Distribution Rules Under Dichotomous Preferences

Felix Brandt

(with F. Brandl, D. Peters, and C. Stricker)

22nd ACM Conference on Economics and Computation, July 2021

Donor Coordination

Customers can select **one** of over
 1 million charitable organizations.

- Amazon donates 0.5% of the price of a customer's purchase to his selected charity.
- Imagine customers could approve more than one charity.
- Amazon could cleverly distribute the contribution of each customer among his approved charities.
 - Customer 1 approves *a* and *b*. Customer 2 approves *b* and *c*. An efficient distribution rule would donate both contributions to *b*.
 - Both customers are happier than without coordination because their approved charities receive more money.

Donor Coordination

- Which distribution rule should be used?
- Minimal requirement to incentivize customers to participate: Amazon donates money to at least one approved charity of each customer.
- Main result: No such rule can simultaneously satisfy efficiency and strategyproofness!
 - Confirms a conjecture by Bogomolnaia, Moulin, and Stong (BMS 2005)

The Model

- Allocate a divisible and homogeneous resource among a set of public projects *A*.
 - The resource could for example be money, time, or probability.
- Each agent $i \in N$ contributes amount C_i to a common pool.
 - $C = \sum_{i \in N} C_i$ is called the endowment.
- Each agent *i* approves a non-empty set of projects $A_i \subseteq A$.
- ▶ Distribution rule f returns $\delta \in [0,C]^A$ with $\sum_{x \in A} \delta(x) = C$.
- Fach agent *i* receives utility $u_i(\delta) = \sum_{x \in A_i} \delta(x)$.

Three Axioms

- Efficiency
 - There is no $\delta' \in \Delta(C)$ with $u_i(\delta') \ge u_i(\delta)$ for all $i \in N$ and $u_i(\delta') > u_i(\delta)$ for some $i \in N$.
- Strategyproofness
 - $u_i(f(A_1,...,A_n)) \ge u_i(f(A_1,...,A_i',...,A_n))$ for all $i \in N$ and A_i' .
- Positive Share (BMS 2005)
 - $u_i(\delta) > 0$ for all $i \in N$.

Three Rules

UTIL									
	a	b	c	d	u_i				
1	1				5				
2	1				5				
3	1				0				
4	1				0				
5	1				5				
δ	5								

	CUT										
	a	b	c	d	u_i						
1	1				3.5						
2	1				3.5						
3		.5	.5		1.5						
4		.5		.5	1.5						
5	1				3						
δ	3	1	.5	.5							

	NASH										
	a	b	c	d	u_i						
1	1				3						
2	1				3						
3		1			2						
4		1			2						
5	1				3						
δ	3	2									

- Utilitarian rule (UTIL) violates positive share!
 - distributes endowment uniformly over most approved projects
- Conditional utilitarian rule (CUT) violates efficiency!
 - ightharpoonup distributes each C_i uniformly over most approved projects in A_i
- Nash product rule (NASH) violates strategyproofness!
 - returns distribution that maximizes the product of agents' utilities

Two Out of Three Ain't Bad

	UTIL	CUT	NASH
Efficiency	\checkmark	_	\checkmark
Strategyproofness	\checkmark	\checkmark	_
Positive share	_	\checkmark	\checkmark

- ► **Theorem**: No distribution rule satisfies efficiency, strategy-proofness, and positive share when $|A| \ge 4$ and $|N| \ge 6$.
- Strengthens three existing theorems by BMS 2005 and Duddy 2015.
- Significantly weaker notion of strategyproofness suffices.
 - Manipulator has to enforce that the *entire endowment* is distributed on his approved projects.

A FULL PROOF OF THEOREM

A.1 Assuming $f(\mathcal{A}_1)$ has support bc or abc leads to contradiction.

	A_1	A_2	A_3	A_4	A_5	A_6	possible supports	dominated supports
Profile 1	b	С	ab	ac	bd	cd	<u>bc</u> , <u>abc</u> , bcd	$ad \leftarrow bc$
Profile 2	b	c	abc	ac	bd	cd	\underline{bc} , bcd	$a \leftarrow c, \ ab \leftarrow bc, \ ad \leftarrow bc$
Profile 3	b	c	bc	ac	bd	cd	\underline{bc} , bcd	$a \leftarrow c$, $ab \leftarrow bc$, $ad \leftarrow bc$
Profile 4	bc	c	bc	ac	bd	cd	cd, \underline{bc}, bcd	$a \leftarrow c, \ ab \leftarrow bc, \ ad \leftarrow bc$
Profile 5	bc	c	bc	ac	bd	acd	$cd, \underline{bc}, \underline{bcd}$	$a \leftarrow c, \ ab \leftarrow bc, \ ad \leftarrow cd$
Profile 6	bc	c	bc	ac	bd	ad	cd , acd , \underline{bcd}	$ab \leftarrow\!$
Profile 7	bc	c	bc	ac	bcd	ad	ac, \underline{cd}, acd	$b \leftarrow\!$
Profile 8	bc	c	bc	ac	cd	ad	ac, \underline{cd}, acd	$b \leftarrow\!$
Profile 9	bc	c	cd	ac	cd	ad	ac, \underline{cd}, acd	$b \leftarrow\!$
Profile 10	bc	c	cd	abc	cd	ad	$ac, \underline{cd}, \underline{acd}$	$b \leftarrow\!$

1 10111 c 309	ν	ava	va	υu	\mathcal{U}_{C}	ac	\underline{av}, vc, avc	$a \leftrightarrow v$, $aa \leftrightarrow av$, $ca \leftrightarrow av$
Profile 370	b	ab	bd	bd	bc	ac	\underline{ab} , bc , abc	$d \longleftrightarrow b, \ ad \longleftrightarrow ab, \ cd \longleftrightarrow ab$
Profile 371	b	ab	bd	bd	bcd	ac	\underline{ab} , bc , \underline{abc}	$d \longleftrightarrow b$, $ad \longleftrightarrow ab$, $cd \longleftrightarrow bc$
Profile 372	b	ab	bd	bd	cd	ac	$\underline{bc}, \underline{abc}, bcd$	$ad \leftarrow\!$
Profile 373	b	abc	bd	bd	cd	ac	\underline{bc} , bcd	$a \leftarrow c, \ ab \leftarrow bc, \ ad \leftarrow bc$
Profile 374	b	bc	bd	bd	cd	ac	\underline{bc} , bcd	$a \leftarrow c, \ ab \leftarrow bc, \ ad \leftarrow bc$
Profile 375	b	bc	bd	bd	cd	bc	\underline{bc} , bd , bcd	$a \longleftrightarrow b$, $ab \longleftrightarrow bc$, $ac \longleftrightarrow bc$, $ad \longleftrightarrow bc$
Profile 376	b	bc	ad	bd	cd	bc	bd, \underline{bcd}	$a \longleftrightarrow d, \ ab \longleftrightarrow bd, \ ac \longleftrightarrow bd$
Profile 377	b	bc	ad	abd	cd	bc	bd, \underline{bcd}	$a \longleftrightarrow d, \ ab \longleftrightarrow bd, \ ac \longleftrightarrow bd$
Profile 378	b	bc	ad	ab	cd	bc	bd , abd , \underline{bcd}	$ac \leftarrow bd$
Profile 379	b	bc	ad	ab	bcd	bc	ab, \underline{bd}, abd	$c \longleftrightarrow b, \ ac \longleftrightarrow ab, \ cd \longleftrightarrow bd$
Profile 380	b	bc	ad	ab	bd	bc	ab, \underline{bd}, abd	$c \longleftrightarrow b, ac \longleftrightarrow ab, cd \longleftrightarrow ab$
Profile 381	b	bc	ad	abc	bd	bc	$ab, \underline{bd}, \underline{abd}$	$c \longleftrightarrow b, ac \longleftrightarrow ab, cd \longleftrightarrow ab$
Profile 382	b	bc	ad	ac	bd	bc	ab, \underline{abd}, abc	$cd \leftarrow\!$
Profile 383	b	bc	abd	ac	bd	bc	\underline{ab} , bc , abc	$d \longleftrightarrow b$, $ad \longleftrightarrow ab$, $cd \longleftrightarrow ab$
Profile 384	b	bc	ab	ac	bd	bc	\underline{ab} , bc , abc	$d \longleftrightarrow b$, $ad \longleftrightarrow ab$, $cd \longleftrightarrow ab$
Profile 385	b	bc	ab	ac	bd	bcd	\underline{ab} , bc , \underline{abc}	$d \longleftrightarrow b$, $ad \longleftrightarrow ab$, $cd \longleftrightarrow bc$
Profile 386	b	\boldsymbol{c}	ab	ac	bd	bcd	bc, <u>abc</u>	$d \longleftrightarrow b$, $ad \longleftrightarrow ab$, $cd \longleftrightarrow bc$
Profile 1	b	c	ab	ac	bd	cd	bc, \underline{abc}, bcd	$ad \leftarrow bc$

Decomposability & Fairness

- Decomposability (Brandl et al. 2021)
 - The distribution can be decomposed into individual distributions of each agent's contribution on his approved projects.
 - $\delta = \sum_{i \in N} \delta_i \text{ with } \sum_{x \in A} \delta_i(x) = C_i \text{ and } u_i(\delta_i) = C_i$
- Group Fair Share (BMS 2005)
 - The cumulative contribution of each coalition is distributed on projects approved by at least one member of the coalition.
 - $\sum_{x \in \bigcup_{i \in S} A_i} \delta(x) \ge \sum_{i \in S} C_i \text{ for all } S \subseteq N$
- Both axioms obviously imply positive share.
- Theorem:

A distribution is decomposable iff it satisfies group fair share.

Participation Incentives

Participation

- Agents prefer participating to abstaining.
- $u_i(f((A_j)_{j\in N})) > u_i(f((A_j)_{j\in N\setminus\{i\}}))$
- Contribution Incentive-Compatibility
 - Agents weakly prefer participating to abstaining and spending their contribution on approved projects themselves.
 - $u_i(f((A_j)_{j\in N})) \ge u_i(f((A_j)_{j\in N\setminus\{i\}})) + C_i$
- Both axioms obviously imply positive share.

Summary

	UTIL	CUT	NASH	SUT	No Rule!
Efficiency → Decomposable Efficiency	✓ ✓	- ✓	√ √	✓ ✓	4
Decomposability (Group Fair Share) → Positive Share		√ √	√ √	✓ ✓	Ź
Strategyproofness → Monotonicity	✓ ✓	√ √	_	_ ✓	4
Contribution Incentive-Compatibility → Participation	- ✓	√ √	√ √	_ _	

 Unknown whether there is a rule that satisfies efficiency, monotonicity, and contribution incentive-compatibility.