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Social decision schemes (SDSs) map the ordinal preferences of voters over
multiple alternatives to a probability distribution over the alternatives. To
study the axiomatic properties of SDSs, we lift preferences over alterna-
tives to preferences over lotteries using the natural—but little understood—
pairwise comparison (PC ) preference extension. This extension postu-
lates that one lottery is preferred to another if the former is more likely
to return a preferred outcome. We settle three open questions raised by
Brandt (2017) and show that (i) no Condorcet-consistent SDS satisfies PC -
strategyproofness; (ii) no anonymous and neutral SDS satisfies both PC -
efficiency and PC -strategyproofness; and (iii) no anonymous and neutral
SDS satisfies both PC -efficiency and strict PC -participation. We further-
more settle an open problem raised by Aziz et al. (2015) by showing that no
path of PC -improvements originating from an inefficient lottery may lead to
a PC -efficient lottery.
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1. Introduction

Incentives constitute a central aspect when designing mechanisms for multiple agents:
mechanisms should incentivize agents to participate and to act truthfully. However,
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for many applications, guaranteeing these properties—usually called participation and
strategyproofness—is a notoriously difficult task. This is particularly true for collective
decision making, which studies the aggregation of preferences of multiple voters into
a group decision, because strong impossibility theorems show that these axioms are
in variance with other elementary properties (see, e.g., Gibbard, 1973; Satterthwaite,
1975; Moulin, 1988). For instance, the Gibbard-Satterthwaite theorem shows that every
strategyproof voting rule is either dictatorial or imposing, and Moulin’s No-Show paradox
demonstrates that all Condorcet-consistent voting rules violate participation.
A natural escape route in light of these negative results is to allow for randomization

in the output of the voting rule. Rather than returning a single winner, a social decision
scheme (SDS) selects a lottery over the alternatives and the winner is eventually drawn
at random according to the given probabilities. In order to study properties such as
strategyproofness and participation as well as economic efficiency for SDSs, we need to
make assumptions on how voters compare lotteries. The standard approach for this
problem is to lift the voters’ preferences over alternatives to preferences over lotteries
by using the notion of stochastic dominance (SD): a voter prefers a lottery to another
one if the expected utility of the former exceeds that of the latter for every utility
representation consistent with his preferences over the alternatives (see, e.g., Gibbard,
1977; Bogomolnaia and Moulin, 2001; Brandl et al., 2018).
Unfortunately, the negative results from deterministic social choice largely prevail

when analyzing SDSs based on SD preferences. For instance, Gibbard (1977) has shown
that the only SDS that satisfies SD-strategyproofness, unanimity, and anonymity is the
uniform random dictatorship (RD), which chooses a voter uniformly at random and
returns his favorite alternative (see also Sen, 2011). Similarly, Brandt et al. (2017)
have proven that Moulin’s No-show paradox remains intact when defining participation
based on SD preferences. Independently of these negative results, the representation
of preferences over lotteries via expected utility functions has come under scrutiny in
decision theory (e.g., Allais, 1953; Kahneman and Tversky, 1979; Machina, 1989; Anand,
2009).
As an alternative to traditional expected utility representations, some authors have

proposed to postulate that an agent prefers one lottery to another if it is more likely
that he prefers an alternative drawn from the former to an alternative drawn from the
latter than vice versa (Blyth, 1972; Packard, 1982; Blavatskyy, 2006). The resulting
preference extension is known as pairwise comparison (PC ) and represents a special
case of Fishburn’s skew-symmetric bilinear utility functions (Fishburn, 1982). Brandl
et al. (2019) have shown that the No-Show paradox can be circumvented using PC
preferences. Moreover, Brandl and Brandt (2020) proved that PC preferences constitute
the only domain of preferences within a rather broad class of preferences over lotteries
(including all expected utility representations) that allows for preference aggregation that
satisfies independence of irrelevant alternatives and efficiency, thus avoiding Arrow’s
impossibility. In both cases, the resulting SDS is the set of maximal lotteries (ML),

1In France, maximal lotteries have been popularized under the name scrutin de Condorcet randomisé
(randomized Condorcet voting system).
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which was proposed by Fishburn (1984a) and has recently attracted significant attention
(Brandl et al., 2016, 2022; Peyre, 2013; Hoang, 2017).1

Since PC preferences are one of the few natural preference extensions that lead to
positive results, we will investigate social decision schemes based on this lottery exten-
sion. More specifically, we are interested in the question of whether there are attractive
SDSs that satisfy PC -strategyproofness or strict PC -participation. The latter axiom
demands that a voter is strictly better off participating unless he is already at maximum
happiness. Unfortunately, our results are mainly negative and thus show the limitations
of collective choice with PC preferences. In particular, we prove the following theorems,
all of which settle open problems raised by Brandt (2017, p. 18).2

• There is no Condorcet-consistent SDS that satisfies PC -strategyproofness (Theo-
rem 1).

• There is no anonymous and neutral SDS that satisfies PC -efficiency and PC -
strategyproofness (Theorem 2).

• There is no anonymous and neutral SDS that satisfies PC -efficiency and strict
PC -participation (Theorem 3).

All three theorems hold for strict preferences and require m ≥ 4 alternatives; we show
that they turn into possibilities when m ≤ 3 by constructing two new SDSs. The
second theorem strengthens Theorem 5 by Aziz et al. (2018), which shows an analogous
statement for weak preferences.3

In the appendix, we furthermore settle an open problem concerning PC -efficiency
raised by Aziz et al. (2015): we construct a preference profile and a PC -inefficient
lottery p such that no sequence of PC -improvements starting from p leads to a PC -
efficient lottery (Proposition 5).

2. The Model

Let A = {a1, . . . , am} be a finite set ofm alternatives and N = {1, 2, 3, . . . } an infinite set
of voters. We denote by F(N) the set of all finite and non-empty subsets of N. Intuitively,
N is the set of all potential voters, whereas N ∈ F(N) is a concrete electorate. Given
an electorate N ∈ F(N), every voter i ∈ N has a preference relation �i, which is a

2Brandt (2017) stated these problems without anonymity and neutrality. However, anonymity is obvi-
ously required for Theorem 2 since dictatorships satisfy all of the other axioms. Whether neutrality
is required is open. Note that anonymity and neutrality are much less restrictive in randomized social
choice than in the classic deterministic setting, where these properties can already be prohibitive on
their own (Moulin, 1983, Theorem 1). In fact, the investigation of randomized voting rules is often
motivated by fairness considerations such as anonymity and neutrality (e.g., Fishburn, 1984a; Ehlers
et al., 2002; Brandt, 2017).

3When ties are allowed in the voters’ preferences, much stronger results hold: Brandl et al. (2018) have
shown an analogous claim based on SD preferences, which implies the result by Aziz et al. (2018).
Recent results (e.g., Brandl et al., 2021; Brandt et al., 2022a) hint at the fact that even stronger
impossibilities may hold for weak preferences.
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complete, transitive, and anti-symmetric binary relation on A. In particular, we do not
allow for ties, which only makes our impossibility theorems stronger. We write preference
relations as comma-separated lists and denote the set of all preference relations by R.
A preference profile R on an electorate N ∈ F(N) assigns a preference relation �i to
every voter i ∈ N , i.e., R ∈ RN . When writing preference profiles, we subsume voters
who share the same preference relation. To this end, we define [j . . . k] = {i ∈ N : j ≤
i ≤ k} and note that [j . . . k] = ∅ if j > k. For instance, [1 . . . 3]: a, b, c means that
voters 1, 2, and 3 prefer a to b to c. We omit the brackets for singleton sets. Given a
preference profile R ∈ RN , the majority margin between two alternatives x, y ∈ A is
gR(x, y) = |{i ∈ N : x �i y}|− |{i ∈ N : y �i x}|, i.e., the majority margin indicates how
many more voters prefer x to y than vice versa. Furthermore, we define nR(x) as the
number of voters who prefer alternative x the most in the profile R. Next, we denote by
R−i = (�1, . . . ,�i−1,�i+1, . . . ,�n) the profile derived from R ∈ RN by removing voter
i ∈ N . Finally, we define R∗ =

⋃
N∈F(N)RN as the set of all possible preference profiles.

The focus of this paper lies on social decision schemes (SDSs), which are functions that
map a preference profile to a lottery over the alternatives. A lottery p is a probability
distribution over the alternatives, i.e., a function p : A → [0, 1] such that p(x) ≥ 0
for all x ∈ A and

∑
x∈A p(x) = 1. The set of all lotteries on A is denoted by ∆(A).

Then, an SDS f is a function of the type f : R∗ → ∆(A). We define f(R, x) as the
probability assigned to x by f(R) and extend this notion to sets X ⊆ A by letting
f(R,X) =

∑
x∈X f(R, x).

In the next sections, we introduce various desirable properties of SDSs. An overview
of these axioms and their relationships is given in Figure 1.

2.1. Fairness and Decisiveness

Two basic fairness notions are anonymity and neutrality, which require that voters and
alternatives are treated equally, respectively. Formally, an SDS f is anonymous if
f(π(R)) = f(R) for all electorates N ∈ F(N), preference profiles R ∈ RN , and per-
mutations π : N → N , where R′ = π(R) is defined by �′i = �π(i) for all i ∈ N .
Analogously, neutrality requires that f(π(R)) = π(f(R)) for all electorates N ∈ F(N),

preference profilesR ∈ RN , and permutations π : A→ A, i.e., f(π(R)) is equal to the dis-
tribution that, for each alternative x ∈ A, assigns probability f(R, x) to alternative π(x).
Here, R′ = π(R) is the profile such that for all i ∈ N and x, y ∈ A, π(x) �′i π(y) if and
only if x �i y.
A technical condition that many SDSs satisfy is cancellation. An SDS f satisfies

cancellation if f(R) = f(R′) for all preference profiles R,R′ ∈ R∗ such that R′ is derived
from R by adding two voters with inverse preferences.
A natural further desideratum in randomized social choice concerns the decisiveness

of SDSs: randomization should only be necessary if there is no sensible deterministic
winner. This idea is, for example, captured in the notion of unanimity, which requires
that f(R, x) = 1 for all profiles R ∈ R∗ and alternatives x ∈ A such that all voters in R
prefer x the most.
Clearly, this condition is rather weak and there are natural strengthenings, demanding
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that so-called absolute winners or Condorcet winners need to be returned with proba-
bility 1. An absolute winner is an alternative x that is top-ranked by more than half
of the voters in R ∈ RN , i.e., nR(x) > |N |

2 . The absolute winner property requires that
f(R, x) = 1 for all profiles R ∈ R∗ with absolute winner x.
An alternative x is a Condorcet winner in a profile R if gR(x, y) > 0 for all y ∈ A\{x}.

Condorcet-consistency requires that the Condorcet winner is chosen with probability 1
whenever it exists, i.e., f(R, x) = 1 for all preference profiles R ∈ R∗ with Condorcet
winner x. Since absolute winners are Condorcet winners, Condorcet-consistency implies
the absolute winner property, which in turn implies unanimity.

2.2. Preferences over Lotteries

We assume that the voters’ preferences over alternatives are lifted to preferences over
lotteries via the pairwise comparison (PC ) extension (see, e.g., Aziz et al., 2015, 2018;
Brandt, 2017; Brandl and Brandt, 2020).4 According to this notion, a voter prefers
lottery p to lottery q if the probability that p returns a better outcome than q is at least
as large as the probability that q returns a better outcome than p, i.e.,

p %PC q ⇐⇒
∑

x,y∈A : x�y
p(x)q(y) ≥

∑
x,y∈A : x�y

q(x)p(y).

The relation %PC is complete but intransitive (a phenomenon known as the Steinhaus-
Trybula paradox).5 An appealing interpretation of PC preferences is ex ante regret
minimization, i.e., given two lotteries, a voter prefers the one which is less likely to
result in ex post regret.
Despite the simple and intuitive definition, PC preferences are difficult to work with

and cognitively demanding on behalf of the voters because probabilities are multiplied
with each other. We therefore introduce a variant of the PC extension where one of the
two lotteries under consideration has to be degenerate (i.e., it puts probability 1 on a
single alternative) and any pair of non-degenerate lotteries are deemed incomparable. To
this end, we define PC1 preferences as follows: a voter PC1 -prefers lottery p to lottery
q if p %PC q and at least one of p and q is degenerate. Assuming that p(x) = 1 for some
x ∈ A, this is equivalent to

p %PC1 q ⇐⇒
∑

y∈A : x�y
q(y) ≥

∑
y∈A : y�x

q(y).

In other words, it only needs to be checked whether q puts at least as much probability
on alternatives that are worse than x than on those that are better than x. On the one

4PC preferences constitute a special case of skew-symmetric bilinear utility functions (Fishburn, 1982)
and have previously been considered in decision theory (Blyth, 1972; Packard, 1982; Blavatskyy,
2006). Packard (1982) calls them the rule of expected dominance and Blavatskyy (2006) refers to
them as a preference for the most probable winner.

5To see that PC preferences can be intransitive, suppose that � = a, b, c, d and consider the lotteries
p, q, r defined by p(c) = 1, q(b) = 3

5
, q(d) = 2

5
, and r(a) = 2

5
, r(d) = 3

5
. It can be checked that

p �PC r �PC q �PC p.
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hand, PC1 preferences reduce the cognitive burden on voters when comparing lotteries
and can thus be seen as a particularly plausible or realistic subset of the PC extension.
On the other hand, one may also view this notion from a technical perspective as it
suffices for many lottery comparisons in our proofs involving PC preferences. Thus, this
lottery extension allows us to simplify the presentation of our proofs for PC preferences
and even to strengthen some of our claims, while simultaneously making the results
more robust by avoiding more controversial comparisons between lotteries. It follows
immediately from the definition that p %PC1 q implies that p %PC q for all lotteries
p, q ∈ ∆(A) and all preference relations �. Note that in contrast to PC preferences,
PC1 preferences are acyclic, i.e., there is no cycle in the strict part of %PC1 .
The most common way to compare lotteries when only ordinal preferences over alter-

natives are known is stochastic dominance (SD) (e.g., Gibbard, 1977; Bogomolnaia and
Moulin, 2002; Brandl et al., 2018):

p %SD q ⇐⇒ ∀x ∈ A :
∑

y∈A : y�x
p(y) ≥

∑
y∈A : y�x

q(y).

In contrast to PC preferences, the relation %SD is incomplete but transitive. Further-
more, it follows from a result by Fishburn (1984b) that p %SD q implies p %PC q for
all preference relations � and all lotteries p and q (see also Aziz et al., 2015). In other
words, the SD relation is a subrelation of the PC relation. We will sometimes leverage
this in our proofs because SD preferences are easier to handle than PC preferences.
For each X ∈ {PC ,PC1 ,SD}, we say a voter strictly X -prefers p to q, denoted by

p �X q, if p %X q and not q %X p. Note that both p �SD q and p �PC1 q imply p �PC q.
For a better understanding of these concepts, consider a voter with the preference

relation � = a, b, c, d and three lotteries p, q, and r with

p(b) = 1, q(b) = q(c) = 1/2, r(a) = 1/3, and r(d) = 2/3.

First, observe that p �SD q since p is derived from q by moving probability from c
to b. In particular, this implies that p �PC q and, since p is degenerate, also p �PC1 q.
Next, r cannot be compared with p or q via SD . Since r(a) < r(d) and a � b � d, it
follows that p �PC1 r, which moreover implies that p �PC r. Finally, the lotteries q and
r can only be compared via PC preferences and we infer that q �PC r by checking that

q(b)r(d) + q(c)r(d) = 2/3 > 1/3 = r(a)q(b) + r(a)q(c).

2.3. Efficiency

Next, we discuss efficiency, which intuitively requires that we cannot make a voter bet-
ter off without making another voter worse off. Since this axiom requires voters to
compare lotteries, we define efficiency depending on some underlying lottery extension
X ∈ {PC ,PC1 ,SD}. To formalize the intuition behind this property, we say a lottery
p X -dominates another lottery q in a profile R ∈ RN if p %Xi q for all voters i ∈ N and
p �Xi∗ q for some voter i∗ ∈ N . In this case, we also say that p is an X -improvement of q.
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Less formally, p is an X -improvement of q if p makes every voter weakly better off and at
least one strictly better. A lottery p is X -efficient in R if it is not X -dominated by any
other lottery. Similarly, an SDS f is X -efficient if f(R) is X -efficient for all preference
profiles R ∈ R∗.
Since both p %SD

i q and p %PC1
i q imply p %PC

i q for all voters i and lotteries p and q,
it follows that a lottery that is SD-dominated or PC1 -dominated is also PC -dominated.
Hence, for every profile R, the set of PC -efficient lotteries is contained in both the sets
of PC1 -efficient and SD-efficient lotteries. This means that PC -efficiency implies SD-
efficiency and PC1 -efficiency. Moreover, both PC -efficiency and SD-efficiency imply
ex post efficiency. In order to define ex post efficiency, we say an alternative x Pareto-
dominates another alternative y in a profile R ∈ RN if x �i y for all voters i ∈ N . Recall
here that ties in �i are not allowed. Ex post efficiency then requires that f(R, x) = 0
for all profiles R ∈ R∗ and alternatives x ∈ A that are Pareto-dominated in R.
To illuminate the natural relationship between ex post efficiency and PC -efficiency,

let us take a probabilistic view on ex post efficiency. First, observe that there is no alter-
native x that is preferred by all voters to an alternative drawn from an ex post efficient
lottery p. Hence, for any other lottery q, the probability that q returns an outcome that
is unanimously preferred to an outcome returned by p is 0, i.e., P(∀i ∈ N : q �i p) = 0,
where we view the lotteries p and q as random variables on A. Conversely, if p is not
ex post efficient, it follows that P(∀i ∈ N : q �i p) > 0 for the lottery q derived from p
by shifting the probability from the Pareto-dominated alternatives to their dominators.
Hence, a lottery p is ex post efficient in a profile R ∈ RN if and only if there is no other
lottery q such that

P(∀i ∈ N : q �i p) > P(∀i ∈ N : p �i q). (ex post efficiency)

From this inequality, one immediately obtains PC -efficiency by moving the quantifi-
cation over the voters outside of the probability: a lottery p is PC -efficient in a profile
R ∈ RN if and only if there is no other lottery q such that

∀i ∈ N : P(q �i p) ≥ P(p �i q)
∧ ∃i ∈ N : P(q �i p) > P(p �i q).

(PC -efficiency)

Despite its simple and intuitive definition, PC -efficiency is surprisingly complex and
little understood. Aziz et al. (2015) prove that the set of PC -efficient lotteries is non-
empty and connected, but they also provide examples showing that this set may fail to be
convex and can even be “curved” (i.e., it is not the union of a finite number of polytopes).
Furthermore, they construct a preference profile with a PC -dominated lottery p that is
not dominated by any PC -efficient lottery. In their example, however, one can find
an intermediate lottery which PC -dominates p and which is PC -dominated by a PC -
efficient lottery. Aziz et al. conclude their paper by writing that “it is an interesting
open problem whether there always is a path of Pareto improvements from every [PC -]
dominated lottery to some [PC -] undominated lottery” (Aziz et al., 2015, p. 129). In
Appendix A.1, we answer this problem in the negative by providing a profile with five
alternatives and eight voters, where following any sequence of PC -improvements from
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a certain lottery p will lead back to p and it is thus not possible to reach a PC -efficient
outcome by only applying PC -improvements.

2.4. Incentive-Compatibility

The final axioms we consider are strategyproofness and (strict) participation. Just like
efficiency, both of these axioms can be defined for all lottery extensions; we thus define
each of them for X ∈ {PC ,PC1 ,SD}.

Strategyproofness. Intuitively, strategyproofness demands that no voter can benefit
by lying about his true preferences. Since SD and PC1 are incomplete, there are two
different ways of defining this axiom depending on how incomparable lotteries are han-
dled. The first option, which we call X -strategyproofness, requires of an SDS f that
f(R) %Xi f(R′) for all electorates N ∈ F(N), voters i ∈ N , and preference profiles
R,R′ ∈ RN with R−i = R′−i. In particular, this means that we interpret a deviation
from a lottery p to another lottery q as a manipulation if p is incomparable to q with
respect to X .
X -strategyproofness is predominant in the literature on SD preferences (e.g., Gibbard,

1977; Barberà, 1979, 2010), but it becomes very prohibitive for sparse preference rela-
tions over lotteries. For instance, not even the SDS which always returns the uniform
lottery over the alternatives is PC1 -strategyproof because PC1 cannot compare the
uniform lottery to itself. For such preferences, the notion of weak X -strategyproofness
is more sensible: an SDS f is weakly X -strategyproof if f(R′) 6�Xi f(R) for all elec-
torates N ∈ F(N), voters i ∈ N , and preference profiles R,R′ ∈ RN with R−i = R′−i.
In other words, weak strategyproofness requires that no voter can obtain a strictly X -
preferred outcome by lying about his true preferences.6 Note that, since PC preferences
are complete, PC -strategyproofness coincides with weak PC -strategyproofness. By con-
trast, for SD and PC1 , weak X -strategyproofness is significantly less demanding than
X -strategyproofness. We say an SDS is X -manipulable if it is not X -strategyproof and
strongly X -manipulable if it is not weakly X -strategyproof. Furthermore, since strate-
gyproofness does not require a variable electorate, we always specify the electorates for
which we show that an SDS is strategyproof or manipulable.

Participation. Participation axioms intuitively require that voters should not be able
to benefit by abstaining from the election. Analogous to strategyproofness, one could
formalize this condition in two ways depending on how incomparabilities between lot-
teries are interpreted.7 Nevertheless, we will focus in our results only on the strong
notion and thus say that an SDS f satisfies X -participation if f(R) %Xi f(R−i) for all
electorates N ∈ F(N), voters i ∈ N , and preference profiles R ∈ RN .
In this paper, we are mainly interested in strict X -participation, as introduced by

6In the literature, X -strategyproofness is sometimes called strong X -strategyproofness, and weak X -
strategyproofness is then called X -strategyproofness. This is for instance the case in the survey by
Brandt (2017).

7As with strategyproofness, both versions are equivalent for PC because PC preferences are complete.
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PC -efficiencyML

SD-efficiency RD

ex post efficiency

SD-strategyproofness RD

PC -strategyproofness

weak PC1 -strategyproofnessML

strict SD-part. RD

strict PC -part.

PC -part.ML

Condorcet-
consistencyML

Absolute winner
property

Unanimity RD

Thm. 1 Thm. 2 Thm. 3

Figure 1: Overview of results. An arrow from an axiom X to another axiom Y indicates
that X implies Y . The thick lines between axioms represent impossibility
theorems. Note that Theorems 2 and 3 additionally require anonymity and
neutrality. Axioms labeled with ML are satisfied by maximal lotteries, and
axioms labeled with RD are satisfied by the uniform random dictatorship.

Brandl et al. (2015), which demands of an SDS f that, for all N ∈ F(N), i ∈ N , and
R ∈ RN , it holds that f(R) %Xi f(R−i) and, moreover, f(R) �Xi f(R−i) if there is a
lottery p with p �Xi f(R−i). That is, whenever possible, a voter is strictly better off by
voting than by abstaining from an election.

Since both p %SD
i q and p %PC1

i q imply p %PC
i q, the concepts above are related

for PC , PC1 , and SD : SD-strategyproofness implies PC -strategyproofness which im-
plies weak PC1 -strategyproofness. Furthermore, strict SD-participation is stronger than
strict PC -participation, which obviously entails PC -participation (cf. Brandt, 2017). An
overview of these relationships is given in Figure 1.

3. Random Dictatorship and Maximal Lotteries

The following two important SDSs are useful for putting our results into perspective:
the uniform random dictatorship (RD) and maximal lotteries (ML). These SDSs are
well-known and most of the subsequent claims are taken from the survey by Brandt
(2017). The uniform random dictatorship (RD) assigns probabilities proportional to
nR(x), i.e., RD(R, x) = nR(x)∑

y∈A nR(y) for every alternative x ∈ A and preference profile
R ∈ R∗. More intuitively, RD chooses a voter uniformly at random and returns his
favorite alternative as the winner. This SDS satisfies strong incentive axioms, but fails
efficiency and decisiveness conditions.

Proposition 1. RD satisfies SD-strategyproofness, strict SD-participation, and SD-
efficiency, but fails PC1 -efficiency and the absolute winner property.

Clearly, since SD-strategyproofness and strict SD-participation imply the correspond-
ing concepts for PC , RD satisfies these incentive axioms also for PC preferences. When
additionally requiring anonymity, RD is the only SDS that satisfies SD-strategyproofness
and SD-efficiency (Gibbard, 1977). On the other hand, a result by Benoît (2002) implies
that no SD-strategyproof SDS can satisfy the absolute winner property. For RD , this
claim as well as its failure of PC1 -efficiency can be observed in the following profile.
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R: [1 . . . 3]: a, b, c 4: b, a, c 5: c, a, b

For this profile, RD(R, a) = 3
5 and RD(R, b) = RD(R, c) = 1

5 , but a is the absolute
winner and the lottery that puts probability 1 on a PC1 -dominates RD(R).

The set of maximal lotteries for profile R is defined as

ML(R) = {p ∈ ∆(A) :
∑
x,y∈A

p(x)q(y)gR(x, y) ≥ 0 for all q ∈ ∆(A)}.

ML(R) is non-empty by the minimax theorem and almost always a singleton. In
particular, if the number of voters is odd, there is always a unique maximal lottery.
In case of multiple maximal lotteries, the claim below that ML satisfies weak PC1 -
strategyproofness requires a mild tie-breaking assumption: a degenerate lottery may
only be returned if it is the unique maximal lottery. For all other claims, ties can be
broken arbitrarily. As the next proposition shows, ML satisfies strong efficiency and
decisiveness notions but is rather manipulable.

Proposition 2. ML satisfies PC -efficiency, PC -participation, Condorcet-consistency,
and weak PC1 -strategyproofness, but fails PC -strategyproofness and strict PC -
participation.

References for all claims except the one concerning strict PC -participation are given
by Brandl et al. (2022). The failure of strict PC -participation is straightforward because
ML is Condorcet-consistent and a voter may be unable to change the Condorcet winner
by joining the electorate. Brandl et al. (2022) show that ML is PC -manipulable in most
profiles that admit no weak Condorcet winner. This is, for example, the case in the
profiles R and R′ below, where Voter 4 can PC -manipulate by deviating from R to R′.

R: {1, 2}: a, b, c {3, 4}: b, c, a 5: c, a, b
R′: {1, 2}: a, b, c 3: b, c, a {4, 5}: c, a, b

The unique maximal lotteries in R and R′, respectively, are p and q with p(a) = q(c) =
3
5 and p(b) = p(c) = q(a) = q(b) = 1

5 . Since �i = �′i for all i ∈ {1, 2, 3, 5} and q �PC
4 p,

Voter 4 can PC -manipulate by deviating from R to R′.
In contrast to its relatively poor performance in terms of strategyproofness and partic-

ipation, ML is very efficient. In fact, maximality of lotteries can be seen as an efficiency
notion itself. To this end, note that a lottery p is in ML(R) if and only if there is no
lottery q such that a voter that is uniformly drawn from N is more likely to prefer an
outcome drawn from q to an outcome drawn from p than vice versa (Brandl and Brandt,
2020). More formally, let I denote a uniformly distributed random variable on the vot-
ers, and interpret p and q as independent random variables on the alternatives. Then,
p ∈ ML(R) if and only if there is no lottery q such that

P(q �I p) > P(p �I q). (maximality)

This condition is equivalent to the definition of ML because

P(q �I p) =
∑
x,y∈A

q(x)p(y)
|{i ∈ N : x �i y}|

|N |
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and thus P(q �I p) > P(p �I q) if and only if
∑

x,y∈A q(x)p(y)gR(x, y) > 0. When com-
paring this to the definitions of PC -efficiency and ex post efficiency given in Section 2.3,
it can be seen that the “only” difference between maximal lotteries and PC -efficient
lotteries is that for maximal lotteries a voter is uniformly drawn at random while for
PC -efficiency the inequality has to hold for all voters. This immediately implies that
ML satisfies PC -efficiency.

4. Results

We are now ready to present our results. The results for PC -strategyproofness are given
in Section 4.1 while those for strict PC -participation are given in Section 4.2. For the
sake of readability, we defer all lengthy proofs to the appendix.

4.1. PC -strategyproofness

In this section, we show that every Condorcet-consistent and every anonymous, neutral,
and PC -efficient SDS is PC -manipulable when there are m ≥ 4 alternatives. These
results show that no SDS simultaneously satisfies PC -strategyproofness and some of
the desirable properties of maximal lotteries. Moreover, since PC -strategyproofness
is weaker than SD-strategyproofness, the incompatibility of PC -strategyproofness and
Condorcet-consistency is a strengthening of the well-known incompatibility of Condorcet-
consistent and SD-strategyproof SDSs (see, e.g., Brandt et al., 2022b). The second result
is somewhat surprising: while anonymity, neutrality, SD-strategyproofness, and SD-
efficiency characterize the uniform random dictatorship, the axioms become incompatible
when moving from SD to PC . Both impossibilities require m ≥ 4 alternatives and we
show that they turn into possibilities when m ≤ 3.

Theorem 1. Every Condorcet-consistent SDS is PC -manipulable if |N | ≥ 5 is odd and
m ≥ 4.

Proof. Assume for contradiction that there is a Condorcet-consistent and PC -
strategyproof SDS f for m ≥ 4 alternatives. Subsequently, we focus on the electorate
N = {1, . . . , 5} because we can generalize the result to any larger electorate with an odd
number of voters by adding pairs of voters with inverse preferences. These voters do not
affect the Condorcet winner and hence will not affect our analysis.
As the first step, consider the profiles R1 to R4. The ∗ symbol is a placeholder for all

missing alternatives.
R1: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, b, a 5: c, b, a, d, ∗
R2: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, b, c, d, ∗ 4: ∗, c, d, b, a 5: c, b, a, d, ∗
R3: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, a, b 5: c, b, a, d, ∗
R4: 1: a, b, d, c, ∗ 2: d, b, a, c, ∗ 3: d, a, c, b, ∗ 4: ∗, c, d, b, a 5: c, b, a, d, ∗

Note that b is the Condorcet winner in R2, a in R3, and d in R4. Thus, Condorcet-
consistency entails that f(R2, b) = f(R3, a) = f(R4, d) = 1. By contrast, there is no
Condorcet winner in R1 and we use PC -strategyproofness to derive f(R1). In more
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detail, since f(R2), f(R3), and f(R4) are degenerate, it suffices to use weak PC1 -
strategyproofness. This axiom implies that

∑
x∈A : x�2

3b
f(R1, x) ≤

∑
x∈A : b�2

3x
f(R1, x),

as otherwise Voter 3 can PC -manipulate by deviating from R2 to R1. Equivalently, this
means that

f(R1, a) ≤ f(R1, A \ {a, b}). (1)

Analogously, weak PC1 -strategyproofness between R3 and R1 and between R1 and R4

entails the following inequalities because Voter 4 in R3 needs to PC1 -prefer f(R3) to
f(R1) and Voter 3 in R1 needs to PC1 -prefer f(R1) to f(R4).

f(R1, A \ {a, b}) ≤ f(R1, b) (2)

f(R1, A \ {a, d}) ≤ f(R1, a) (3)

Chaining the inequalities together, we get f(R1, A \ {a, d}) ≤ f(R1, a) ≤ f(R1, A \
{a, b}) ≤ f(R1, b), so f(R1, A \ {a, b, d}) = 0. Simplifying (1), (2), and (3) then results
in f(R1, a) ≤ f(R1, d) ≤ f(R1, b) ≤ f(R1, a), so f(R1, a) = f(R1, b) = f(R1, d) = 1

3 .
Next, we analyze the profiles R5 to R8.
R5: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, b, a 5: c, b, a, d, ∗
R6: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, b, a 5: b, c, a, d, ∗
R7: 1: a, b, d, c, ∗ 2: b, d, a, c, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, a, b 5: c, b, a, d, ∗
R8: 1: a, b, d, c, ∗ 2: b, c, d, a, ∗ 3: a, d, c, b, ∗ 4: ∗, c, d, b, a 5: c, b, a, d, ∗

Just as for the profiles R1 to R4, there is no Condorcet winner in R5, whereas b is
the Condorcet winner in R6, a in R7, and c in R8. Consequently, Condorcet-consistency
requires that f(R6, b) = f(R7, a) = f(R8, c) = 1. Next, we use again weak PC1 -
strategyproofness to derive f(R5). In particular, we infer the following inequalities as
Voter 5 in R5 needs to PC1 -prefer f(R5) to f(R6), Voter 4 in R7 needs to PC1 -prefer
f(R7) to f(R5), and Voter 2 in R8 needs to PC1 -prefer f(R8) to f(R5).

f(R5, A \ {b, c}) ≤ f(R5, c) (4)

f(R5, A \ {a, b}) ≤ f(R5, b) (5)

f(R5, b) ≤ f(R5, A \ {b, c}) (6)

Analogous computations as for R1 now show that f(R5, a) = f(R5, b) = f(R5, c) = 1
3 .

Finally, note that R1 and R5 only differ in the preferences of Voter 2. This means that
Voter 2 can PC -manipulate by deviating from R5 to R1 since he even SD-prefers f(R1)
to f(R5). Hence, f fails PC -strategyproofness, which contradicts our assumptions.

Before proving the incompatibility of PC -efficiency and PC -strategyproofness, we
first state an auxiliary claim which establishes that the absolute winner property, PC -
efficiency, and PC -strategyproofness are incompatible. The involved proof of this lemma
is deferred to Appendix A.2.

Lemma 1. Every PC -efficient SDS that satisfies the absolute winner property is PC -
manipulable if |N | ≥ 3, |N | 6∈ {4, 6}, and m ≥ 4.
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Note that Lemma 1 is a rather strong impossibility itself and, in particular, does
not require anonymity or neutrality. Based on this lemma, we now show that every
anonymous, neutral, and PC -efficient SDS is PC -manipulable. It is sufficient to show
that the given axioms imply the absolute winner property since the result then follows
from Lemma 1.

Theorem 2. Every anonymous and neutral SDS that satisfies PC -efficiency is PC -
manipulable if |N | ≥ 3, |N | 6∈ {4, 6}, and m ≥ 4.

Proof. We prove the claim for even |N |; the argument for odd |N | is much more in-
volved and deferred to the appendix. Our goal is to show that every SDS that satisfies
PC -efficiency, PC -strategyproofness, anonymity, and neutrality for an electorate with
an even number of voters |N | ≥ 8 also satisfies the absolute winner property. Then,
Lemma 1 shows that no such SDS exists. To this end, suppose that there is an SDS f
that satisfies all given axioms and consider the following profile R1, where the ∗ symbol
indicates that all missing alternatives are added in an arbitrary fixed order.

R1: 1: a, b, c, ∗ 2: a, c, b, ∗ [3 . . . n2 +1]: b, a, c, ∗ [n2 +2 . . . n]: c, a, b, ∗

First, all alternatives except a, b, and c are Pareto-dominated and thus PC -efficiency
requires that f(R1, x) = 0 for x 6∈ {a, b, c}. Moreover, b and c are symmetric in R1 and
anonymity and neutrality therefore imply that f(R1, b) = f(R1, c). Finally, note that
every lottery p with p(b) = p(c) > 0 is PC -dominated by the lottery q with q(a) = 1.
Hence, it follows from PC -efficiency, anonymity, and neutrality that f(R1, a) = 1.

Next, consider the profile R2, in which the voters in [3 . . . n2 + 1] report a, c, b instead
of b, a, c, and Voter 1 reports a, c, b instead of a, b, c.

R2: 1: a, c, b, ∗ 2: a, c, b, ∗ [3 . . . n2 +1]: a, c, b, ∗ [n2 +2 . . . n]: c, a, b, ∗

A repeated application of PC -strategyproofness shows that a must still be chosen with
probability 1 in R2 because a is the favorite alternative of the deviator after every step.
In more detail, if a is assigned probability 1 in profile R and a voter deviates to a profile
R′ by top-ranking a, a must still have probability 1 because otherwise, the voter can
manipulate in R′ by going back to R.

Finally, observe that c Pareto-dominates all alternatives but a in R2. Using this fact,
we go to the profile R3 by letting the voters in [n2+2 . . . n] one after another change their
preference relation to c, b, ∗, a.

R3: 1: a, c, b, ∗ 2: a, c, b, ∗ [3 . . . n2 +1]: a, c, b, ∗ [n2 +2 . . . n]: c, b, ∗, a

We claim that f(R3, a) = 1. Indeed, PC -efficiency shows for R3 and all intermediate
profiles that only a and c can have positive probability as all other alternatives are Pareto-
dominated. Moreover, PC -strategyproofness shows for every step that, if a is originally
chosen with probability 1, then c must have probability 0 after the manipulation because
every manipulator prefers c to a and no other alternative gets any positive probability.
Hence, we infer that f(R3, a) = 1.
Finally, note that the voters who top-rank a can now reorder the alternatives in

A \ {a} arbitrarily and the voters who bottom-rank a can even reorder all alternatives
without affecting the outcome. In more detail, if a is chosen with probability 1 and a
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voter top-ranks a after the manipulation, PC -strategyproofness requires that a still is
assigned probability 1 because the voter can otherwise manipulate by switching back to
his original preference relation. Similarly, if a voter bottom-ranks alternative a and a
is assigned probability 1, he cannot affect the outcome by deviating because any other
outcome induces a PC -manipulation. Hence, it follows that f(R, a) = 1 for all profiles
in which the voters in [1 . . . n2 + 1] top-rank a. Since anonymity allows us to rename
the voters and neutrality to exchange the alternatives, this means that f satisfies the
absolute winner property.

Since both Theorems 1 and 2 require m ≥ 4 alternatives, there is still hope for a
positive result when m ≤ 3. Indeed, for m = 2, ML satisfies Condorcet-consistency,
PC -efficiency, PC -strategyproofness, anonymity, and neutrality. However, as shown in
Section 3, ML fails PC -strategyproofness when m = 3. We therefore construct another
SDS that satisfies all given axioms. To this end, let CW(R) be the set of Condorcet
winners in R, and WCW(R) = {x ∈ A : gR(x, y) ≥ 0 for all y ∈ A \ {x}} the set of weak
Condorcet winners if CW(R) = ∅, and WCW(R) = ∅ otherwise. Then, define the SDS
f1 as follows.

f1(R) =


[x : 1] if CW(R) = {x}
[x : 1

2 ; y : 1
2 ] if WCW(R) = {x, y}

[x : 3
5 ; y : 1

5 ; z : 1
5 ] if WCW(R) = {x}

[x : 1
3 ; y : 1

3 ; z : 1
3 ] otherwise

Note that, in the absence of majority ties, f1 boils down to the rather natural SDS that
selects the Condorcet winner with probability 1 and returns the uniform lottery other-
wise. This SDS was already proposed by Potthoff (1970) to achieve strategyproofness in
the case of three alternatives. As we show, f1 extends this SDS to profiles with majority
ties while preserving a number of desirable properties. In particular, f1 is the only SDS
for m = 3 alternatives that satisfies cancellation and the axioms of Theorem 2. We defer
the proof of this claim to Appendix A.3. Moreover, f1 is clearly Condorcet-consistent.

Proposition 3. For m = 3, f1 is the only anonymous and neutral SDS that satisfies
PC -efficiency, PC -strategyproofness, and cancellation.

Remark 1. All axioms are required for Theorem 1 and all axioms with the possible
exception of neutrality are required for Theorem 2. ML only fails PC -strategyproofness,
dictatorships only fail anonymity and Condorcet-consistency, and the uniform random
dictatorship only fails PC -efficiency and Condorcet-consistency. In particular, since
dictatorships satisfy all axioms of Theorem 2 but anonymity, this condition is required
for the impossibility. The number of alternatives required for Theorems 1 and 2 is tight
as shown by f1. We conjecture that Theorem 2 holds even without neutrality.

Remark 2. It is open whether Theorem 1 also holds for even |N |. However, when
additionally requiring the mild condition of homogeneity (which requires that splitting
each voter into k clones with the same preferences does not affect the outcome), the
statement holds also for even |N | ≥ 10. This can be shown by duplicating all voters in
the proof and adding some additional profiles in the derivation from R1 to R5.
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Remark 3. For the well-known class of pairwise SDSs, which only depend on the ma-
jority margins to compute the outcomes, PC -strategyproofness, unanimity, and homo-
geneity imply Condorcet-consistency. This follows by carefully inspecting the proof of
Lemma 12 by Brandt and Lederer (2023). Hence, Theorem 1 implies that no pairwise
SDS satisfies unanimity, PC -strategyproofness, and homogeneity.

Remark 4. Remarkably, the proof of Theorem 1 never uses the full power of PC -
strategyproofness. Instead, every step either uses weak PC1 -strategyproofness or weak
SD-strategyproofness and thus, our proof shows actually a stronger but more technical
result where PC -strategyproofness is replaced with weak SD-strategyproofness and weak
PC1 -strategyproofness. Interestingly, the Condorcet rule, which chooses the Condorcet
winner if it exists and randomizes uniformly over all alternatives otherwise, is Condorcet-
consistent and weakly SD-strategyproof, and ML is Condorcet-consistent and weakly
PC1 -strategyproof.

4.2. Strict PC -participation

In this section, we show that strict PC -participation is incompatible with PC -efficiency.

Theorem 3. No anonymous and neutral SDS satisfies both PC -efficiency and strict
PC -participation if m ≥ 4.

Proof. We establish a stronger statement using PC1 -efficiency instead of PC -efficiency.
Assume for contradiction that there is a neutral and anonymous SDS f that satisfies

both PC1 -efficiency and strict PC -participation. We first prove the impossibility for the
case m = 4 and explain how to generalize the impossibility to more alternatives at the
end of this proof. First, consider the following profile with ten voters.

R1: 1: a, b, c, d 2: a, b, d, c 3: a, c, b, d 4: a, c, d, b 5: a, d, b, c
6: a, d, c, b 7: b, a, c, d 8: b, a, d, c 9: c, a, b, d 10: c, a, d, b

Observe that b and c are symmetric in R1 and thus, anonymity and neutrality imply
that f(R1, b) = f(R1, c). Moreover, since a Pareto-dominates d, it can be checked that
every lottery p with p(b) = p(c) > 0 or p(d) > 0 is PC1 -dominated by the lottery q
that puts probability 1 on a. Indeed, voters 1 to 6 strictly PC1 -prefers q to p since
a is their favorite alternative, and voters 7 to 10 PC1 -prefer q to p since p(b) = p(c).
Hence, PC1 -efficiency requires that f(R1, b) = f(R1, c) = f(R1, d) = 0, which means
that f(R1, a) = 1.
Next, consider profile R2, which is obtained by adding voter 11 with the preference

relation d, a, b, c to R1. We infer from strict PC -participation that f(R2, d) > f(R2, b)+
f(R2, c).
Finally, consider profile R3, which is obtained by adding voter 12 with the preference

relation d, a, c, b to R2. Observe that b, c, and d are symmetric in R3, so by neutrality
and anonymity, f(R3, b) = f(R3, c) = f(R3, d). If f(R3, b) = f(R3, c) = f(R3, d) > 0,
then f is not PC1 -efficient because all voters strictly prefer the degenerate lottery that
puts probability 1 on a. Hence, f(R3, b) = f(R3, c) = f(R3, d) = 0, which means
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that f(R3, a) = 1. Since f(R2, d) > f(R2, b) + f(R2, c), voter 12 has a disincentive to
participate in R3, thereby contradicting the strict PC -participation of f .

Finally, for extending this impossibility to more than m = 4 alternatives, we simply
add the new alternatives at the bottom of the preference rankings of all voters in a
fixed order. PC1 -efficiency, anonymity, and neutrality still require for R1 and R3 that a
obtains probability 1, and it thus is easy to check that the impossibility still holds.

By contrast, multiple SDSs are known to satisfy SD-efficiency and strict SD-
participation (see Brandl et al., 2015). Theorem 3 can be seen as a complement to
the work of Brandl et al. (2019): ML satisfies PC -participation and PC -efficiency, but
no anonymous and neutral SDS satisfies strict PC -participation and PC -efficiency.

Since Theorem 3 requires m ≥ 4, a natural question is whether the impossibility also
holds for m ≤ 3. As we demonstrate, this is not the case. If m = 2, it is easy to see that
the uniform random dictatorship satisfies all axioms of Theorem 3. For m = 3, however,
the uniform random dictatorship fails PC1 -efficiency (see Section 3). In light of this,
we construct a new SDS that satisfies all axioms used in Theorem 3 and PC -efficiency.
To this end, let B denote the set of alternatives that are never bottom-ranked. Then,
the SDS f2 is defined as follows: return the uniform random dictatorship if |B| ∈ {0, 2};
otherwise (i.e., |B| = 1), we delete the alternatives x ∈ A \ B that minimize nR(x) (if
there is a tie, delete both alternatives) and return the outcome of the uniform random
dictatorship for the reduced profile. As the following proposition shows, f2 indeed
satisfies all axioms of Theorem 3 when m = 3; the proof is deferred to Appendix A.3.

Proposition 4. For m = 3, f2 satisfies anonymity, neutrality, PC -efficiency, and strict
PC -participation.

Remark 5. Both PC -efficiency and PC -participation are required for Theorem 3 since
ML and RD satisfy all but one of the axioms. Whether anonymity and neutrality are
required is open.

Remark 6. Theorem 3 still holds when replacing PC -efficiency with weak PC -efficiency
and letting m ≥ 5. (A lottery fails to be weakly PC -efficient if there is another lottery in
which all voters are strictly better off.) The incompatibility with strict PC -participation
can be shown by a proof that uses a preference profile with five alternatives and 18 voters
that are joined by 6 further voters, but is otherwise similar to that of Theorem 3.

Remark 7. f2 also satisfies strict SD-participation, which shows that efficiency and
participation are compatible even in their strongest forms when m = 3. However, these
axioms do not uniquely characterize f2.

5. Conclusion

We have studied incentive properties of social decision schemes (SDSs) based on the pair-
wise comparison (PC ) lottery extension and answered open questions raised by Brandt
(2017) under the assumptions of anonymity and neutrality. In particular, we showed that
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PC -strategyproofness and strict PC -participation are incompatible with PC -efficiency
and Condorcet-consistency when there are at least four alternatives (see also Figure 1).
When there are fewer than four alternatives, the axioms are shown to be compatible
via the introduction of two new SDSs. We also settled an open problem by Aziz et al.
(2015) by showing that there exist profiles and PC -inefficient lotteries such that it is not
possible to reach a PC -efficient outcome by repeatedly moving from a PC -dominated
lottery to one of its dominators.
We highlight three important aspects and consequences of our results. First, when

moving from the standard approach of stochastic dominance (SD) to PC , previously
compatible axioms become incompatible. In particular, Theorems 2 and 3 become pos-
sibilities when using SD preferences since all given axioms are satisfied by the uniform
random dictatorship. Secondly, unlike Arrow’s impossibility and the No-Show paradox,
our results show that PC preferences offer no attractive escape route to the Gibbard-
Satterthwaite impossibility. In more detail, while Brandl et al. (2019) and Brandl and
Brandt (2020) show that maximal lotteries avoid Arrow’s impossibility and the No-Show
paradox when assuming PC preferences, our results show that PC preferences do not
allow to find a new attractive strategyproof SDS. Hence, our theorems stand in con-
trast to the previous positive findings on PC preferences. In light of the shown tradeoff
between incentive-compatibility and efficiency, two SDSs stand out: the uniform ran-
dom dictatorship because it satisfies PC -strategyproofness and strict PC -participation,
and maximal lotteries because it satisfies PC1 -strategyproofness, Condorcet-consistency,
PC -efficiency, and PC -participation.
There are only few opportunities to further strengthen these results. In some cases, it

is unclear whether anonymity or neutrality—two fairness properties that are often con-
sidered imperative in social choice—are required. Two challenging questions concerning
Theorem 2 are whether anonymity can be weakened to non-dictatorship and whether
PC -efficiency can be replaced with weak PC -efficiency (cf. Remark 6). However, if true,
any such statement would require quite different proof techniques.
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A. Omitted Proofs

In this section, we present the proofs omitted from the main body. In particular, we
prove in Appendix A.1 that it is possible that no path of PC -improvements originating
from a PC -inefficient lottery leads to a PC -efficient lottery. Furthermore, we discuss the
proofs of Theorem 2 and Lemma 1 in Appendix A.2. Finally, Appendix A.3 contains
the proofs of Propositions 3 and 4.

A.1. PC -Efficiency Cycle

Aziz et al. (2015) left as an open problem whether for every PC -inefficient lottery p there
is a sequence of PC -improvements that leads to a PC -efficient lottery. We disprove this
assertion by giving a profile R and a lottery p such that it is not possible to reach a
PC -efficient lottery q from p by repeatedly applying PC -improvements.

Proposition 5. There is a profile R and a lottery p such that no sequence of PC -
improvements that starts at p leads to a PC -efficient lottery.

Proof. Before we present the profile and the lotteries that will constitute our counterex-
ample, we discuss two general claims on PC preferences. To this end, consider two
lotteries p and q and two voters i and j and suppose that both voters i and j prefer q
to p according to PC . By using the definition of PC preferences and partitioning alter-
natives also with respect to the preferences of voter j, we derive the following inequality
for voter i. ∑

x,y∈A : x�iy ∧x�jy

q(x)p(y) +
∑

x,y∈A : x�iy ∧ y�jx

q(x)p(y)

≥
∑

x,y∈A : x�iy ∧x�jy

p(x)q(y) +
∑

x,y∈A : x�iy ∧ y�jx

p(x)q(y)

By exchanging the roles of voter i and j, we also infer the subsequent inequality.∑
x,y∈A : x�jy ∧x�iy

q(x)p(y) +
∑

x,y∈A : x�jy ∧ y�ix

q(x)p(y)

≥
∑

x,y∈A : x�jy ∧x�iy

p(x)q(y) +
∑

x,y∈A : x�jy ∧ y�ix

p(x)q(y)

Now, by summing up these two inequalities and cancelling common terms, we infer
our first key insight: two voters i and j simultaneously PC -prefer q to p only if∑

x,y∈A : x�iy ∧x�jy

q(x)p(y) ≥
∑

x,y∈A : x�iy ∧x�jy

p(x)q(y). (7)

On the other hand, if
∑

x,y∈A : x�iy ∧x�jy
q(x)p(y) =

∑
x,y∈A : x�iy ∧x�jy

p(x)q(y) = 0,
our two initial inequalities simplify to∑

x,y∈A : x�iy ∧ y�jx

q(x)p(y) =
∑

x,y∈A : x�iy ∧ y�jx

p(x)q(y). (8)
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Using (7) and (8), we will show that we cannot reach a PC -efficient lottery from p1

where p1(a) = p1(b) = 1
2 by only making PC -improvements according to the profile R

shown below.
R: 1: b, d, c, a, e 2: a, e, c, b, d 3: d, c, a, b, e 4: e, c, a, b, d

5: b, d, e, c, a 6: a, e, d, c, b 7: b, e, d, c, a 8: a, d, e, c, b

To prove this claim, we proceed in three steps, which essentially show that from p1 we
can only go towards the lottery p2 with p2(c) = 1, from p2 only towards the lottery p3

with p3(d) = p3(e) = 1
2 , and from p3 only towards p1. Hence, we cycle through PC -

inefficient lotteries and never reach an efficient one.

Step 1: As the first step, we show that every lottery p with p(a) = p(b) > 0 and
p(d) = p(e) = 0 is only PC -dominated by lotteries q with q(a) = q(b) < p(a) = p(b) and
q(d) = q(e) = 0. For this, we observe that voters 1 and 2 only agree that a is preferred
to e and that is b is preferred to d. By (7), q can PC -dominate p only if

q(b)p(d) + q(a)p(e) ≥ p(b)q(d) + p(a)q(e).

Since p(d) = p(e) = 0 and p(a) = p(b) > 0 by assumption, this inequality can only be
true if q(d) = q(e) = 0. Hence, we have that q(b)p(d)+q(a)p(e) = p(b)q(d)+p(a)q(e) = 0.
Equation (8) and the fact that p(d) = p(e) = q(d) = q(e) = 0 therefore show that

q(b)p(c) + q(b)p(a) + q(c)p(a) = p(b)q(c) + p(b)q(a) + p(c)q(a).

Finally, since p(a) = p(b) > 0, it is easy to derive that this equation holds only if
q(a) = q(b). Using this fact and q(d) = q(e) = 0, it follows that voters 3 and 4 PC -
prefer q to p only if q(c) ≥ p(c). Since p 6= q if q PC -dominates p, we thus infer that q
dominates p in R only if q(a) = q(b) < p(a) = p(b) and q(d) = q(e) = p(d) = p(e) = 0.
Finally, it is easy to verify that all voters indeed PC -prefer such a lottery q to p. This
argument shows that every lottery p with p = λp1 + (1 − λ)p2 is only PC -dominated
by another lottery of the same form but with smaller λ. In particular, if we apply this
argument at p1, we eventually have to go to p2 when we aim to reach a PC -efficient
lottery by applying PC -improvements.

Step 2: Next, we prove that every lottery p with p(a) = p(b) = 0, p(c) > 0, and
p(d) = p(e) is only PC -dominated by lotteries q with q(a) = q(b) = 0 and q(d) = q(e) >
p(d) = p(e). To this end, consider the preferences of voters 3 and 4 and note that these
voters only agree on the preferences between c and a, c and b, and a and b. Hence, (7)
requires that

q(c)p(a) + q(c)p(b) + q(a)p(b) ≥ p(c)q(a) + p(c)q(b) + p(a)q(b).

Since p(a) = p(b) = 0 and p(c) > 0 by assumption, this inequality can be true only if
q(a) = q(b) = 0. We hence infer that q(c)

(
p(a) + p(b)

)
+ q(a)p(b) = p(c)

(
q(a) + q(b)

)
+

p(a)q(b) = 0. Consequently, Equation (8) and the fact that p(a) = p(b) = q(a) = q(b) =
0 imply that

q(d)p(c) + q(d)p(e) + q(c)p(e) = p(d)q(c) + p(d)q(e) + p(c)q(e).
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Since p(d) = p(e) by assumption, this equation can hold only if q(d) = q(e). This
insight and the fact that q(a) = q(b) = 0 imply that voters 5 to 8 only PC -prefer q
to p if q(d) = q(e) ≥ p(d) = p(e). Since p 6= q if q PC -dominates p, this inequality
must be strict. Finally, it is not difficult to verify that every lottery q that satisfies
q(a) = q(b) = 0 and q(d) = q(e) > p(d) = p(e) indeed PC -dominates p. In particular,
this means that every lottery p with p = λp2 + (1 − λ)p3 is only PC -dominated by a
lottery q with p = λ′p2 + (1− λ′)p3 and λ′ < λ. Hence, if we are at p2 and try to find a
PC -efficient lottery by applying PC -improvements, we will inevitably arrive at p3.

Step 3: As the last step, we prove that every lottery p with p(a) = p(b), p(c) = 0,
and p(d) = p(e) > 0 is only PC -dominated by lotteries q with q(a) = q(b) > p(a) = p(b),
q(c) = 0, and q(d) = q(e). For this, we consider voters 5 to 8 and note that voters 5
and 6 agree only on the preference between d and c and between e and c. Moreover, the
same is true for voters 7 and 8 and we thus derive from (7) that

q(d)p(c) + q(e)p(c) ≥ p(d)q(c) + p(e)q(c).

Using the fact that p(c) = 0 and p(d) = p(e) > 0, this inequality can be true only
if q(c) = 0. Hence, we have that q(d)p(c) + q(e)p(c) = p(d)q(c) + p(e)q(c) = 0. Using
Equation (8) and the fact that q(c) = p(c) = 0, we derive the following two equations.
The first one corresponds to voters 5 and 6, whereas the second one corresponds to
voters 7 and 8.

q(b)
(
p(d) + p(e) + p(a)

)
+ q(d)

(
p(e) + p(a)

)
+ q(e)p(a)

=p(b)
(
q(d) + q(e) + q(a)

)
+ p(d)

(
q(e) + q(a)

)
+ p(e)q(a) (9)

q(b)
(
p(e) + p(d) + p(a)

)
+ q(e)

(
p(d) + p(a)

)
+ q(d)p(a)

=p(b)
(
q(e) + q(d) + q(a)

)
+ p(e)

(
q(d) + q(a)

)
+ p(d)q(a)

Subtracting these two equations from each other yields that q(d)p(e) − q(e)p(d) =
p(d)q(e)−p(e)q(d). Since p(d) = p(e) > 0, we derive from this equation that q(d) = q(e).
Using this observation and the assumptions that p(a) = p(b) and p(d) = p(e) > 0, we
can infer from Equation (9) that q(a) = q(b). In summary, we therefore have that
q(c) = 0, q(a) = q(b), and q(d) = q(e). Next, voters 1 and 2 only PC -prefer q to p if
q(a) = q(b) ≥ p(a) = p(b), which means that q(a) = q(b) > p(a) = p(b) because p 6= q.
Finally, it is easily seen that all voters indeed PC -prefer q to p. This means that a
lottery p with p = λp3 + (1− λ)p1 is only PC -dominated by another lottery q with the
same form but smaller λ. As a consequence, when applying PC -improvements from p3

to reach a PC -efficient outcome, one will inevitably reach p1.

A.2. Proof of Theorem 2

Next, we prove Theorem 2 and start by presenting three auxiliary lemmas. In more
detail, we initiate our analysis by investigating the consequences of PC -strategyproofness
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for lotteries with small support. To this end, let the support of a lottery be supp(p) =
{x ∈ A : p(x) > 0}. Our first lemma then focuses on the case where |supp(f(R))| ≤ 2
and states that, if the support does not change after a manipulation and the manipulator
does not reorder the alternatives in the support, the outcome is not allowed to change.

Lemma 2. Let R,R′ ∈ RN for some N ∈ F(N), i ∈ N , and a, b ∈ A such that R−i =
R′−i and a �i b iff a �′i b. Then, every PC -strategyproof SDS f satisfies f(R) = f(R′)
if supp(f(R)) ⊆ {a, b} and supp(f(R′)) ⊆ {a, b}.

Proof. Let R,R′ ∈ RN , N ∈ F(N), i ∈ N , and a, b ∈ A be two distinct alternatives.
Without loss of generality, we assume that a �i b and a �′i b; the case where voter i
prefers b to a is symmetric. Moreover, let f denote a PC -strategyproof SDS and assume
that supp(f(R)) ⊆ {a, b} and supp(f(R′)) ⊆ {a, b}. Now, assume for contradiction that
f(R) 6= f(R′). Since both lotteries only put positive probability on a and b, this means
either that f(R, a) < f(R′, a) and f(R, b) > f(R′, b), or that f(R, a) > f(R′, a) and
f(R, b) < f(R′, b). First, suppose that f(R, a) < f(R′, a). Then, f(R′) �PC

i f(R),
and voter i can thus PC -manipulate by deviating from R to R′. On the other hand,
if f(R, a) > f(R′, a), voter i can PC -manipulate by deviating from R′ to R as he PC -
prefers f(R) to f(R′) with respect to �′i. Hence, both cases result in a PC -manipulation,
contradicting the PC -strategyproofness of f . This proves that f(R) = f(R′).

Next, we analyze PC -strategyproofness when |supp(f(R))| ≤ 3. In this case, only a
significantly weaker implication holds: if supp(f(R)) ⊆ {a, b, c}, supp(f(R′)) ⊆ {a, b, c},
f(R, a) < f(R, c), and a �i b �i c for some voter i, then this voter cannot change the
fact that a gets less probability than c in the resulting lottery.

Lemma 3. Let R,R′ ∈ RN for some N ∈ F(N), i ∈ N , and a, b, c ∈ A such that R−i =
R′−i and a �i b �i c. Then, every PC -strategyproof SDS f satisfies f(R′, a) < f(R′, c)
if f(R, a) < f(R, c), supp(f(R)) ⊆ {a, b, c}, and supp(f(R′)) ⊆ {a, b, c}.

Proof. Let R,R′ ∈ RN for some N ∈ F(N), i ∈ N , and a, b, c ∈ A be three distinct alter-
natives such that R−i = R′−i and a �i b �i c. Furthermore, consider a PC -strategyproof
SDS f and suppose that supp(f(R)) ⊆ {a, b, c} and supp(f(R′)) ⊆ {a, b, c}. For sim-
plicity, we define p = f(R) and q = f(R′) and assume for contradiction that p(a) < p(c)
and q(a) ≥ q(c). Next, we use PC -strategyproofness to relate p and q. In particular,
we infer the following equation from the PC -strategyproofness between R and R′. Note
that the alternatives x ∈ A \ {a, b, c} can be omitted as p(x) = q(x) = 0.

p(a)q(b) + p(a)q(c) + p(b)q(c) ≥ q(a)p(b) + q(a)p(c) + q(b)p(c)

Using the fact that 1 = q(a) + q(b) + q(c) and 1 = p(a) + p(b) + p(c), we have two
possibilities of rewriting this inequality.

p(a)(1− q(a)) + p(b)q(c) ≥ q(a)(1− p(a)) + q(b)p(c)

⇐⇒ p(a) + p(b)q(c) ≥ q(a) + q(b)p(c)
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p(a)q(b) + (1− p(c))q(c) ≥ q(a)p(b) + (1− q(c))p(c)
⇐⇒ p(a)q(b) + q(c) ≥ q(a)p(b) + p(c)

Summing up these two inequalities results in the following inequality.

p(a)(1 + q(b)) + q(c)(1 + p(b)) ≥ q(a)(1 + p(b)) + p(c)(1 + q(b))

⇐⇒ (p(a)− p(c))(1 + q(b)) ≥ (1 + p(b))(q(a)− q(c))

Our assumption that p(a) < p(c) implies that the left-hand side of the inequality
is smaller than 0. On the other hand, we have q(a) ≥ q(c), so the right-hand side is
non-negative. This is a contradiction, which proves that our assumptions on p and q
are in conflict with PC -strategyproofness. Hence, if f(R, a) < f(R, c), then f(R′, a) <
f(R′, c).

For our proofs, we also need insights on circumstances under which a lottery is PC -
inefficient. To this end, we analyze in the next lemma when voters prefer certain lotteries
to each other. In order to succinctly formalize these results, we define the rank of an
alternative x in a preference relation �i as r(�i, x) = 1 + |{y ∈ A \ {x} : y �i x}|.
In particular, if r(�i, x) < r(�i, y), then x �i y due to the transitivity of preference
relations.

Lemma 4. Let A = {w, x, y, z}, let p denote a lottery on A with p(x) > 0 and p(y) > 0,
and define q as q(x) = p(x)− ε

p(x)+p(z) , q(y) = p(y)− ε
p(y)+p(z) , q(z) = p(z) + ε

p(x)+p(z) +
ε

p(y)+p(z) , and q(w) = p(w), where ε > 0 is sufficiently small so that q(x) ≥ 0, q(y) ≥ 0.
Then, the following PC -preferences hold:

1. If z �i x and z �i y, then q �PC
i p.

2. If x �i z and y �i z, then p �PC
i q.

3. Assume that x �i z �i y or y �i z �i x.
a) If p(w) = 0 or r(�i, w) ∈ {1, 4}, then p %PC

i q and q %PC
i p.

b) If r(�i, w) = 2 and p(w) > 0, then p �PC
i q.

c) If r(�i, w) = 3 and p(w) > 0, then q �PC
i p.

Proof. Let p and q be defined as in the lemma. Claims 1 and 2 follow immediately since
a voter i with z �i x and z �i y (resp. x �i z and y �i z) strictly SD-prefers q to p
(resp. p to q).
For Claim 3, suppose that x �i z �i y; the case that y �i z �i x is symmetric. The

key insight for this case is that

p(x)
(
q(z) + q(y)

)
+ p(z)q(y)

=p(x)
(
p(z) + p(y) +

ε

p(x) + p(z)

)
+ p(z)

(
p(y)− ε

p(y) + p(z)

)
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=p(x)
(
p(z) + p(y)

)
+ p(z)p(y) +

εp(x)

p(x) + p(z)
− εp(z)

p(y) + p(z)

=p(x)
(
p(z) + p(y)

)
+ p(z)p(y) +

(
ε− εp(z)

p(x) + p(z)

)
−
(
ε− εp(y)

p(y) + p(z)

)
=p(x)

(
p(z) + p(y)

)
+ p(z)p(y)− εp(z)

p(x) + p(z)
+

εp(y)

p(y) + p(z)
+
εp(y)− εp(y)

p(x) + p(z)

=
(
p(x)− ε

p(x) + p(z)

)(
p(z) + p(y)

)
+
(
p(z) +

ε

p(x) + p(z)
+

ε

p(y) + p(z)

)
p(y)

=q(x)
(
p(z) + p(y)

)
+ q(z)p(y).

As a consequence of this equation, voter i’s preference between q and p only depends
on p(w) and r(�i, w). First, if p(w) = q(w) = 0, the PC -comparison between p and q
with respect to �i reduces exactly to the above equation. Hence, p %PC

i q and q %PC
i p

if p(w) = q(w) = 0. We therefore suppose that p(w) = q(w) > 0 and proceed with a
case distinction with respect to r(�i, w). In this analysis, we use ∆xyz

p→q = p(x)
(
q(z) +

q(y)
)

+ p(z)q(y) and ∆xyz
q→p = q(x)

(
p(z) + p(y)

)
+ q(z)p(y) as a shorthand notation.

• First, suppose that r(�i, w) = 1, i.e., �i= w, x, z, y. Since p(w) = q(w), p(x) +
p(y) + p(z) = 1− p(w), and q(x) + q(y) + q(z) = 1− q(w), it is easy to verify that
p(w)

(
q(x)+q(y)+q(z)

)
+∆xyz

p→q = q(w)
(
p(x)+p(y)+p(z)

)
+∆xyz

q→p. This implies

that p %PC
i q and q %PC

i p.

• As the second case, suppose that r(�i, w) = 4, i.e., �i= x, z, y, w. For the same
reason as in the first case it follows that ∆xyz

p→q +
(
p(x) + p(y) + p(z)

)
q(w) =

∆xyz
q→p +

(
q(x) + q(y) + q(z)

)
p(w) and thus, p %PC

i q and q %PC
i p.

• Next, suppose that r(�i, w) = 2, i.e., �i= x,w, z, y. Then, p �PC
i q as∑

u,v∈A : u�iv

p(u)q(v) = p(x)q(w) + p(w)q(y) + p(w)q(z) + ∆xyz
p→q

= p(x)p(w) + p(w)
(
p(y) + p(z) +

ε

p(x) + p(z)

)
+ ∆xyz

p→q

=
(
p(x) +

ε

p(x) + p(z)

)
p(w) + p(w)

(
p(y) + p(z)

)
+ ∆xyz

p→q

> q(x)p(w) + q(w)
(
p(y) + p(z)

)
+ ∆xyz

q→p

=
∑

u,v∈A : u�iv

q(u)p(v).

• As the last case, suppose that r(�i, w) = 3, i.e., �i= x, z, w, y. In this case, a
symmetric inequality as in the previous case proves that q �PC

i p.
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Note that Lemma 4 also holds for all lotteries q and p with q(z) > 0 and p(x) =
q(x)+ ε′

q(x)+q(z) , p(y) = q(y)+ ε′

q(y)+q(z) , p(z) = q(z)− ε′

q(x)+q(z)−
ε′

q(y)+q(z) , and p(w) = q(w)

(ε′ > 0 is again sufficiently small so that p is a well-defined lottery on {w, x, y, z}). The
reason for this is that q(x) = p(x) − ε

p(x)+p(z) , q(y) = p(y) − ε
p(y)+p(z) , and q(z) =

p(z) + ε
p(x)+p(z) + ε

p(y)+p(z) for ε = ε′− ε′2

(q(x)+q(z))·(q(y)+q(z)) . For instance, this follows for
p(x) from the following equation.

p(x)− ε

p(x) + p(z)
= p(x)−

ε′ − ε′2

(q(x)+q(z))·(q(y)+q(z))

q(x) + q(z)− ε′

q(y)+q(z)

=p(x)−
ε′(q(x) + q(z))− ε′2

q(y)+q(z)

(q(x) + q(z)) · (q(x) + q(z)− ε′

q(y)+q(z))
= p(x)− ε′

q(x) + q(z)
= q(x)

Finally, we are now ready to prove Lemma 1. We prove this statement separately for
electorates with an odd number of voters and for those with an even number of voters.

Lemma 1a). Every PC -efficient SDS that satisfies the absolute winner property is PC -
manipulable if |N | ≥ 3 is odd and m ≥ 4.

Proof. Consider an arbitrary electorate N ∈ F(N) with an odd number of voters n =
|N | ≥ 3 and suppose there are m ≥ 4 alternatives. We assume for contradiction that
there is an PC -efficient SDS f that satisfies the absolute winner property and PC -
strategyproofness for N . In the sequel, we will focus on profiles on the alternatives
{a, b, c, d}; all other alternatives are always ranked below these alternatives and therefore
Pareto-dominated. Hence, PC -efficiency entails for all subsequent profiles that f(R, x) =
0 for all x ∈ A\{a, b, c, d}, which means that these alternatives do not affect our further
analysis. In slight abuse of notation, we therefore assume that A = {a, b, c, d}.
We derive a contradiction by focusing on the profiles R and R′ shown below. Specifi-

cally, our goal is to show that f(R, a) = f(R, b) = f(R, c) = 1
3 and f(R′, a) = f(R′, c) =

f(R′, d) = 1
3 . This implies that voter n+1

2 can PC -manipulate by switching from R′

to R as he even SD-prefers f(R) to f(R′), i.e., these claims result in a contradiction to
PC -strategyproofness.

R: [1 . . . n−12 ]: a, d, b, c n+1
2 : b, c, d, a [n+3

2 . . . n]: c, a, d, b
R′: [1 . . . n−12 ]: a, d, b, c n+1

2 : b, d, c, a [n+3
2 . . . n]: c, a, d, b

Claim 1: f(R, a) = f(R, b) = f(R, c) = 1
3

For proving this claim, our first goal is to establish that f(R, c) > 0. Hence, assume
for contradiction that this is not the case, i.e., f(R, c) = 0. For deriving a contradiction
to this assumption, we consider the profiles R1 and R2 shown below.

R1: [1 . . . n−12 ]: a, d, b, c n+1
2 : b, c, d, a [n+3

2 . . . n−1]: c, a, d, b n: a, c, d, b
R2: [1 . . . n−12 ]: a, d, b, c n+1

2 : c, b, d, a [n+3
2 . . . n]: c, a, d, b

First, note that a is top-ranked by more than half of the voters in R1 and c by
more of half of the voters in R2. Hence, the absolute winner property requires that
f(R1, a) = f(R2, c) = 1. On the other hand, R1 is derived from R by letting voter n swap
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a and c. Hence, PC -strategyproofness, or more precisely PC1 -strategyproofness, from R
to R1 implies that f(R, c) ≥ f(R, b) +f(R, d). Because we assume that f(R, c) = 0, this
means that f(R, b) = f(R, d) = 0 and f(R, a) = 1. On the other hand, the profile R2

is derived from R by letting voter n+1
2 swap b and c. Hence, PC -strategyproofness

requires that f(R, b) ≥ f(R, a) + f(R, d), which conflicts with f(R, a) = 1. Thus, the
initial assumption that f(R, c) = 0 is incorrect, i.e., it holds that f(R, c) > 0.

Departing from this insight, PC -efficiency entails that f(R, d) = 0. In more detail,
Lemma 4 proves that every lottery q with q(d) > 0 and q(c) > 0 is PC -inefficient
for R because it is dominated by the lottery p with p(a) = q(a) + ε

q(a)+q(d) , p(b) =

q(b) + ε
q(b)+q(d) , p(c) = q(c), and p(d) = q(d) − ε

q(a)+q(d) −
ε

q(b)+q(d) . Indeed, Case 3a)
of this lemma shows that all voters but n+1

2 are indifferent between p and q, whereas
Case 3b) implies that voter n+1

2 strictly prefers p to q (see also the text after Lemma 4).
Since we already know that f(R, c) > 0, it follows therefore that f(R, d) = 0.

Next, note that the inequalities derived from PC -strategyproofness on R1 and R2

remain valid, even if f(R, c) > 0. Combined with the fact that f(R, d) = 0, this
means that f(R, c) ≥ f(R, b) ≥ f(R, a). Hence, we prove Claim 1 by showing that
f(R, a) ≥ f(R, c). Consider for this the profiles R̄i for i ∈ {0, . . . , n−12 }, which are
defined as follows.
R̄i: [1 . . . i]: a, d, b, c [i+1 . . . n−12 ]: b, a, d, c n+1

2 : b, c, d, a [n+3
2 . . . n]: c, a, d, b

First, note that R̄
n−1
2 = R and that f(R̄0, b) = 1 because n+1

2 voters report b as their
favorite alternative in this profile. Furthermore, Lemma 4 shows that f(R̄i, d) = 0 for
every profile R̄i with i < n−1

2 because all lotteries q with q(d) > 0 fail PC -efficiency
for R̄i. Indeed, the lottery p with p(a) = q(a) + ε

q(a)+q(d) , p(b) = q(b) + ε
q(b)+q(d) ,

p(c) = q(c), and p(d) = q(d)− ε
q(a)+q(d)−

ε
q(b)+q(d) PC -dominates q. Finally, by a repeated

application of Lemma 3, we derive that f(R, a) ≥ f(R, c). To this end, consider a fixed
index i ∈ {1, . . . , n−12 }. If f(R̄i, a) < f(R̄i, c), this lemma requires that f(R̄i−1, a) <
f(R̄i−1, c). Hence, if f(R, a) < f(R, c), we can repeatedly apply this argument to derive
that f(R̄0, a) < f(R̄0, c). However, this contradicts the absolute winner property, and
thus we must have that f(R, a) ≥ f(R, c). This proves Claim 1.

Claim 2: f(R′, a) = f(R′, c) = f(R′, d) = 1
3

As the second claim, we prove that f assigns a probability of 1
3 to a, c, and d in R′.

For this, we proceed analogously to Claim 1 and first show that f(R′, c) > 0. Assume
for contradiction that f(R′, c) = 0 and consider the profiles R1 and R2 shown below.

R1: [1 . . . n−12 ]: a, d, b, c n+1
2 : b, d, c, a [n+3

2 . . . n−1]: c, a, d, b n: a, c, d, b
R2: [1 . . . n−12 ]: a, d, b, c n+1

2 : c, d, b, a [n+3
2 . . . n]: c, a, d, b

First, note that f(R1, a) = 1 and f(R2, c) = 1 because of the absolute winner property.
Next, observe that R1 is derived from R′ by letting voter n swap a and c. Hence, PC -
strategyproofness requires that f(R′, c) ≥ f(R′, b) + f(R′, d). Since f(R′, c) = 0 by
assumption, it follows that f(R′, b) = f(R′, d) = 0 and f(R′, a) = 1. On the other hand,
we derive R2 from R′ by letting voter n+1

2 deviate. Hence, PC -strategyproofness implies
that f(R′, b) + f(R′, d) ≥ f(R′, a), which contradicts f(R′, a) = 1. This shows that the
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initial assumption f(R′, c) = 0 is wrong, i.e., it must be that f(R′, c) > 0.
As the next step, we will infer from PC -efficiency that f(R′, b) = 0. Assume that

this is not the case, i.e., there is a PC -efficient lottery p with p(b) > 0 and p(c) > 0.
Now, if p(a) > 0, then p is PC -dominated by the lottery q with q(a) = p(a)− ε

p(a)+p(d) ,
q(b) = p(b)− ε

p(b)+p(d) , q(c) = p(c), and q(d) = p(d) + ε
p(a)+p(d) + ε

p(b)+p(d) (where ε > 0 is
so small that q is a well-defined lottery). On the other hand, if p(a) = 0, then p is PC -
dominated by the lottery q with q(a) = p(a), q(b) = p(b)− ε

p(b)+p(d) , q(c) = p(c)− ε
p(c)+p(d) ,

and q(d) = p(d) + ε
p(b)+p(d) + ε

p(c)+p(d) . Both of these claims are straightforward to verify
with Lemma 4. Since p is PC -inefficient in both cases, it follows that f(R′, b) = 0.

Just as for R, we can use the fact that f(R′, b) = 0 to simplify the inequalities
derived from PC -strategyproofness on R1 and R2. In particular, we infer that f(R′, c) ≥
f(R′, d) ≥ f(R′, a) from these observations. Hence, Claim 2 will follow by showing that
f(R′, a) ≥ f(R′, c). Consider for this the profiles R̄i for i ∈ {0, . . . , n−12 }, which are
defined as follows.
R̄i: [1 . . . i]: a, d, b, c [i+1 . . . n−12 ]: d, a, b, c n+1

2 : b, d, c, a [n+3
2 . . . n]: c, a, d, b

First, observe that f(R̄i, b) = 0 for all i ∈ {0, . . . , n−32 } because of PC -efficiency
and PC -strategyproofness. Indeed, assume for contradiction that this is not true, i.e.,
f(R̄i, b) > 0 for some i ∈ {0, . . . , n−32 }. First, we show that this assumption implies that
f(R̄i, a) = 0 and f(R̄i, c) = 0 because of PC -efficiency. For this, note that every lottery p
with p(a) > 0 and p(b) > 0 is PC -dominated by the lottery q with q(a) = p(a)− ε

p(a)+p(d) ,
q(b) = p(b)− ε

p(b)+p(d) , q(c) = p(c), and q(d) = p(d) + ε
p(a)+p(d) + ε

p(b)+p(d) in R̄i. Indeed,
Lemma 4 shows that the voters j ∈ {i + 1, . . . , n−12 } strictly PC -prefer q to p and all
other voters at least weakly PC -prefer q to p. Moreover, using again Lemma 4, it is
easy to see that every lottery p with p(a) = 0, p(b) > 0, and p(c) > 0 is PC -dominated
by the lottery q with q(a) = 0, q(b) = p(b) − ε

p(b)+p(d) , q(c) = p(c) − ε
p(c)+p(d) , and

q(d) = p(d) + ε
p(b)+p(d) + ε

p(c)+p(d) . Hence, if f(R̄i, b) > 0, we derive that f(R̄i, a) = 0

and f(R̄i, c) = 0, which means that supp(f(R̄i)) ⊆ {b, d}. However, this entails that
one of the voters j ∈ {n+1

2 , . . . , n} can PC -manipulate. Consider for this the subsequent
preference profiles R̄i,j for j ∈ {n+1

2 , . . . , n} and i ∈ {0, . . . , n−32 }.
R̄i,j : [1 . . . i]: a, d, b, c [i+1 . . . n−12 ]: d, a, b, c n+1

2 : b, d, c, a
[n+3

2 . . . j]: c, a, d, b [j+1 . . . n]: d, a, b, c

Note that R̄i,n = R̄i, and that f(R̄i,
n+1
2 , d) = 1 because more than half of the voters

report d as their favorite choice. On the other hand, we claim that for j ∈ {n+3
2 , . . . , n},

if f(R̄i,j , b) > 0, then f(R̄i,j−1, b) > 0. Observe for this that the voter types in R̄i

and R̄i,j coincide, and thus PC -efficiency also requires that f(R̄i,j , a) = f(R̄i,j , c) = 0
if f(R̄i,j , b) > 0. Moreover, PC -strategyproofness requires that the deviating voter j
PC -prefers f(R̄i,j) to f(R̄i,j−1). Now, if f(R̄i,j−1, b) = 0, deviating to R̄i,j−1 is a PC -
manipulation for voter j because supp(f(R̄i,j)) consists of his worst two alternatives.
Hence, f(R̄i,j , b) > 0 implies that f(R̄i,j−1, b) > 0 and, by repeatedly applying this
argument, we infer that if f(R̄i, b) > 0, then f(R̄i,

n+1
2 , b) > 0. However, this contradicts

f(R̄i,
n+1
2 , d) = 1, so we have that f(R̄i, b) = 0 for all i ∈ {0, . . . , n−32 }.
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In particular, this argument also proves for the profile R̄0 that f(R̄0, b) = 0. We
show next that f(R̄0, d) = 1. Consider for this the profile R̂ derived from R̄0 by letting
voter n+1

2 swap b and d.

R̂: [1 . . . n−12 ]: d, a, b, c n+1
2 : d, b, c, a [n+3

2 . . . n]: c, a, d, b

We have that f(R̂, d) = 1 because of the absolute winner property. Hence, PC -
strategyproofness requires that f(R̄0, b) ≥ f(R̄0, c) + f(R̄0, a). Since f(R̄0, b) = 0,
this means that f(R̄0, c) = f(R̄0, a) = 0 and therefore f(R̄0, d) = 1. Based on this
observation, we can now use Lemma 3 to derive that f(R′, a) ≥ f(R′, c). Consider for this
an index i ∈ {1, . . . , n−12 } and suppose that f(R̄i−1, a) ≥ f(R̄i−1, c). The contraposition
of Lemma 3 shows that f(R̄i, a) ≥ f(R̄i, c) because the deviating voter i prefers a to d
to c. Finally, since f(R̄0, a) = f(R̄0, c) = 0, repeatedly applying the previous argument
and noting that R′ = R̄

n−1
2 , we obtain f(R′, a) ≥ f(R′, c). This establishes Claim 2.

Next, we turn to the proof for electorates with an even number of voters. Note that
the proof follows a similar structure but requires more involved arguments because we
cannot change the absolute winner by only modifying a single preference relation.

Lemma 1b). Every PC -efficient SDS that satisfies the absolute winner property is PC -
manipulable if |N | ≥ 8 is even and m ≥ 4.

Proof. Consider an arbitrary electorate N ∈ F(N) with n = |N | ≥ 8 even and assume for
contradiction that there is an SDS f for m ≥ 4 alternatives that satisfies PC -efficiency,
PC -strategyproofness, and the absolute winner property on N . We focus on the case
m = 4 because we can generalize the constructions to larger values of m by simply
ranking the additional alternatives at the bottom. Then, PC -efficiency requires that
these alternatives obtain probability 0 and they therefore do not affect our analysis. We
derive a contradiction by analyzing the following two profiles.

R: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: b, c, d, a [n2 +2 . . . n]: c, a, d, b

R′: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: b, d, c, a [n2 +2 . . . n]: c, a, d, b

In more detail, we show in Claims 1 and 2 that f(R, a) = f(R, b) = f(R, c) = 1
3

and f(R′, a) = f(R′, c) = f(R′, d) = 1
3 . These two claims are in conflict with PC -

strategyproofness, as the following analysis shows. Let R′′ denote the profile “between”
R and R′ in which voter n

2 reports b, d, c, a and voter n
2 + 1 reports b, c, d, a.

R′′: [1 . . . n2−1]: a, d, b, c n
2 : b, d, c, a

n
2 +1: b, c, d, a [n2 +2 . . . n]: c, a, d, b

Moreover, let p = f(R), q = f(R′), and r = f(R′′) denote the outcome of f in these
profiles. PC -strategyproofness from R′ to R′′ results in the following inequality because
q(a) = q(c) = q(d) = 1

3 .

q(b)
(
r(d) + r(c) + r(a)

)
+ q(d)

(
r(c) + r(a)

)
+ q(c)r(a)

≥ r(b)
(
q(d) + q(c) + q(a)

)
+ r(d)

(
q(c) + q(a)

)
+ r(c)q(a)

⇐⇒ 1

3
r(c) +

2

3
r(a) ≥ r(b) +

2

3
r(d) +

1

3
r(c) ⇐⇒ r(a) ≥ 3

2
r(b) + r(d)
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Moreover, we can also use PC -strategyproofness from R′′ to R and the fact that
p(a) = p(b) = p(c) = 1

3 to infer the following inequality.

r(b)
(
p(d) + p(c) + p(a)

)
+ r(d)

(
p(c) + p(a)

)
+ r(c)p(a)

≥ p(b)
(
r(d) + r(c) + r(a)

)
+ p(d)

(
r(c) + r(a)

)
+ p(c)r(a)

⇐⇒ 2

3
r(b) +

2

3
r(d) +

1

3
r(c) ≥ 1

3
r(d) +

1

3
r(c) +

2

3
r(a) ⇐⇒ r(b) +

1

2
r(d) ≥ r(a)

Combining these two inequalities entails that r(b) + 1
2r(d) ≥ 3

2r(b) + r(d), which is
true only if r(b) = r(d) = 0. Moreover, the second inequality upper bounds r(a) and
thus r(a) = 0. This means that f(R′′, c) = r(c) = 1. However, c is the worst alternative
of the voters i ∈ [1 . . . n2−1] and PC -strategyproofness hence requires that these voters
cannot affect the outcome by misreporting their preferences. On the other hand, if we
let these voters one after another change their preference relation to b, d, a, c, we arrive
at a profile in which b is top-ranked by more than half of the voters. Hence, the absolute
winner property requires that b is chosen with probability 1, which is in conflict with
the observation that these voters are not able to affect the outcome. This is the desired
contradiction. Hence, to complete the proof of Lemma 1b), it remains to show the claims
for f(R) and f(R′).

Claim 1: f(R, a) = f(R, b) = f(R, c) = 1
3

Just as in the case of odd n, our first goal is to prove that f(R, d) = 0. As the first step
in proving this statement, we show that f(R, a) < 1. Hence, assume for contradiction
that f(R, a) = 1, which means that the least preferred lottery of voters n

2 and n
2 + 1 is

chosen. Moreover, if both of these voters swap b and c, c is top-ranked by more than
half of the voters, so the absolute winner property requires c to receive a probability
of 1. This is, however, in conflict with PC -strategyproofness, which requires that these
voters cannot affect the outcome. Hence, the assumption that f(R, a) = 1 must have
been wrong, i.e., f(R, a) < 1.
Based on this insight, we show by contradiction that f(R, c) > 0, i.e., suppose that

f(R, c) = 0. Next, consider the profiles R1 and R2 shown below.
R1: [1 . . . n2−1]: a, d, b, c {n2 ,

n
2 +1}: b, c, d, a [n2 +2 . . . n−1]: c, a, d, b n: a, c, d, b

R2: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: b, c, d, a [n2 +2 . . . n−2]: c, a, d, b {n−1, n}: a, c, d, b

Alternative a is top-ranked by n
2 + 1 voters in R2, which means that f(R2, a) = 1

because of the absolute winner property. Now, using PC -strategyproofness (or more
precisely PC1 -strategyproofness) from R1 to R2, we derive that f(R1, c) ≥ f(R1, d) +
f(R1, b). In particular, this inequality requires that f(R1, a) = 1 if f(R1, c) = 0.
However, in that case, voter n − 1 can PC -manipulate by deviating from R to R1:
since f(R, c) = 0 and f(R, a) < 1, it follows that f(R1) �SD

n−1 f(R) and therefore
also f(R1) �PC

n−1 f(R). Hence, it must hold that f(R1, c) > 0. Next, we use PC -
strategyproofness from R to R1 and vice versa to derive the following two inequalities,
where p = f(R) and q = f(R1).

p(c)
(
q(a) + q(d) + q(b)

)
+ p(a)

(
q(d) + q(b)

)
+ p(d)q(b)
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≥ q(c)
(
p(a) + p(d) + p(b)

)
+ q(a)

(
p(d) + p(b)

)
+ q(d)p(b)

q(a)
(
p(c) + p(d) + p(b)

)
+ q(c)

(
p(d) + p(b)

)
+ q(d)p(b)

≥ p(a)
(
q(c) + q(d) + q(b)

)
+ p(c)

(
q(d) + q(b)

)
+ p(d)q(b)

Adding these two inequalities and cancelling common terms yields p(c)q(a) ≥ q(c)p(a).
Since p(c) = 0 by assumption and q(c) > 0 because of our previous analysis, this
inequality can only be true if p(a) = 0. Using the facts that p(c) = p(a) = 0 and
q(c) ≥ q(b) + q(d), we can therefore vastly simplify the first inequality.

p(d)q(b) ≥ q(c) + q(a) + q(d)p(b)

≥ q(d) + q(b) + q(a) + q(d)p(b)

It is easy to see that this inequality can only be true if f(R, d) = p(d) = 1. We
now derive a contradiction to this insight. First, from R, let voters n

2 and n
2 + 1 make

d into their favorite alternative. This leads to the profile R3 (see below) and PC -
strategyproofness (one step at a time) requires that f(R3, d) = 1. Moreover, note that
d Pareto-dominates b in R3. Next, we let voters n− 1 and n swap a and c to obtain the
profile R4. PC -efficiency requires that f(R4, b) = 0 as this alternative is still Pareto-
dominated, and PC -strategyproofness requires in turn that f(R4, d) = 1 as any other
lottery with support {a, c, d} yields a PC -manipulation for voters n−1 and n. However,
this contradicts the absolute winner property as n

2 + 1 voters report a as their favorite
alternative in R4, so it cannot be the case that f(R, d) = 1. Thus, no feasible outcome
for f(R) remains, which demonstrates that the assumption that f(R, c) = 0 is wrong.
That is, we must have f(R, c) > 0.
R3: [1 . . . n2−1]: a, d, b, c {n2 ,

n
2 +1}: d, b, c, a [n2 +2 . . . n]: c, a, d, b

R4: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: d, b, c, a [n2 +2 . . . n−2]: c, a, d, b {n−1, n}: a, c, d, b

As the next step, we can use an analogous argument as in Lemma 1a) to derive that
f(R, d) = 0 due to PC -efficiency. Indeed, this follows immediately since the profile R
here and in the proof of Lemma 1a) consists of the same voter types and f(R, c) > 0.

Based on this insight, we show now that f(R, c) ≥ f(R, b) ≥ f(R, a) ≥ f(R, c), which
implies that f(R, a) = f(R, b) = f(R, c) = 1

3 . For the first inequality, consider the
profiles R5 and R6.
R5: [1 . . . n2−1]: a, d, b, c {n2 ,

n
2 +1}: b, c, d, a [n2 +2 . . . n−1]: c, a, d, b n: a, c, b, d

R6: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: b, c, d, a [n2 +2 . . . n−2]: c, a, d, b {n−1, n}: a, c, b, d

Lemma 4 and PC -efficiency imply that f(R5, d) = 0 as we can otherwise find a lottery
that PC -dominates f(R5) by redistributing probability from d to a and b. Moreover, the
absolute winner property shows that f(R6, a) = 1. In particular, f(R, d) = f(R5, d) =
f(R6, d) = 0 and we can thus apply Lemma 3 twice to derive that f(R5, c) ≥ f(R5, b)
and f(R, c) ≥ f(R, b) since f(R6, c) = f(R6, b) = 0.

Next, we show that f(R, b) ≥ f(R, a). Consider for this the profiles R7 and R8

derived from R by replacing the preference relations of voters n
2 and n

2 + 1 sequentially
with c, a, b, d.
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R7: [1 . . . n2−1]: a, d, b, c n
2 : c, a, b, d

n
2 +1: b, c, d, a [n2 +2 . . . n]: c, a, d, b

R8: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: c, a, b, d [n2 +2 . . . n]: c, a, d, b

First, observe that f(R8, c) = 1 as all voters i ∈ [n2 . . . n] report c as their best choice.
Furthermore, Lemma 4 and PC -efficiency show that every lottery q with q(d) > 0 is PC -
inefficient in R7 because we can find a PC -improvement by redistributing the probability
of d to a and b. Hence, f(R, d) = f(R7, d) = f(R8, d) = 0 and applying Lemma 3 twice
then shows that f(R, b) ≥ f(R, a) because f(R8, b) = f(R8, a) = 0.

Finally, we prove that f(R, a) ≥ f(R, c). Consider for this the profiles R̄k for k ∈
{0, . . . , n2 − 1} defined as follows.

R̄k: [1 . . . k]: a, d, b, c [k+1 . . . n2−1]: b, a, d, c {n2 ,
n
2 +1}: b, c, d, a [n2 +2 . . . n]: c, a, d, b

Note that R = R̄
n
2
−1 and that f(R̄0, b) = 1 because of the absolute winner property.

Moreover, f(R̄k, d) = 0 for all k ∈ {0, . . . , n2 − 2} because of PC -efficiency: once again,
Lemma 4 shows that any lottery q with q(d) > 0 is PC -dominated by the lottery p with
p(a) = q(a) + ε

q(d)+q(a) , p(b) = q(b) + ε
q(d)+q(b) , p(c) = q(c), and p(d) = q(d)− ε

q(d)+q(a) −
ε

q(d)+q(b) (where ε > 0 is so small that p(d) ≥ 0). Hence, d receives probability 0 for all of
these profiles. We also know that f(R, d) = 0, so f(R̄k, d) = 0 for all k ∈ {0, . . . , n2 − 1}.
By inductively applying Lemma 3, we derive that f(R, a) ≥ f(R, c) because f(R̄0, a) =
f(R̄0, c) = 0. This completes the proof of Claim 1.

Claim 2: f(R′, a) = f(R′, c) = f(R′, d) = 1
3

For proving this claim, we show as the first step that f(R′, b) = 0. Note for this that
an analogous argument as in Claim 1 proves that f(R′, c) > 0. Based on this insight,
an analogous argument as in the proof of Lemma 1a) shows that f(R′, b) = 0 because of
PC -efficiency and Lemma 4. Indeed, this is straightforward as the profile R′ here and
in the proof of Lemma 1a) consists of the same voter types and thus, the same lotteries
are PC -efficient.
Using this observation, we show next that f(R′, c) ≥ f(R′, d) ≥ f(R′, a) ≥ f(R′, c),

which implies that all three alternatives receive a probability of 1
3 . First, we prove that

f(R′, c) ≥ f(R′, d) by considering the profiles R1 and R2.
R1: [1 . . . n2−1]: a, d, b, c {n2 ,

n
2 +1}: b, d, c, a [n2 +2 . . . n−1]: c, a, d, b n: a, d, c, b

R2: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: b, d, c, a [n2 +2 . . . n−2]: c, a, d, b {n−1, n}: a, d, c, b

Note that f(R2, a) = 1 because more than half of the voters rank a top in R2. Con-
sequently, PC1 -strategyproofness entails that f(R1, c) ≥ f(R1, d) + f(R1, b). Hence, if
f(R1, c) = 0, then f(R1, a) = 1 and another application of PC1 -strategyproofness shows
that f(R′, c) ≥ f(R′, d) because f(R′, b) = 0. On the other hand, if f(R1, c) > 0, PC -
efficiency requires that f(R1, b) = 0. In more detail, every lottery with q(a) > 0, q(b) > 0,
and q(c) > 0 is PC -dominated in R1 by the lottery p with p(a) = q(a) − ε

q(a)+q(d) ,
p(b) = q(b) − ε

q(b)+q(d) , p(c) = q(c), and p(d) = q(d) + ε
q(a)+q(d) + ε

q(b)+q(d) , whereas
every lottery q with q(a) = 0, q(b) > 0, and q(c) > 0 is PC -dominated in R1 by
the lottery p with p(a) = q(a), p(b) = q(b) − ε

q(b)+q(d) , p(c) = q(c) − ε
q(c)+q(d) , and

p(d) = q(d) + ε
q(b)+q(d) + ε

q(c)+q(d) (see Lemma 4). Hence, we have f(R′, b) = f(R1, b) =
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f(R2, b) = 0 and a repeated application of Lemma 3 shows that f(R′, c) ≥ f(R′, d)
because f(R2, c) = f(R2, d) = 0.
Next, we derive that f(R′, d) ≥ f(R′, a). To this end, consider the profiles R3 and R4

derived from R′ by replacing the preference relations of voters n
2 and n

2 +1 with c, a, d, b.

R3: [1 . . . n2−1]: a, d, b, c n
2 : c, a, d, b

n
2 +1: b, d, c, a [n2 +2 . . . n]: c, a, d, b

R4: [1 . . . n2−1]: a, d, b, c {n2 ,
n
2 +1}: c, a, d, b [n2 +2 . . . n]: c, a, d, b

It follows from the absolute winner property that f(R4, c) = 1 as more than half of the
voters report c as their best alternative. Moreover, we can use the same construction
as for R (in Claim 1) to derive that f(R3, c) > 0. Indeed, voters n and n − 1 have
the same preference relations in R and R3 and they also can make a into the absolute
winner by swapping a and c in R3. Analogously to R′, it now follows from PC -efficiency
and Lemma 4 that f(R3, b) = 0. Finally, a repeated application of Lemma 3 shows that
f(R′, d) ≥ f(R′, a) because f(R′, b) = f(R3, b) = f(R4, b) = 0 and f(R4, d) = f(R4, a) =
0.

It remains to show that f(R′, a) ≥ f(R′, c). Consider the sequence of profiles R̂k for
k ∈ {0, . . . , n2 − 1} and note that R′ = R̂

n
2
−1, which means that f(R̂

n
2
−1, b) = 0.

R̂k: [1 . . . k]: a, d, b, c [k+1 . . . n2−1]: d, a, b, c {n2 ,
n
2 +1}: b, d, c, a [n2 +2 . . . n]: c, a, d, b

First, we show that f(R̂k, b) = 0 for all other profiles R̂k with k ∈ {0, . . . , n2 − 2}. To
this end, note that Lemma 4 shows that either f(R̂k, b) = 0 or f(R̂k, a) = 0 because
otherwise, we can find a PC -improvement by redistributing probability from a and b
to d. Moreover, if f(R̂k, a) = 0, then Lemma 4 entails that f(R̂k, b) = 0 or f(R̂k, c) = 0,
because otherwise the probability from b and c can be redistributed to d. Now, assume
for contradiction that f(R̂k, b) > 0 for a fixed k and hence f(R̂k, a) = f(R̂k, c) = 0. We
proceed with a case distinction on k. First, suppose that n

2 − 2 ≥ k ≥ 2, which means
that at least two voters in [1 . . . k] top-rank a. For this case, we consider the profiles
R̂k,j for j ∈ {n2 + 1, . . . , n}.

R̂k,j : [1 . . . k]: a, d, b, c [k+1 . . . n2−1]: d, a, b, c {n2 ,
n
2 +1}: b, d, c, a

[n2 +2 . . . j]: a, d, b, c [j+1 . . . n]: c, a, d, b

It holds by definition that R̂k = R̂k,
n
2
+1. Moreover, analogous to R̂k, PC -efficiency

requires that either f(R̂k,j , a) + f(R̂k,j , c) = 0 or f(R̂k,j , b) = 0 for every j ∈ {n2 +

1, . . . , n}. This implies for every j that if f(R̂k,j , b) > 0, then f(R̂k,j+1, b) > 0. In more
detail, f(R̂k,j , b) > 0 requires that f(R̂k,j , b) + f(R̂k,j , d) = 1 because of PC -efficiency.
Hence, if f(R̂k,j+1, b) = 0, voter j + 1 can PC -manipulate by deviating from R̂k,j to
R̂k,j+1 since b and d are his worst two alternatives in R̂k,j . By repeatedly applying this
argument, it follows that if f(R̂k, b) > 0, then f(R̂k,n, b) > 0. However, this is in conflict
with the absolute winner property as n

2 − 1 + k voters top-rank a in R̂k,n. This proves
that f(R̂k, b) = 0 for all k ∈ {2, . . . , n2 − 2}.

Note that the argument above fails if k ≤ 1 as no more than n
2 voters top-rank a in

R̂1,n and R̂0,n. Hence, we investigate the case k ≤ 1 separately and consider for this the
profiles R̃k,j for j ∈ {n2 + 1, . . . , n}.
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R̃k,j : [1 . . . k]: a, d, b, c [k+1 . . . n2−1]: d, a, b, c {n2 ,
n
2 +1}: b, d, c, a

[n2 +2 . . . j]: d, a, b, c [j+1 . . . n]: c, a, d, b

It holds by definition that R̂k = R̃k,
n
2
+1. Note that the profiles R̃k,j consist of the same

preference relations as R̂k and hence, PC -efficiency once again requires that f(R̃k,j , b) =
0 or f(R̃k,j , a) = f(R̃k,j , c) = 0. (When j = n, even though the preference relation
c, a, d, b is not present, a similar argument still holds.) Moreover, if f(R̃k,j , b) > 0, then
f(R̃k,j+1, b) > 0. The reason for this is that if f(R̃k,j , b) > 0, then f(R̃k,j , b)+f(R̃k,j , d) =
1. Hence, if f(R̃k,j+1, b) = 0, voter j + 1 can PC -manipulate by deviating from R̃k,j to
R̃k,j+1 as b and d are his least preferred alternatives in R̃k,j . By repeatedly applying this
argument, we derive that if f(R̂k, b) > 0, then f(R̃k,n, b) > 0. However, this contradicts
the absolute winner property as at least (n2 − 1 − k) + (n2 − 1) ≥ n − 3 > n

2 voters
top-rank d in R̃k,n. (Here we use the assumption that n ≥ 8.) Hence, we also have that
f(R̂k, b) = 0 if k ≤ 1.
As the last point, we prove that f(R̂0, d) = 1. Then, it follows from repeated ap-

plication of Lemma 3 that f(R′, a) ≥ f(R′, c) because f(R̂0, a) = f(R̂0, c) = 0. Thus,
consider the profiles R5 and R6 derived from R̂0 by sequentially replacing the preferences
of voter n

2 and n
2 + 1 with d, a, b, c.

R5: [1 . . . n2−1]: d, a, b, c n
2 : d, a, b, c

n
2 +1: b, d, c, a [n2 +2 . . . n]: c, a, d, b

R6: [1 . . . n2−1]: d, a, b, c {n2 ,
n
2 +1}: d, a, b, c [n2 +2 . . . n]: c, a, d, b

Note that an absolute majority top-ranks d in R6, which means that f(R6, d) = 1.
Hence, PC1 -strategyproofness entails for R5 that f(R5, b) ≥ f(R5, c) + f(R5, a).
If f(R5, b) = 0, we derive then that f(R5, d) = 1, and an application of PC1 -
strategyproofness between R̂0 and R5 shows that f(R̂0, b) ≥ f(R̂0, c)+f(R̂0, a). Since we
already established that f(R̂0, b) = 0, this proves that f(R̂0, d) = 1. On the other hand,
if f(R5, b) > 0, PC -efficiency requires that f(R5, a) = f(R5, c) = 0 (see Lemma 4). How-
ever, then voter n can PC -manipulate in R5 by reporting d as his favorite alternative.
Thereafter, d must be chosen with probability 1 because it is top-ranked by n

2 +1 voters.
However, voter n PC -prefers this lottery to f(R5) if f(R5, b) > 0, which contradicts the
PC -strategyproofness of f . Hence, it must indeed hold that f(R5, b) = 0 and therefore
also f(R5, d) = 1 and f(R̂0, d) = 1. Finally, as mentioned earlier in this paragraph,
a repeated application of Lemma 3 shows now that f(R′, a) ≥ f(R′, c). Therefore, we
have that f(R′, c) ≥ f(R′, d) ≥ f(R′, a) ≥ f(R′, c) and f(R′, b) = 0, which implies that
f(R′, a) = f(R′, c) = f(R′, d) = 1

3 .

Since the conjunction of Lemma 1a) and Lemma 1b) is equivalent to Lemma 1, this
concludes the first step for the proof of Theorem 2. Next, we show that every anonymous,
neutral, PC -efficient, and PC -strategyproof SDS also satisfies the absolute winner prop-
erty. This insight together with Lemma 1 immediately implies Theorem 2. Note that
the subsequent lemma is slightly stronger than required: we show that the implication
also holds for m ≥ 3 and all electorates.

Lemma 5. Assume that m ≥ 3. Every SDS that satisfies PC -efficiency, PC -
strategyproofness, neutrality, and anonymity also satisfies the absolute winner property.
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Proof. Let f denote an SDS that satisfies anonymity, neutrality, PC -efficiency, and
PC -strategyproofness for m ≥ 3 alternatives. First, note that for electorates N with
n = |N | ≤ 2, the absolute winner property requires that an alternative is chosen with
probability 1 if it is top-ranked by all voters. This is clearly implied by PC -efficiency
and we thus focus on the case that n ≥ 3. Since the construction in the main body
(in the proof of Theorem 2) works for every even n ≥ 4, we only need to show the
lemma for the case that the number of voters is odd. Hence, consider an electorate
N with an odd number of voters n ≥ 3. Moreover, we focus on the case that there
are m = 3 alternatives because we can generalize all steps by simply adding additional
alternatives at the bottom of all preference rankings. PC -efficiency then requires that
these alternatives get probability 0 and they thus do not affect our analysis.

We start our analysis by considering the profiles R1 and R2 described below.
R1: [1 . . . n−12 ]: b, a, c n+1

2 : a, b, c [n+3
2 . . . n]: c, a, b

R2: [1 . . . n−12 ]: b, a, c n+1
2 : a, c, b [n+3

2 . . . n]: c, a, b

First, note that anonymity and neutrality imply that f(R1, a) = f(R2, a), f(R1, b) =
f(R2, c), and f(R1, c) = f(R2, b). Furthermore, PC -efficiency shows that f(R1, b) =
f(R2, c) = 0 or f(R1, c) = f(R2, b) = 0. Subsequently, we show that f(R1, b) =
f(R1, c) = 0 must be true, which means that f(R1, a) = 1.
Assume for contradiction that f(R1, c) = f(R2, b) > 0. Then, our previous obser-

vation implies that f(R2, c) = f(R1, b) = 0. However, this means that voter n+1
2 can

manipulate by deviating from R1 to R2 because he PC -prefers f(R2) to f(R1) (he even
SD-prefers f(R2) to f(R1)). Hence, f is PC -manipulable if f(R1, c) > 0, contradicting
our assumptions.
As the second case, assume that f(R1, b) = f(R2, c) > 0 (note that this is not symmet-

ric to the case studied in the previous paragraph) and consider the following sequence
of preference profiles R̄i for i ∈ {0, . . . , n−12 }.

R̄i: [1 . . . n−12 ]: b, a, c n+1
2 : a, b, c [n+3

2 . . . n−i]: c, a, b [n−i+1 . . . n] a, c, b

First, note that R1 = R̄0 and PC -efficiency shows for all profiles R̄i that f(R̄i, b) =
0 or f(R̄i, c) = 0. Moreover, PC -strategyproofness and PC -efficiency imply that if
f(R̄i, b) > 0, then f(R̄i+1) = f(R̄i). The reason for this is that if f(R̄i, b) > 0, then
f(R̄i, c) = 0 because of PC -efficiency. This means that every lottery with f(R̄i+1, b) = 0
is a PC -manipulation for the deviating voter n−i as he even SD-prefers f(R̄i+1) to f(R̄i).
Hence, f(R̄i+1, b) > 0, and we can now use PC -efficiency to derive that f(R̄i+1, c) =
f(R̄i, c) = 0. Finally, Lemma 2 implies that f(R̄i+1) = f(R̄i). As a consequence, this
sequence ends at a profile R3 = R̄

n−1
2 with f(R3) = f(R1).

Next, consider the profile R4 which is derived from R3 by swapping b and c in the
preference relation of voter n+1

2 .
R4: [1 . . . n−12 ]: b, a, c n+1

2 : a, c, b [n+3
2 . . . n]: a, c, b

Since a Pareto-dominates c in R4, it follows that f(R4, c) = 0. Hence, we can use
again Lemma 2 to conclude that f(R4) = f(R3) = f(R1).

As the last step, consider the sequence of profiles R̂i for i ∈ {0, . . . , n−12 }, which leads
from R4 to R2.
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R̂i: [1 . . . n−12 ]: b, a, c n+1
2 : a, c, b [n+3

2 . . . n−i]: a, c, b [n−i+1 . . . n] c, a, b

First, observe that R̂0 = R4 and R̂
n−1
2 = R2. Moreover, PC -efficiency requires again

for every profile R̂i that either f(R̂i, b) = 0 or f(R̂i, c) = 0. Even more, since f(R̂0, c) = 0

and f(R̂
n−1
2 , b) = 0, there is at least one index i such that f(R̂i, c) = f(R̂i+1, b) = 0. Let

i∗ ∈ {0, . . . , n−32 } denote the smallest such index, which means that f(R̂i, c) = 0 for all
i ∈ {0, . . . , i∗}. Therefore, we can again use Lemma 2 to conclude that f(R̂i

∗
) = f(R̂0) =

f(R1), which means in particular that f(R̂i
∗
, b) = f(R1, b) > 0. Now, if f(R̂i

∗+1, a) ≥
f(Ri

∗
, a), voter n−i∗ can PC -manipulate by deviating from R̂i

∗ to R̂i∗+1. This follows as
voter n− i∗, whose preference is a, c, b in Ri∗ , SD-prefers (and therefore also PC -prefers)
f(R̂i

∗+1) to f(R̂i
∗
) in this case. Hence, PC -strategyproofness requires that f(R̂i

∗+1, a) <
f(R̂i

∗
, a). Since f(R̂i

∗+1, b) = f(R̂i
∗
, c) = 0, this implies that f(R̂i

∗+1, c) > f(R̂i
∗
, b) =

f(R1, b).
Next, we prove that f(R̂i+1, c) ≥ f(R̂i, c) for all i > i∗. Assume for contradiction

that there is an index j where this is not the case. Then, there is also a minimal
index j∗ > i∗ such that f(R̂j

∗+1, c) < f(R̂j
∗
, c). In particular, it follows from the

minimality of j∗ that f(R̂j
∗
, c) ≥ f(R̂i

∗+1, c) > 0 and PC -efficiency then shows that
f(R̂j

∗
, b) = 0. Now, note that voter n − j∗’s preference relation in R̂j

∗+1 is c, a, b.
Hence, if f(Rj

∗+1, c) = 0, he clearly PC -prefers f(R̂j
∗
) to f(R̂j

∗+1). This means that
f(R̂j

∗+1, c) > 0 and consequently f(R̂j
∗+1, b) = 0 because of PC -efficiency. However,

then voter j∗ still PC -prefers f(R̂j
∗
) to f(R̂j

∗+1) because f(R̂j
∗+1, c) < f(R̂j

∗
, c). Hence,

voter j∗ can either way PC -manipulate by deviating from R̂j
∗+1 to R̂j∗ . This contradicts

the PC -strategyproofness of f , and so we must have f(R̂i+1, c) ≥ f(R̂i, c) for all i > i∗.
In particular, this implies that f(R2, c) ≥ f(R̂i

∗+1, c) > f(R̂i
∗
, b) = f(R1, b) because

R2 = R̂
n−1
2 . However, this observation is in conflict with anonymity and neutrality

between R2 and R1, and thus, the assumption that f(R1, b) > 0 must be wrong. It
follows that f(R1, b) = f(R1, c) = 0, and so f(R1, a) = 1.

Finally, departing from the insight that f(R1, a) = 1, we can essentially apply the
same steps as in the proof for even n (in the main body) to show that f must satisfy
the absolute winner property.

A.3. Proofs of Propositions 3 and 4

In this subsection, we prove Propositions 3 and 4, which show that the impossibilities
for m ≥ 4 in Theorems 1 to 3 turn into possibilities when m = 3. We first provide
additional insights into PC -efficiency that facilitate the analysis of f1 and f2.

Lemma 6. Consider a profile R ∈ R∗ on three alternatives A = {a, b, c}. A lottery p is
PC -efficient for R if it satisfies the following conditions.

1. p(x) = 0 if x is Pareto-dominated in R.

2. For an alternative x ∈ A that is never bottom-ranked and at least once top-ranked
in R, there is y ∈ A \ {x} with p(y) = 0.
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3. For an alternative x ∈ A that is never top-ranked and at least once bottom-ranked
in R, p(x) = 0.

Proof. Consider an arbitrary electorate N ∈ F(N) and let R ∈ RN denote a profile.
Moreover, let p denote a lottery that satisfies the given conditions and suppose for
contradiction that there is another lottery q that PC -dominates p on R. Hence, p 6= q,
which means that there are alternatives x, y such that q(x) > p(x) and q(y) < p(y).
We suppose subsequently that q(a) > p(a) and q(b) < p(b) because our arguments are
completely symmetric. Next, we proceed with a case distinction with respect to the
relation between q(c) and p(c).

Case 1: q(c) = p(c)
As the first case, we suppose that q(c) = p(c). Then, it follows for all voters i ∈ N that

a �i b because q %PC
i p. Indeed, if b �i a for some i ∈ N , this voter strictly SD-prefers

p to q. Since q PC -dominates p by assumption, it thus follows that a Pareto-dominates
b. However, condition 1 then requires that p(b) = 0, which contradicts that q(b) < p(b).
Hence, q cannot PC -dominate p in this case.

Case 2: q(c) < p(c)
Next, suppose that q(c) < p(c). Combined with q(a) > p(a), q(b) < p(b), and the

assumption that q PC -dominates p, this means that no voter bottom-ranks a. Indeed,
it is easy to see that such a voter strictly SD-prefers p to q, contradicting the PC -
dominance of q. Now, if a is top-ranked by a voter in R, then condition 2 requires
that either p(c) = 0 or p(b) = 0. However, this is not possible since q(c) < p(c) and
q(b) < p(b) by assumption. Hence, every voter ranks a at the second position in R.
Furthermore, both b and c must be top-ranked at least once; otherwise, one of these

alternatives is unanimously top-ranked and therefore Pareto-dominates both other al-
ternatives, which again conflicts with q(c) < p(c) and q(b) < p(b).

Hence, every voter in R has the preference relation b, a, c or c, a, b, and each of these
two preferences is submitted at least once. Voters of the first type PC -prefer q to p if
q(b)p(a) + q(b)p(c) + q(a)p(c) ≥ p(b)q(a) + p(b)q(c) + p(a)q(c) and voters of the second
type if q(c)p(a) + q(c)p(b) + q(a)p(b) ≥ p(c)q(a) + p(c)q(b) + p(a)q(b). Clearly, both
inequalities are only true if they hold with equality. However, then no voter strictly
PC -prefers q to p and hence q does not PC -dominate p in this case either.

Case 3: q(c) > p(c)
As the last case, we assume that q(c) > p(c). Since q(a) > p(a), q(b) < p(b), and q

PC -dominates p in R, no voter top-ranks b in R. Indeed, such a voter strictly SD-prefers
p to q, which contradicts that q PC -dominates p. Now, if b is bottom-ranked by at least
one voter in R, then condition 3 requires that p(b) = 0, which contradicts q(b) < p(b).
Hence, b is second-ranked by all voters in R. Next, both a and c are top-ranked at least
once in R; otherwise, b is Pareto-dominated which again contradicts q(b) < p(b). Hence,
every voter in R has the preference a, b, c or c, b, a, and both preferences are reported at
least once. An analogous argument as in Case 2 implies that q cannot PC -dominate p
in this case either.
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Next, we use Lemma 6 to prove Proposition 3. Recall the definition of f1 (where
CW (R) is the set of Condorcet winners in R and WCW (R) the set of weak Condorcet
winners).

f1(R) =


[x : 1] if CW(R) = {x}
[x : 1

2 ; y : 1
2 ] if WCW(R) = {x, y}

[x : 3
5 ; y : 1

5 ; z : 1
5 ] if WCW(R) = {x}

[x : 1
3 ; y : 1

3 ; z : 1
3 ] otherwise

Proposition 3. For m = 3, f1 is the only anonymous and neutral SDS that satisfies
PC -efficiency, PC -strategyproofness, and cancellation.

Proof. The proposition consists of two claims: on the one hand, we need to show that
f1 satisfies all axioms of the proposition, and on the other hand, that f1 is the only SDS
satisfying these axioms. We consider both claims separately and start by showing that
f1 satisfies all axioms of the proposition.

Claim 1: f1 satisfies anonymity, neutrality, cancellation, PC -efficiency and
PC -strategyproofness.
First, note that f1 satisfies cancellation because adding two voters with inverse prefer-

ences does not affect whether an alternative is a (weak) Condorcet winner. Furthermore,
the definition of f1 immediately shows that it is anonymous and neutral.
For proving that f1 is PC -efficient, we consider an arbitrary preference profile R ∈
R∗. Now, if an alternative x is Pareto-dominated in R, then it is never top-ranked.
Consequently, there is either a Condorcet winner y 6= x (if more than half of the voters
top-rank y) or the remaining two alternatives y, z are weak Condorcet winners (if both
y and z are top-ranked by exactly half of the voters). In both cases, f1(R, x) = 0,
which shows that f1(R) satisfies condition 1 of Lemma 6 for all profiles R. Similarly,
if there is an alternative x that is never top-ranked and at least once bottom-ranked,
then either there is a Condorcet winner y 6= x, or the remaining two alternatives y, z are
weak Condorcet winners. Hence, f1(R, x) = 0, which proves that f1(R) also satisfies
condition 3 of Lemma 6. Finally, if there is an alternative x that is never bottom-
ranked and at least once top-ranked in R, then there is an alternative z 6= x with
gR(x, z) > 0. We claim that f1(R, z) = 0, which proves condition 2 of Lemma 6. If
x or the third alternative y is a Condorcet winner, this follows immediately. On the
other hand, if neither x nor y are Condorcet winners, both of them are weak Condorcet
winners because y must be top-ranked by at least half of the voters if x is not a Condorcet
winner. Hence, we have two weak Condorcet winners and the definition of f1 again shows
that f1(R, z) = 0. Since all conditions of Lemma 6 hold, it thus follows that f1(R) is
PC -efficient for all profiles R.

Finally, we need to show that f1 is PC -strategyproof. Assume for contradiction that
this is not the case. Then, there are an electorate N , two preference profiles R,R′ ∈ RN ,
and a voter i ∈ N such that f1(R′) �PC

i f1(R) in R, and R−i = R′−i. Subsequently, we
discuss a case distinction with respect to the definition to f1. In more detail, we have
for both R and R′ five different options: there is a Condorcet winner (CW ), or there is

39



no Condorcet winner but k ∈ {0, 1, 2, 3} weak Condorcet winners (kWCW ). We label
the cases with a shorthand notation: for instance, CW → 1WCW is the case where
there is a Condorcet winner in R and a single weak Condorcet winner in R′.

To keep the length of the proof manageable, we subsequently focus only on the case
that R and R′ are defined by an odd number of voters. This assumption means that
there are no weak Condorcet winners and thus significantly reduces the number of cases
that need to be considered. For the case that R and R′ are defined by an even number
of voters, we refer to a preprint of this paper (Brandt et al., 2022c). When the number
of voters n is odd, there are only four possible types of manipulations.

• CW → CW : Suppose that a is the Condorcet winner in R. If a is also the
Condorcet winner in R′, then f1(R) = f1(R′) and deviating from R to R′ is no
PC -manipulation. On the other hand, if another alternative b is the Condorcet
winner in R′, we must have a �i b in R. Since f1(R, a) = f1(R′, b) = 1, this is no
PC -manipulation.

• CW → 0WCW : Suppose that a is the Condorcet winner in R, and there is
no Condorcet winner in R′. This means that voter i reinforces an alternative b
against a, i.e., a is ranked either second or third. Since f1(R, a) = 1 and f1(R′, x) =
1
3 for all x ∈ A, this proves that deviating from R to R′ is no PC -manipulation.

• 0WCW → CW : Suppose there is no Condorcet winner in R, but a is the Con-
dorcet winner in R′. Hence, voter i needs to reinforce a against at least one other
alternative b. This means that a is not voter i’s favorite alternative in R. Since
f1(R, x) = 1

3 for all x ∈ A and f(R′, a) = 1, this observation proves that f1 is
PC -strategyproof in this case.

• 0WCW → 0WCW : We have f1(R) = f1(R′) in this case, which contradicts that
voter i can PC -manipulate.

Claim 2: f1 is the only SDS that satisfies anonymity, neutrality, cancella-
tion, PC -efficiency, and PC -strategyproofness.
Consider an arbitrary SDS f for m = 3 alternatives that satisfies all given axioms.

We show that f(R) = f1(R) for all profiles R ∈ R∗, which proves this claim. For this,
we name the six possible preference relations �1 = a, b, c, �2 = c, b, a, �3 = b, c, a,
�4 = a, c, b, �5 = c, a, b, and �6 = b, a, c. Moreover, given a profile R, let ni denote the
number of voters who report preference relation �i in R. Using this notation, we can
describe the majority margins of R as follows.

gR(a, b) = (n1 − n2)− (n3 − n4) + (n5 − n6)
gR(b, c) = (n1 − n2) + (n3 − n4)− (n5 − n6)
gR(c, a) = −(n1 − n2) + (n3 − n4) + (n5 − n6)

It is not difficult to derive from these equations that

n1 =
gR(a, b) + gR(b, c)

2
+ n2
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n3 =
gR(b, c) + gR(c, a)

2
+ n4

n5 =
gR(c, a) + gR(a, b)

2
+ n6.

Next, consider an arbitrary preference profile R. Based on cancellation, we can use
the above equations to remove pairs of voters with inverse preferences from R until
n2k = 0 or n2k−1 = 0 for each k ∈ {1, 2, 3}. Unless all majority margins are 0, this
leads to a minimal profile R′, which we consider in the subsequent case distinction. Note
that the removal of voters with inverse preferences does not affect the majority margins
and therefore also not the (weak) Condorcet winners. In particular, this means that
f1(R) = f1(R′). Analogously, cancellation yields for f that f(R) = f(R′). Hence, we
will consider multiple cases depending on the structure of R′ and prove that f(R) =
f(R′) = f1(R′) = f1(R) in every case. On the other hand, if all majority margins are 0,
we need a separate argument, which we discuss in our first case below. Taken together,
our cases imply that f(R) = f1(R) for every profile R.
Case 2.1: gR(a, b) = gR(b, c) = gR(c, a) = 0.
First, suppose that gR(a, b) = gR(b, c) = gR(c, a) = 0, which means that all three

alternatives are weak Condorcet winners in R. Our equations show that n1 = n2,
n3 = n4, and n5 = n6. Let n∗ denote the maximum among all ni. Using cancellation, we
can add pairs of voters with inverse preferences until nk = n∗ for every k ∈ {1, . . . , 6}.
Moreover, cancellation implies that f(R) = f(R′′) for the new profile R′′. Finally, all
alternatives are symmetric to each other in R′′ since all preference relations appear
equally often. Hence, anonymity and neutrality require that f(R′′, x) = 1

3 for all x ∈ A,
which means that f(R) = f(R′′) = f1(R).
Case 2.2: An alternative x is top-ranked by more than half of the voters in R′.
As the second case, suppose that R′ is well-defined and that an alternative x is top-

ranked by more than half of the voters in this profile. Then, it holds that f(R′, x) = 1
because Lemma 5 implies that f satisfies the absolute winner property. Since x is the
Condorcet winner in R′, it holds that f(R′) = f1(R′).
Case 2.3: Two alternatives are top-ranked by exactly half of the voters in R′.
Next, suppose that R′ is well-defined and that two alternatives, say a and b, are

top-ranked by exactly half of the voters in R′. Then, a and b are weak Condorcet
winners. Moreover, c is not a weak Condorcet winner in R′ since not all majority
margins in R can be 0, which implies that there is a voter who ranks c last. Due to
symmetry, we can assume that this voter’s preference relation is a, b, c. Now, if there is
a voter with preference relation a, c, b in R′, then the last possible preference relation
is b, a, c; otherwise, R′ is not minimal. Hence, a Pareto-dominates c in R′. Similarly,
if there is no voter with the preference a, c, b, all voters prefers b to c and c is again
Pareto-dominated. Therefore, it follows in both cases that f(R′, c) = 0 because of PC -
efficiency. Moreover, we can let the voters with a, c, b and b, c, a (if any) push down c.
Then, c stays Pareto-dominated and therefore still receives probability 0 from f . Hence,
Lemma 2 shows that the probability of a and b does not change during these steps.
Finally, this process results in a profile R′′ in which half of the voters report a, b, c and
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the other half b, a, c. Anonymity, neutrality, and PC -efficiency imply for this profile R′′

that f(R′′, a) = f(R′′, b) = 1
2 . Hence, we have that f(R′) = f(R′′) = f1(R′) because a

and b are the only weak Condorcet winners in R′.
Case 2.4: Each alternative is top-ranked at least once and one alternative is top-ranked

by exactly half of the voters in R′.
Next, suppose that an alternative is top-ranked by exactly half of the voters and the

other two alternatives are top-ranked at least once. Without loss of generality, assume
that there is a voter with preference relation a, b, c in R′. Since c is top-ranked by a
voter, there is also a voter with preference relation c, a, b; note for this that no voter can
report c, b, a in R′ because of the minimality of R′. By an analogous argument, we also
derive that there is a voter with preference relation b, c, a. In summary, we have that
n1 > 0, n3 > 0, n5 > 0, and n2 = n4 = n6 = 0. Moreover, one alternative is top-ranked
by half of the voters; suppose without loss of generality that this alternative is a. Hence,
n1 = n3 + n5. We prove that f(R′, a) = 3

5 and f(R′, b) = f(R′, c) = 1
5 by considering

the following preference profiles, where l = n1 + n3.
R1,n3,n5 : [1 . . . n1]: a, b, c [n1+1 . . . l]: b, c, a [l+1 . . . n−1]: c, a, b n: c, b, a
R2,n3,n5 : [1 . . . n1]: a, b, c [n1+1 . . . l]: b, c, a [l+1 . . . n]: c, a, b
R3,n3,n5 : [1 . . . n1]: a, b, c [n1+1 . . . l−1]: b, c, a l: c, b, a [l+1 . . . n]: c, a, b

Anonymity implies that f(R′) = f(R2,n3,n5). Hence, our goal is to show that
f(R2,n3,n5 , a) = 3

5 and f(R2,n3,n5 , b) = f(R2,n3,n5 , c) = 1
5 for all n3 > 0 and n5 > 0. Note

for this that, in R1,n3,n5 and R3,n3,n5 , we can use cancellation to remove voters 1 and n or
voters 1 and l, respectively. This step leads to the profile R2,n3,n5−1 or R2,n3−1,n5 , which
proves that f(R1,n3,n5) = f(R2,n3,n5−1) and f(R3,n3,n5) = f(R2,n3−1,n5). Moreover, note
that if n3 = 0, then a and c are top-ranked by half of the voters in R2,n3,n5 . Hence, we
have that f(R2,0,n5 , a) = f(R2,0,n5 , c) = f(R3,1,n5 , a) = f(R3,1,n5 , c) = 1

2 by Case 2.3.
An analogous argument also shows that f(R2,n3,0, a) = f(R2,n3,0, b) = f(R1,n3,1, a) =
f(R1,n3,1, b) = 1

2 . Based on these insights, we now prove our claim on f(R2,n3,n5) with
an induction on n3 + n5.

First, we consider the induction basis that n3 = n5 = 1. The previous paragraph
implies that f(R1,n3,n5 , a) = f(R1,n3,n5 , b) = f(R3,n3,n5 , a) = f(R3,n3,n5 , c) = 1

2 . Hence,
PC -strategyproofness from R1,n3,n5 to R2,n3,n5 and from R2,n3,n5 to R3,n3,n5 entails the
following inequalities, where p = f(R2,n3,n5).

1

2
p(a) ≥ p(c) +

1

2
p(b) p(b) +

1

2
p(c) ≥ 1

2
p(a)

Moreover, note that voter n can ensure in R2,n3,n5 that a is chosen with probability 1
by reporting it as his favorite alternative because of the absolute winner property. Hence,
we also get that p(c) ≥ p(b) from PC -strategyproofness. Finally, it is easy to see that
these three inequalities are true at the same time only if p(a) = 3p(b) = 3p(c). Using
the fact that p(a) + p(b) + p(c) = 1, we hence derive that p(a) = 3

5 and p(b) = p(c) = 1
5 .

Next, we prove the induction step and thus consider some fixed n3 > 0 and n5 >
0 such that n3 + n5 > 2. The induction hypothesis is that f(R2,n′3,n

′
5 , a) = 3

5 and
f(R2,n′3,n

′
5 , b) = f(R2,n′3,n

′
5 , c) = 1

5 for all n′3 > 0 and n′5 > 0 with n′3 + n′5 = n3 + n5 − 1.
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Now, recall that f(R1,n3,n5) = f(R2,n3,n5−1), which means that f(R1,n3,n5 , a) = 3
5 and

f(R1,n3,n5 , b) = f(R1,n3,n5 , c) = 1
5 if n5 > 1 because of the induction hypothesis. PC -

strategyproofness from R1,n3,n5 to R2,n3,n5 implies then the following inequality, where
p = f(R2,n3,n5).

2

5
p(a) +

1

5
p(b) ≥ 4

5
p(c) +

3

5
p(b) ⇐⇒ 1

2
p(a) ≥ p(c) +

1

2
p(b)

On the other hand, if n5 = 1, then f(R1,n3,n5 , a) = f(R1,n3,n5 , b) = 1
2 , and PC -

strategyproofness results in the same inequality.
Similarly, if n3 > 1, then f(R3,n3,n5 , a) = 3

5 and f(R3,n3,n5 , b) = f(R3,n3,n5 , c) = 1
5

because of the induction hypothesis and cancellation. Hence, we derive the following
inequality from PC -strategyproofness between R2,n3,n5 and R3,n3,n5 .

4

5
p(b) +

3

5
p(c) ≥ 1

5
p(c) +

2

5
p(a) ⇐⇒ p(b) +

1

2
p(c) ≥ 1

2
p(a)

On the other hand, if n3 = 1, then f(R3,n3,n5 , a) = f(R3,n3,n5 , c) = 1
2 . Applying PC -

strategyproofness in this case results in the same inequality as above.
Finally, it must hold that p(c) ≥ p(b). Indeed, otherwise voter n could PC -manipulate

in R2,n3,n5 by reporting a as his favorite option—a would then chosen with probability 1
because of the absolute winner property. Since p(a) + p(b) + p(c) = 1, it can be verified
that the only possible solution to the three inequalities that we have derived is p(a) =
3
5 and p(b) = p(c) = 1

5 . This proves the induction step and therefore that f(R′) =
f(R2,n3,n5) = f1(R′).
Case 2.5: Every alternative is top-ranked by less than half of the voters in R′.
As the last case, suppose that every alternative is top-ranked by less than half of

the voters in R′. In particular, this means that every alternative is top-ranked at least
once. We suppose again without loss of generality that a voter reports a, b, c in R′ and
hence, the same analysis as in the previous case shows that the only possible preference
relations in R′ are �1= a, b, c, �3= b, c, a, and �5= c, a, b. In particular, we have that
n1 > 0, n3 > 0, n5 > 0, and n2 = n4 = n6 = 0. Moreover, since no alternative is
top-ranked by at least half of the voters, we have that n1 < n3 + n5, n3 < n1 + n5, and
n5 < n1 +n3. This shows that there is not even a weak Condorcet winner in R′, and our
goal hence is to show that f(R′, x) = 1

3 for all x ∈ A. Suppose that this is not the case,
which means that either f(R′, a) < f(R′, c), f(R′, b) < f(R′, a), or f(R′, c) < f(R′, b);
otherwise, f(R′, a) ≥ f(R′, c) ≥ f(R′, b) ≥ f(R′, a), which implies that all alternatives
get a probability of 1

3 . We assume in the sequel that f(R′, a) < f(R′, c) as all cases
are symmetric. Now, in this case, we let the voters i with preference relation a, b, c
one after another swap a and b. For each step, Lemma 3 implies that the probability
of a remains smaller than that of c. However, this process results in a profile R′′ in
which n1 + n3 voters report b as their favorite alternative. Since n1 + n3 > n5, b is
the absolute winner and Case 2.2 shows that f(R′′, b) = 1. However, this contradicts
f(R′′, a) < f(R′′, c) and hence, the claim that f(R′, a) < f(R′, c) must be wrong. This
proves that f(R′, x) = 1

3 = f1(R′, x) for all x ∈ A.
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Finally, we prove Proposition 4. Recall for this that nR(x) denotes the number of
voters who top-rank alternative x in R, and let B(R) be the set of alternatives that are
never bottom-ranked in R. Moreover, the uniform random dictatorship RD is defined
by RD(R, x) = nR(x)∑

y∈A nR(y) for all x ∈ A and R ∈ R∗. As discussed in Section 3,
RD is known to satisfy strict SD-participation and therefore satisfies also strict PC -
participation, but fails PC -efficiency. We consider the following variant of RD called
f2: if |B(R)| ∈ {0, 2}, then f2(R) = RD(R). On the other hand, if |B(R)| = 1, let x
denote the single alternative in B(R) and let C denote the set of alternatives y ∈ A\{x}
with minimal ny(R). Then, f2(R, x) =

nR(x)+
∑

y∈C nR(y)∑
y∈A nR(y) , f(R2, y) = 0 for y ∈ C,

and f2(R, z) = RD(R, z) for z 6∈ C ∪ {x}. Intuitively, if |B(R)| = 1, f2 removes the
alternatives in A \B(R) with minimal nR(x) and then computes RD .

Proposition 4. For m = 3, f2 satisfies anonymity, neutrality, PC -efficiency, and strict
PC -participation.

Proof. First note that f2 is anonymous and neutral since its definition does not depend
on the identities of voters or alternatives.
Next, we show that f2 satisfies PC -efficiency by proving that f2(R) satisfies for all

profiles R the three conditions of Lemma 6. To this end, note first that f2 is ex post
efficient: it only puts positive probability on an alternative that is never top-ranked if it
is second-ranked by all voters and both other alternatives are top-ranked at least once.
In this case, all three alternatives are Pareto-optimal, and thus f2 is ex post efficient.
This argument also shows that an alternative that is never top-ranked and at least
once bottom-ranked is always assigned probability 0. Finally, if an alternative is never
bottom-ranked and at least once top-ranked, only two alternatives can have positive
probability. In more detail, either |B(R)| = 2, which means that one alternative is
bottom-ranked by all voters and receives probability 0, or |B(R)| = 1 and an alternative
in A \ B(R) gets probability 0 by definition of f2. Hence, all conditions of Lemma 6
hold, which implies that f2 is PC -efficient.
Lastly, we discuss why f2 satisfies strict PC -participation—in fact, we prove the even

stronger claim that it satisfies strict SD-participation. Consider an arbitrary electorate
N ∈ F(N), a voter i ∈ N , and two preference profiles R ∈ RN and R′ ∈ RN\{i} such
that R′ = R−i. We need to show that if i’s top alternative is not already chosen with
probability 1 in f2(R′), then f2(R) �SD

i f2(R′). First, note that this is obvious if
f2(R) = RD(R) and f2(R′) = RD(R′) because RD satisfies strict SD-participation.
Moreover, |B(R′)|−1 ≤ |B(R)| ≤ |B(R′)| because voter i can only bottom-rank a single
alternative. These two observations leave us with three interesting cases: |B(R′)| = 2
and |B(R)| = 1, |B(R′)| = |B(R)| = 1, and |B(R′)| = 1 and |B(R)| = 0.
First, consider the case where |B(R′)| = 1 and |B(R)| = 0. Without loss of generality,

we assume that B(R′) = {a}, which means that a is voter i’s least preferred alternative.
Moreover, we call voter i’s best alternative z ∈ {b, c}. The following case distinction
proves that f2 satisfies strict SD-participation under the given assumptions.

• If nR′(b) = nR′(c), then f2(R′, a) = 1 and it is obvious that f2(R) �SD
i f2(R′)

because a is voter i’s least preferred outcome and f2(R, z) = RD(R, z) > 0.
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• If nR′(b) > nR′(c), we have that f2(R′, a) =
nR′ (a)+nR′ (c)∑

x∈A nR′ (x)
>

nR′ (a)
1+

∑
x∈A nR′ (x)

=

f2(R, a) and f2(R′, z) ≤ nR′ (z)∑
x∈A nR′ (x)

<
1+nR′ (z)

1+
∑

x∈A nR′ (x)
= f2(R, z). It is now easy to

see that f2(R) �SD
i f2(R′).

• The case nR′(b) < nR′(c) is symmetric to the previous one.

Next, consider the case where |B(R′)| = 2 and |B(R)| = 1. Without loss of generality,
we suppose that B(R′) = {a, b} and B(R) = {a}, which means that voter i bottom-
ranks b. Moreover, note that all voters in N \ {i} bottom-rank c as otherwise B(R′) =
{a, b} is not possible. This means that f2(R′, c) = 0, nR′(c) = 0, and nR(c) ≤ 1. We
consider again several subcases.

• If nR(b) > nR(c), then f2(R, c) = 0 = f2(R′, c), f2(R, a) ≥ 1+nR′ (a)
1+

∑
x∈A nR′ (x)

>

nR′ (a)∑
x∈A nR′ (x)

= f2(R′, a), and thus f2(R, b) < f2(R′, b). Hence, f2(R) �SD
i f2(R′)

as b is voter i’s worst alternative.

• If nR(c) > nR(b), then f2(R, b) = 0 ≤ f2(R′, b) and f2(R, c) > 0 = f2(R′, c).
If i top-ranks c, we have f2(R) �SD

i f2(R′). Else, i top-ranks a, and we have
f2(R, a) ≥ 1+nR′ (a)

1+
∑

x∈A nR′ (x)
>

nR′ (a)∑
x∈A nR′ (x)

= f2(R′, a), so again f2(R) �SD
i f2(R′).

• If nR(c) = nR(b) = 0, all voters (including i) report a as their best option and thus
f2(R′, a) = f2(R, a) = 1, which satisfies strict SD-participation because f2(R) is
voter i’s favorite lottery.

• If nR(c) = nR(b) = 1, then voter i’s preference relation is c, a, b. Moreover,
f2(R′, c) = 0 = f2(R, c) and f2(R′, b) > 0 = f2(R, b). This proves again that
f2(R) �SD

i f2(R′)

As the last case, suppose that |B(R′)| = |B(R)| = 1 and let a denote the alternative
in B(R) = B(R′). Since a ∈ B(R), voter i does not bottom-rank a. We consider again
a case distinction.

• First, suppose that voter i top-ranks a, which means that nR(b) = nR′(b) and
nR(c) = nR′(c).

– If nR′(b) = nR′(c), we have that f2(R, a) = f2(R′, a) = 1 and strict PC -
participation holds as this is voter i’s favorite lottery.

– If nR′(b) > nR′(c). Then, f2(R, a) =
nR′ (a)+nR′ (c)+1
1+

∑
x∈A nR′ (x)

>
nR′ (a)+nR′ (c)∑

x∈A nR′ (x)
=

f2(R′, a), f2(R, c) = f2(R′, c) = 0, and hence f2(R, b) < f2(R′, b). It is
now easy to verify that f(R) �SD

i f(R′).

– The case nR′(b) < nR′(c) is symmetric to the previous one.

• Next, suppose that voter i places a second. We assume without loss of generality
that �i = b, a, c because the case �i = c, a, b is symmetric. This assumption means
that nR′(b) + 1 = nR(b) and nR′(x) = nR(x) for x ∈ {a, c}.
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– If nR′(b) ≥ nR′(c), then f2(R′, b) ≤
nR′ (b)∑

x∈A nR′ (x)
<

1+nR′ (b)
1+

∑
x∈A nR′ (x)

= f2(R, b),
f2(R′, c) = f2(R, c) = 0, and hence f2(R′, a) > f2(R, a), which proves that
f(R) �SD

i f(R′).

– If nR′(b)+1 = nR′(c), then f2(R′, b) = 0 = f2(R, b), f2(R′, c) > 0 = f2(R, c),
and thus f2(R′, a) < 1 = f2(R, a). It can again be verified that f(R) �SD

i

f(R′).

– If nR′(b)+1 < nR′(c), then f2(R′, b) = 0 = f2(R, b), f2(R′, c) =
nR′ (c)∑

x∈A nR′ (x)
>

nR′ (c)
1+

∑
x∈A nR′ (x)

= f2(R, c), and hence f2(R′, a) < f2(R, a). Once again, it

holds that f2(R) �SD
i f2(R′).
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