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ABSTRACT
Pareto-optimality and individual rationality are among themost nat-

ural requirements in coalition formation. We study classes of hedo-

nic games with cardinal utilities that can be succinctly represented

bymeans of complete weighted graphs, namely additively separable

(ASHG), fractional (FHG), and modified fractional (MFHG) hedo-

nic games. Each of these can model different aspects of dividing a

society into groups. For all classes of games, we give algorithms

that find Pareto-optimal partitions under some natural restrictions.

While the output is also individually rational for modified fractional

hedonic games, combining both notions is NP-hard for symmetric

ASHGs and FHGs. In addition, we prove that welfare-optimal and

Pareto-optimal partitions coincide for simple, symmetric MFHGs,

solving an open problem from Elkind et al. [9]. For general MFHGs,

our algorithm returns a 2-approximation to welfare. Interestingly,

welfare-optimal partitions in MFHGs only require coalitions of at

most three agents.
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1 INTRODUCTION
Coalition formation is a central problem in multi-agent systems

and has been extensively studied, ever since the publication of

von Neumann and Morgenstern’s Theory of Games and Economic
Behavior in 1944. In coalition formation, every agent of a group

seeks to be in a desirable coalition. As an important special case

therein, in clustering problems, a society is observed, for which

a structuring into like-minded groups, or communities, is to be

identified [16]. Coalition scenarios can be modeled by letting the

agents submit preferences, subject to which the happiness of an

individual agent with her coalition, or the like-mindedness of a

coalition, can be measured. The goal of every individual agent is to

maximize the value of her coalition.

In many settings, it is natural to assume that an agent is only

concerned about her own coalition, i.e., externalities are ignored.

As a consequence, much of the research on coalition formation

now concentrates on these so-called hedonic games [7]. Still, the
number of coalitions an agent can be part of is exponential in the
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number of agents, and therefore it is desirable to consider expres-

sive, but succinctly representable classes of hedonic games. This

can be established by encoding preferences by means of a complete

directed weighted graph where an edge weight 𝑣𝑥 (𝑦) is a cardinal
value or utility that agent 𝑥 assigns to agent 𝑦. Still, this underlying

structure leaves significant freedom, how to obtain (cardinal) pref-

erences over coalitions. An especially appealing type of preferences

is to have the sum of values of the other individuals as the value

of a coalition. This constitutes the important class of additively

separable hedonic games (ASHGs) [6].

In ASHGs, an agent is willing to accept an additional agent into

her coalition as long as her valuation of this agent is non-negative

and in this sense, ASHGs are not sensitive to the intensities of single-

agent preferences. In particular, if all valuations are non-negative,

forming the grand coalition consisting of all agents is a best choice

for every agent. In contrast, fractional hedonic games (FHGs) define

preferences over coalitions by dividing the sum of values by the size

of the coalition [1]. This incentivizes agents to form dense cliques,

and therefore appropriately models like-mindedness in the sense

of clustering problems.

On the other hand, agents in FHGs may improve with a new

agentwhose valuation is below the average of their current coalition

partners. To avoid this, it is also natural to define the value of a

coalition as the average value of other agents, i.e., the denominator

in the definition of FHGs is replaced by the size of the coalition

minus 1. This defines the class of modified fractional hedonic games

(MFHGs) [17]. For all measures of stability and optimality that have

been investigated, these games do not guarantee the formation of

large cliques and are therefore less suitable for clustering problems.

In fact, partitions of agents into coalitions satisfying many desirable

properties can be computed in polynomial time, often simply by

computing maximum (weight) matchings. However, these games

ensure a certain degree of homogeneity of the agents, as agents tend

to contribute uniformly to each other’s utility in stable coalitions.

Having selected a representation for modeling the coalition for-

mation process, one needs a measure for evaluating the quality of a

partition. Various such measures, also called solution concepts, have
been proposed in the literature. Most of them aim to guarantee

a certain degree of stability—preventing single agents or groups

from agents to break apart from their coalitions—and optimality—

guaranteeing a globally measured outcome that is good for the

society as entity. A good overview of solution concepts is by Aziz

and Savani [5]. Themost undisputedmeasure of optimality is Pareto-
optimality, i.e., there should be no other partition, such that every

agent is weakly, and some agent strictly, better off. Apart from

its optimality guarantee, Pareto-optimality can also be seen as a

measure of stability, because a Pareto-optimal partition disallows

an agent to propose a partition she prefers without having another

agent vetoing this proposal. A stronger notion of optimality is that



of (utilitarian) welfare-optimality, which aims to maximize the sum

of utilities of all agents.

Pareto-optimal outcomes still might be extremely disadvanta-

geous for single agents that receive large negative utility in or-

der to give small positive utility to another agent. Therefore, it is

also desirable that agents receive at least the utility they would

receive in a coalition of their own (in all our models this means

non-negative utility). This condition is called individual rationality.
Clearly, a Pareto-optimal and individually rational outcome can

always be found by the simple local search algorithm that starts

with the partition of the agents into singleton coalitions and moves

to Pareto-improvements as long as these exist. In general, this basic

algorithm need not run in polynomial time and the output need

not be welfare-optimal. It can even occur that no welfare-optimal

partition is individually rational. As we will see, it is even often

NP-hard to compute a Pareto-optimal and individually rational

partition (Theorem 5.2, Theorem 6.4).

We study Pareto-optimality in all three classes of games, and

give polynomial-time algorithms for computing Pareto-optimal

partitions in important subclasses, including symmetric ASHGs

and MFHGs. In addition, we prove that welfare-optimal and Pareto-

optimal partitions coincide for simple symmetric MFHGs, closing

the bounds on the price of Pareto-optimality for this class of games

left by Elkind et al. [9]. In the weighted case, our algorithm for

Pareto-optimality in MFHGs gives a 2-approximation of welfare

and its output is always individually rational. While we can prove

that even in the weighted case, welfare-optimality is attained by

a partition consisting only of coalitions of size two and three, the

complexity of computing a welfare-optimal partition remains open.

On the other hand, we prove that computing a Pareto-optimal and

individually rational partition is NP-hard for symmetric ASHGs and

FHGs, thus extending a result by Aziz et al. [3] for general ASHGs.

Note that symmetry is a significant restriction for hardness reduc-

tions, because non-symmetric games allow for the phenomenon of

non-mutual interest.

2 RELATEDWORK
Hedonic games were first introduced by Drèze and Greenberg [7].

Since then, a great amount of research has been devoted to the study

of algorithmic and mathematical properties of axiomatic concepts

regarding stability and optimality, representability of preferences,

and the discovery of well-behaved, yet expressive classes of hedonic

games. The survey by Hajduková [12] gives a critical overview

of preference representations and conditions that allow for the

existence and efficient computability of central stability notions,

such as Nash and core stability.

Pareto-optimality can be studied in many classes of hedo-

nic games by exploiting a strong relationship between Pareto-

optimality and perfection, i.e., partitions that put every agent in one

of her most preferred partitions [2]. This gives rise to the preference

refinement algorithm (PRA) which finds Pareto-optimal partitions

under certain conditions by means of a perfection-oracle. The re-

sulting Pareto-optimal partitions are even individually rational.

The assumptions required for the algorithm include the efficient

computation of preference refinements, which is not possible for

ASHGs and FHGs. Indeed, during the PRA, one has to search a set

of hedonic games that interpolates between two preference profiles

and can contain games not implementable as an ASHG or FHG,

respectively. In fact, for ASHGs and FHGs, perfect partitions can be

computed in polynomial time (Theorem 5.4, Theorem 6.6), while

computing Pareto-optimal and individually rational partitions is

NP-hard (Theorem 5.2, Theorem 6.4).

For cardinal hedonic games, stability and optimality have been

studied to some extent. Gairing and Savani [10, 11] settled the

complexity of the individual-player stability notions of Drèze and

Greenberg for symmetric ASHGs by treating them as local search

problems. For FHGs, hardness and approximation results for wel-

fare are given by Aziz et al. [4], while Aziz et al. [1] study stability.

Monaco et al. [15] show the tractability of some stability notions

and welfare-optimality for simple symmetric MFHGs, and the com-

putability of partitions in the core for weighted MFHGs. The ap-

proximation results for FHGs and most of the positive results for

MFHGs rely on computing specific matchings.

Pareto-optimality for cardinal hedonic games wasmainly studied

by Elkind et al. [9] in terms of the price of Pareto-optimality (PPO),

a worst-case ratio of Pareto-optimal and welfare-optimal partitions.

The focus lies on simple symmetric graphs and their main result is

to bound the PPO between 1 and 2 for simple, symmetric MFHGs.

Since we show that, for these games, every Pareto-optimal parti-

tion is welfare-optimal, we will close this gap. Pareto-optimality

for ASHGs was considered by Aziz et al. [3]. However, they only

dealt with a restricted class of preferences that guarantees unique

top-ranked coalitions and therefore one can apply a simple serial

dictatorship algorithm.

3 PRELIMINARIES
The primary ingredient of our model is a set of agents 𝑁 that

assign hedonic preferences over partitions of 𝑁 (also called coalition
structures), where the only information of a partition an agent

is interested in, is her own coalition. Preferences of agent 𝑖 are

therefore given over N𝑖 = {𝐶 ⊆ 𝑁 : 𝑖 ∈ 𝐶}, i.e., the subsets of

agents including herself, by valuation functions 𝑣𝑖 : N𝑖 → R. We

investigate a partition 𝜋 of the agents for notions of optimality and

stability, most importantly Pareto-optimality. Given a partition 𝜋 ,

we denote by 𝜋 (𝑖) the partition of agent 𝑖 and the utility she received
from this partition by 𝑣𝑖 (𝜋) = 𝑣𝑖 (𝜋 (𝑖)). A partition 𝜋 ′ is a Pareto-
improvement over 𝜋 if, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋 ′) ≥ 𝑣𝑖 (𝜋) and
there exists an agent 𝑗 ∈ 𝑁 with 𝑣 𝑗 (𝜋 ′) > 𝑣 𝑗 (𝜋). In this case, we

also say that 𝜋 ′ Pareto-dominates 𝜋 . A partition 𝜋 is Pareto-optimal
if it is not Pareto-dominated.

A stronger requirement is that of (utilitarian) welfare-optimality.
For a subset 𝑀 ⊆ 𝑁 of agents, we denote 𝑣𝑀 (𝜋) =

∑
𝑖∈𝑀 𝑣𝑖 (𝜋).

The social welfare of a coalition 𝐶 is SW(𝐶) = 𝑣𝐶 (𝜋). The social
welfare of a partition 𝜋 is SW(𝜋) = ∑

𝐶∈𝜋 SW(𝐶) =
∑
𝑖∈𝑁 𝑣𝑖 (𝜋).

A partition 𝜋 is called welfare-optimal if it maximizes the function

SW amongst all partitions of agents. Welfare-optimal partitions

are Pareto-optimal.

A partition 𝜋 is individually rational for agent 𝑖 if 𝑣𝑖 (𝜋) ≥ 𝑣𝑖 ({𝑖}),
i.e., agent 𝑖 does not prefer to stay alone. In addition, 𝜋 is individually
rational if it is individually rational for every agent. Partitions that

are welfare-optimal or individually rational and Pareto-optimal

always exist.



Preferences are succinctly represented by a family of cardinal

utility functions (𝑣𝑖 )𝑖∈𝑁 where 𝑣𝑖 : 𝑁 → R with 𝑣𝑖 (𝑖) = 0 that

can be aggregated to preferences over coalitions. A natural repre-

sentation is by means of a complete, directed, and weighted graph

𝐺 = (𝑁, 𝐸, 𝑣) where the weights are defined by the utility func-

tions. A game is called symmetric if, for all pairs of agents 𝑖, 𝑗 ∈ 𝑁 ,

𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖). In this case, the underlying graph is symmetric and

we denote 𝑣 (𝑒) = 𝑣 (𝑖, 𝑗) = 𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖) for a 2-elementary set

of agents 𝑒 = {𝑖, 𝑗}. A game is called simple if 𝑣𝑖 ( 𝑗) ∈ {0, 1} for
all agents 𝑖, 𝑗 ∈ 𝑁 . A hedonic game with simple and symmetric

preferences can therefore be represented by an unweighted and

undirected (but incomplete) graph.

We define the aggregated utilities for ASHGs, FHGs, and MFHGs

for partition 𝜋 and agent 𝑖 by

𝑣𝐴𝑆𝐻𝐺
𝑖 (𝜋) =

∑
𝑗 ∈𝜋 (𝑖)

𝑣𝑖 ( 𝑗)

𝑣𝐹𝐻𝐺
𝑖 (𝜋) =

𝑣𝐴𝑆𝐻𝐺
𝑖

(𝜋)
|𝜋 (𝑖) | , and

𝑣𝑀𝐹𝐻𝐺
𝑖 (𝜋) =

{
𝑣𝐴𝑆𝐻𝐺
𝑖

(𝜋 )
|𝜋 (𝑖) |−1 for 𝜋 (𝑖) ≠ {𝑖}

0 for 𝜋 (𝑖) = {𝑖}.

If it is clear from the context which game is considered, we omit

the superscripts of the utility functions.

We use the following notation from graph theory. For an arbi-

trary graph 𝐺 = (𝑉 , 𝐸), a vertex set𝑊 ⊆ 𝑉 and an edge set 𝐹 ⊆ 𝐸,

denote by 𝐺 [𝑊 ] and 𝐺 [𝐹 ] the subgraph of 𝐺 induced by𝑊 and 𝐹 ,

respectively, and denote by 𝐸 (𝐺) its edge set.

4 MODIFIED FRACTIONAL HEDONIC GAMES
In this section we focus on symmetric MFHGs. The analysis of

Pareto-optimality on this class of games relies on an extension of

maximum matchings to cliques. Given a graph, a set C of vertex-

disjoint cliques, each of size at least 2, is called a clique match-
ing. A vertex that is part of any clique in C is called covered or

matched. We are interested in clique matchings that cover a maxi-

mum number of vertices. We call the corresponding search problem

MaxCliqueMatching. Interestingly, a clique matching is maximum

if and only if it is inclusion-maximal w.r.t. vertices, i.e., there ex-

ists no other clique matching covering a strict superset of vertices

(Theorem 4.5), and can be computed in polynomial time. We can

further simplify the analysis to the special case that only triangles

and edges are allowed.

Given a graph, a set of vertex disjoint cliques, each of size

2 or 3, is called a 3-clique matching. By splitting larger cliques,

MaxCliqueMatching is equivalent to Max3CliqueMatching, i.e.,
finding a maximum 3-clique matching. Given a 3-clique match-

ing C, we denote by 𝑀 (C) and 𝑇 (C) its cliques of size 2 (edges)
and size 3 (triangles), respectively.

Theorem 4.1 (Hell and Kirkpatrick [13]). The problem
Max3CliqueMatching can be solved in polynomial time.

We prove that MaxCliqueMatching is equivalent to finding a

Pareto-optimal partition on an MFHG. Note that a relationship be-

tween clique matchings and simple symmetric MFHGs was already

exploited by Monaco et al. [15] for computing welfare-optimal

partitions.

Theorem 4.2. MaxCliqueMatching is equivalent to finding a
Pareto-optimal partition on a symmetric MFHG (under Turing reduc-
tions). Moreover, if we can solve MaxCliqueMatching in polynomial
time, we can even compute a Pareto-optimal and individually rational
partition for a symmetric MFHG in polynomial time.

Proof. Assume first that we are given an algorithm to find

a Pareto-optimal partition on a symmetric MFHG and let 𝐺 =

(𝑉 , 𝐸) be an instance of MaxCliqueMatching. We transform𝐺 into

an MFHG with the underlying weighted symmetric graph 𝐺 ′ =
(𝑉 , 𝐸 ′, 𝑣) where 𝐸 ′ = {𝑒 ⊆ 𝑉 : |𝑒 | = 2} and

𝑣 (𝑒) =
{
1 if 𝑒 ∈ 𝐸
−Δ − 1 else,

where Δ is the maximum degree of a vertex in 𝐺 .

Let 𝜋 be a Pareto-optimal partition of vertices into coalitions

for the symmetric MFHG with underlying graph 𝐺 ′. Define C =

{𝑃 ∈ 𝜋 : |𝑃 | ≥ 2}. Then, C consists of cliques in 𝐺 . Otherwise, by

construction of the utilities, there is one agentwho receives negative

utility. Assume for contradiction that there exists a coalition 𝑃 ∈ C
such that some agents in 𝑃 receive negative utility. Let 𝑆 = {𝑝 ∈
𝑃 : 𝑣 (𝑝, 𝑝 ′) = 1 for all 𝑝 ′ ∈ 𝑃\{𝑝}} be the set of agents that receive
non-negative utility from all other agents in 𝑃 . Since some agents

receive negative utility, there exists an agent 𝑞 ∈ 𝑃\𝑆 . But then,
the coalition 𝑆𝑞 = 𝑆 ∪ {𝑞} forms a clique in 𝐺 and the partition

𝜋 ′ = (𝜋\{𝑃}) ∪ {𝑆𝑞} ∪ {{𝑝 ′} : 𝑝 ′ ∈ 𝑃\𝑆𝑞} is a Pareto improvement

over 𝜋 . Hence, 𝜋 consists only of cliques and, by design of theMFHG

utilities, assigns utility 1 to agents in a clique of size at least 2, and

0 to agents in singleton coalitions. Consequently, C is inclusion-

maximal w.r.t. vertices, because every clique matching that covers

strictly more agents gives rise to a Pareto-improvement that assigns

utility 1 to a strict superset of agents that already receive utility 1.

Hence, we can solve MaxCliqueMatching by computing a Pareto-

optimal partition of the MFHG induced by 𝐺 ′.
Conversely, assume that we can solve MaxCliqueMatching. Con-

sider a symmetric MFHG induced by a complete weighted graph

𝐺 = (𝑁, 𝐸, 𝑣). Algorithm 1 computes a Pareto-optimal partition

in polynomial time given an algorithm MaxCliqueMatching that
computes a vertex-maximal clique matching in polynomial time.

The idea is to restrict attention to the unweighted subgraph induced

by edges with the largest positive weight still available.

The running time of the algorithm is clearly polynomial, includ-

ing polynomially many calls of MaxCliqueMatching. We prove its

correctness. Let 𝜋 be the output of the algorithm. First, note that

all non-singleton coalitions are cliques in 𝐺 with identical positive

utility within each clique. Hence, the output is individually rational.

For the proof of Pareto optimality, we assume that the while loop

took𝑚 iterations and we subdivide 𝜋 = S ∪⋃𝑚
𝑘=1
C𝑘 , where C𝑘 is

the clique matching in iteration 𝑘 , and S consists of the singleton

coalitions that are added to 𝜋 after the while loop. We will show by

induction over𝑚 that if the algorithm uses𝑚 iterations of the while

loop, then the output is Pareto-optimal. Let 𝜋 ′ be any coalition such

that, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) ≤ 𝑣𝑖 (𝜋 ′). We will prove that this

implies, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) = 𝑣𝑖 (𝜋 ′).



Input: Symmetric MFHG induced by graph 𝐺 = (𝑁, 𝐸, 𝑣)
Output: Pareto-optimal and individually rational partition 𝜋

𝜋 ← ∅, 𝐴← 𝑁 , 𝐺𝑟 ← 𝐺 [{𝑒 ∈ 𝐸 : 𝑣 (𝑒) > 0}]
while 𝐸 (𝐺𝑟 ) ≠ ∅ do
𝑣max ← max{𝑣 (𝑒) : 𝑒 ∈ 𝐸 (𝐺𝑟 )}
𝐸𝐻 ← {𝑒 ∈ 𝐸 (𝐺𝑟 ) : 𝑣 (𝑒) = 𝑣max}
𝐻 ← 𝐺𝑟 [𝐸𝐻 ]
C ← MaxCliqueMatching(𝐻 )
𝜋 ← 𝜋 ∪ C
𝐴← {𝑎 ∈ 𝐴 : 𝑎 not covered by C}
𝐺𝑟 ← 𝐺𝑟 [𝐴]

return 𝜋 ∪ {{𝑎} : 𝑎 ∈ 𝐴}

Algorithm 1: Pareto-optimal partition of a sym. MFHG

If 𝑚 = 0, 𝐺 contains no edges of positive weight and there-

fore, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) = 0 ≥ 𝑣𝑖 (𝜋 ′). For the induction
step, let 𝑚 ≥ 1. Let 𝐻 be the auxiliary graph of the first while

loop. Note that within 𝜋 , agents in C1 can only be matched with

agents in 𝐻 since they receive the highest possible utility of any

agent in any coalition in 𝐺 and every other agent diminishes their

MFHG utility. In particular, they cannot be better off. Since C1 is
a vertex-maximal clique matching on 𝐻 , no agent in 𝐻 not cov-

ered by C1 can be in a coalition with an agent in C1 in 𝜋 ′. Define
𝑊 = {𝑖 ∈ 𝑁 : 𝑖 not covered by C1} and consider 𝐺 = 𝐺 [𝑊 ]. Then
𝜋 = S ∪⋃𝑚−1

𝑘=1
C𝑘+1 is a possible outcome of the algorithm for 𝐺 .

Furthermore, 𝜋 ′ restricted to agents in𝑊 is weakly better for any

agent in𝑊 than 𝜋 . Hence, by induction, also no agent outside C1
can be better off. □

Even though Pareto-optimal outcomes may be worse than

welfare-optimal outcomes by an arbitrarily large factor, the output

of the above algorithm guarantees significant social welfare.

Theorem 4.3. Let a symmetric MFHG be given. Let 𝜋 be the par-
tition computed by Algorithm 1 for this game. Then, for any welfare-
optimal partition 𝜋∗, it holds that 2SW(𝜋) ≥ SW(𝜋∗).

Proof. Consider a symmetric MFHG induced by graph 𝐺 =

(𝑁, 𝐸, 𝑣). Let 𝜋 be a partition computed by Algorithm 1 for this

game and let 𝜋∗ be welfare-optimal. We will show that, for any

coalition 𝐶 ∈ 𝜋∗, it holds that 2𝑣𝐶 (𝜋) ≥ 𝑣𝐶 (𝜋∗), which implies the

assertion.

Before we prove this, we make the observation that, for each

edge {𝑥,𝑦} = 𝑒 ∈ 𝐸, it holds that 𝑣𝑥 (𝜋) ≥ 𝑣 (𝑥,𝑦) or 𝑣𝑦 (𝜋) ≥
𝑣 (𝑥,𝑦). Indeed, if 𝑣 (𝑥,𝑦) ≤ 0, then this follows from the individual

rationality of 𝜋 . If we reach a maximum weight 𝑣max ≤ 𝑣 (𝑥,𝑦)
in the while loop and 𝑥 ∉ 𝐺𝑟 or 𝑦 ∉ 𝐺𝑟 then 𝑣𝑥 (𝜋) > 𝑣 (𝑥,𝑦) or
𝑣𝑦 (𝜋) > 𝑣 (𝑥,𝑦). Otherwise, we reach an iteration where 𝑣max =

𝑣 (𝑥,𝑦) and any maximum clique matching matches at least one of

them.

Now let any coalition 𝐶 ∈ 𝜋∗ be given where |𝐶 | = 𝑘 . The next

step is to sort the agents in 𝐶 by means of Algorithm 2. The result-

ing order places the agents essentially in decreasing value 𝑤𝑖 of

an incident edge of high utility. Let (𝑐1, . . . , 𝑐𝑘 ), (𝑤1, . . . ,𝑤𝑘 ) be an
outcome of this algorithm. We claim that for every 𝑖 ∈ {1, . . . , 𝑘},
𝑣𝑐𝑖 (𝜋∗) ≤ 𝑣𝑐𝑖 (𝜋) +

∑
1≤ 𝑗<𝑖

𝑤𝑗

𝑘−𝑗 . Note that for all 1 ≤ 𝑗 < 𝑖 ,

Input: Coalition 𝐶 ∈ 𝜋∗
Output: Order (𝑐1, . . . , 𝑐𝑘 ) of 𝐶 and weights (𝑤1, . . . ,𝑤𝑘 )

𝐻 ← 𝐶 , 𝐹 ← {{𝑥,𝑦} ∈ 𝐸 : 𝑥,𝑦 ∈ 𝐶, 𝑣 (𝑥,𝑦) > 0}, 𝑗 ← 1

while 𝐹 ≠ ∅ do
𝑣max ← max{𝑣 (𝑒) : 𝑒 ∈ 𝐹 }
Choose {𝑥,𝑦} ∈ argmax{𝑣 (𝑥,𝑦) : {𝑥,𝑦} ∈ 𝐹 } with 𝑣𝑥 (𝜋) ≥
𝑣 (𝑥,𝑦)
𝑐 𝑗 ← 𝑥 ,𝑤 𝑗 ← 𝑣max

𝐻 ← 𝐻\{𝑥}, 𝐹 ← {𝑒 ∈ 𝐹 : 𝑥 ∉ 𝑒}, 𝑗 ← 𝑗 + 1
Order 𝐻 = (𝑐 𝑗 , . . . , 𝑐𝑘 ) arbitrarily,𝑤𝑖 ← 0 for 𝑖 = 𝑗, . . . , 𝑘

return (𝑐1, . . . , 𝑐𝑘 ), (𝑤1, . . . ,𝑤𝑘 )

Algorithm 2: Special ordering for weight distribution

𝑣 (𝑐𝑖 , 𝑐 𝑗 ) ≤ 𝑤 𝑗 and for all 𝑗 > 𝑖 , 𝑣 (𝑐𝑖 , 𝑐 𝑗 ) ≤ 𝑤𝑖 . Hence,

𝑣𝑐𝑖 (𝜋∗) =
∑
𝑗≠𝑖

𝑣 (𝑐𝑖 , 𝑐 𝑗 )
𝑘 − 1 ≤

∑
𝑗>𝑖

𝑤𝑖

𝑘 − 1 +
∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 1

≤
∑
𝑗>𝑖

𝑤𝑖

𝑘 − 𝑖 +
∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
= 𝑤𝑖 +

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
≤ 𝑣𝑐𝑖 (𝜋) +

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
.

We infer that

𝑣𝐶 (𝜋∗) =
𝑘∑
𝑖=1

𝑣𝑐𝑖 (𝜋∗) ≤
𝑘∑
𝑖=1

©«𝑣𝑐𝑖 (𝜋) +
∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗

ª®¬
= 𝑣𝐶 (𝜋) +

𝑘∑
𝑖=1

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
= 𝑣𝐶 (𝜋) +

𝑘∑
𝑗=1

(𝑘 − 𝑗)
𝑤 𝑗

𝑘 − 𝑗
≤ 2𝑣𝐶 (𝜋) .

□

Note that the approximation guarantee of the theorem extends

to the case of non-symmetric weights, because the symmetrization

𝑣 ′(𝑥,𝑦) = 1

2
(𝑣𝑥 (𝑦) + 𝑣𝑦 (𝑥)) preserves the welfare.

Moreover, the factor of 2 is the best possible approximation

guarantee of Algorithm 1. Let 𝜖 > 0 and the complete graph on

vertex set 𝑉 = {𝑤, 𝑥,𝑦, 𝑧} be given with weights as

𝑣 (𝑒) =


1 + 𝜖 if 𝑒 = {𝑥,𝑦}
1 if 𝑒 ∈ {{𝑤, 𝑥}, {𝑦, 𝑧}}
0 else.

𝑤 𝑥 𝑦 𝑧
1 1 + 𝜖 1

Then, the output of Algorithm 1 is 𝜋 = {{𝑥,𝑦}, {𝑤}, {𝑧}} with
SW(𝜋) = 2 + 2𝜖 while 𝜋∗ = {{𝑤, 𝑥}, {𝑦, 𝑧}} is welfare-optimal

with SW(𝜋∗) = 4.

In the special case of simple symmetric games, the output is

welfare-optimal. The proof uses the characterization of Pareto-

optimal partitions by Elkind et al. [9, Lemma 15] that have observed

that all coalitions in such partitions are stars or cliques. The proof

shows that some welfare-optimal partition is a clique matching and

therefore, all maximum clique matchings are welfare-optimal. We

omit the proof due to space restrictions.

Theorem 4.4. Let a simple symmetric MFHG be given. Let 𝜋 be
a clique matching of the underlying unweighted graph. Then, 𝜋 is



welfare-optimal if and only if it is a maximum clique matching. In
particular, the output of Algorithm 1 is welfare-optimal.

As we have seen in the above example, Pareto-optimal partitions

need not be welfare-optimal. However, this was shown by Elkind

et al. [9] for simple, symmetric MFHGs induced by a bipartite graph,

and we will extend their result to simple symmetric MFHGs. While

their results rely on estimating the welfare of partitions in terms of

minimum vertex covers, we will exploit a combinatorial description

of Max3CliqueMatching. We will develop it using terminology

closely related to the famous blossom algorithm by Edmonds [8]

to show the close relationship of computing maximum cardinality

matchings and maximum size 3-clique matchings.

The blossom algorithm deals with odd cycles by finding sub-

graphs called flowers. Let a graph𝐺 = (𝑉 , 𝐸) together with a match-

ing 𝑀 be given. A path is called 𝑀-alternating if it alternately

uses edges of 𝑀 and outside 𝑀 . An 𝑀-augmenting path is an 𝑀-

alternating path starting and ending at vertices not covered by𝑀 .

An𝑀-stem is an𝑀-alternating path of even length. The uncovered

endpoint is its root, the covered endpoint is its tip. An 𝑀-blossom
is an odd cycle 𝐶 = (𝐵, 𝐸𝐵) of 𝐺 such that all vertices except one

are covered by𝑀 ∩ 𝐸𝐵 . Let𝐶 = (𝐵, 𝐸𝐵) be an𝑀-blossom such that

𝑏 ∈ 𝐵 is uncovered and let 𝑏1, 𝑏2 ∈ 𝐵 be the neighbors of 𝑏 on 𝐶 .

𝐵 is called 𝑀-chordal if {𝑏1, 𝑏2} ∈ 𝐸. An 𝑀-(chordal) flower is the
union of a stem and a (chordal) blossom that intersect exactly in

the tip of the stem. An example of a chordal flower together with

an augmentation is given in Figure 1. If the matching is clear from

the context, we will not specify it for the previous notation.

𝑏

𝑏2

𝑏1

root

Figure 1: The bold matching indicates a chordal flower that
can be augmented via the gray clique cover.

Theorem 4.5 (Hell and Kirkpatrick [13]). Let 𝐺 = (𝑉 , 𝐸) be a
graph. Then C is a maximum size 3-clique matching if and only if

(1) There exists no𝑀 (C)-augmenting path.
(2) There exists no𝑀 (C)-alternating path starting at an uncovered

vertex and ending at a vertex covered by a triangle.
(3) There exists no𝑀 (C)-chordal flower.

In particular, a clique matching is maximum if and only if is vertex-
maximal.

Note that compared to the classical characterization of maximum

cardinalitymatchings, the second condition allows for improvement

by deleting a triangle, and the third one by creating one in order to

improve a 3-clique matching.

Theorem 4.6. Let a simple, symmetric MFHG be given. Let 𝜋 be a
partition of the agents. Then, 𝜋 is welfare-optimal if and only if it is
Pareto-optimal.

Proof sketch. Let an MFHG induced by a unweighted graph

𝐺 = (𝑉 , 𝐸) be given. Clearly, welfare-optimal partitions are Pareto-

optimal.

For the reverse implication, let 𝜋 be a Pareto-optimal partition

which consists of cliques and stars only [9, Lemma 15]. By splitting

larger cliques, we may assume that all cliques are of size 2 and 3

(splitting the cliques yields a partition with identical utilities). Let

S ⊆ 𝜋 be its star-coalitions. For any star 𝑆 with 𝑘𝑆 ≥ 2 leaves, let 𝑐𝑆

be its center and 𝑙𝑆
1
, . . . , 𝑙𝑆

𝑘𝑆
be its leaves. We define a new partition

𝜋 ′ = {𝐶 ∈ 𝜋 : 𝐶 ∉ S} ∪ {{𝑐𝑆 , 𝑙𝑆
1
}, {𝑙𝑆

2
}, . . . , {𝑙𝑆

𝑘𝑆
} : 𝑆 ∈ S}. Then,

SW(𝜋 ′) = SW(𝜋). The core of the proof is that 𝜋 ′ is a maximum

clique matching and therefore by Theorem 4.4 welfare-optimal.

Define the set𝑀S = {{𝑐𝑆 , 𝑙𝑆
1
} : 𝑆 ∈ S}, i.e., the set of edges that

are added to the partition 𝜋 ′. Then,𝑀 (𝜋 ′) = 𝑀 (𝜋) ∪𝑀S is the set

of 2-cliques of the 3-clique matching 𝜋 ′.
We will prove that the conditions of the combinatorial character-

ization of Theorem 4.5 are satisfied. First, assume that there exists

an𝑀 (𝜋 ′)-augmenting path 𝑃 . An illustration of this step is given

after the proof with the aid of Figure 2.

For 𝑒 ∈ 𝑀S , we denote by 𝑆𝑒 the star which the edge 𝑒 originates
from. An edge 𝑒 ∈ 𝑀S ∩ 𝑃 is called exterior if 𝑐𝑆𝑒 , the center vertex
of 𝑆𝑒 , is the second or second-last vertex on the path. Otherwise,

we call the edge interior.
For an exterior edge 𝑒 , we denote by 𝑡 (𝑒) the endpoint of 𝑃 that

is a neighbor of 𝑐𝑆𝑒 on 𝑃 . The first step is to modify 𝑃 . In a second

step, the modified path will yield a Pareto-improvement over 𝜋 . An

exterior edge 𝑒 is called saturated if 𝑡 (𝑒) is a leaf of 𝑆𝑒 . An interior

edge 𝑒 is called saturated if all leaves of 𝑆𝑒 are covered by 𝑃 .

First, we may assume that every exterior edge is saturated or

there exists only one exterior edge 𝑒∗ which corresponds to a star

𝑆 with two leaves and 𝑙𝑆
2
is the endpoint of 𝑃 that is not 𝑡 (𝑒∗).

To this end, assume first that there exist two exterior edges 𝑒 and

𝑓 originating from stars 𝑆 and 𝑇 , respectively. Replacing 𝑡 (𝑒) and
𝑡 (𝑓 ) by 𝑙𝑆

2
and 𝑙𝑇

2
leaves both edges saturated. Otherwise, if 𝑒∗ is

the only exterior edge originating from star 𝑆 , and is not saturated,

then 𝑆 has only two leaves, or we can replace 𝑡 (𝑒∗) by a leaf of 𝑆

uncovered by 𝑃 . In addition, if 𝑙𝑆
2
is not the other endpoint of 𝑃 , we

can replace 𝑡 (𝑒∗) by 𝑙𝑆
2
. This establishes the claim.

Second, we show that we can additionally assume that all interior

edges are saturated. Indeed, if 𝑒 is an interior edge and 𝑙 is a leaf

of 𝑆𝑒 not covered by 𝑃 , then we can replace 𝑃 by the augmenting

path that starts with 𝑙 and proceeds on 𝑃 with 𝑒 . Assume that the

path ends in an exterior edge 𝑓 . If 𝑓 is not saturated, we replace

𝑡 (𝑓 ) by 𝑙𝑆𝑓
2

. Otherwise, we follow the path to the end. In any case,

this procedure yields a path 𝑃 ′ such that all exterior edges are as

after the first step and all interior edges are saturated.

We will show how to obtain a Pareto-improvement over 𝜋 from

𝑃 . Label the vertices of the path 𝑝0, . . . , 𝑝𝑚 for some (odd) integer𝑚.

If the first matching-edge of the path is exterior and saturated, we

delete 𝑝0 and 𝑝1 from the path. If the last matching-edge is exterior

and saturated, we delete 𝑝𝑚−1 and 𝑝𝑚 from the path. This leaves a

path 𝑃 ′ on vertices 𝑝 ′
0
, . . . , 𝑝 ′

𝑚′ such that all leaves corresponding

to stars of edges in𝑀S ∩ 𝑃 ′ are covered by 𝑃 ′. Let T be the set of

star coalitions 𝑇 such that 𝑐𝑇 ∉ {𝑝 ′
0
, . . . , 𝑝 ′

𝑚′}, but some leaf of 𝑇 is

a endpoint of 𝑃 ′.



Consider 𝜋 ′ = {𝐶 ∈ 𝜋 : 𝐶 ∩ {𝑝0, . . . , 𝑝𝑚} = ∅} ∪
{𝑇 \{𝑝 ′

0
, 𝑝 ′

𝑚′} : 𝑇 ∈ T } ∪ (𝑃 ′\𝑀 (𝜋 ′)), which is a Pareto-

improvement over 𝜋 . Hence, 𝜋 is not Pareto-optimal, which is

a contradiction. Therefore, the first condition of the combinatorial

characterization is satisfied.

An example for this case is given in Figure 2. The path 𝑃 is formed

by the straight lines and the partition 𝜋 ′ by the bold edges. Dashed

edges indicate leaves of the stars 𝑆 and 𝑇 . The edge {𝑐𝑆 , 𝑙𝑆
1
} is exte-

rior and saturated, and the edge {𝑐𝑇 , 𝑙𝑇
1
} is interior and saturated.

The gray partition yields a Pareto-improvement over 𝜋 .

𝑙𝑆
3

𝑐𝑆
1

𝑙𝑆
1

𝑙𝑇
1

𝑐𝑇
1

𝑙𝑆
2

𝑙𝑇
2

Figure 2: Example of a Pareto-improvement that can be con-
structed from an𝑀 (𝜋 ′)-augmenting path.

The proofs that the second and third condition hold are similar,

and use that the first condition is already proved.

Hence, 𝜋 ′ is a maximum cliquematching and is therefore welfare-

optimal. Since SW(𝜋 ′) = SW(𝜋), it follows that 𝜋 is welfare-

optimal. □

As a corollary, we obtain efficient verification of Pareto-

optimality for simple symmetric MFHGs.

Theorem 4.7. The problem of verifying Pareto-optimality can be
done in polynomial time for simple symmetric MFHGs.

Proof. Let an MFHG be given and a partition 𝜋 that is to be

checked for Pareto-optimality. Simply compute a partition 𝜋∗ via
Algorithm 1 and compare their social welfare. By Theorem 4.2 and

Theorem 4.1, this runs in polynomial time. By Theorem 4.4, 𝜋∗ is
welfare-optimal. Finally, by Theorem 4.6, comparing social welfare

checks for Pareto-optimality. □

For general, weighted MFHGs, it is still of interest as to whether

one can also find a welfare-optimal partition in polynomial time.

While this question remains open, we can at least narrow down

the search to coalitions of small size. Then, a weighted version of

Max3CliqueMatching might give rise to an efficient algorithm.

The proof of the proposition relies on the fact that we can split

a coalition𝐶 of size at least 4 into an edge 𝑒 and the remainder𝐶\𝑒
such that SW(𝑒) + SW(𝐶\𝑒) ≥ SW(𝐶). The edge 𝑒 maximizes

a cleverly chosen objective function that relies on the weight of 𝑒 ,

the weight of the cut between 𝑒 and 𝐶\𝑒 , and the welfare of 𝐶\𝑒 .
Proposition 4.8. Let a partition 𝜋 of the agents of a general

MFHG be given. Then, there exists a partition 𝜋 ′ with |𝐶 | ≤ 3 for
all 𝐶 ∈ 𝜋 ′ with SW(𝜋 ′) ≥ SW(𝜋). In particular, there exists a
welfare-optimal partition consisting of coalitions of size at most 3.

5 ADDITIVELY SEPARABLE HEDONIC
GAMES

In this section, we will survey Pareto-optimality on ASHGs. Positive

results exist so far only for a very restrictive class that does not

allow for 0-weights, and unique top-ranked coalitions are therefore

guaranteed [3, Theorem 11]. We extend this result to a very general

class of ASHGs that includes symmetric ASHGs.

An ASHG is called mutually indifferent if 𝑣𝑖 ( 𝑗) = 0 implies

𝑣 𝑗 (𝑖) = 0 for every pair of agents 𝑖, 𝑗 . Note that every symmetric

ASHG is mutually indifferent.

Theorem 5.1. A Pareto-optimal outcome for mutually indiffer-
ent ASHGs can be computed in polynomial time. In particular, a
Pareto-optimal outcome for symmetric ASHGs can be computed in
polynomial time.

Proof. Consider Algorithm 3. The algorithm can be seen as

a variant of serial dictatorship where in every coalition formed

through a dictator 𝑑𝑖 , the dictator asks the agents in her coalition

to improve using a strict rank order such that none of higher rank

becomes worse off.

Input:Mutually indifferent ASHG induced by 𝐺 = (𝑁, 𝐸, 𝑣)
Output: Pareto-optimal partition 𝜋

𝜋 ← ∅, 𝐷 ← 𝑁 , 𝑖 ← 1

while 𝐷 ≠ ∅ do
Pick 𝑑𝑖 ∈ 𝐷
𝐶𝑖 ← {𝑑𝑖 } ∪ { 𝑗 ∈ 𝐷 : 𝑣𝑑𝑖 ( 𝑗) > 0}, 𝐼𝑖 ← { 𝑗 ∈ 𝐷 : 𝑣𝑑𝑖 ( 𝑗) = 0}
𝐻𝑖 ← 𝐶𝑖\{𝑑𝑖 }
while 𝐻𝑖 ≠ ∅ ∧ 𝐼𝑖 ≠ ∅ do

Pick ℎ ∈ 𝐻𝑖

𝐶𝑖 ← 𝐶𝑖 ∪ { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) > 0}
𝐻𝑖 ← (𝐻𝑖 ∪ { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) > 0})\{ℎ}
𝐼𝑖 ← { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) = 0}

𝜋 ← 𝜋 ∪ {𝐶𝑖 }, 𝐷 ← 𝐷\𝐶𝑖 , 𝑖 ← 𝑖 + 1
return 𝜋

Algorithm 3: Pareto-optimality for mutual indifference

The running time is polynomial since every edge in the graph

underlying the ASHG is checked at most once.

For correctness, denote by 𝐶1, . . . ,𝐶𝑘 the coalitions that form

in the order of the algorithm, and 𝐼𝑖 the respective indifference

sets (some may be empty) at the end of the inner while-loop. Note

that for all 𝑖 ∈ 1, . . . , 𝑘, 𝑎 ∈ 𝐶𝑖 , 𝑏 ∈ 𝐼𝑖 holds that 𝑣𝑎 (𝑏) = 0. For

correctness, assume that 𝜋 ′ is a partition such that for every agent

𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋 ′) ≥ 𝑣𝑖 (𝜋). If |𝐶𝑖 | > 1, then 𝐶𝑖 ⊆ 𝜋 ′(𝑑𝑖 ) ⊆ 𝐶𝑖 ∪ 𝐼𝑖 .

Hence, no agent in such a coalition will be better off. In addition,

no agent in a singleton coalition 𝐶𝑖 = {𝑑𝑖 } ∈ 𝜋 will be better off,

since they can only form coalitions with other singleton coalitions

or with coalitions such that they are in the set 𝐼 𝑗 , both of which

give them 0 utility. Therefore, no agent’s utility has improved. □

Slight modifications of the above algorithm give computational

tractability of Pareto-optimality even for more general classes of

ASHGs. The same algorithm works for the class of ASHGs such

that 𝑣𝑖 ( 𝑗) = 0 implies 𝑣 𝑗 (𝑖) ≤ 0 for every pair of agents 𝑖, 𝑗 . Hence,

the only edges remaining for the full domain of ASHGs are critical
edges of the form {𝑖, 𝑗} such that 𝑣𝑖 ( 𝑗) > 0 while 𝑣 𝑗 (𝑖) = 0. One

idea towards obtaining an algorithm for a more general class of

ASHGs is to use a pivoting rule that selects dictators. This allows,



for example, for a positive result for the class of ASHGs such that

the critical edges form a directed acyclic graph (using a topological

order on the agents for a pivoting rule).

The outcome of the algorithm can, however, have an arbitrar-

ily large gap to the maximum social welfare that is obtained in a

welfare-optimal outcome. In addition, all but one agent may obtain

a worst coalition. On the other hand, a Pareto-optimal and indi-

vidually rational outcome does always exist, but computing such a

partition is intractable. The following is a strengthening of a result

by Aziz et al. [3] who dealt with the whole class of ASHGs and

established weak NP-hardness.

The reduction is from the NP-complete problem Exact3Cover
[14]. An instance (𝑅, 𝑆) of Exact3Cover (X3C) consists of a ground
set 𝑅 together with a set 𝑆 of 3-element subsets of 𝑅. A ‘yes’ instance

is an instance so that there exists a subset 𝑆 ′ ⊆ 𝑆 that partitions 𝑅.

Theorem 5.2. Finding a Pareto-optimal and individually ratio-
nal partition for symmetric ASHGs is (strongly) NP-hard, even if all
weights are integers bounded from above by 3.

Proof sketch. We provide a Turing reduction, illustrated in

Figure 3, from X3C. Given an instance (𝑅, 𝑆) of X3C, we con-

struct the symmetric ASHG with agent set 𝑁 = 𝑅 ∪ 𝑉 where

𝑉 = {𝑠𝑖 : 𝑖 = 1, . . . , 5, 𝑠 ∈ 𝑆} consists of 5 copies of agents for the
sets in 𝑆 . Preferences are given by weights 𝑣 as

• 𝑣 (𝑖, 𝑗) = 0, 𝑖, 𝑗 ∈ 𝑅, 𝑖 ≠ 𝑗

• 𝑣 (𝑖, 𝑠1) = 2, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑠
• 𝑣 (𝑠1, 𝑠2) = 𝑣 (𝑠1, 𝑠3) = 𝑣 (𝑠2, 𝑠4) = 𝑣 (𝑠3, 𝑠5) = 𝑣 (𝑠4, 𝑠5) = 3,

𝑣 (𝑠2, 𝑠3) = 0, 𝑠 ∈ 𝑆 , and
• all other weights are set to −13.

𝑠1

𝑠3

𝑠5

𝑠2

𝑠4

3

3

3

3

3

0

𝑉 𝑠 = {𝑖, 𝑗, 𝑘 }

𝑅 0 0 0 0 0

𝑖 𝑗 𝑘

2 2 2

Figure 3: ASHG for the reduction. Indicated edges between
𝑅-agents haveweight 0, other omitted edges haveweight−13.

We will argue that if we can compute a Pareto-optimal and

individually rational partition, we can decide X3C. Amongst all

individually rational partitions, the highest utility that the agents

can obtain is 2, 6, and 3 for agents in 𝑅, {𝑠1 : 𝑠 ∈ 𝑆}, and {𝑠𝑖 : 𝑖 =
2, . . . , 4, 𝑠 ∈ 𝑆}, respectively. It can be shown that there exists an

individually rational partition that attains these bounds for every

agent if and only if there exists a 3-partition of 𝑅 through sets in 𝑆 .

Hence, we can solve X3C in polynomial time by computing

a Pareto-optimal and individually rational partition for the corre-

sponding ASHG, and check whether every agent receives the utility

of a best partition amongst individually rational partitions. □

By applying a local search algorithm that starts with the single-

ton partition, we obtain the following corollary.

Corollary 5.3. Finding a Pareto-improvement is NP-hard for
symmetric ASHGs.

Finally, it is interesting to see why the strong relation between

Pareto-optimality and perfection exploited by Aziz et al. [2] does

not hold for ASHGs. The preference refinement algorithm computes

an individually rational, Pareto-optimal partition given an oracle

that decides whether there exists a perfect partition and, in the case

there exists one, can compute one. While the former problem is

NP-hard, the latter can be solved in polynomial time by forming a

top-ranked coalition, adding requisite agents, and adding outside

agents that need an inside agent. This theorem even holds for the

more general class of separable hedonic games [3, Theorem 9].

Theorem 5.4. The problem of, given a general ASHG, computing
a perfect partition or deciding that no such partition exists, can be
done in polynomial time.

6 FRACTIONAL HEDONIC GAMES
The serial dictatorship version used for ASHGs in Algorithm 3

implicitly exploits the fact that ASHGs have the property that top-

ranked coalitions in subgames are the restrictions of top-ranked

coalitions in the original game. This is not the case anymore for

FHGs. However, the set of top-ranked coalitions can be described

using the following observation.

Proposition 6.1. Let an FHG be given based on a graph 𝐺 =

(𝑁, 𝐸, 𝑣) and let 𝑑 ∈ 𝑁 . Let 𝐶 be a top-ranked coalition of 𝑑 and
set 𝜇 = 𝑣𝑑 (𝐶). Then, 𝐶 = {𝑎 ∈ 𝑁 \{𝑑} : 𝑣𝑑 (𝑎) > 𝜇} ∪𝑊 for some
𝑊 ⊆ {𝑎 ∈ 𝑁 \{𝑑} : 𝑣𝑑 (𝑎) = 𝜇}.

Hence, to obtain the top-ranked coalitions of an agent, one can

order the other agents in decreasing value and add them until

another agent is not beneficial. If there are agents that give exactly

the utility of a top-ranked coalition, they may or may not be added.

We will now show efficient computability of Pareto-optimal

partitions for certain classes of FHGs. An FHG satisfies the equal
affection condition if 𝑣𝑥 (𝑦), 𝑣𝑥 (𝑧) > 0 implies 𝑣𝑥 (𝑦) = 𝑣𝑥 (𝑧) for
every triple of agents 𝑥,𝑦, and 𝑧. An FHG is called generic if 𝑣𝑥 (𝑦) ≠
𝑣𝑥 (𝑧) for every triple of agents 𝑥,𝑦, and 𝑧, i.e., the utilities over the

remaining set of agents are pairwise distinct for every agent.

Since the equal affection condition guarantees unique top-ranked

coalitions for every agent, we obtain the following theorem, which

applies in particular to simple FHGs.

Theorem 6.2. Finding a Pareto-optimal partition for FHGs satis-
fying the equal affection condition can be done in polynomial time.

Another variant of serial dictatorship finds Pareto-optimal parti-

tions on generic FHGs.

Theorem 6.3. Finding a Pareto-optimal partition for generic FHGs
can be done in polynomial time.

Proof sketch. Let an FHG be based on the graph𝐺 = (𝑁, 𝐸, 𝑣).
We give an algorithm based on serial dictatorship that exploits a dy-

namically created hierarchy for the dictatorship. The next dictator

is chosen based on the top choices of the previous dictator.

By Proposition 6.1, we know the structure of the top-ranked

coalitions of an agent. Let an agent set 𝑀 ⊆ 𝑁 be given, that

induces the FHG on the subgraph 𝐺 [𝑀], and let 𝑑 ∈ 𝑀 . There



exists a unique smallest top-ranked coalition, which we denote by

𝑇𝑑 (𝑀). Furthermore, for a generic FHG, there exist at most two

top-ranked coalitions. Denote in this case by 𝑡𝑑 (𝑀) the number of

such coalitions for agent 𝑑 in the subgame and if 𝑡𝑑 (𝑀) = 2, let

𝛼𝑑 (𝑀) ∈ 𝑀 be the unique agent such that𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)} is the
other top-ranked coalition.

We are ready to formulate the recursive algorithm A that com-

putes a Pareto-optimal partition by adding iteratively coalitions to a

partial partition. The actual Pareto-optimal partition is obtained by

choosing an arbitrary first dictator 𝑑 ∈ 𝑁 and calling A(𝑁, ∅, 𝑑).

Input: Non-empty agent set𝑀 , partial partition 𝜋 , pivot agent 𝑑

Output: Partition 𝜋

if 𝑡𝑑 (𝑀) = 1 then
if 𝑇𝑑 (𝑀) = 𝑀 then

return 𝜋 ∪ {𝑇𝑑 (𝑀)}
else

Pick 𝑑new ∈ 𝑀\𝑇𝑑 (𝑀)
Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝑑new)

else
if 𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) > 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) then

if 𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)} = 𝑀 then
return 𝜋 ∪ {𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}}

else
Pick 𝑑new ∈ 𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)})
Execute A(𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}), 𝜋 ∪ {𝑇𝑑 (𝑀) ∪
{𝛼𝑑 (𝑀)}}, 𝑑new)

else if 𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) < 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) or
𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) = 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) = 0 then

Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝛼𝑑 (𝑀))
else

Pick 𝑑new ∈ argmax{𝑣𝛼𝑑 (𝑀) (𝑥) : 𝑥 ∈ 𝑀\𝑇𝑑 (𝑀)}
if 𝛼𝑑 (𝑀) ∈ 𝑇𝑑new (𝑀\𝑇𝑑 (𝑀)) then

Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝑑new)
else
Execute A(𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}), 𝜋 ∪ {𝑇𝑑 (𝑀) ∪
{𝛼𝑑 (𝑀)}}, 𝑑new)

Algorithm 4: Pareto-optimal partition for generic FHG by
the recursive algorithm A

By the top-ranked coalition structure of agents in generic FHGs,

every step of Algorithm 4 can be executed and as argued after

Proposition 6.1, top-ranked coalitions can be efficiently computed.

Hence, the algorithm runs in polynomial time.

It can be checked that 𝜋 = A(𝑁, ∅, 𝑑) returns a Pareto-optimal

partition, provided that the input evolves from a generic FHG. □

Finally, similar statements as for ASHGs hold for FHGs. The

proofs are similar.

Theorem 6.4. Finding a Pareto-optimal and individually rational
partition for symmetric FHGs is NP-hard.

Theorem 6.5. Finding a Pareto-improvement is NP-hard for sym-
metric FHGs.

Theorem 6.6. The problem of, given an FHG, computing a perfect
partition or deciding that no such partition exists, can be done in
polynomial time.

7 CONCLUSION
We have investigated Pareto-optimality in three types of cardinal

hedonic games. The main findings and important related results

are collected in Table 1. We can efficiently find Pareto-optimal par-

titions in symmetric MFHGs and AHSGs, and reasonable classes

of FHGs including simple FHGs. The key insight for MFHGs is

the equivalence with an extension of matchings to cliques. The

combinatorial view of the problem allowed us to completely un-

derstand Pareto-optimal outcomes on simple, symmetric MFHGs,

where they coincide with welfare-optimal outcomes. This motivates

the study of the weighted case, where Pareto-optimal outcomes

have no guarantee on the welfare, and yet our algorithm returns

a 2-approximation to social welfare. The complexity of welfare-

optimization in the weighted case is an interesting open problem.

We are at least able to prove that coalitions of size 2 and 3 suffice,

which is in line with the research on any other solution concept for

MFHGs.

Pareto optimality Welfare optimality

PO PO∧IR Deterministic Approximation

MFHG P (sym, Thm. 4.2) P (sym, Thm. 4.2) P (0/1 sym, [15]) 2 (sym, Thm. 4.3)

ASHG P (sym, Thm. 5.1) NP-h (sym, Thm. 5.2) NP-h (sym, [3]) open

FHG P (0/1 sym, Thm. 6.2) NP-h (sym, Thm. 6.4) NP-h (0/1 sym, [4]) 4 (sym, [4])

Table 1: Complexity of Pareto- and welfare-optimality for
cardinal hedonic games. Preference restrictions are given
in parenthesis, where (0/1) sym denotes (simple) symmet-
ric preferences. For welfare-optimality, the best known ef-
ficiently attainable approximation ratio is given.

The key technique for positive results on ASHGs and FHGs

are refinements of serial dictatorship algorithms. Further enhance-

ments, e.g., with respect to the order of selection of the dictators,

might yield even better results. On the other hand, computing

Pareto-optimal outcomes that satisfy further properties will of-

ten be intractable. Computational hardness is obtained if we re-

quire individual rationality in addition. Since it is even hard to

compute Pareto-improvements, local search heuristics based on

Pareto-optimality cannot be exploited.

Partitions on simple MFHGs can simultaneously satisfy high

demands in terms of stability and optimality. Interesting further

directions for research therefore concern weighted MFHGs as well

as Pareto-optimality on the general domains of cardinal hedonic

games.
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A APPENDIX: PROOFS
In the appendix, we provide the proofs omitted in the main part as

well as completions for the proof sketches.

A.1 Modified Fractional Hedonic Games
Proof of Theorem 4.4. Let an MFHG induced by a unweighted

graph𝐺 = (𝑉 , 𝐸) be given and let 𝜋 be a partition of the agents into

cliques. By Theorem 4.5, if it is not a maximum clique matching, it

is not vertex-maximal, and we find a Pareto-improvement.
1
Hence,

𝜋 was not welfare-optimal.

For the reverse implication, assume that 𝜋 is a maximum clique

matching. In the case of a simple, symmetric MFHG, Elkind et al.

[9, Lemma 15] have observed that all coalitions in Pareto-optimal

partitions are stars or cliques. Therefore, it suffices to prove that

there exists a welfare-optimal maximum clique matching.

If we can prove that, then for any clique matching 𝜋 ′, SW(𝜋) =
|𝑊 |, where 𝑊 is the set of vertices covered by 𝜋 . Hence, 𝜋 ′ is
welfare-optimal amongst clique matchings if it forms a maximum

clique matching.

Let 𝜋∗ be any welfare-optimal partition (that is in particular

Pareto-optimal) and assume it contains at least one star. For any

star 𝑆 with 𝑘𝑆 ≥ 2 leaves, let 𝑐𝑆 be its center and 𝑙𝑆
1
, . . . , 𝑙𝑆

𝑘𝑆
be

its leaves. We obtain a new partition 𝜋 ′ = {𝐶 ∈ 𝜋∗ : 𝐶 clique} ∪
{{𝑐𝑆 , 𝑙𝑆

1
}, {𝑙𝑆

2
}, . . . , {𝑙𝑆

𝑘𝑆
} : 𝑆 ∈ 𝜋∗ star}. The partition 𝜋 ′ arises from

𝜋 by substituting any star by a 2-clique and singleton coalitions.

If 𝑆 ∈ 𝜋 is a star, then 𝑣𝑆 (𝜋) = 𝑘𝑆 · 1

𝑘𝑆
+ 1 = 2 = 𝑣𝑆 (𝜋 ′). Hence,

SW(𝜋 ′) = SW(𝜋). In addition, 𝜋 ′ is Pareto-optimal. Otherwise,

consider a Pareto-optimal Pareto-improvement 𝜋 ′′ over 𝜋 ′. Then,
SW(𝜋 ′′) > SW(𝜋 ′) = SW(𝜋∗), contradicting the welfare-

optimality of 𝜋∗. Hence, there exists a welfare-optimal partition

such that every coalition is a clique.

Since the output of Algorithm 1 on unweighted graphs is a

maximum clique matching, it is welfare-optimal. □

Proof details for Theorem 4.6. We showwhy the second and

third condition of the combinatorial characterization hold.

If the second condition of Theorem 4.5 is violated, we can treat

the endpoint of the triangle as one of the uncovered end-vertices in

the proof of the first condition, and obtain a Pareto-improvement.

Finally, assume that the third condition of Theorem 4.5 is violated,

i.e., there exists an𝑀 (𝜋 ′)-chordal flower. Denote its stem vertices

by 𝑠0, . . . , 𝑠𝑚 where 𝑠0 is the root and 𝑠𝑚 is the tip of the stem, and

its blossom vertices in circular order by 𝑏0, . . . , 𝑏𝑟 , where 𝑏0 = 𝑠𝑚 . If

no edge of𝑀S is contained in the flower, we can augment the flower

and obtain a Pareto-improvement (improving the root of the flower

that was a leaf or an uncovered vertex before). Assume therefore

that the flower contains an edge in 𝑒 ∈ 𝑀S corresponding to star 𝑆 .

We may assume that either 𝑠1 = 𝑐𝑆 or that the flower contains (all

vertices of) 𝑆 . Indeed, if 𝑒 is part of the blossom, all vertices of 𝑆

have to be covered by the flower or we find an𝑀 (𝜋 ′)-augmenting

path from the root of the flower to an uncovered vertex, which is

already excluded. Assume therefore 𝑒 = {𝑠𝑡 , 𝑠𝑡+1}. If 𝑠𝑡+1 = 𝑐𝑆 , we

find again an augmenting path unless every leaf of 𝑆 is covered by

1
Note that the equivalence of maximality and vertex-maximality follows from the

combinatorial description of Theorem 4.5 and is independently achieved.

the flower. Finally, if 𝑠𝑡 = 𝑐𝑆 , we can assume that the root of the

flower is 𝑙𝑆
2
and the stem is on the vertices 𝑙𝑆

2
, 𝑠𝑡 , . . . , 𝑠𝑚 .

In particular, there can be at most one matching-edge of 𝑀S
part of the flower. If all vertices of 𝑆 are covered by the flower,

we augment the flower to improve the utility of the leaves of 𝑆 .

Otherwise, we delete 𝑠0 and 𝑠1 from the flower and augment the

resulting flower, improving the leaves of 𝑆 .

□

Proof of Proposition 4.8. Using the symmetrization de-

scribed after Theorem 4.3, it suffices to prove the proposition for

symmetric MFHGs.

Let a symmetric MFHG be given, induced by a weighted graph

𝐺 = (𝑁, 𝐸, 𝑣). For any set of agents 𝑀 ⊆ 𝑁 , define 𝑣 (𝑀) =∑
{𝑥,𝑦 }⊆𝑀,𝑥≠𝑦 𝑣 (𝑥,𝑦) as the utility of all pairs of agents. This means,

SW(𝑀) = 2𝑣 (𝑀)
|𝑀 |−1 . In addition, for 𝐹 ⊆ 𝐸, define 𝑣 (𝐹 ) = ∑

𝑓 ∈𝐹 𝑣 (𝑓 ).
Given a set of agents 𝑀 ⊆ 𝑁 , we define 𝛿 (𝑀) = {{𝑥,𝑦} : 𝑥 ∈

𝑀,𝑦 ∈ 𝑁 \𝑀}, i.e., the cut induced by𝑀 .

It suffices to show that for every coalition 𝐶 of size |𝐶 | ≥ 4,

there exists an edge 𝑒 ⊆ 𝐶 with |𝑒 | = 2 and SW(𝑒) + SW(𝐶\𝑒) ≥
SW(𝐶). Indeed, if we can prove that, the claim follows by itera-

tively splitting coalitions of size at least 4.

Therefore, let a coalition 𝐶 of agents be given with |𝐶 | ≥ 4.

Given a 2-element set of vertices 𝑒 , define𝜔𝑒 = 1

2
𝑣 (𝑒) +𝑣 (𝛿 (𝑒)) +(

1 − 1

2( |𝐶 |−3)

)
𝑣 (𝐶\𝑒). We define 𝜔 = min{𝜔𝑒 : 𝑒 ⊆ 𝑉 , |𝑒 | = 2} and

let 𝑒∗ ∈ argmin{𝜔𝑒 : 𝑒 ⊆ 𝑉 , |𝑒 | = 2}. The claim is thatSW(𝐶\𝑒∗) +
SW(𝑒∗) ≥ SW(𝐶).

Note that

2( |𝐶 | − 2)𝜔 ≤
∑

𝑓 ∈𝛿 (𝑒∗)
𝜔 𝑓

=𝑣 (𝑒∗) ( |𝐶 | − 2)2

+ 𝑣 (𝛿 (𝑒∗))
(
1

2

+ (|𝐶 | − 2) +
(
1 − 1

2( |𝐶 | − 3)

)
( |𝐶 | − 3)

)
+ 𝑣 (𝐶\𝑒∗)

(
4 +

(
1 − 1

2( |𝐶 | − 3)

)
( |𝐶 | − 4)2

)
.

The equality follows from counting how often the edge 𝑒∗, the edges
in the cut 𝛿 (𝑒∗), and the edges between vertices in 𝐶\𝑒∗ play each

of the roles of the sums of all 𝜔 𝑓 . Inserting 𝜔 = 1

2
𝑣 (𝑒∗) + 𝑣 (𝛿 (𝑒∗)) +(

1 − 1

2( |𝐶 |−3)

)
𝑣 (𝐶\𝑒∗) and rearranging terms yields

𝑣 (𝛿 (𝑒∗)) ≤ (|𝐶 | − 2)𝑣 (𝑒∗) + 2

|𝐶 | − 3𝑣 (𝐶\𝑒
∗) .

On the other hand,

2𝑣 (𝑒) + 2

|𝐶 | − 3𝑣 (𝐶\𝑒) = SW(𝑒) + SW(𝐶\𝑒)

≥SW(𝐶) = 2

|𝐶 | − 1 (𝑣 (𝑒) + 𝑣 (𝛿 (𝑒)) + 𝑣 (𝐶\𝑒))

⇔𝑣 (𝛿 (𝑒)) ≤ (|𝐶 | − 2)𝑣 (𝑒) +
(
|𝐶 | − 1
|𝐶 | − 3 − 1

)
𝑣 (𝐶\𝑒)

=( |𝐶 | − 2)𝑣 (𝑒) + 2

|𝐶 | − 3𝑣 (𝐶\𝑒).

Hence, the edge 𝑒∗ has the desired property. □



A.2 Additively Separable Hedonic Games
Proof details for Theorem 5.2. If 𝑆 ′ ⊆ 𝑆 is a 3-partition of 𝑅,

we find a desired partition via 𝜋 = {{𝑖, 𝑗, 𝑘, 𝑠1}, {𝑠2, 𝑠4}, {𝑠3, 𝑠5} : 𝑠 ∈
𝑆 ′} ∪ {{𝑠1, 𝑠2, 𝑠3}, {𝑠4, 𝑠5} : 𝑠 ∈ 𝑆\𝑆 ′}.

Conversely, assume that no 3-partition of 𝑅 through sets in 𝑆

exists, and let 𝜋 be an individually rational partition such that

every agent in 𝑅 has utility 2. Then, for some 𝑠 ∈ 𝑆 , an agent 𝑠1
forms a coalition with some, but less than 3 agents in 𝑅, and due to

individual rationality with no other agent. Therefore,𝑢 (𝑠1) < 6. □

For the sake of self-containment, we provide a proof for Theo-

rem 5.4, a special case of [3, Theorem 9]. As we will see, a similar

algorithm works for FHGs.

Proof of Theorem 5.4. Let an ASHG be given which is induced

by the graph 𝐺 = (𝑉 , 𝐸, 𝑣).
We find a partition 𝜋 applying Algorithm 5. Basically, the al-

gorithm finds coalitions iteratively by adding agents to a current

coalition 𝐶 if they need an agent inside 𝐶 to be in a top-ranked

coalition, or if an agent inside 𝐶 needs them to be in a top-ranked

coalition.

Input: ASHG induced by graph (𝑁, 𝐸, 𝑣)
Output: Partition 𝜋

𝜋 ← ∅
𝑈 ← 𝑁

while𝑈 ≠ ∅ do
Pick 𝑎 ∈ 𝑈
𝐶 ← {𝑎}
while ∃𝑖 ∈ 𝐶, 𝑗 ∈ 𝑈 \𝐶 : 𝑣𝑖 ( 𝑗) > 0 ∨ 𝑣 𝑗 (𝑖) > 0 do
𝐶 ← 𝐶 ∪ { 𝑗}

𝜋 ← 𝜋 ∪ {𝐶}
𝑈 ← 𝑈 \𝐶

return 𝜋

Algorithm 5: Candidate for perfect partition on ASHG

Note that for an agent 𝑖 ∈ 𝑁 , the set of top-ranked coalitions

is given by {{ 𝑗 ∈ 𝑁 : 𝑣𝑖 ( 𝑗) > 0} ∪𝑊 : 𝑊 ⊆ { 𝑗 ∈ 𝑁 : 𝑣𝑖 ( 𝑗) = 0}}.
As a consequence, it is quickly checked that there exists a perfect

partition if and only if 𝜋 is a perfect partition, which is the case if

and only if, for all 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) =
∑

𝑗 ∈𝑁 :𝑣𝑖 ( 𝑗)>0 𝑣𝑖 ( 𝑗). □

A.3 Fractional Hedonic Games
Proof of Proposition 6.1. Let an FHG be given based on a

graph 𝐺 = (𝑁, 𝐸, 𝑣) and let 𝑑 ∈ 𝑁 . Let 𝐶 be a top-ranked coali-

tion of 𝑑 and set 𝜇 = 𝑣𝑑 (𝐶). We may assume that there exists an

agent 𝑎 ∈ 𝑁 \{𝑑} with 𝑣𝑑 (𝑎) > 0, because otherwise the assertion

is immediate.

For 𝑎 ∈ 𝑁 \𝐶 , it holds that 𝑣𝑑 (𝐶∪{𝑎}) = 1

|𝐶 |+1𝑣𝑑 (𝑎)+
|𝐶 |
|𝐶 |+1 𝜇 > 𝜇

if and only if 𝑣𝑑 (𝑎) > 𝜇. Consequently, {𝑎 ∈ 𝑁 \{𝑑} : 𝑣𝑑 (𝑎) > 𝜇} ⊆
𝐶 . In addition, removing an agent 𝑎 ∈ 𝐶\{𝑑} with 𝑣𝑑 (𝑎) < 𝜇 would

increase the value of the coalition 𝐶 , contradicting its maximality.

Since the above equivalence also holds with equality replacing

inequality, removing and adding agents with 𝑣𝑑 (𝑎) = 𝜇 do not

change the utility of the coalition. □

Proof of Theorem 6.2. Let an FHG be given that satisfies the

equal affection condition. Let 𝑀 be the set of agents that assigns

positive utility to at least one neighbor. By Proposition 6.1, every

agent in𝑀 has a unique top-ranked coalition. Hence, a serial dicta-

torship, i.e., letting agents iteratively pick a top-ranked coalition,

that priorizes agents in𝑀 finds a Pareto-optimal partition. □

Proof details for Theorem 6.3. We prove that 𝜋 =

A(𝑁, ∅, 𝑑) returns a Pareto-optimal partition provided that

the input evolves from a generic FHG.

Assume that 𝜋 ′ is a partition such that for every agent 𝑎 ∈ 𝑁 ,

𝑣𝑎 (𝜋 ′) ≥ 𝑣𝑎 (𝜋). We will prove, by induction over 𝑘 = |𝜋 | that then
for every agent 𝑎 ∈ 𝑁 , 𝑣𝑎 (𝜋 ′) = 𝑣𝑎 (𝜋).

Assume first that 𝑘 = 1 and let 𝑑 be the first dictator. Then

either 𝜋 = {𝑇𝑑 (𝑁 )} and 𝜋 ′ = 𝜋 (since otherwise 𝑑 is worse off), or

𝜋 = {𝑇𝑑 (𝑁 ) ∪ {𝛼𝑑 (𝑁 )}} and 𝜋 ′ = 𝜋 (since otherwise 𝛼𝑑 (𝑁 ) or 𝑑
is worse off).

For the induction step, assume 𝑘 ≥ 2 and let 𝐶 be the first

coalition formed through the initial dictator 𝑑 . If 𝑡𝑑 (𝑁 ) = 1, then

𝑇𝑑 (𝑁 ) ∈ 𝜋 ′ (otherwise 𝑑 is worse off) and the claim follows by

induction on the subgame induced by 𝑁 \𝑇𝑑 (𝑁 ) for the coalitions
𝜋\{𝑇𝑑 (𝑁 )} and 𝜋 ′\{𝑇𝑑 (𝑁 )}.

Assume now 𝑡𝑑 (𝑁 ) = 2 and denote 𝑎 = 𝛼𝑑 (𝑁 ). Note that then
𝑇𝑑 (𝑁 ) ∈ 𝜋 ′ or 𝑇𝑑 (𝑁 ) ∪ {𝑎} ∈ 𝜋 ′, since otherwise 𝑑 is worse off.

If 𝑣𝑎 (𝑇𝑑 (𝑁 ) ∪ {𝑎}) > 𝑣𝑎 (𝑁 \𝑇𝑑 (𝑁 )), then 𝑇𝑑 (𝑁 ) ∪ {𝑎} ∈ 𝜋 ′ ∩ 𝜋

(otherwise 𝑎 is worse off) and we can apply induction.

If 𝑣𝑎 (𝑇𝑑 (𝑁 ) ∪ {𝑎}) < 𝑣𝑎 (𝑁 \𝑇𝑑 (𝑁 )), then 𝑎 is the next dictator,

hence 𝑣𝑎 (𝜋) > 𝑣𝑎 (𝑇𝑑 (𝑁 ) ∪ {𝑎}). Therefore, 𝑇𝑑 (𝑁 ) ∈ 𝜋 ′ and we

can apply induction.

Assume next 𝑣𝑎 (𝑇𝑑 (𝑁 ) ∪ {𝑎}) = 𝑣𝑎 (𝑁 \𝑇𝑑 (𝑁 )) = 0. If

|𝜋 (𝑎) | = 1 then we can remove the two coalitions 𝑇𝑑 (𝑁 ) and {𝑎}
and apply induction. Otherwise, 𝜋 (𝑎) = {𝑎, 𝛼𝑎 (𝑁 \𝑇𝑑 (𝑁 ))}. Un-
less 𝑣𝛼𝑎 (𝑁 \𝑇𝑑 (𝑁 )) (𝜋 (𝑎)) = 𝑣𝛼𝑎 (𝑁 \𝑇𝑑 (𝑁 )) (𝑁 \(𝑇𝑑 (𝑁 ) ∪ 𝜋 (𝑎))) >

0, 𝜋 ′(𝑑) = 𝜋 (𝑑) and we can apply induction. Otherwise,

𝛼𝑎 (𝑁 \𝑇𝑑 (𝑁 )) can only leave if she joins the coalition of the third

dictator 𝑒 . In this case, 𝜋 (𝑑) ∪ 𝜋 (𝑎) ∪ 𝜋 (𝑒) = 𝜋 ′(𝑑) ∪ 𝜋 ′(𝑎) ∪ 𝜋 ′(𝑒)
and all of these agents obtain the same utility. Hence we can apply

induction by removing all three coalitions.

Finally, if 𝑣𝑎 (𝑇𝑑 (𝑁 ) ∪ {𝑎}) = 𝑣𝑎 (𝑁 \𝑇𝑑 (𝑁 )) > 0, let 𝑒 be the

second dictator. The only possibility that 𝑎 leaves her coalition is if

𝑇𝑑 (𝑁 ) ∪ {𝑎} ∈ 𝜋 and 𝑎 ∪ 𝜋 (𝑒) is the second top-ranked coalition

of 𝑒 and is simultaneously a top-ranked coalition of 𝑎 in 𝑁 \𝑇𝑑 (𝑁 ).
In this case we can remove 𝜋 (𝑑) ∪ 𝜋 (𝑒) and apply induction.

□

Proof of Theorem 6.4. The same reduction as in Theorem 5.2

works with the following adaptations of edge weights. Replace

edge weights by 𝑣 (𝑖, 𝑗) = 1

2
for 𝑖, 𝑗 ∈ 𝑅, 𝑖 ≠ 𝑗 , 𝑣 (𝑠1, 𝑠2) = 𝑣 (𝑠1, 𝑠3) =

𝑣 (𝑠2, 𝑠4) = 𝑣 (𝑠3, 𝑠5) = 𝑣 (𝑠4, 𝑠5) = 9

8
, 𝑠 ∈ 𝑆 , and 𝑣 (𝑠2, 𝑠3) = 9

16
,

𝑠 ∈ 𝑆 . □

Proof of Theorem 6.5. Consider the reduction of Theorem 6.4.

If we start with the partition 𝜋 = {{𝑟 } : 𝑟 ∈ 𝑅} ∪
{{𝑠1, 𝑠2, 𝑠3}, {𝑠4, 𝑠5} : 𝑠 ∈ 𝑆}, every subsequent Pareto-improvement

must increase the number coalitions of the type {𝑖, 𝑗, 𝑘, 𝑠1} where



𝑠 = {𝑖, 𝑗, 𝑘} ∈ 𝑆 . Hence, there can be at most |𝑅 |/3 Pareto-

improvements. Hence, the local search algorithm finds a Pareto-

optimal partition in polynomial time which can be used to solve

X3C. □

Proof of Theorem 6.6. In the beginning, compute for every

agent 𝑖 the value 𝜏 (𝑖) of her utility in a top-ranked coalition. Then,

Algorithm 5 still works if we replace the condition in the while-loop

by ∃𝑖 ∈ 𝐶, 𝑗 ∈ 𝑈 \𝐶 : 𝑣𝑖 ( 𝑗) > 𝜏 (𝑖) ∨ 𝑣 𝑗 (𝑖) > 𝜏 ( 𝑗). □
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