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Abstract

The outcomes of many strategic situations such as parlor games or competitive economic
scenarios are rankings of the participants, with higher ranks generally at least as desirable
as lower ranks. Here we define ranking games as a class of n-player normal-form games
with a payoff structure reflecting the players’ von Neumann-Morgenstern preferences over
their individual ranks. We investigate the computational complexity of a variety of com-
mon game-theoretic solution concepts in ranking games and deliver hardness results for
iterated weak dominance and mixed Nash equilibrium when there are more than two play-
ers, and for pure Nash equilibrium when the number of players is unbounded but the game
is described succinctly. This dashes hope that multi-player ranking games can be solved
efficiently, despite their profound structural restrictions. Based on these findings, we pro-
vide matching upper and lower bounds for three comparative ratios, each of which relates
two different solution concepts: the price of cautiousness, the mediation value, and the
enforcement value.
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1 Introduction

The situations studied by the theory of games may involve different levels of antag-
onism. On the one end of the spectrum are games of pure coordination, on the other
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those in which the players’ interests are diametrically opposed. In this paper, we put
forward a new class of competitive multi-player games whose outcomes are rank-
ings of the players, i.e., orderings of the players representing how well they have
done in the game relative to one another. We assume players to weakly prefer a
higher rank over a lower one and to be indifferent as to the other players’ ranks.
This type of situation is commonly encountered in parlor games, competitions,
patent races, competitive resource allocation domains, social choice settings, or
any other strategic situation where players are merely interested in performing op-
timal relative to their opponents rather than in absolute measures. Formally, ranking
games are defined as normal-form games in which the payoff function represents
the players’ von Neumann-Morgenstern preferences over lotteries over rankings. A
noteworthy special case of particular relevance to game playing in AI are single-
winner games where in any outcome one player wins and all others lose.

While two-player ranking games form a subclass of zero-sum games, no such rela-
tionship holds for ranking games with more than two players. Moreover, whereas
the notion of a ranking is most natural in multi-player settings, this seems to be
less so for the requirement that the sum of payoffs in all outcomes be constant, as
any game can be transformed into a constant-sum game by merely introducing an
additional player (with only one action at his disposal) who absorbs the payoffs of
the other players (von Neumann and Morgenstern, 1947).

As with games in which both contrary and common interests prevail, it turns out
that solving ranking games tends to become considerably more complicated as soon
as more than two players are involved. The maximin solution does not unequivo-
cally extend to general n-player games and numerous alternate solution concepts
have been proposed to cope with this type of situation. None of them, however,
seems to be as compelling as maximin is for two-player zero-sum games. In this
paper we study and compare the properties of a variety of solution concepts in
ranking games. The results of this paper fall into two different categories. First,
we investigate the complexity of a number of computational problems related to
common solution concepts in ranking games, particularly Nash equilibrium and
iterated weak dominance. Second, we study a number of comparative ratios in
ranking games, each of which relates two different solution concepts: the price of
cautiousness, the mediation value, and the enforcement value.

The computational effort required to determine a solution is obviously a very im-
portant property of any solution concept. If computing a solution is intractable, the
solution concept is rendered virtually useless for large problem instances that do
not exhibit additional structure. The importance of this aspect has by no means es-
caped the attention of game theorists. In an interview with Eric van Damme (1998),
Robert Aumann claimed: “My own viewpoint is that, inter alia, a solution concept
must be calculable, otherwise you are not going to use it.” It has subsequently been
argued that this still holds if one subscribes to a purely descriptive view of solution
concepts: “I believe that the complexity of equilibria is of fundamental importance
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in game theory, and not just a computer scientist’s afterthought. Intractability of an
equilibrium concept would make it implausible as a model of behavior” (Papadim-
itriou, 2005). In computational complexity theory, the distinction between tractable
and intractable problems is typically one between membership in the class P of
problems that can be solved in time polynomial in the size of the problem instance
versus hardness for the class NP of problems a solution of which can be verified
efficiently. A third class that will play an important role in the context of this paper
is PPAD. Problems in PPAD are guaranteed to possess a solution, and emphasis is
put on actually finding it. Given the current state of complexity theory, we cannot
prove the actual intractability of most algorithmic problems, but merely give evi-
dence for their intractability. NP-hardness of a problem is commonly regarded as
very strong evidence against computational tractability because it relates the prob-
lem to a large class of problems for which no efficient algorithm is known, despite
enormous efforts to find such algorithms. To some extent, the same reasoning can
also be applied to PPAD-hardness.

We study the computational complexity of common game-theoretic solution con-
cepts in ranking games and deliver NP-hardness and PPAD-hardness results, re-
spectively, for iterated weak dominance and (mixed) Nash equilibria when there
are more than two players, and an NP-hardness result for pure Nash equilibria in
games with an unbounded number of players. This dashes hope that multi-player
ranking games can be solved efficiently, despite their profound structural restric-
tions. Remarkably, all hardness results hold for arbitrary preferences over ranks,
provided they meet the requirements listed above. Accordingly, even very restricted
subclasses of ranking games such as single-winner games—in which players only
care about winning—or single-loser games—in which players merely wish not to
be ranked last—are computationally hard to solve.

By contrast, maximin strategies (von Neumann, 1928) as well as correlated equilib-
ria (Aumann, 1974) are known to be computationally easy via linear programming
for any class of games. Against the potency of these concepts, however, other ob-
jections can be brought in. Playing a maximin strategy is extremely defensive and a
player may have to forfeit a considerable amount of payoff in order to guarantee his
security level. Correlation, on the other hand, may not be feasible in all practical
applications, and may fail to provide an improvement of social welfare in restricted
classes of games (Moulin and Vial, 1978). Thus, we come to consider the follow-
ing comparative ratios in an effort to facilitate the quantitative analysis of solution
concepts in ranking games:

• the price of cautiousness, i.e., the ratio between an agent’s minimum payoff in a
Nash equilibrium and his security level

• the mediation value, i.e., the ratio between the social welfare obtainable in the
best correlated equilibrium vs. the best Nash equilibrium, and

• the enforcement value, i.e., the ratio between the highest obtainable social wel-
fare and that of the best correlated equilibrium.
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Each of these values obviously equals 1 in the case of two-player ranking games, as
these form a subclass of constant-sum games. Accordingly, the interesting question
to ask concerns the bounds of these values for ranking games with more than two
players.

2 Introductory Example

To illustrate the issues addressed in this paper, consider a situation in which Alice,
Bob, and Charlie are to choose a winner from among themselves by means of the
following protocol. Each of them is either to raise or not to raise their hand; they are
to do so simultaneously and independently of one another. Alice wins if the number
of hands raised, including her own, is odd, whereas Bob is victorious if this num-
ber equals two. Should nobody raise their hand, Charlie wins. The normal-form of
this game is shown in Figure 1. What course of action would you recommend to
Alice? There is a Nash equilibrium in which Alice raises her hand, another one in
which she does not raise her hand, and still another one in which she randomizes
uniformly between these two options. In the only pure, i.e., non-randomized, equi-
librium of the game, Alice does not raise her hand. If the latter were to occur, we
must assume that Alice believes that Bob will raise his hand and Charlie will not.
This assumption, however, is unreasonably strong as no such beliefs can be derived
from the mere description of the game. Moreover, both Bob and Charlie may de-
viate from their respective strategies to any other strategy without decreasing their
chances of winning. After all, they cannot do any worse than losing.

This points at a weakness of pure Nash equilibrium as a solution concept inherent
in ranking games, since in any outcome some player has to be ranked last. On the
other hand, it is very well possible that all the actions in the support of a mixed
equilibrium yield each player a strictly higher expected payoff than any action not
in the support, mitigating the phenomenon mentioned above. In other words, such
equilibria can be quasi-strict, a property no pure equilibrium in a ranking game
has. While quasi-strict equilibria may fail to exist in ranking games with more
than two players (see Figure 4), we conjecture, and prove for certain sub-cases,
that every single-winner game possesses at least one non-pure equilibrium, i.e., an
equilibrium where at least one player randomizes. We note without proof that this
property fails to hold for general ranking games.

Returning to our example, it is unclear which strategy would maximize Alice’s
chances of winning. By playing her maximin strategy, Alice can guarantee a par-
ticular probability of winning, her so-called security level, no matter which actions
her opponents choose. Alice’s security level in this particular game is 0.5 and can
be obtained by randomizing uniformly between both actions. The same expected
payoff is achieved in the worst quasi-strict equilibrium of the game where Alice and
Charlie randomize uniformly and Bob invariably raises his hand (see Figure 1).
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Fig. 1. Three-player single-winner game. Alice (1) chooses row a1 or a2, Bob (2) chooses
column b1 or b2, and Charlie (3) chooses matrix c1 or c2. Outcomes are denoted by the
winner’s index. The dashed square marks the only pure Nash equilibrium. Dotted rectangles
mark a quasi-strict equilibrium in which Alice and Charlie randomize uniformly over their
respective actions.

3 Related Work

Game playing research in AI has largely focused on two-player games (see, e.g.,
Marsland and Schaeffer, 1990). As a matter of fact, “in AI, ‘games’ are usually
of a rather specialized kind—what game theorists call deterministic, turn-taking,
two-player, zero-sum games of perfect information” (Russell and Norvig, 2003,
p. 161). Notable exceptions include cooperative games in the context of coali-
tion formation (see, e.g., Sandholm et al., 1999) and perfect information extensive-
form games, a class of multi-player games for which efficient Nash equilibrium
search algorithms have been investigated by the AI community (e.g., Luckhardt
and Irani, 1986; Sturtevant, 2004). In extensive-form games, players move con-
secutively and a pure (so-called subgame perfect) Nash equilibrium is guaranteed
to exist (see, e.g., Myerson, 1991). Therefore, the computational complexity of
finding equilibria strongly depends on the actual representation of the game (see
also Section 6.3). Normal-form games are more general than (perfect-information)
extensive-form games because every extensive-form game can be mapped to a cor-
responding normal-form game (with potentially exponential blowup), while the op-
posite is not the case.

In game theory, several proposals for broader classes of games that maintain some
of the quintessential properties of two-player constant-sum games have been made.
Aumann (1961) defines almost strictly competitive games as the class of two-player
games in which a pair of strategies is an equilibrium point, i.e., no player can in-
crease his payoff by unilaterally changing his strategy, if and only if it is a so-called
twisted equilibrium point, i.e., no player can decrease the payoff of his opponent.
These games permit a set of optimal strategies for each player and a unique value
that is obtained whenever a pair of such strategies is played. Moulin and Vial (1978)
call a game strategically zero-sum if it is best-response equivalent to a zero-sum
game. In the case of two players, and only in this case, one obtains exactly the class
of games for which no completely mixed equilibrium can be improved upon by a
correlated equilibrium. A game is unilaterally competitive, as defined by Kats and
Thisse (1992), if any deviation by a player that (weakly) increases his own payoff

must (weakly) decrease the payoffs of all other players. Unilaterally competitive
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games retain several interesting properties of two-player constant-sum games in
the n-player case: all equilibria yield the same payoffs, equilibrium strategies are
interchangeable, and, the set of equilibria is convex provided that some mild condi-
tions hold. It was later shown by Wolf (1999) that pure Nash equilibria of n-player
unilaterally competitive games are always profiles of maximin strategies. When
there are just two players, all of the above classes contain constant-sum games and
thus two-player ranking games. Neither is contained in the other in the n-player
case. The notion of competitiveness as embodied in ranking games is remotely re-
lated to spitefulness (Morgan et al., 2003; Brandt et al., 2007), where agents aim at
maximizing their payoff relative to the payoff of all other agents.

Most work on comparative ratios in game theory has been inspired by the litera-
ture on the price of anarchy (Koutsoupias and Papadimitriou, 1999; Roughgarden,
2005), i.e., the ratio between the highest obtainable social welfare and that of the
best Nash equilibrium. Similar ratios for correlated equilibria, the value of medi-
ation, i.e., the ratio between the social welfare obtainable in the best correlated
equilibrium vs. the best Nash equilibrium and the enforcement value, i.e., the ratio
between the highest obtainable social welfare and that of the best correlated equi-
librium, were introduced by Ashlagi et al. (2005). It is known that the mediation
value of strategically zero-sum games is 1 and that of almost strictly competitive
games is greater than 1, showing that correlation can be beneficial even in games
of strict antagonism (Raghavan, 2002). To the best of our knowledge, Tennenholtz
(2002) was the first to conduct a quantitative comparison of Nash equilibrium pay-
offs and security levels. This work is inspired by an intriguing example game due
to Aumann (1985), in which the only Nash equilibrium yields each player no more
than his security level although the equilibrium strategies are different from the
maximin strategies. In other words, the equilibrium strategies yield security level
payoffs without guaranteeing them.

4 The Model

A game form is a quadruple (N, (Ai)i∈N ,Ω, g), where N is a finite non-empty set of
players, Ai a finite and non-empty set of actions available to player i, Ω a set of
outcomes, and g :

�
i∈N Ai → Ω an outcome function mapping each action profile

to an outcome in Ω. The set
�

i∈N Ai of action profiles is denoted by A. We assume
that each player entertain preferences over lotteries over Ω that comply with the von
Neumann-Morgenstern axioms (von Neumann and Morgenstern, 1947). Thus, the
preferences of each player i can be represented by a real valued payoff function pi

on Ω. We arrive at the following definition of a normal-form game.

Definition 1 (Game in normal form) A game in normal form Γ is given by a quin-
tuple (N, (Ai)i∈N ,Ω, g, (pi)i∈N) where (N, (Ai)i∈N ,Ω, g) is a game form and each
pi : Ω→ R is a real valued payoff function.
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We generally assume the payoff functions pi to be extended so as to apply directly
to action profiles a ∈ A by setting pi(a) = pi(g(a)).

We say a game is rational if for all i ∈ N and all a ∈ A, pi(a) ∈ Q. A game is binary
if for all i ∈ N and all a ∈ A, pi(a) ∈ {0, 1}. A game with two players will also be
referred to as a bimatrix game. Unless stated otherwise, we will henceforth assume
that every player has at least two actions. Subscripts will be used to identify the
player to which an action belongs, superscripts to index the actions of a particular
player. For example, we write ai for a typical action of player i and a j

i for his
jth action. For better readability, we also use lower case roman letters from the
beginning of the alphabet to denote the players’ actions in such a way that a j = a j

1,
b j = a j

2, c j = a j
3, and so forth.

The concept of an action profile can be generalized to that of a mixed strategy pro-
file by letting players randomize over their actions. We have S i denote the set ∆(Ai)
of probability distributions over player i’s actions, the mixed strategies available
to player i, and S the set

�
i∈N S i of mixed strategy profiles with s as typical el-

ement. Payoff functions naturally extend to mixed strategy profiles, and we will
frequently write pi(s) for the expected payoff of player i, and p(s) for the social
welfare

∑
i∈N pi(s) under the strategy profile s. We have n stand for the number

|N | of players. In the following, A−i and S −i denote the set of action profiles for
all players but i and the set of strategy profiles for all players but i, respectively.
We use si for the ith strategy in profile s and s−i for the vector of all strategies in
s but si. Furthermore, s(ai) and si(ai) stand for the probability player i assigns to
action ai in strategy profile s or strategy si, respectively. The pure strategy si such
that si(ai) = 1 we also denote by ai whenever this causes no confusion. Moreover,
we use (s−i, ti) to refer to the strategy profile obtained from s by replacing si by ti.
For better readability we usually avoid double parentheses and write, e.g., p(s−i, ti)
instead of p((s−i, ti)).

4.1 Rankings and Ranking Games

A ranking game is a normal-form game whose outcomes are rankings of its play-
ers. A ranking indicates how well each player has done relative to the other play-
ers in the game. Formally, a ranking r = [r1, . . . , rn] is an ordering of the players
in N in which player r1 is ranked first, player r2 ranked second, and so forth, with
player rn ranked last. Obviously, this limits the number of possible outcomes to n!
irrespective of the the number of actions the players have at their disposal. The set
of rankings over a set N of players we denote by RN . A game form (N, (Ai)i∈N ,Ω, g)
is a ranking game form if the set of outcomes is given by the set of rankings of the
players, i.e., if Ω = RN .

We assume that all players weakly prefer higher ranks over lower ranks, and strictly
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prefer being ranked first to being ranked last. Furthermore, each player is assumed
to be indifferent as to the ranks of the other players. Even so, a player may prefer to
be ranked second for certain to having a fifty-fifty chance of being ranked first or
being ranked third, whereas other players may judge quite differently. Accordingly,
we have a rank payoff function pi : RN → R represent player i’s von Neumann-
Morgenstern preferences over lotteries over RN . For technical convenience, we nor-
malize the payoffs to the unit interval [0, 1]. Formally, a rank payoff function pi

over RN satisfies the following three conditions for all rankings r, r′ ∈ RN:

(i) pi(r) ≥ pi(r′), if rk = r′m = i and k ≤ m,
(ii) pi(r) = 1, if i = r1, and

(iii) pi(r) = 0, if i = rn.

We are now in a position to formally define the concept of a ranking game.

Definition 2 (Ranking game) A normal form game Γ = (N, (Ai)i∈N ,Ω, g, (pi)i∈N)
is a ranking game if Ω is the set RN of rankings over N and each pi : RN → R is a
rank payoff function over RN .

Condition (i) above implies that a player’s payoff for a ranking r only depends on
the rank assigned to him in r. Accordingly, for 1 ≤ k ≤ n, we have pk

i denote the
unique payoff player i obtains in any ranking r in which i is ranked kth. The rank
payoff function of player i can then conveniently and compactly be represented by
his rank payoff vector ~pi = (p1

i , . . . , pn
i ).

In a binary ranking game, a player is completely satisfied up to a certain rank,
and not satisfied at all for any lower rank. The expected payoff of a player given a
strategy profile can then be taken as his chances of being satisfied. Thus, the use
of expected utility, and thus randomized strategies, is justified without relying on
the von Neumann-Morgenstern axioms (see also Aumann, 1987). An interesting
subclass of binary ranking games are so-called single-winner games, in which all
players are only interested in being ranked first. Formally, a single-winner game
is a ranking game in which ~pi = (1, 0, . . . , 0) for all i ∈ N. When considering
mixed strategies, the expected payoff in a single-winner ranking game equals the
probability of winning. Analogous to single-winner games, we can define single-
loser games as ranking games in which the players’ only concern is not to be ranked
last, as for instance in a round of musical chairs. Formally, single-loser games are
ranking games where ~pi = (1, . . . , 1, 0) for each player i. For an example illustrating
the definitions of a ranking game form and a ranking game the reader is referred to
Figures 2 and 3, respectively.

At this point, a remark as to the relationship between ranking games and n-player
constant-sum games is in order. By virtue of conditions (ii) and (iii), two-player
ranking games constitute a subclass of zero-sum games. If more than two play-
ers are involved, however, any such relation with n-person constant-sum games no
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c1

b1 b2

a1 [1, 3, 2] [2, 1, 3]

a2 [2, 3, 1] [3, 2, 1]

c2

b1 b2

[3, 2, 1] [3, 1, 2]

[2, 1, 3] [1, 3, 2]

Fig. 2. A 2 × 2 × 2 ranking game form. One player chooses rows, another columns, and
a third matrices. Each combination of actions results in a ranking. For example, action
profile (a2, b2, c2) leads to the row player 1 being ranked first, the matrix player 3 second
and the column player 2 third.

c1

b1 b2

a1 (1, 0, 1) ( 1
2 , 1, 0)

a2 (0, 1, 1) (0, 0, 1)

c2

b1 b2

(0, 0, 1) ( 1
2 , 0, 1)

( 1
2 , 1, 0) (1, 0, 1)

Fig. 3. A ranking game associated with the ranking game form depicted in Figure 2. The
rank payoff for the three players are given by ~p1 = (1, 1

2 , 0), ~p2 = (1, 0, 0) and ~p3 = (1, 1, 0).

longer holds. A strategic game can be converted to a zero-sum game via positive
affine transformations only if all outcomes of the game lie on an (n−1)-dimensional
hyperplane in the n-dimensional outcome space. Clearly, there are ranking games
(with non-identical rank payoff vectors and more than two players) for which this
is not the case. For example, consider a three-player ranking game with rank pay-
off vectors ~p1 = ~p2 = (1, 0, 0) and ~p3 = (1, 1, 0) that has among its outcomes the
rankings [1, 2, 3], [2, 1, 3], [3, 1, 2], and [1, 3, 2]. As a consequence, ranking games
are no subclass of (the games that can be transformed into) constant-sum games. It
is readily appreciated that the opposite inclusion does not hold either.

5 Solution Concepts

In this section we review a number of well-known solution concepts and prove
some properties specific to ranking games.

On a normative interpretation, the solution concepts game theory has produced
identify reasonable, desirable, or otherwise significant strategy profiles in games.
Perhaps the most cautious way for a player to proceed is to ensure his security level
by playing his maximin strategy, the strategy that maximizes his payoff in case the
other players were to conspire against him and try to minimize his payoff.

Definition 3 (Maximin strategy and security level) A strategy s∗i ∈ S i is called a
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maximin strategy for player i ∈ N if

s∗i ∈ argmax
si∈S i

min
s−i∈S −i

pi(si, s−i).

The value vi = maxsi∈S i mins−i∈S −i pi(si, s−i) is called the security level of player i.

Given a particular game Γ, we will write vi(Γ) for the security level of player i in
Γ. In the game of Figure 1, Alice can achieve her security level of 0.5 by uniform
randomization over her actions, i.e., by raising her hand with probability 0.5. The
security level for both Bob and Charlie is zero.

We will now move on to the next solution concept, namely that of the iterated
elimination of weakly dominated actions.

Definition 4 (Weak Dominance) An action di ∈ Ai is said to be weakly dominated
by strategy si ∈ S i if

pi(a−i, di) ≤ pi(a−i, si) for all a ∈ A,

and
pi(a−i, di) < pi(a−i, si) for some a ∈ A.

After one or more dominated actions have been removed, other actions may become
dominated that were not dominated previously, and may subsequently be removed.
In general, the result of such an iterative elimination process depends on the order
in which actions are eliminated, since the elimination of an action of some player
may render an action of another player undominated. We say that a game is solvable
by iterated weak dominance if there is some sequence of eliminations that leaves
exactly one action per player.

Perhaps the best-known solution concept is Nash equilibrium (Nash, 1951), which
identifies strategy profiles in which no player could increase his payoff by unilater-
ally deviating and playing another strategy. A Nash equilibrium is therefore often
called a strategy profile of mutual best responses.

Definition 5 (Nash equilibrium) A strategy profile s∗ ∈ S is called a Nash equi-
librium if for each player i ∈ N and each strategy si ∈ S i,

pi(s∗) ≥ pi(s∗−i, si).

A Nash equilibrium is called pure if it is a pure strategy profile.

Nash (1951) has shown that every normal-form game possesses at least one equi-
librium. There are infinitely many Nash equilibria in the single-winner game of
Figure 1, the only pure equilibrium is denoted by a dashed square.
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Fig. 4. Three-player single-winner game without quasi-strict equilibria. Dashed boxes mark
all Nash equilibria (one player may mix arbitrarily in boxes that span two outcomes).

A weakness of Nash equilibrium as a normative solution concept is that, given par-
ticular strategies of the other players, a player may be indifferent between an action
he plays with non-zero probability and an action he does not play at all. For exam-
ple, in the pure Nash equilibrium of the game in Figure 1, players 2 and 3 might
just as well play any other strategy without decreasing their chances of winning. To
alleviate the effects of this phenomenon, Harsanyi (1973) proposed to impose the
additional requirement that every best response be played with positive probability.
Any Nash equilibrium that also satisfies this latter restriction is called a quasi-strict
equilibrium. 1

Definition 6 (Quasi-strict equilibrium) A Nash equilibrium s∗ ∈ S is called
quasi-strict equilibrium if for all i ∈ N and all ai, a′i ∈ Ai with s∗(ai) > 0 and
s∗(a′i) = 0,

pi(s∗−i, ai) > pi(s∗−i, a
′
i).

Figure 1 shows a quasi-strict equilibrium of the game among Alice, Bob and Char-
lie. 2 While quasi-strict equilibria have been shown to always exist in two-player
games (Norde, 1999), this is not generally the case for games with more than two
players. Figure 4 shows that quasi-strict equilibria need not even exist in single-
winner games. 3

In ranking games, the stability of some Nash equilibria is especially questionable
because they prescribe losing players to play certain strategies even though they
could just as well play any other strategy without a chance of decreasing their pay-
off. In each outcome of a ranking game, there is at least one player that is ranked
lowest and accordingly receives the minimum payoff of zero. Consequently, any
such player has no incentive to actually play the action prescribed by the Nash

1 Harsanyi originally referred to quasi-strict equilibrium as “quasi-strong”. However, this
term has been dropped to distinguish the concept from Aumann’s strong equilibrium (Au-
mann, 1959).
2 Observe that Charlie plays a weakly dominated action with positive probability in this
equilibrium.
3 There are only few examples in the literature for games without quasi-strict equilibria
(essentially there is one example by van Damme (1983) and another one by Cubitt and
Sugden (1994)). For this reason, the game depicted in Figure 4 might be of independent
interest.
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equilibrium. It follows that all pure equilibria are weak in this sense. This problem
is especially urgent in single-winner games, where all players but the winner are in-
different over which action to play. Quasi-strict equilibrium can be used to formally
illustrate this weakness.

Fact 1 Quasi-strict equilibria in ranking games are never pure, i.e., in any quasi-
strict equilibrium there is at least one player who randomizes over some of his
actions.

Although ranking games may have pure Nash equilibria, it seems as if most of
them possess non-pure equilibria as well, i.e., mixed strategy equilibria where at
least one player randomizes. We prove this claim for three subclasses of ranking
games.

Theorem 1 The following classes of ranking games always possess at least one
non-pure equilibrium:

(i) two-player ranking games,
(ii) three-player single-winner games where each player has two actions, and

(iii) n-player single-winner games where the security level of at least two players
is positive.

Proof: Statement (i) follows from Fact 1 and the existence result by Norde (1999).
For reasons of completeness, we give a simple alternative proof. Assume for con-
tradiction that there is a two-player ranking game that only possesses pure equi-
libria and consider, without loss of generality, a pure equilibrium s∗ in which
player 1 wins. Since player 2 must be incapable of increasing his payoff by deviat-
ing from s∗, player 1 has to win no matter which action the second player chooses.
As a consequence, the strategies in s∗ remain in equilibrium even if player 2’s strat-
egy is replaced with an arbitrary randomization among his actions.

As for (ii), consider a three-player single winner game with actions A1 = {a1, a2},
A2 = {b1, b2}, and A3 = {c1, c2}. Assume for contradiction that there are only pure
equilibria in the game and consider, without loss of generality, a pure equilibrium
s∗ = (a1, b1, c1) in which player 1 wins. In the following, we say that a pure equi-
librium is semi-strict if at least one player strictly prefers his equilibrium action
over all his other actions given that the other players play their equilibrium actions.
In single-winner games, this player has to be the winner in the pure equilibrium.
We first show that if s∗ is semi-strict, i.e., player 1 does not win in action pro-
file (a2, b1, c1), then there must exist a non-pure equilibrium. For this, consider the
strategy profile s1 = (a1, s1

2, c
1), where s1

2 is the uniform mixture of player 2’s ac-
tions b1 and b2, along with the strategy profile s2 = (a1, b1, s2

3), where s2
3 is the

uniform mixture of the actions c1 and c2 of player 3. Since player 1 does not win
in (a2, b1, c1), he has no incentive to deviate from either s1 or s2 even if he wins
in (a2, b2, c1) and (a2, b1, c2). Consequently, player 3 must win in (a1, b2, c2) in or-
der for s1 not to be an equilibrium. Analogously, for s2 not to be an equilibrium,
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player 2 has to win in the same action profile (a1, b2, c2), contradicting the assump-
tion that the game is a single-winner game. Thus, the existence of a semi-strict pure
equilibrium implies that of a non-pure equilibrium. Now assume that s∗ is not semi-
strict. When any of the action profiles in B = {(a2, b1, c1), (a1, b2, c1), (a1, b1, c2)}
is a pure equilibrium, this also yields a non-pure equilibrium because two pure
equilibria that only differ by the action of a single player can be combined into
infinitely many mixed equilibria. For B not to contain any pure equilibria, there
must be (exactly) one player for every profile in B who deviates to a profile
in C = {(a2, b2, c1), (a2, b1, c2), (a1, b2, c2)} because the game is a single-winner
game and because s∗ is not semi-strict. Moreover, either player 1 or player 2
wins in (a2, b2, c1), player 2 or player 3 in (a1, b2, c2), and player 1 or player 3
in (a2, b1, c2). This implies two facts. First, the action profile s3 = (a2, b2, c2) is a
pure equilibrium because no player will deviate from s3 to any profile in C. Second,
the player who wins in s3 strictly prefers the equilibrium outcome over the corre-
sponding action profile in C, implying that s3 is semi-strict. The above observation
that every semi-strict equilibrium also yields a non-pure equilibrium completes the
proof.

As for (iii), recall that the payoff a player obtains in equilibrium must be at least
his security level. Thus, a positive security level for player i rules out all equilibria
in which player i receives payoff zero, in particular all pure equilibria in which he
does not win. If there are two players with positive security levels, both of them
have to win with positive probability in any equilibrium of the game. In single-
winner games, this can only be the case in a non-pure equilibrium. �

We conjecture that this existence result in fact applies to the class of all single-
winner games. It does not extend, however, to general ranking games. Starting from
the three-player game of van Damme (1983) that possesses no quasi-strict equilib-
rium and adding actions that are strongly dominated, it is possible to construct a
ranking game with five players that only has pure equilibria.

In Nash equilibrium the players randomize among their actions independently from
each other. Aumann (1974) introduced the notion of a correlated strategy, where
players are allowed to coordinate their actions by means of a device or agent that
randomly selects one of several action profiles and recommends the actions of this
profile to the respective players. Formally, the set of correlated strategies is de-
fined as ∆(A1 × · · · × An). The corresponding equilibrium concept is then defined as
follows.

Definition 7 (Correlated equilibrium) A correlated strategy µ ∈ ∆(A) is called a
correlated equilibrium if for all i ∈ N and all a∗i , ai ∈ Ai,∑

a−i∈A−i

µ(a−i, a∗i )(pi(a−i, a∗i ) − pi(a−i, ai)) ≥ 0.
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In other words, a correlated equilibrium of a game is a probability distribution µ
over the set of action profiles, such that, if a particular action profile a∗ ∈ A is
chosen according to this distribution, and every player i ∈ N is only informed
about his own action a∗i , it is optimal in expectation for i to play a∗i , given that he
only knows the conditional distribution over values of a∗

−i. Correlated equilibrium
assumes the existence of a trusted third party who can recommend behavior but
cannot enforce it.

It can easily be seen that every Nash equilibrium naturally corresponds to a corre-
lated equilibrium. Nash’s existence result thus carries over to correlated equilibria.
Again consider the game of Figure 1. The correlated strategy that assigns probabil-
ity 0.25 each to action profiles (a1, b1, c1), (a1, b2, c1), (a2, b1, c1), and (a2, b1, c2) is
a correlated equilibrium in which the expected payoff is 0.5 for player 1 and 0.25
for players 2 and 3. In this particular case, the correlated equilibrium is a convex
combination of Nash equilibria, and correlation can be achieved by means of a pub-
licly observable random variable. Perhaps surprisingly, Aumann (1974) has shown
that in general the (expected) social welfare of a correlated equilibrium may exceed
that of every Nash equilibrium, and that correlated equilibrium payoffs may in fact
be outside the convex hull of the Nash equilibrium payoffs. This is of course not
possible if social welfare is identical in all outcomes, as is the case in our example.

6 Solving Ranking Games

The question we will try to answer in this section is whether the rather specific
payoff structure of ranking games makes it possible to compute instances of com-
mon solution concepts more efficiently than in general games. For this reason, we
focus on solution concepts that are known to be intractable for general games,
namely (mixed) Nash equilibria (Chen and Deng, 2006; Daskalakis et al., 2006),
iterated weak dominance (Conitzer and Sandholm, 2005), and pure Nash equilib-
ria in circuit form games (Schoenebeck and Vadhan, 2006). Graphical games, in
which pure Nash equilibria are also known to be intractable (Gottlob et al., 2005),
are of very limited use for representing ranking games. If two players are not con-
nected by the neighborhood relation, either directly or via a common player in their
neighborhood, then their payoffs are completely independent from each other. For
a single-winner game with the reasonable restriction that every player wins in at
least one outcome, this implies that there must be one designated player who alone
decides which player wins the game. Similar properties hold for arbitrary ranking
games. For iterated strong dominance (Conitzer and Sandholm, 2005) or correlated
equilibria (Papadimitriou, 2005) efficient algorithms exist for general games, and
a fortiori also for ranking games. Thus there is no further need to consider these
solution concepts here. When in the following we refer to the hardness of a game
we mean NP-hardness or PPAD-hardness of solving the game using a particular
solution concept.
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6.1 Mixed Nash Equilibria

Let us first consider Nash equilibria of games with a bounded number of players.
Two-player ranking games only allow outcomes (1, 0) and (0, 1) and thus constitute
a subclass of constant-sum games. Nash equilibria of constant-sum games can be
found by linear programming (see, e.g., Vajda, 1956), for which there is a polyno-
mial time algorithm (Khachiyan, 1979).

To prove hardness for the case with more than two players, it suffices to show that
three-player ranking games are at least as hard to solve as general rational bimatrix
games. To appreciate this, observe that any n-player ranking game can be turned
into an (n + 1)-player ranking game by adding a player who has only one action at
his disposal and who is invariably ranked last, keeping relative rankings of the other
players intact. Nash equilibria of the (n + 1)-player game then naturally correspond
to Nash equilibria of the n-player game. A key concept in our proof is that of a
Nash homomorphism, a notion introduced by Abbott et al. (2005). We generalize
their definition to games with more than two players.

Definition 8 (Nash homomorphism) A Nash homomorphism is a mapping h from
a set of games into a set of games, such that there exists a polynomial-time com-
putable function f that, when given a game Γ and an equilibrium s∗ of h(Γ), returns
an equilibrium f (s∗) of Γ.

Obviously, the composition of two Nash homomorphisms is again a Nash ho-
momorphism. Furthermore, any sequence of polynomially many Nash homomor-
phisms that maps some class of games to another class of games provides us with
a polynomial-time reduction from the problem of finding Nash equilibria in the
former class to finding Nash equilibria in the latter. Any efficient, i.e., polynomial-
time, algorithm for the latter directly leads to an efficient algorithm for the former.
On the other hand, hardness of the latter implies hardness of the former.

A very simple example of a Nash homomorphism is the one that scales the pay-
off of each player by means of a positive affine transformation. It is well-known
that Nash equilibria are invariant under this kind of mapping, and f can be taken
to be the identity. We will now combine this Nash homomorphism with a more
sophisticated function, which maps payoff profiles of a two-player binary game to
corresponding three-player subgames with two actions for each player, and obtain
Nash homomorphisms from rational bimatrix games to three-player ranking games
with different rank payoff profiles.

Lemma 1 For every rank payoff profile, there exists a Nash homomorphism from
the set of rational bimatrix games to the set of three-player ranking games.

Proof: Abbott et al. (2005) have shown that there is a Nash homomorphism from
rational bimatrix games to bimatrix games with payoffs 0 and 1 (called binary
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games in the following). Since a composition of Nash homomorphisms is again
a Nash homomorphism, we only need to provide a homomorphism from binary bi-
matrix games to three-player ranking games. Furthermore, outcome (1, 1) is Pareto-
dominant and therefore constitutes a pure Nash equilibrium in any binary game (no
player can benefit from deviating). Instances containing such an outcome are easy
to solve and need not be considered in our mapping.

In the following, we denote by (1, p2
i , 0) be the rank payoff vector of player i, and

by [i, j, k] the outcome where player i is ranked first, j is ranked second, and k is
ranked last. First of all, consider ranking games where p2

i < 1 for some player
i ∈ N, i.e., the class of all ranking games except single-loser games.

Without loss of generality let i = 1. Then, a Nash homomorphism from binary bi-
matrix games to the aforementioned class of games can be obtained by first trans-
forming the payoffs according to

(x1, x2) 7−→
(
(1 − p2

1)x1 + p2
1, x2

)
and then adding a third player who only has a single action and whose payoff is
chosen such that the resulting game is a ranking game (but is otherwise irrelevant).
We obtain the following mapping, which is obviously a Nash homomorphism:

(0, 0) 7−→ (p2
1, 0) 7−→ [3, 1, 2]

(1, 0) 7−→ (1, 0) 7−→ [1, 3, 2]

(0, 1) 7−→ (p2
1, 1) 7−→ [2, 1, 3].

Interestingly, three-player single-loser games with only one action for some player
i ∈ N are easy to solve because either

• there is an outcome in which i is ranked last and the other two players both
receive their maximum payoff of 1 (i.e., a Pareto-dominant outcome), or

• i is not ranked last in any outcome, such that the payoffs of the other two players
always sum up to 1 and the game is equivalent to a two-player constant-sum
game.

If the third player is able to choose between two different actions, however, binary
games can be mapped to single-loser games. For this, consider the mapping from
binary bimatrix games to three-player single-loser games shown in Figure 5. As a
first step, binary bimatrix games are mapped to three-player constant-sum games
according to

(x1, x2) 7−→
( 1

2 (x1 + 1), 1
2 (x2 + 1), 1 − 1

2 (x1 + x2)
)
.

The first two players and their respective sets of actions are the same as in the
original game, the third player only has one action c. It is again obvious that this
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Outcome Constant-sum
outcome

Ranking subgame

(0, 0) 7−→ ( 1
2 ,

1
2 , 1) 7−→

(1, 0, 1) (0, 1, 1)

(0, 1, 1) (1, 0, 1)

(0, 1, 1) (1, 0, 1)

(1, 0, 1) (0, 1, 1)

(1, 0) 7−→ (1, 1
2 ,

1
2 ) 7−→

(1, 0, 1) (1, 1, 0)

(1, 1, 0) (1, 0, 1)

(1, 1, 0) (1, 0, 1)

(1, 0, 1) (1, 1, 0)

(0, 1) 7−→ ( 1
2 , 1,

1
2 ) 7−→

(0, 1, 1) (1, 1, 0)

(1, 1, 0) (0, 1, 1)

(1, 1, 0) (0, 1, 1)

(0, 1, 1) (1, 1, 0)

Fig. 5. Mapping from binary bimatrix games to three-player single-loser games

constitutes a Nash homomorphism. Next, outcomes of the three-player constant-
sum game are replaced by three-player single-loser subgames. Let Γ be a binary
game, and denote by Γ′ and Γ′′ the three-player constant-sum game and the three-
player single-loser game, respectively, obtained by applying the two steps of the
mapping in Figure 5 to Γ. We further write p′i , and p′′i for the payoff function of
player i in Γ′ and Γ′′, respectively, and a1

i and a2
i for the two actions of player i

in Γ′′ corresponding to an action ai in Γ′.

The second part of the mapping in Figure 5 is chosen such that for all strategy
profiles s, all players i and all actions ai ∈ Ai in Γ′ we have

1
2 p′′i (a1

i , s−i) + 1
2 p′′i (a2

i , s−i) = p′i(ai, f (s)−i), (1)

where for each strategy profile s of Γ′′, f (s) is the strategy profile in Γ′ such that
for each player i ∈ {1, 2, 3} and each action ai ∈ Ai

f (s)(ai) = si(a1
i ) + si(a2

i ).

An important consequence of this fact is that each player can guarantee his payoff

in Γ′′, for any strategy profile of the other players, to be at least as high as his
payoff under the corresponding strategy profile in Γ′, by distributing the weight
on ai uniformly on a1

i and a2
i .

Let s∗ be a Nash equilibrium in Γ′′. We first prove that for every player i ∈ {1, 2, 3}
and each action ai of player i in Γ′,

s∗(a1
i )p′′i (a1

i , s
∗
−i) + s∗(a2

i )p′′i (a2
i , s
∗
−i) = ( f (s∗)(ai))p′i(ai, f (s∗)−i). (2)

Recall that we write s(ai) for the probability of action ai in strategy profile s, so
f (s∗)(ai) is the probability with which ai is played in strategy profile f (s∗) of Γ′.
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The above equation thus states that the expected joint payoff from a1
i and a2

i in
equilibrium s∗ equals that from ai under the corresponding strategy profile f (s∗)
of Γ′. To see this, first assume for contradiction that for some player i and some
action ai ∈ Ai,

s∗(a1
i )p′′i (a1

i , s
∗
−i) + s∗(a2

i )p′′i (a2
i , s
∗
−i) < ( f (s∗)(ai))p′i(ai, f (s∗)−i),

i.e., that the expected joint payoff from a1
i and a2

i in Γ′′ is strictly smaller than the
expected payoff from ai in Γ′. Define si to be the strategy of player i in Γ′′ such
that si(a1

i ) = si(a2
i ) = 1

2 (s∗(a1
i ) + s∗(a2

i )) and si(a′i) = s∗(a′i) for all actions a′i ∈ Ai

distinct from a1
i and a2

i . It then holds that

s∗(a1
i )p′′i (a1

i , s
∗
−i) + s∗(a2

i )p′′i (a2
i , s
∗
−i)

< ( f (s∗)(ai))p′i(ai, f (s∗)−i)
= (s∗(a1

i ) + s∗(a2
i ))p′i(ai, f (s∗)−i)

= (s∗(a1
i ) + s∗(a2

i ))( 1
2 p′′i (a1

i , s
∗
−i) + 1

2 p′′i (a2
i , s
∗
−i))

= 1
2 (s∗(a1

i ) + s∗(a2
i ))p′′i (a1

i , s
∗
−i) + 1

2 (s∗(a1
i ) + s∗(a2

i ))p′′i (a2
i , s
∗
−i)

= si(a1
i )p′′i (a1

i , s
∗
−i) + si(a2

i )p′′i (a2
i , s
∗
−i).

The second and last step follow from the definition of f and si, respectively. The
third step follows from (1). We conclude that player i obtains a higher payoff by
playing si instead of s∗i , contradicting the assumption that s∗ is a Nash equilibrium.
In particular we have shown that for all i ∈ N and every ai ∈ Ai,

s∗(a1
i )p′′i (a1

i , s
∗
−i) + s∗(a2

i )p′′i (a2
i , s
∗
−i) ≥ ( f (s∗)(ai))p′i(ai, f (s∗)−i). (3)

Now assume, again for contradiction, that for some player i and some action ai ∈ Ai,

s∗(a1
i )p′′i (a1

i , s
∗
−i) + s∗(a2

i )p′′i (a2
i , s
∗
−i) > ( f (s∗)(ai))p′i(ai, f (s∗)−i),

i.e., that the expected joint payoff to i from a1
i and a2

i in Γ′′ is strictly greater under
s∗ than the expected payoff from ai in Γ′. It follows from (3) that the expected
payoff player i receives from any action under f (s∗) cannot be greater than the
expected joint payoff from the corresponding pair of actions under s∗, and thus
p′′i (s∗) > p′i( f (s∗)). Since Γ′ and Γ′′ are both constant-sum games, there exists some
player j , i who receives strictly less payoff under s∗ in Γ′′ than under f (s∗) in Γ′.
In particular, there has to be an action a j ∈ A j such that

s∗(a1
j)p′′j (a1

j , s
∗
− j) + s∗(a2

j)p′′j (a2
j , s
∗
− j) < ( f (s∗)(a j))p′j(a j, f (s∗)− j),

contradicting (3).

We are now ready to prove that the mapping in Figure 5 is indeed a Nash homo-
morphism. To this end, let s∗ be a Nash equilibrium of Γ′′, and assume for a contra-
diction that f (s∗) is not a Nash equilibrium of Γ′. Then there has to be a player i and
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some action ai ∈ Ai such that p′i(ai, f (s∗)−i) > p′i( f (s∗)). Define si to be the strategy
of i in Γ′′ such that si(a1

i ) = si(a2
i ) = 1

2 . Then, by (1), p′′i (si, s−i) = p′i(ai, f (s∗)−i). It
further follows from (2) that for all players i, p′′i (s∗) = p′i( f (s∗)). Thus,

p′′i (s∗) = p′i( f (s∗)) < p′i(ai, f (s∗)−i) = p′′i (s′i , s
∗
−i),

contradicting the assumption that s∗ is a Nash equilibrium in Γ′′. �

The ground has now been cleared to present the main result of this section con-
cerning the hardness of computing Nash equilibria of ranking games. Since every
normal-form game is guaranteed to possess a Nash equilibrium in mixed strate-
gies (Nash, 1951), the decision problem as to the existence of Nash equilibria
is trivial. However, the associated search problem turns out to be not at all triv-
ial. In fact, it has recently been shown to be PPAD-complete for general bimatrix
games (Chen and Deng, 2006; Daskalakis et al., 2006). TFNP (for “total functions
in NP”) is the class of search problems guaranteed to have a solution. As Daskalakis
et al. (2006) put it, “this is precisely NP with an added emphasis on finding a wit-
ness.” TFNP is further divided into subclasses based on the mathematical argument
used to establish the existence of a solution. PPAD (for “polynomial parity argu-
ment, directed version”) is one such subclass that is believed not to be contained
in P. For this reason, the PPAD-hardness of a particular problem can be seen as “a
rather compelling argument for intractability” (Papadimitriou, 2007, p. 39).

Theorem 2 Computing a Nash equilibrium of a ranking game with more than two
players is PPAD-hard for any rank payoff profile. If there are only two players,
equilibria can be found in polynomial time.

Proof: According to Lemma 1, ranking games with more than two players are at
least as hard to solve as general two-player games. We already know that solving
general games is PPAD-hard in the two-player case (Chen and Deng, 2006).

Two-player ranking games, on the other hand, form a subclass of two-player zero-
sum games, in which Nash equilibria can be found efficiently via linear program-
ming. �

6.2 Iterated Weak Dominance

We now turn to iterated weak dominance. If there are only two players, the problem
of deciding whether a ranking game can be solved via iterated weak dominance is
tractable.

Theorem 3 For two-player ranking games, iterated weak dominance solvability
can be decided in polynomial time.
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a∗2

2 1
... . . .

2 1

1 2

...

. . .

2

a∗1 1 · · · 1

Fig. 6. Iterated weak dominance solvability in two-player ranking games

Proof: First we recall that if an action in a binary game is weakly dominated
by a mixed strategy, it is also dominated by a pure strategy (Conitzer and Sand-
holm, 2005). Accordingly, we only have to consider dominance by pure strategies.
Now consider a path of iterated weak dominance that ends in a single action pro-
file (a∗1, a

∗
2). Without loss of generality we may assume that player 1 (i.e., the row

player) is the winner in this profile. This implies that player 1 wins in (a∗1, a2) for
any a2 ∈ A2, i.e., in the entire row. For a contradiction, assume the opposite and con-
sider the particular action a1

2 such that player 2 wins in (a∗1, a
1
2) and a1

2 is eliminated
last on the path that solves the game. It is easy to see that a1

2 could not have been
eliminated in this case. An elimination by player 1 would also eliminate a∗1, while
an elimination by player 2 could only take place via another action a2

2 such that
player 2 also wins in (a∗1, a

2
2), contradicting the assumption that a1

2 is eliminated
last. We now claim that a ranking game with two players is solvable by iterated
weak dominance if and only if there exists a unique action a∗1 of player 1 by which
he always wins, and an action a∗2 of player 2 by which he wins for a strictly maxi-
mal set of actions of player 1. More precisely, the latter property means that there
exists a set of actions of player 1 against which player 2 always wins when playing
a∗2 and loses in at least one case for every other action he might play. This is illus-
trated in Figure 6, and can be verified efficiently by ordering the aforementioned
sets of actions of player 1 according to strict inclusion. If the ordering does not have
a maximal element, the game cannot be solved by means of iterated weak domi-
nance. If it does, we can use a∗1 to eliminate all actions a1 ∈ A1 such that player 2
does not win in (a1, a∗2), whereupon a∗2 can eliminate all other actions of player 2,
until finally a∗1 eliminates player 1’s remaining actions and solves the game. 4 �

4 Since two-player ranking games are a subclass of constant-sum games, weak dominance
and nice weak dominance (Marx and Swinkels, 1997) coincide, making iterated weak dom-
inance order independent up to payoff-equivalent action profiles. This fact is mirrored by
Figure 6, since there cannot be a row of 1s and a column of 2s in the same matrix.
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Theorem 4 For ranking games with more than two players, and for any rank payoff
profile, deciding iterated weak dominance solvability is NP-complete.

Proof: Membership in NP is immediate. We can simply guess a sequence of elim-
inations and then verify in polynomial time that this sequence is valid and solves
the game.

For hardness, we first reduce eliminability in binary bimatrix games, which asks
whether there exits a sequence of eliminations that contains a given action and has
recently been shown to be NP-hard (Conitzer and Sandholm, 2005), to the same
problem in ranking games. A game Γ of the former class is mapped to a ranking
game Γ′ as follows:

• Γ′ features the two players of Γ, denoted by 1 and 2, and an additional player 3.
• Players 1 and 2 have the same actions as in Γ, player 3 has two actions c1 and c2.
• Payoffs of Γ are mapped to rankings of Γ′ according to

(0, 0) 7−→ [3, 2, 1] [3, 1, 2] (1, 0) 7−→ [1, 2, 3] [3, 1, 2]

(0, 1) 7−→ [3, 2, 1] [2, 1, 3] (1, 1) 7−→ [1, 2, 3] [2, 1, 3] .

In the following, we write p and p′ for the payoff functions of Γ and Γ′, respec-
tively.

First observe that we can restrict our attention to dominance by pure strategies. This
property holds for binary games by Lemma 1 of Conitzer and Sandholm (2005),
and thus also for actions of player 3, who receives a payoff of either 0 or 1 in any
outcome. For players 1 and 2 we can essentially apply the same argument, because
each of them can obtain only two different payoffs for any fixed action profile of
the remaining two players.

We now claim that irrespective of the rank payoffs pi = (1, p2
i , 0), and for any

subsets of the actions of players 1 and 2, a particular action of these players is
dominated in the restriction of Γ′ to these subsets if and only if the corresponding
action is dominated in the restriction of Γ to the same subsets. To see this, observe
that if player 3 plays c1, then for any action profile (a1, a2) ∈ A1 × A2, player 1
receives the same payoff he would receive for the corresponding action profile in Γ,
i.e., p′1(a1, a2, c1) = p1(a1, a2), whereas player 2 receives a payoff of p2

2. If on the
other hand player 3 plays c2, then player 1 obtains a payoff of p2

1, and the payoff

of player 2 for any action profile (a1, a2) ∈ A1 × A2 is the same as that for the cor-
responding profile in Γ, i.e., p′2(a1, a2, c2) = p2(a1, a2). Moreover, the implication
from left to right still holds if one of the actions of player 3 is removed, because
this leaves one of players 1 and 2 indifferent between all of his remaining actions
but does not have any effect on dominance between actions of the other player. We
have thus established a direct correspondence between sequences of eliminations
in Γ and Γ′, which in turn implies NP-hardness of deciding whether a particular
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c1

b1 · · · bk

a1 [ · , 2, · ] · · · [ · , 2, · ]
...

...
. . .

...

am [ · , 2, · ] · · · [ · , 2, · ]

am+1 [3, 2, 1] · · · [3, 2, 1]

c2

b1 · · · bk

[ · , 1, · ] · · · [ · , 1, · ]
...

. . .
...

[ · , 1, · ] · · · [ · , 1, · ]

[2, 1, 3] · · · [2, 1, 3]

Fig. 7. Three-player ranking game Γ′ used in the proof of Theorem 4

action of a ranking game with at least three players can be eliminated.

It also follows from the above that Γ can be solved by iterated weak dominance
if Γ′ can. The implication in the other direction does not hold, however, because it
may not always be possible to eliminate an action of player 3. To this end, assume
without loss of generality that some player of Γ′ has at least two actions, and that
this player is player 1. Otherwise both Γ and Γ′ are trivially solvable. We augment Γ′

by introducing to player 1’s action set A1 = {a1, . . . , am} an additional action am+1

of player 1 such that for every action b j of player 2, g(am+1, b j, c1) = [3, 2, 1] and
g(am+1, b j, c2) = [2, 1, 3]. The structure of the resulting game is shown in Figure 7.

It is easily verified that the above arguments about Γ′ still apply, because player 1
never receives a higher payoff from am+1 than from any other action, and player 2
is indifferent between all of his actions when player 1 plays am+1. Now assume
that Γ can be solved. Without loss of generality we may assume that (a1, b1) is the
remaining action profile. Clearly, for Γ to be solvable, player 1 must be ranked first
in some outcome of Γ′, and it must hold that p1(a1, b1) = 1 or p2(a1, b1) = 1. We
distinguish two cases. If p1(a1, b1) = p2(a1, b1) = 1, then Γ′ can be solved by per-
forming the eliminations that lead to the solution of Γ, followed by the elimination
of c2 and am+1. Otherwise we can start by eliminating am+1, which is dominated by
the action for which player 1 is sometimes ranked first, and proceed with the elim-
inations that solve Γ. In the two action profiles that then remain Player 3 is ranked
first and last, respectively, and he can eliminate one of his actions to solve Γ′. �

6.3 Pure Nash Equilibria in Games with Many Players

We now consider the situation in which players do not randomize but choose their
actions deterministically. Nash equilibria in pure strategies can be found efficiently
by simply checking every action profile. As the number of players increases, how-
ever, the number of profiles to check, as well as the normal-form representation of
the game, grows exponentially. An interesting question is whether pure equilibria
can be computed efficiently given a succinct representation of a game that only uses
space polynomial in n.
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We proceed to show that this is most likely not the case. More precisely, we show
NP-completeness of deciding whether there is a pure Nash equilibrium in ranking
games with efficiently computable outcome functions, which is one of the most
general representations of multi-player games one might think of. Please note that,
in contrast to Theorems 2 and 4, we keep the number of actions fixed and let the
number of players grow.

Theorem 5 For ranking games with an unbounded number of players and a
polynomial-time computable outcome function, and for any rank payoff profile, de-
ciding the existence of a pure Nash equilibrium is NP-complete, even if the players
have only two actions at their disposal.

Proof: Since we can check in polynomial time whether a particular player strictly
prefers one rank over another, membership in NP is immediate. We can guess an
action profile s and verify in polynomial time whether s is a Nash equilibrium. For
the latter, we check for each player i ∈ N and for each action ai ∈ Ai whether
pi(s−i, ai) ≤ pi(s).

For hardness, recall that circuit satisfiability (CSAT), i.e., deciding whether for a
given Boolean circuit ϕwith n inputs and 1 output there exists an input such that the
output is true, is NP-complete (see, e.g., Papadimitriou, 1994). We define a game Γ

in circuit form for a Boolean circuit ϕ, providing a polynomial-time reduction of
satisfiability of ϕ to the problem of finding a pure Nash equilibrium in Γ.

Let m be the number of inputs of ϕ. We define game Γ with m+2 players as follows:

• Let N = {1, . . . ,m} ∪ {x, y}, and Ai = {0, 1} for all i ∈ N.
• The outcome function of Γ is computed by a Boolean circuit that takes m + 2

bits of input i = (a1, . . . , am, ax, ay), corresponding to the actions of the players
in N, and computes two bits of output o = (o1, o2), given by o1 = ϕ(a1, . . . , am)
and o2 = (o1 OR (ax XOR ay)).

• The possible outputs of the circuit are identified with permutations (i.e., rank-
ings) of the players in N such that
· the permutation π00 corresponding to o = (0, 0) and the permutation π11 corre-

sponding to o = (1, 1) rank x first and y last,
· the permutation π01 corresponding to o = (0, 1) ranks y first, and x last, and
· all other players are ranked in the same order in all three permutations.
It should be noted that no matter how permutations are actually encoded as
strings of binary values, the encoding of the above permutations can always be
computed using a polynomial number of gates.

We claim that, for arbitrary rank payoffs, Γ has a pure Nash equilibrium if and only
if ϕ is satisfiable. This can be seen as follows:

• If (a1, . . . , am) is a satisfying assignment of ϕ, only a player in {1, . . . ,m} could
possibly change the outcome of the game by changing his action. However,
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these players are ranked in the same order in all the possible outcomes, so
none of them can get a higher payoff by doing so. Thus, every action profile
a = (a1, . . . , am, ax, ay) where (a1, . . . , am) satisfies ϕ is a Nash equilibrium.

• If in turn (a1, . . . , am) is not a satisfying assignment of ϕ, both x and y are able
to switch between outcomes π00 and π01 by changing their individual action.
Since every player strictly prefers being ranked first over being ranked last, x
strictly prefers outcome π00 over π01, while y strictly prefers π01 over π00. Thus,
a = (a1, . . . , am, ax, ay) cannot be a Nash equilibrium in this case, since either x
or y could play a different action to get a higher payoff. �

7 Comparative Ratios

Despite its conceptual elegance and simplicity, Nash equilibrium has been criti-
cized on various grounds (see, e.g., Luce and Raiffa, 1957, for a discussion). In the
common case of multiple equilibria, it is unclear which one should be selected.
Also, coalitions might benefit from jointly deviating, and there might exist no
polynomial-time, i.e., efficient, algorithms for finding Nash equilibria, a problem
we discussed in the previous section. Moreover, players may be utterly indifferent
among equilibrium and non-equilibrium strategies, which we saw is pervasive in
ranking games.

7.1 The Price of Cautiousness

A compelling question is how much worse off a player can be when if he were
to revert to his most defensive course of action—his maximin strategy—instead of
hoping for an equilibrium outcome. This difference in payoff can be represented by
a numerical value which we refer to as the price of cautiousness. In what follows,
let G denote the class of all normal-form games, and for Γ ∈ G, let N(Γ) be the set
of Nash equilibria of Γ. Recall that vi(Γ) denotes player i’s security level in game Γ.

Definition 9 Let Γ be a normal-form game with non-negative payoffs, i ∈ N a
player such that vi(Γ) > 0. The price of cautiousness for player i in Γ is defined as

PCi(Γ) =
min { pi(s) | s ∈ N(Γ) }

vi(Γ)
.

For any class C ⊆ G of games involving player i, we further write PCi(C) =

supΓ∈C PCi(Γ). In other words, the price of cautiousness of a player is the ratio
between his minimum payoff in a Nash equilibrium and his security level. It thus
captures the worst-case loss the player may incur by playing his maximin strategy
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c1

b1 b2

a1 (0, 1, 1) (1, 0, 0)

a2 (1, 0, 1) (0, 1, 1)

c2

b1 b2

(ε, 1, 0) (ε, 0, 1)

(ε, 1, 0) (ε, 0, 1)

Fig. 8. Three-player ranking game Γ1 used in the proof of Theorem 6

instead of a Nash equilibrium. 5 For a player whose security level equals his min-
imum payoff of zero, every strategy is a maximin strategy. Since we are mainly
interested in a comparison of normative solution concepts, we will only consider
games where the security level of at least one player is positive.

As we have already mentioned in Section 1, the price of cautiousness in two-player
ranking games equals 1 in virtue of the Minimax Theorem of von Neumann (1928).
In general ranking games, however, the price of cautiousness is unbounded.

Theorem 6 Let R be the class of ranking games with more than two players that
involve player i. Then, the price of cautiousness is unbounded, i.e., PCi(R) = ∞,
even if R only contains games without weakly dominated actions.

Proof: Consider the game Γ1 of Figure 8, which is a ranking game for rank pay-
off vectors ~p1 = (1, ε, 0), ~p2 = (1, 0, 0), and ~p3 = (1, 1, 0), and rankings [2, 3, 1],
[1, 3, 2], [1, 2, 3], [2, 1, 3], and [3, 1, 2]. It is easily verified that none of the actions
of Γ1 is weakly dominated and that v1(Γ1) = ε. Let further s = (s1, s2, c1) be the
strategy profile where s1 and s2 are uniform mixtures of a1 and a2, and of b1 and b2,
respectively. We will argue that s, is the only Nash equilibrium of Γ1. For this, con-
sider the possible strategies of player 3. If player 3 plays c1, the game reduces to the
well-known matching pennies game for players 1 and 2, the only Nash equilibrium
being the one described above. If on the other hand player 3 plays c2, action b1

strongly dominates b2. If b1 is played, however, player 3 will deviate to c1 to get a
higher payoff. Finally, if player 3 randomizes between actions c1 and c2, the payoff

obtained from both of these actions must be the same. This can only be the case if
either player 1 plays a1 and player 2 randomizes between b1 and b2, or if player 1
plays a2 and player 2 plays b2. In the former case, player 2 will deviate to b1. In
the latter case, player 1 will deviate to a1. Since the payoff of player 1 in the above
equilibrium is 0.5, we have PC(Γ1) = 0.5/ε → ∞ for ε → 0. �

We proceed to show that, due to their structural limitations, the price of cautious-
ness in binary ranking games is bounded from above by the number of actions of
the respective player. We also derive a matching lower bound.

5 In our context, the choice of whether to use the worst or the best equilibrium when
defining the price of cautiousness is merely a matter of taste. All results in this section still
hold when the best equilibrium is used instead of the worst one.
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Theorem 7 Let Rb be the class of binary ranking games with more than two play-
ers involving a player i with exactly k actions. Then, PCi(Rb) = k, even if Rb only
contains single-winner games or games without weakly dominated actions.

Proof: By definition, the price of cautiousness takes its maximum for maximum
payoff in a Nash equilibrium, which is bounded by 1 in a ranking game, and
minimum security level. It being required that the security level is strictly pos-
itive, for every opponent action profile s−i there is some action ai ∈ Ai such
that pi(ai, s−i) > 0, i.e., pi(ai, s−i) = 1. It is then easily verified that player i can
ensure a security level of 1/k by uniform randomization over his k actions. This
results in a price of cautiousness of at most k.

For a matching lower bound, again consider the single winner game depicted in
Figure 4. We will argue that all Nash equilibria of this game are mixtures of the
action profiles (a2, b1, c2), (a2, b2, c2) and (a1, b2, c2). Each of these equilibria yields
payoff 1 for player 1, twice as much as his security level of 0.5. To appreciate
this, consider the strategies that are possible for player 3. If player 3 plays c1, the
game reduces to the well-known game of matching pennies for players 1 and 2,
in which they will randomize uniformly over both of their actions. In this case,
player 3 will deviate to c2. If player 3 plays c2, we immediately obtain the equilibria
described above. Finally, if player 3 randomizes between actions c1 and c2, the
payoff obtained from both of these actions should be the same. This can only be
the case if either player 1 plays a2 and player 2 randomizes between b1 and b2, or
if player 1 randomizes between a1 and a2 and player 2 plays b2. In the former case,
player 2 will play b2, causing player 1 to deviate to a1. In the latter case, player 1
will play a1, causing player 2 to deviate to b1.

The above construction can be generalized to k > 2 by virtue of a single-winner
game with actions A1 = {a1, . . . , ak}, A2 = {b1, . . . , bk}, and A3 = {c1, c2}, and pay-
offs

p(ai, b j, c`) =


(0, 1, 0) if ` = 1 and i , k − j + 1
(0, 0, 1) if ` = 2 and i = j = 1
(1, 0, 0) otherwise.

It is easily verified that the security level of player 1 in this game is 1/k while, by
the same arguments as above, his payoff in every Nash equilibrium equals 1. This
shows tightness of the upper bound of k on the price of cautiousness for single-
winner games.

Now consider the game Γ2 of Figure 9, which is a ranking game for rank payoff vec-
tors ~p1 = ~p2 = (1, 0, 0) and ~p3 = (1, 1, 0), and rankings [2, 3, 1], [1, 2, 3], [2, 1, 3],
and [1, 3, 2]. It is easily verified that none of the actions of Γ2 is weakly dominated
and that v1(Γ2) = 0.5. On the other hand, we will argue that all Nash equilibria
of Γ2 are mixtures of action profiles (a2, b1, c2) and (a2, b2, c2), corresponding to a
payoff of 1 for player 1. To see this, we again look at the possible strategies for
player 3. If player 3 plays c1, players 1 and 2 will again randomize uniformly over
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c1

b1 b2

a1 (0, 1, 1) (1, 0, 0)

a2 (1, 0, 0) (0, 1, 0)

c2

b1 b2

(0, 1, 0) (1, 0, 0)

(1, 0, 1) (1, 0, 1)

Fig. 9. Three-player ranking game Γ2 used in the proof of Theorem 7

both of their actions, causing player 3 to deviate to c2. If player 3 plays c2, we
immediately obtain the equilibria described above. Finally, assume that player 3
randomizes between actions c1 and c2, and let α denote the probability with which
player 1 plays a1. Again, player 3 must be indifferent between c1 and c2, which can
only hold for 0.5 ≤ α ≤ 1. In this case, however, player 2 will deviate to b1.

This construction can be generalized to k > 2 by virtue of a game with actions
A1 = {a1, . . . , ak}, A2 = {b1, . . . , bk}, and A3 = {c1, c2}, and payoffs

p(ai, b j, c`) =



(0, 1, 1) if i = j = ` = 1
(1, 0, 0) if ` = 1 and i = k − j + 1

or ` = 2, i = 1 and j > 1
(1, 0, 1) if ` = 2 and j > 2
(0, 1, 0) otherwise.

Again, it is easily verified that the security level of player 1 in this game is 1/k
while, by the same arguments as above, his payoff is 1 in every Nash equilibrium.
Thus, the upper bound of k for the price of cautiousness is tight as well for binary
ranking games without weakly dominated actions. �

Informally, the previous theorem states that the payoff a player with k actions can
obtain in Nash equilibrium can be at most k times his security level.

7.2 The Value of Correlation

We will now turn to the question whether, and by which amount, social welfare
can be improved by allowing players in a ranking game to correlate their actions.
Just as the payoff of a player in any Nash equilibrium is at least his security level,
social welfare in the best correlated equilibrium is at least as high as social welfare
in the best Nash equilibrium. In order to quantify the value of correlation in strate-
gic games with non-negative payoffs, Ashlagi et al. (2005) recently introduced the
mediation value of a game as the ratio between the maximum social welfare in a
correlated versus that in a Nash equilibrium, and the enforcement value as the ratio
between the maximum social welfare in any outcome versus that in a correlated
equilibrium. Whenever social welfare, i.e., the sum of all players’ payoffs, is used
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as a measure of global satisfaction, one implicitly assumes the inter-agent compa-
rability of payoffs. While this assumption is controversial, social welfare is never-
theless commonly used in the definitions of comparative ratios such as the price
of anarchy (Koutsoupias and Papadimitriou, 1999). For Γ ∈ G and X ⊆ ∆(S ), let
C(Γ) denote the set of correlated equilibria of Γ and let vX(Γ) = max{ p(s) | s ∈ X }.
Recall that N(Γ) denotes the set of Nash equilibria in Γ.

Definition 10 Let Γ be a normal-form game with non-negative payoffs. The medi-
ation value MV(Γ) and the enforcement value EV(Γ) of Γ are defined as

MV(Γ) =
vC(Γ)(Γ)
vN(Γ)(Γ)

and EV(Γ) =
vS (Γ)

vC(Γ)(Γ)
.

If both numerator and denominator are 0 for one of the values, the respective value
is defined to be 1. If only the denominator is 0, the value is defined to be ∞. For
any class C ⊆ G of games, we further write MV(C) = supΓ∈CMV(Γ) and EV(C) =

supΓ∈C EV(Γ).

Ashlagi et al. (2005) have shown that both the mediation value and the enforcement
value cannot be bounded for games with an arbitrary payoff structure, as soon as
there are more than two players or some player has more than two actions. This
holds even if payoffs are normalized to the interval [0, 1]. Ranking games also sat-
isfy this normalization criterion, and here social welfare is also strictly positive for
every outcome of the game. Ranking games with identical rank payoff vectors for
all players, i.e., ones where pk

i = pk
j for all i, j ∈ N and 1 ≤ k ≤ n, are constant-

sum games. Hence, social welfare is the same in every outcome so that both the
mediation value and the enforcement value are 1. This in particular concerns all
ranking games with two players. In general, social welfare in an arbitrary outcome
of a ranking game is bounded by n − 1 from above and by 1 from below. Since the
Nash and correlated equilibrium payoffs must lie in the convex hull of the feasible
payoffs of the game, we obtain trivial lower and upper bounds of 1 and n − 1, re-
spectively, on both the mediation and the enforcement value. It turns out that the
upper bound of n − 1 is tight for both the mediation value and the enforcement
value.

Theorem 8 Let R′ be the class of ranking games with n > 2 players, such that in
games with only three players at least one player has more than two actions. Then,
MV(R′) = n − 1.

Proof: It suffices to show that for any of the above cases there is a ranking game
with mediation value n − 1. For n = 3, consider the game Γ3 of Figure 10, which is
a ranking game for rank payoff vectors ~p1 = ~p3 = (1, 0, 0) and ~p2 = (1, 1, 0). First
of all, we will show that every Nash equilibrium of this game has social welfare 1,
by showing that there are no Nash equilibria where c1 or c2 are played with positive
probability. Assume for contradiction that s∗ is such an equilibrium. The strategy
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c1

b1 b2

a1 (1, 1, 0) (1, 0, 0)

a2 (0, 1, 0) (0, 1, 1)

c2

b1 b2

(0, 1, 1) (0, 1, 0)

(1, 0, 0) (1, 1, 0)

c3

b1 b2

(1, 0, 0) (0, 0, 1)

(0, 0, 1) (1, 0, 0)

Fig. 10. Three-player ranking game Γ3 used in the proof of Theorem 8

played by player 3 in s∗ must either be (i) c1 or c2 as a pure strategy, (ii) a mixture
of c1 and c3 or between c2 and c3, or (iii) a mixture where both c1 and c2 are played
with positive probability. If player 3 plays a pure strategy, the game reduces to a
two-player game for players 1 and 2. In the case of c1, this game has the unique
equilibrium (a1, b1), which in turn causes player 3 to deviate to c2. In the case of c2,
the unique equilibrium is (a2, b2), causing player 3 to deviate to c1. Now assume
that player 3 mixes between c1 and c3, and let α and β denote the probabilities with
which players 1 and 2 play a1 and b1, respectively. Since player 3’s payoff from c1

and c3 must be the same in such an equilibrium, we must either have α = β = 1,
in which case player 3 will deviate to c2, or 0 ≤ α ≤ 0.5 and 0 ≤ β ≤ 0.5, causing
player 2 to deviate to b1. Analogously, if player 3 mixes between c2 and c3, we must
either have α = β = 0, in which case player 3 will deviate to c1, or 0.5 ≤ α ≤ 1 and
0.5 ≤ β ≤ 1, causing player 2 to deviate to b2. Finally, if both c1 and c2 are played
with positive probability, we must have α + β = 1 for player 3 to get an identical
payoff of αβ ≤ 1/4 from both c1 and c2. In this case, however, player 3 can deviate
to c3 for a strictly greater payoff of 1− 2αβ. Thus, a strategy profile s∗ as described
above cannot exist.

Now let t∗ be the correlated strategy where action profiles (a1, b1, c1), (a2, b2, c1),
(a1, b1, c2), and (a2, b2, c2) are played with probability 0.25 each. This correlation
can for example be achieved by tossing two coins independently. Players 1 and 2
observe the first coin toss and play a1 and b1, respectively, if the coin falls on heads,
and a2 and b2 otherwise. Player 3 observes the second coin toss and plays c1 if the
coin falls on heads and c2 otherwise. The expected payoff for player 2 under t∗ is
1, so he cannot gain by changing his action. If player 1 observes heads, he knows
that player 2 will play b1, and that player 3 will play c1 and c2 with probability 0.5
each. He is thus indifferent between a1 and a2. Player 3 knows that players 1 and 2
will play (a1, b1) and (a2, b2) with probability 0.5 each, so he is indifferent between
c1 and c2 and strictly prefers both of them to c3. Hence, none of the players has
an incentive to deviate, t∗ is a correlated equilibrium. Moreover, the social welfare
under t∗ is 2, and thus MV(Γ3) = 2.

Now consider the four-player game Γ4 of Figure 11, which is a ranking game for
rank payoffs ~p1 = ~p3 = (1, 0, 0, 0), ~p2 = (1, 1, 0, 0), and ~p4 = (1, 1, 1, 0), and rank-
ings [1, 2, 4, 3], [1, 3, 2, 4], [3, 2, 4, 1], [2, 3, 1, 4], and [4, 1, 2, 3]. It is easily verified
that none of the action profiles with social welfare 2 is a Nash equilibrium. Fur-
thermore, player 4 strictly prefers action d2 over d1 as soon as one of the remaining
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c1

b1 b2

a1 (1, 1, 0, 1) (1, 0, 0, 0)

a2 (0, 1, 0, 0) (0, 1, 1, 1)

c2

b1 b2

(0, 1, 1, 1) (0, 1, 0, 0)
d1

(1, 0, 0, 0) (1, 1, 0, 1)

a1 (0, 0, 0, 1) (0, 0, 0, 1)

a2 (0, 0, 0, 1) (0, 0, 0, 1)

(0, 0, 0, 1) (0, 0, 0, 1)
d2

(0, 0, 0, 1) (0, 0, 0, 1)

Fig. 11. Four-player ranking game Γ4 used in the proof of Theorem 8

action profiles for players 1 to 3 (i.e., those in the upper half of the game where
the social welfare is 1) is played with positive probability. Hence, d1 is not played
with positive probability in any Nash equilibrium of Γ4, and every Nash equilibrium
of Γ4 has social welfare 1. In turn, consider the correlated strategy µ∗ where actions
profiles (a1, b1, c1, d1), (a2, b2, c1, d1), (a1, b1, c2, d1), and (a2, b2, c2, d1) are played
with probability 0.25 each. It is easily verified that none of the players can increase
his payoff by unilaterally deviating from µ∗. Hence, µ∗ is a correlated equilibrium
with social welfare 3, and MV(Γ4) = 3.

For n > 4, we can restrict our attention to games where the additional players only
have a single action. We return to the game Γ4 of Figure 11 and transform it into a
game Γn

4 with n > 4 players by assigning to players 5, . . . , n a payoff of 1 in the four
action profiles (a1, b1, c1, d1), (a2, b2, c1, d1), (a1, b1, c2, d1), and (a2, b2, c2, d1) that
constitute the correlated equilibrium with maximum social welfare, and a payoff of
zero in all other action profiles. Since the additional players cannot influence the
outcome of the game, this construction does not affect the equilibria of the game.
To see that the resulting game is a ranking game, consider the rank payoff vectors
~p1 = ~p3 = (1, 0, 0, . . . , 0), ~p2 = (1, 1, . . . , 0), rk

m = 1 if k ≤ m − 1 and 0 otherwise,
for m ≥ 4. It is easily verified that we can retain the original payoffs of players 1
to 4 and at the same time assign a payoff of 0 or 1, respectively, to players 5 to n
by ranking the latter according to their index and placing either no other players or
exactly one other player behind them in the overall ranking. More precisely, Γn

4 is a
ranking game by virtue of the above rank payoffs and rankings [1, 2, 4, 5, . . . , n, 3],
[1, 3, 2, 4, 5, . . . , n], [3, 2, 4, 5, . . . , n, 1], [2, 3, 1, 4, 5, . . . , n], and [4, 1, 2, 3, 5, . . . , n].
Furthermore, MV(Γn

4) = n − 1. �

Theorem 9 LetR be the class of ranking games with n > 2 players. Then, EV(R) =

n − 1, even if R only contains games without weakly dominated actions.

Proof: It suffices to show that for any n ≥ 3 there is a ranking game with enforce-
ment value n − 1 in which no action is weakly dominated. Consider the ranking
game Γ5 of Figure 12, which is a ranking game by virtue of rank payoff vectors
~p1 = (1, 1, 0), ~p2 = (1, 0, 0), and ~p3 = (1, ε, 0) and rankings [1, 2, 3], [2, 3, 1],
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c1

b1 b2

a1 (1, 0, 0) (0, 1, ε)

a2 (0, 1, ε) (1, 0, 1)

c2

b1 b2

(0, 0, 1) (1, 0, ε)

(1, 0, ε) (1, 0, ε)

Fig. 12. Three-player ranking game Γ5 used in the proof of Theorem 9

[3, 1, 2], [3, 2, 1], and [1, 3, 2]. Obviously, all of the actions of Γ5 are undominated
and vS (Γ5) = 2. It remains to be shown that the social welfare in any correlated
equilibrium of Γ5 is at most (1 + ε), such that vC(Γ5)(Γ5) → 1 and EV(Γ5) → 2 for
ε → 0.

Finding a correlated equilibrium that maximizes social welfare constitutes a lin-
ear programming problem constrained by the inequalities of Definition 7 and the
probability constraints

∑
s∈A µ(a) = 1 and µ(a) ≥ 0 for all a ∈ A. Feasibility of this

problem is a direct consequence of Nash’s existence theorem. Boundedness follows
from boundedness of the quantity being maximized. To derive an upper bound for
social welfare in a correlated equilibrium of Γ5, we will transform the above linear
program into its dual. Since the primal is feasible and bounded, the primal and the
dual will have the same optimal value, in our case the maximum social welfare in
a correlated equilibrium. The latter constitutes a minimization problem and find-
ing a feasible solution with objective value v shows that the optimal value cannot
be greater than v. Since there are three players with two actions each, the primal
has six constraints of the form

∑
a−i∈A−i

µ(a−i, a∗i )(pi(a−i, a∗i ) − pi(a−i, ai)) ≥ 0. For
j ∈ {1, 2}, let x j, y j, z j, denote the variable of the dual associated with the constraint
for the jth action of player 1, 2, and 3, respectively. Furthermore, let v denote the
variable of the dual associated with constraint

∑
a∈A µ(a) = 1 of the primal. Then

the dual reads

minimize v
subject to −x1 + y1 + z1 + v ≥ 1,

x2 − y1 + v ≥ 1 + ε,
x1 − y2 + v ≥ 1 + ε,
−x2 + y2 + (ε − 1)z1 + v ≥ 2,
x1 − z2 + v ≥ 1,
−x2 + v ≥ 1 + ε,
v ≥ 1 + ε,
(1 − ε)z2 + v ≥ 1 + ε,
x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0, z1 ≥ 0, and z2 ≥ 0.

Now let x2 = y1 = z2 = 0, x1 = y2 = (ε − 1)2/ε, z1 = (1 − 2ε)/ε, and v = 1 + ε, and
observe that for every ε > 0, this is a feasible solution with objective value 1 + ε.
However, the objective value of any feasible solution to the dual is an upper bound
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for that of the optimal solution, which in turn equals vC(Γ5)(Γ5).

The above construction can easily be generalized to games Γn
5 with n > 4 by adding

additional players that receive payoff 1 in action profile a if a1 = a2, a2 = b2, and
a3 = c1, and payoff 0 otherwise. This can for example be achieved by means of
rank payoff vectors ~p1 = (1, 0, . . . , 0), ~p2 = (1, 1, 0, . . . , 0), ~p3 = (1, ε, 0, . . . , 0), and
~pk

m = 1 if k ≤ m − 1 and 0 otherwise for m ≥ 4. By the same arguments as in the
proof of Theorem 8, this does not affect the maximum social welfare achievable
in a correlated equilibrium. It is thus easily verified that EV(Γk1×···×k4

5 ) → n − 1 for
ε → 0. �

8 Conclusion

We proposed a new class of strategic games, so-called ranking games, which model
settings in which players are merely interested in outperforming their opponents.
Despite the structural simplicity of these games, various solution concepts turned
out to be just as hard to compute as in general normal-form games. In particular we
obtained hardness results for mixed Nash equilibria and iterated weak dominance
in games with more than two players and pure Nash equilibria in games with an
unbounded number of players. As a consequence, the mentioned solution concepts
appear to be of limited use in large instances of ranking games that do not pos-
sess additional structure. This underlines the importance of alternative, efficiently
computable, solution concepts for ranking games such as maximin strategies or
correlated equilibrium.

Based on these findings, we have quantified and bounded comparative ratios of var-
ious solution concepts in ranking games. It turned out that playing one’s maximin
strategy in binary ranking games with only few actions might be a prudent choice,
not only because this strategy guarantees a certain payoff even when playing against
irrational opponents, but also because of the limited price of cautiousness and the
inherent weakness of Nash equilibria in ranking games.

We also investigated the relationship between correlated and Nash equilibria. While
correlation can never decrease social welfare, it is an important question which (es-
pecially competitive) scenarios permit an increase. In scenarios with many play-
ers and asymmetric preferences over ranks (i.e., non-identical rank payoff vectors)
overall satisfaction can be improved substantially by allowing players to correlate
their actions. Furthermore, correlated equilibria do not suffer from the equilibrium
selection problem since the equilibrium to be played is selected by a mediator.
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