, we also infer
that fi(R) = fi(R

i:yixi) where fi is the unilateral of voter i. We show in the sequel that
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f(R̄) = f(R̄i:yixi) for all preference profiles R̄ in which voter i reports xi and yi as his
best and second best alternatives.

Since f is a mixture of unilaterals, it follows that f(R̄) = f(R̄i:yixi) if fi(≻̄i) =
fi(≻̄i:yixi

i ) because ≻̄j = ≻̄i:yixi
j for all j ∈ N \ {i}. Moreover, it follows from strat-

egyproofness, which entails localizedness, that fi(≻̄i, z) = fi(≻i, z) = fi(≻i:yixi
i , z) =

fi(≻̄i:yixi
i , z) for z ∈ {xi, yi} since ≻̄i and ≻i only differ in the order of the alternatives

in A \ {xi, yi}. On the other hand, ≻̄i and ≻̄i:yixi
i differ only in the preference over xi

and yi, so another application of localizedness shows that fi(≻̄i) = fi(≻̄i:yixi
i ). Hence, it

holds indeed that f(R̄) = f(R̄i:yixi) for all preference profiles in which voter i reports xi
and yi as his two best alternatives.

Claim 2: The SDS f τ
i (R, x) = fi(τ(R), τ(x)) is strategyproof and 0-randomly

dictatorial for τ−1(xi), τ−1(yi).
First, note that f τ

i is strategyproof as every manipulation of f τ
i can be mapped to a

manipulation of fi. In more detail, if voter i can manipulate f τ
i by switching from R

to R′, he can also manipulate fi by deviating from τ(R) to τ(R′). This is true because
a manipulation requires an alternative x such that

∑
y≻ix

f τ
i (R

′, y) >
∑

y≻ix
f τ
i (R, y),

which entails by definition of f τ
i that

∑
y≻ix

fi(τ(R
′), τ(y)) >

∑
y≻ix

fi(τ(R), τ(y)). Fi-
nally, since y ≻i x in R if and only if τ(y) ≻i τ(x) in τ(R), we derive that voter i can
manipulate fi by deviating from τ(R) to τ(R′) if he can manipulate f τ

i by deviating
from R to R′.

Furthermore, f τ
i is a 0-randomly dictatorial SDS because fi is one: Claim 1 shows that

for every voter i, there exists a pair of alternatives xi, yi such that f(R) = f(Ri:yixi)
for all preference profiles R in which voter i prefers xi the most and yi the second
most. It follows from this claim that f τ

i (τ
−1(R), τ−1(x)) = fi(R, x) = fi(R

i:yixi , x) =
f τ
i (τ

−1(Ri:yixi), τ−1(x)) for all x ∈ A, where τ−1 is the inverse permutation of τ , i.e.,
τ−1(τ(x)) = x for all x ∈ A. Therefore, f τ

i (τ
−1(R), τ−1(xi)) = f τ

i (τ
−1(Ri:yixi), τ−1(xi))

and f τ
i (τ

−1(R), τ−1(yi)) = f τ
i (τ

−1(Ri:yixi), τ−1(yi)). Moreover, the preference profiles
τ−1(R) and τ−1(Ri:yixi) only differ in the order of the two best alternatives τ−1(x) and
τ−1(y) of voter i and the proof of Claim 1 entails thus that f τ

i is 0-randomly dictatorial
for these two alternatives.

Claim 3: The SDS f∗ = 1
n∗

∑n∗

i=1 f
∗
i is β-ex post efficient for the same β as f .

To prove this claim, we construct first another SDS f+ and show that this SDS is
β-ex post efficient for the same β as f . As the second step, we show that f∗ can also
be derived from f+ by merging voters, and thus f∗ inherits the β-ex post efficiency of
f+. Before defining f+, we introduce the SDS f τ : just as the SDSs f τ

i , it is defined as
f τ (R, x) = f(τ(R), τ(x)). In particular, f τ is β-ex post efficient for the same β as f .
This follows by considering an arbitrary profile R in which an alternative x is Pareto-
dominated. It is easy to see that τ(x) is then Pareto-dominated in τ(R), and we derive
therefore that f τ (R, x) = f(τ(R), τ(x)) ≤ β because f is β-ex post efficient. Next, we
define the SDS f+ for nm! voters as follows: we partition the voters {1, . . . , nm!} into
m! sets N1, . . . , Nm! with |Ni| = n and associate with every set a different permutation
τi : A → A. Then, f+(R) = 1

m!

∑m!
i=1 f

τi(RNi), where RNi denotes the restriction of R
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to the voters in Ni. Observe that f+ is β-ex post efficient for the same β as f because
an alternative x that is Pareto-dominated in R is also Pareto-dominated in all RNi and
all f τi are β-ex post efficient. Hence, it follows that f+(R, x) = 1

m!

∑m!
i=1 f

τi(RNi , x) ≤
1
m!

∑m!
i+1 β = β.

Next, we show that f+ and f∗ satisfy β-ex post efficiency for the same β. Therefore, we
change the representation of f+. The central observation here is that f τ =

∑
i∈N λif

τ
i .

Hence, we can also associate every voter j ∈ {1, . . . , nm!} with an index i ∈ N and a
permutation τ such that each index-permutation pair is assigned exactly once. Thus,
define f+

j = f τ
i and λ+

j = λi
m! (i.e., the weight of f τ

i is the proportional to the weight of
fi in the original SDS f). Then, we can write f+ as f+(R) =

∑nm!
j=1 λ

+
j f

+
j (≻j). Next,

note that every f τ
i appears once in the definition of f+ and once in the union of all

Fxy. Therefore, we derive that f+(R) = 1
n∗

∑
{x,y}∈(A2)

∑
fτ
i ∈Fxy

λi
2(m−2)!f

τ
i (≻i), where

n∗ =
(
m
2

)
. Next, we restrict our attention to profiles R such that for all {x, y} ∈

(
A
2

)
,

all voters j with fj ∈ Fxy submit the same preference relation. In this case, we may
replace the preferences of all voters j with fj ∈ Fxy with a single preference relation.
Then, there are exactly

(
m
2

)
voters left, each of which is associated with a different pair of

alternatives. In particular, we can use the definition of fxy(≻i) =
∑

fτ
i ∈Fxy

λi
2(m−2)!f

τ
i (≻i)

now as we apply all unilateral SDSs in Fxy to the same preference relation ≻i. Hence,
f+ returns the same outcomes as f∗ if for each {x, y} ∈

(
A
2

)
, all voters j with fj ∈ Fxy

report the same preferences. Since f+ is β-ex post efficient, it follows therefore also that
f∗ is β-ex post efficient.

Next, we use Lemma 6 to prove that no 0-randomly dictatorial SDS that can be
represented as a mixture of unilaterals is β-ex post efficient for β < 1

m .

Lemma 7. No 0-randomly dictatorial SDS that can be represented as a mixture of
unilaterals satisfies β-ex post efficiency for β < 1

m if m ≥ 3.

Proof. Let the SDS f denote a mixture of unilaterals. First, we apply Lemma 6 to
construct the SDS f∗ as specified by this lemma. In the sequel, we show that f∗ is
β-ex post efficient for β ≥ 1

m and the same therefore holds for f . In our proof, we will
construct a profile R∗ in which every alternative must receive a probability of at most
β which leads to a contradiction if β < 1

m . Let N with |N | =
(
m
2

)
be the set of voters

of f∗. Furthermore, Lemma 6 (i) states that every voter j ∈ N is associated with a
different pair of alternatives {xj , yj} for which he is 0-randomly dictatorial.

First, we explain the construction of an auxiliary profile R. For this profile, we choose
an arbitrary pair of alternatives a, b and assume without loss of generality that voter 1
is 0-randomly dictatorial for a, b, i.e., {a, b} = {x1, y1}. Voter 1 submits the preference
relation ≻1 = b ≻1 a ≻1 . . . in R. Furthermore, there are m−2 other voters j ∈ N with
a ∈ {xj , yj} and b /∈ {xj , yj}. We assume without loss of generality that these are the
voters in {2, . . . ,m−1} and that a = xj . The preferences of the voters j ∈ {2, . . . ,m−2}
in R is ≻j = yj ≻j a ≻j b ≻j . . . . Also, there are m − 2 voters j with a /∈ {xj , yj}
and b ∈ {xj , yj}. We assume that these voters are the ones in {m, . . . , 2m − 3} and
that b = yj . The preferences of these voters is ≻j = b ≻j xj ≻j a ≻j . . . . Finally,
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1 1 1 1 1 1

b c d b b c
a a a c d d
c b b a a b
d d c d c a

Figure 4: The preference profile R from the proof of Lemma 7 for m = 4. There are four groups
of voters. The first group contains only the first voter who is 0-randomly dictatorial for
a and b. The next two groups have both m− 2 voters and are 0-randomly dictatorial
for one of a and b. The last group contains the remaining

(
m−2
2

)
voters that are not

0-randomly dictatorial a or b. All voters have the pair for which they are 0-randomly
dictatorial ranked at the top.

1 1 1 1 1 1

b c d b b c
a b b a a d
c a a c d b
d d c d c a

Figure 5: The preference profile R′ for m = 4 alternatives that results from R by swapping the
second and third alternatives of voters j ∈ {2, . . . , 2m − 3}. Alternative a is Pareto-
dominated by alternative b.

a, b /∈ {xj , yj} for the remaining voters j ∈ {2m − 2, . . . ,
(
m
2

)
}. These voters report

≻j = xj ≻j yj ≻j b ≻j a ≻j . . . in R. Note that if m = 3, there are no voters of the
fourth type. Furthermore, every voter j ∈ N ranks the alternatives xj , yj for which he
is 0-randomly dictatorial at the top. The full profile for m = 4 is shown in Figure 4.

We show next that f∗(R, a) ≤ β by constructing a new preference profile R′ such that
f∗(R, a) = f∗(R′, a) ≤ β. For the construction of R′, let all voters in the second group
j ∈ {2, . . . ,m− 1} swap a and b, and all voters in the third group j ∈ {m, . . . , 2m− 3}
swap a and xj . The resulting preference profile is shown in Figure 5 for the case that
m = 4. It is easy to see that b Pareto-dominates a in R′ and, as f∗ is β-ex post efficient,
f∗(R′, a) ≤ β. Alternative a was moved from third to second and from second to third
place by m − 2 voters. It follows therefore from Lemma 6 (ii) and localizedness that
the probability that alternative a gains when m− 2 voters swap it from third to second
place is the same as the probability that a looses when m−2 voters swap it from second
to third place. Thus, we derive that f∗(R, a) = f∗(R′, a) ≤ β.

Finally, note that in R, all voters j ∈ N report the pair xj , yj for which they are
0-randomly dictatorial as their two best alternatives. Hence, Lemma 6 (iii) entails the
existence of a scoring vector (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0, and
f∗(R, x) =

∑
j∈N ar(x,≻j) for all x ∈ A. In particular, observe that the probability of an

alternative only depends on its rank vector r∗(x,R), which contains the rank of x with
respect to every voter in increasing order. The rank vector of alternative a in R is
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r∗(a,R) = (

m−1︷ ︸︸ ︷
2, . . . , 2,

m−2︷ ︸︸ ︷
3, . . . , 3,

(m−2
2 )︷ ︸︸ ︷

4, . . . , 4).

Furthermore, observe that f∗(R̄, x) ≤ f∗(R, a) in every profile R̄ in which (i) each voter
j ∈ N reports the alternatives xj , yj as his two best alternatives and (ii) r∗(x, R̄)k ≥
r∗(a,R)k for all k ∈ {m, . . . ,

(
m
2

)
}. Condition (i) implies that f∗ can be computed based

on the scoring vector (a1, . . . , am). Furthermore, it implies that every alternative x ∈ A is
among the two best alternatives of exactly m−1 voters, and since a1 = a2, it follows that
we can ignore these entries when comparing the probability of a in R with the probability
of x in R̄. Finally, the claim follows as a3 ≥ · · · ≥ am and r∗(x, R̄)k ≥ r∗(a,R)k for all
k ∈ {m, . . . ,

(
m
2

)
}.

We use this fact to construct a new profile R∗ where f∗(R∗, x) ≤ f∗(R, a) ≤ β for
every x ∈ A. Let every voter j ∈ N report the alternatives xj , yj for which he is 0-
randomly dictatorial as his two best alternatives. Furthermore, we distribute all other
alternatives such that no alternative is ranked third by more than m − 2 voters. This
is possible as there are m ≥ 3 alternatives and m(m−1)

2 voters. It follows from the
construction that r∗(x,R∗)k ≥ r∗(a,R)k for every k ∈ {m, . . . ,

(
m
2

)
} and every x ∈ A.

Hence, we derive that f∗(R∗, x) ≤ f∗(R, a) ≤ β for every x ∈ A. If β < 1
m , this entails

that
∑

x∈A f∗(R∗, x) < 1, a contradiction. Thus, f∗ cannot satisfy β-ex post efficiency
for β < 1

m and f therefore violates this axiom, too. This shows that there exists no
0-randomly dictatorial SDS that can be represented as a mixture of unilaterals and that
satisfies β-ex post efficiency for β < 1

m when m ≥ 3.

Finally, we use Lemma 5 and Lemma 7 to prove that there are no 0-randomly dicta-
torial SDSs that satisfy β-ex post efficiency for β < 1

m .

Proposition 1. No strategyproof SDS that is 0-randomly dictatorial satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

Proof. Let f denote a strategyproof SDS for n voters and m ≥ 3 alternatives that is
0-randomly dictatorial. Our argument focuses mainly on the profiles Rx,y, in which all
voters report x as their best choice and y as their second best choice. The reason for
this is that if f(R, y) > β for some profile R in which y is Pareto-dominated by x, then
f(Rx,y, y) > β. This is a direct consequence of strategyproofness as we can transform
R into Rx,y by reinforcing x and y. Hence, non-perversity implies that f(Rx,y, y) ≥
f(R, y) > β. Moreover, localizedness entails that the order of the alternatives z ∈
A \ {x, y} in Rx,y is not important as it does not affect the probabilities of x and y.

Next, we use Theorem 1 to represent f as mixture of duples and unilaterals, i.e.,
f = λfuni +(1−λ)fduple , where λ ∈ [0, 1], funi is a mixture of unilaterals, and fduple is a
mixture of duples. While Lemma 5 and Lemma 7 imply that funi and fduple are not β-ex
post efficient for β < 1

m , this does not imply that f violates β-efficiency for β < 1
m , too.

The reason for this is that funi and fduple may violate β-ex post efficiency for different
profiles or alternatives. We solve this problem by constructing a strategyproof SDS
f∗ = λf∗

uni + (1 − λ)f∗
duple that is 0-randomly dictatorial and β-ex post efficient for the
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same β as f , and for which f∗
uni and f∗

duple denote mixtures of unilaterals and duples such
that f∗

uni(R
x,y, y) = f∗

uni(R
τ(x),τ(y), τ(y)) and f∗

duple(R
x,y, y) = f∗

duple(R
τ(x),τ(y), τ(y)) for

all permutations τ : A → A.
For this construction, we define f τ as f τ (R, x) = f(τ(R), τ(x)) for every permutation

τ : A → A. We construct the SDS f∗ for m!n voters as follows: we partition the
electorate in m! sets Nk with |Nk| = n and associate each of these sets with a different
permutation τk : A → A. Then, we choose one of these sets Nk uniformly at random
and consider from now on only the preference profile RNk

defined by the voters in Nk.
Finally, return f τk(RNk

), where τk denotes the permutation associated with Nk. More
formally, f∗(R) = 1

m!

∑m!
k=1 f

τk(RNk
).

First, note that f∗ is 0-randomly dictatorial because of Lemma 1. In more detail, since
f is 0-randomly dictatorial, there is for every voter i a profile R and alternatives x, y such
that voter i prefers x the most and y the second most in R, and f(R, y) = f(Ri:yx, y).
Consequently, there are such profiles and alternatives for every voter in each SDS f τ .
Finally, we derive that such profiles and alternatives exist also for f∗. For a voter i ∈ Nk,
the corresponding alternatives x, y and the preferences of the voters in Nk are the same
as for f τk . The preferences of the remaining voters do not matter. If f∗ does not choose
Nk in the first step, the preferences of voter i do not matter, and if f∗ chooses Nk, it
only computes f τk(RNk

). Hence, if voter i now swaps x and y, the outcome of f∗ does
not change as the outcome of f τk does not change. Consequently, Lemma 1 implies that
f∗ is 0-randomly dictatorial.

Next, observe that f∗(R) = 1
m!

∑m!
k=1 f

τk(RNk
) is strategyproof as it is a mixture of

strategyproof SDSs. In particular, we can interpret each term f τk(RNk
) as SDS for n

voters that ignores the preferences of the voters not in Nk. It follows immediately from
this interpretation that f∗ is strategyproof because all f τk are strategyproof. Hence, we
can use Theorem 1 to represent f∗ as f∗ = λf∗

uni +(1−λ)f∗
duple , where f∗

uni is a mixture
of unilaterals and f∗

duple is a mixture of duples. In more detail, the following equation
shows that f∗

uni(R) = 1
m!

∑m!
k=1 f

τk
uni(RNk

) and f∗
duple(R) = 1

m!

∑m!
k=1 f

τk
duple(RNk

), where
f τk
uni and f τk

duple are defined analogously to f τk .

f∗(R) =
1

m!

m!∑
k=1

f τk(RNk
)

=
1

m!

m!∑
k=1

λf τk
uni(RNk

) + (1− λ)f τk
duple(RNk

)

= λ
1

m!

m!∑
k=1

f τk
uni(RNk

) + (1− λ)
1

m!

m!∑
k=1

f τk
duple(RNk

)

= λf∗
uni(R) + (1− λ)f∗

duple(R)

Note that the definitions of f∗
uni and f∗

duple entail that f∗
uni(R

x,y, y) =

f∗
uni(R

ρ(x),ρ(y), ρ(y)) and f∗
duple(R

x,y, y) = f∗
duple(R

ρ(x),ρ(y), ρ(y)) for every permutation
ρ : A → A. For f∗

uni , this follows from the following equations and a symmetric argu-
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ment holds for f∗
duple .

f∗
uni(R

x,y, y) =
1

m!

m!∑
k=1

f τk
uni(R

x,y
Nk

, y)

=
1

m!

m!∑
k=1

funi(τk(R
x,y
Nk

), τk(y))

=
1

m!

m!∑
k=1

funi(τk(ρ(R
x,y
Nk

)), τk(ρ(y)))

= f∗
uni(R

ρ(x),ρ(y), ρ(y)))

The first two equations rely only on our definitions. The third equation follows because
{τ ◦ ρ : τ ∈ T} = T = {τk : k ∈ {1, . . . ,m!}} for every permutation ρ : A → A, where T
is the set of all permutations on A.

Finally, we show that f∗ violates β-ex post efficiency for every β < 1
m , which entails

that f also violates this axiom. We use Lemma 5 and Lemma 7 for this as these lemmas
imply that f∗

duple and f∗
uni violate β-ex post efficiency. Note for this that f∗

uni is 0-
randomly dictatorial as otherwise, f∗ cannot be 0-randomly dictatorial. Hence, there
are profiles R1 and R2, and alternatives x1, y1, x2, and y2 such that xi Pareto-dominates
yi in Ri for i ∈ {1, 2}, f∗

uni(R
1, y1) ≥ 1

m , and f∗
duple(R

2, y2) ≥ 1
m . We now derive

from strategyproofness that f∗
uni(R

x1,y1 , y1) ≥ 1
m and f∗

duple(R
x2,y2 , y2) ≥ 1

m . Finally,
it follows from the symmetry of f∗

uni and f∗
duple with respect to the profiles Rx,y that

f∗
uni(R

x,y, y) ≥ 1
m and f∗

duple(R
x,y, y) ≥ 1

m for all alternatives x, y ∈ A. Consequently, we
conclude that f∗(Rx,y, y) = λf∗

uni(R
x,y, y) + (1 − λ)f∗

duple(R
x,y, y) ≥ 1

m for all x, y ∈ A.
This means that f∗ and therefore also f violate β-ex post efficiency for every β < 1

m .
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