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Abstract
Voting rules are powerful tools that allow multi-
ple agents to aggregate their preferences in order
to reach joint decisions. A common flaw of some
voting rules, known as the no-show paradox, is
that agents may obtain a more preferred outcome
by abstaining from an election. We study strate-
gic abstention for set-valued voting rules based on
Kelly’s and Fishburn’s preference extensions. Our
contribution is twofold. First, we show that, when-
ever there are at least five alternatives, every Pareto-
optimal majoritarian voting rule suffers from the
no-show paradox with respect to Fishburn’s exten-
sion. This is achieved by reducing the statement
to a finite—yet very large—problem, which is en-
coded as a formula in propositional logic and then
shown to be unsatisfiable by a SAT solver. We
also provide a human-readable proof which we ex-
tracted from a minimal unsatisfiable core of the for-
mula. Secondly, we prove that every voting rule
that satisfies two natural conditions cannot be ma-
nipulated by strategic abstention with respect to
Kelly’s extension. We conclude by giving examples
of well-known Pareto-optimal majoritarian voting
rules that meet these requirements.

1 Introduction
Whenever a group of multiple agents aims at reaching a joint
decision in a fair and satisfactory way, they need to aggregate
their (possibly conflicting) preferences. Voting rules are stud-
ied in detail in social choice theory and are coming under in-
creasing scrutiny from computer scientists who are interested
in their computational properties or want to utilize them in
computational multiagent systems [Brandt et al., 2013].

A common flaw of many such rules, first observed by Fish-
burn and Brams [1983], who called it the no-show paradox,
is that agents may obtain a more preferred outcome by ab-
staining from an election. Following Moulin [1988], a vot-
ing rule is said to satisfy participation if it is immune to the
no-show paradox. Moulin has shown that all resolute, i.e.,
single-valued, scoring rules (such as Borda’s rule) satisfy par-
ticipation while all resolute Condorcet extensions suffer from
the no-show paradox. Condorcet extensions comprise a large

class of voting rules that satisfy otherwise rather desirable
properties.

In this paper, we study participation for irresolute, i.e.,
set-valued, social choice functions (SCFs). A proper defi-
nition of participation for irresolute SCFs requires the speci-
fication of preferences over sets of alternatives. Rather than
asking the agents to specify their preferences over all sub-
sets (which would be bound to various rationality constraints
and require exponential space), it is typically assumed that
the preferences over single alternatives can be extended to
preferences over sets. Of course, there are various ways how
to extend preferences to sets (see, e.g., [Gärdenfors, 1979;
Barberà et al., 2004]), each of which leads to a different
version of participation. A function that yields a (possibly
incomplete) preference relation over subsets of alternatives
when given a preference relation over single alternatives is
called a preference extension. In this paper, we focus on
two common preference extensions due to Kelly [1977] and
Fishburn [1972], both of which arise under natural assump-
tions about the agents’ knowledge of the tie-breaking mecha-
nism that eventually picks a single alternative from the choice
set (see, e.g., [Gärdenfors, 1979; Ching and Zhou, 2002;
Sanver and Zwicker, 2012; Brandt and Brill, 2011; Brandt,
2015]). Kelly’s extension, for example, can be motivated by
assuming that the agents possess no information whatsoever
about the tie-breaking mechanism. A common interpreta-
tion of Fishburn’s extension, on the other hand, is that ties
are broken according to the unknown preferences of a chair-
man. Since Fishburn’s extension is a refinement of Kelly’s
extension it follows that Fishburn-participation is stronger
than Kelly-participation. The idea pursued in this paper is
to exploit the uncertainty of the agents about the tie-breaking
mechanism in order to prevent strategic abstention. Our two
main results are as follows.
• Whenever there are at least four alternatives, Pareto-

optimality and Fishburn-participation are incompatible
in the context of majoritarian SCFs. When there are
at least five alternatives, this even holds for strict
preferences.
• Every SCF that satisfies set-monotonicity and indepen-

dence of indifferent voters satisfies Kelly-participation.
Every set-monotonic majoritarian SCF satisfies Kelly-
participation when preferences are strict.

The first result is obtained using computer-aided theorem



proving techniques. In particular, we reduce the statement to
a finite—yet very large—problem, which is encoded as a for-
mula in propositional logic and then shown to be unsatisfiable
by a SAT solver. We also provide a human-readable proof for
this result, which we extracted from a minimal unsatisfiable
core of the SAT formula.

The conditions for the second result are easy to check and
satisfied by a small number of well-studied SCFs, including
Pareto-optimal majoritarian SCFs. In contrast to Moulin’s
negative result for resolute SCFs, there are appealing Con-
dorcet extensions that satisfy Kelly-participation.

Our negative result holds even for strict preferences while
our positive result holds even for weak preferences. The lat-
ter is somewhat surprising and stands in sharp contrast to the
related finding that no Condorcet extension satisfies Kelly-
strategyproofness when preferences are weak (recall that an
SCF is strategyproof if no agent can obtain a more preferred
outcome by misrepresenting his preferences) [Brandt, 2015].

Participation is similar to, but logically independent from,
strategyproofness. Manipulation by abstention is arguably a
more severe problem than manipulation by misrepresentation
for two reasons. First, agents might not be able to find a ben-
eficial misrepresentation. It was shown in various papers that
the corresponding computational problem can be intractable
(see, e.g., [Faliszewski et al., 2010]). Finding a successful
manipulation by strategic abstention, on the other hand, is
never harder than computing the outcome of the respective
SCF. Secondly, one could argue that agents will not lie about
their preferences because this is considered immoral (Borda
famously exclaimed “my scheme is intended only for honest
men”), while strategic abstention is deemed acceptable.1

2 Related Work
The problem of strategic abstention for irresolute SCFs has
been addressed by Pérez [2001], Jimeno et al. [2009], and
Brandt [2015]. Pérez [2001] examined the situation where
an agent can cause his most preferred alternative to be ex-
cluded from the choice set when joining an electorate and
showed that almost all Condorcet extensions suffer from this
paradox. Jimeno et al. [2009], on the other hand, proved that
manipulation by abstention is possible for most Condorcet
extensions when agents compare sets according to an opti-
mistic, pessimistic, or lexicographic extension. They men-
tioned the study of participation in the context of weak prefer-
ences and Fishburn’s extension as interesting research direc-
tions for future work. Both of these questions are addressed
in our paper. Brandt [2015] investigated strategyproofness
for Kelly’s extension and gave a simple argument connecting
strategyproofness and participation. Brandl et al. [2015] stud-
ied participation for probabilistic social choice functions and,
among other results, proposed functions where a participating
agent is always strictly better off (unless he already obtains
a most-preferred outcome). Abstention in slightly different
contexts than the one studied in this paper has recently also
caught the attention of computer scientists working on voting

1Alternatively, one could also argue that manipulation by mis-
representation is more critical because agents are tempted to act im-
morally, which is a valid, but different, concern.

equilibria and campaigning (see, e.g., [Desmedt and Elkind,
2010; Baumeister et al., 2012]).

The computer-aided techniques in this paper have been in-
spired by Tang and Lin [2009], who reduced well-known
impossibility results for resolute SCFs—such as Arrow’s
theorem—to finite instances, which can then be checked by a
SAT solver. Geist and Endriss [2011] extended this method to
a fully-automatic search algorithm for impossibility theorems
in the context of preference relations over sets of alternatives.
More recently, Brandt and Geist [2014] proved both impossi-
bility and possibility results regarding the strategyproofness
of irresolute SCFs using this computer-aided approach. We
strongly build on their methodology and extended it to cover
the notion of participation, which—as we will see—requires
a more advanced framework.

Also for other problems in economics the application of
SAT solvers has proven to be quite effective. A prominent ex-
ample is the ongoing work by Leyton-Brown [2014] in which
SAT solvers are used for the development and execution of
the FCC’s upcoming reverse spectrum auction.

In some respect, our approach also bears some similari-
ties to automated mechanism design (see, e.g., [Conitzer and
Sandholm, 2002]), where desirable properties are encoded
and mechanisms are computed to fit specific problem in-
stances.

3 Preliminaries
Let A be a finite set of alternatives and N a countable set
of agents of which we will consider finite subsets N ⊆ N.
Therefore, let F(N) denote the set of all finite and non-empty
subsets of N. A (weak) preference relation is a complete,
reflexive, and transitive binary relation on A. The preference
relation of agent i is denoted by %i. The set of all preference
relations is denoted by R. We write �i for the strict part
of %i, i.e., x �i y if x %i y but not y %i x, and ∼i for the
indifference part of %i, i.e., x ∼i y if x %i y and y %i x. A
preference relation %i is called strict if it additionally is anti-
symmetric, i.e., x �i y or y �i x for all distinct alternatives
x, y. We will compactly represent a preference relation as
a comma-separated list with all alternatives among which an
agent is indifferent placed in a set. For example x �i y ∼i z
is represented by %i : x, {y, z}.

A preference profile R is a function from a set of agents N
to the set of preference relations R. The set of all preference
profiles is denoted by RF(N). For a preference profile R ∈
RN and two agents i ∈ N , j ∈ N, we define

R−i = R \ {(i,%i)} and R+j = R ∪ {(j,%j)}.
The majority relation of R is denoted by %(R), where

x %(R) y iff |{i ∈ N : x %i y}| ≥ |{i ∈ N : y %i x}|.
Its strict part is denoted by �(R) and its indifference part
by ∼(R). An alternative x is a Condorcet winner in R if
x �(R) y for all y ∈ A \ {x}.

Our central objects of study are social choice functions
(SCFs), i.e., functions that map a preference profile to a set of
alternatives. Formally, an SCF is a function

f : RF(N) → 2A \ ∅.



Two minimal fairness conditions for SCFs are anonymity
and neutrality. An SCF is anonymous if the outcome does
not depend on the identities of the agents and neutral if it is
symmetric with respect to alternatives. An SCF f is majori-
tarian (or a neutral C1 function) if it is neutral and for all
R,R′ ∈ RF(N), f(R) = f(R′) whenever �(R) = �(R′).
Even the seemingly narrow class of majoritarian SCFs con-
tains a variety of interesting functions (sometimes called tour-
nament solutions). Examples include Copeland’s rule, the
top cycle, and the uncovered set (see, e.g., [Brandt et al.,
2015]). These functions usually also happen to be Condorcet
extensions, i.e., SCFs that uniquely return a Condorcet winner
whenever one exists.

Next we introduce a very weak variable electorate condi-
tion which requires that a completely indifferent agent does
not affect the outcome. An SCF f satisfies independence of
indifferent voters (IIV) if

f(R) = f(R+i) for all R ∈ RF(N),

where i is an agent who is indifferent between all alternatives,
i.e., x ∼i y for all x, y ∈ A. It is easy to see that every
majoritarian SCF satisfies anonymity, neutrality, and IIV.

We say that R′ is an f -improvement over R if alternatives
that are chosen by f in R are not weakened from R to R′,
i.e., for all x ∈ f(R), y ∈ A, and i ∈ N , x %i y implies
x %′i y and y %′i x implies y %i x. An SCF f satisfies
set-monotonicity if

f(R) = f(R′) whenever R′ is an f -improvement over R.

The two preference extensions we consider in this pa-
per are Kelly’s extension and Fishburn’s extension. For all
X,Y ⊆ A and %i∈ R,

X %Ki Y iff x %i y for all x ∈ X , y ∈ Y , and (Kelly)

X %Fi Y iff X\Y %Ki Y and X %Ki Y \X . (Fishburn)

The strict part of these relations will be denoted by �Ki and
�Fi , respectively. It follows from the definitions that Fish-
burn’s extension is a refinement of Kelly’s extension, i.e.,
%Ki ⊆ %Fi for every %i ∈ R. In the interest of space, we
refer to Section 1 (and the references therein) for justifica-
tions of these extensions.

With the preference extensions at hand, we can now for-
mally define participation and strategyproofness. An SCF
f is Kelly-manipulable by strategic abstention if there ex-
ists a preference profile R ∈ RN with N ∈ F(N) and
an agent i ∈ N such that f(R−i) �Ki f(R). An
SCF f is Kelly-manipulable if there exist preference pro-
files R,R′ ∈ RN , and an agent i ∈ N , such that %j =
%′j for all agents j 6= i and f(R′) �Ki f(R). f is
said to satisfy Kelly-participation or Kelly-strategyproofness
if it is not Kelly-manipulable by strategic abstention or
Kelly-manipulable, respectively. Fishburn-participation and
Fishburn-strategyproofness are defined analogously.

The following example illustrates the definitions of Kelly-
participation and Fishburn-participation. Consider the prefer-
ence profile R with six agents and four alternatives depicted
below. The numbers on top of each column denote the iden-
tities of the agents with the respective preference relation.

1 2 3, 4 5, 6

c d a b
d b c a
b a d c
a c b d

R

a b

cd

�(R)

a b

cd

�(R−6)

The profile R induces the majority relation %(R) with its
strict part �(R). A well-studied majoritarian SCF is the bi-
partisan set [Laffond et al., 1993; Dutta and Laslier, 1999].
The bipartisan set of R is {a, b, c, d}. If agent 6 leaves the
electorate, we obtain the profile R−6, which induces the ma-
jority relation %(R−6) whose bipartisan set is {a, b, c}. Ob-
serve that {a, b, c} �F6 {a, b, c, d}, i.e., agent 6 can obtain a
preferred outcome according to Fishburn’s extension by ab-
staining from the election. Hence, the bipartisan set does
not satisfy Fishburn-participation. However, {a, b, c} �K6
{a, b, c, d} does not hold and, hence, agent 6 cannot manipu-
late by abstaining according to Kelly’s extension. In general,
the bipartisan set satisfies Kelly-participation because it sat-
isfies set-monotonicity and IIV (cf. Theorem 3).

We will relate participation and strategyproofness to
Pareto-optimality in the subsequent sections. An alternative x
is said to be Pareto-dominated (in R ∈ RN ) by another alter-
native y if y %i x for all i ∈ N and there exists j ∈ N
such that y �j x. Whenever there is no y ∈ A that Pareto-
dominates x, x is called Pareto-optimal. The Pareto rule
(PO) is defined as the SCF that selects all Pareto-optimal al-
ternatives.

4 Computer-aided Theorem Proving

For some of our results, we are going to make use of the
computer-aided proving methodology described by Brandt
and Geist [2014]. The main idea is to prove statements by
encoding a finite instance as a satisfiability problem, which
can be solved by a computer using a SAT solver, and provid-
ing a (simple) reduction argument, which extends this result
to arbitrary domain sizes. We extend their framework to also
cater for indifferences in the majority relations, which is an
important requirement for being able to deal with the notion
of participation: if an agent with at least one strict prefer-
ence abstains the election, the corresponding majority rela-
tion might already contain indifferences.

Note that the introduction of majority ties significantly in-
creases the size of the search space (see Table 1), which
makes any type of exhaustive search even less feasible. Apart
from being able to treat such large search spaces, another ma-
jor advantage of the computer-aided approach is that many
similar conjectures and hypotheses (here, e.g., statements
about other preference extensions) can be checked quickly
using the same framework.

In the coming subsections, we are going to explain our
extension and some core features of the computer-aided
method; for details of the original approach, however, the
reader is referred to Brandt and Geist [2014].



|A| Brandt and Geist [2014] This paper

3 49 823,543
4 50,625 ∼ 2.5 · 1049

5 ∼ 7.9 · 1017 ∼ 9.4 · 10867

6 ∼ 5.8 · 10100 ∼ 6.8 · 1038649

Table 1: Number of different majoritarian SCFs. While
Brandt and Geist [2014] could assume an odd number of
agents with strict preferences, participation requires us to deal
with variable electorates, and therefore weak majority rela-
tions.

4.1 Encoding Participation
At the core of the computer-aided approach lies an encod-
ing of the problem to be solved as a SAT instance. For this,
all axioms involved need to be stated in propositional logic.
We take over the formalization of the optimized encoding by
Brandt and Geist [2014], which contains the following rel-
evant axioms: functionality of the choice function, the or-
bit condition, and Pareto-optimality. Pareto-optimality is en-
coded as being a refinement of the uncovered set. What re-
mains is to encode the notion of participation. While this en-
coding turns out to be similar to the one of strategyproofness
defined by Brandt and Geist [2014], it is more complex and
not straightforward. In particular, it requires a novel condi-
tion that is equivalent to participation for majoritarian SCFs,
which we are going to call majority-participation.

We are going to identify preference profiles with their cor-
responding majority relations (i.e., we write f(%) instead of
f(R)). Moreover, the inverse of % is denoted by -.

Definition 1. A majoritarian SCF f is Fishburn-majority-
manipulable by strategic abstention if there exist majority re-
lations %, %′ and a preference relation %µ ∈ R such that
f(%′) �Fµ f(%), with

� ∩≺′ = ∅, (1)
(% \%′) ∪ (-′ \-) ⊆ �µ , and (2)

∼ ∩∼′ ⊆ ∼µ. (3)

If the agents’ preferences are required to be strict, it addi-
tionally has to hold that either % or %′ is anti-symmetric. A
majoritarian SCF f satisfies Fishburn-majority-participation
if it is not Fishburn-majority-manipulable by strategic absten-
tion.

Conditions (1) to (3) can intuitively be phrased as follows:
(1) no strict relationship may be reversed between � and �′,
(2) %µ has to be in line with the changes from % to %′, and
(3) majority ties that occur in both majority relations must be
reflected by an indifference in %µ.

In the following lemma, we show that, for majoritarian
SCFs, the condition of Fishburn-majority-manipulability cor-
responds to an abstaining agent with preferences %µ who
thereby obtains a preferred outcome.2

2Note that both the definition of majority-participation and
Lemma 1 are independent of a specific preference extension, and
thus also applicable to, e.g., Kelly’s extension.

Lemma 1. A majoritarian SCF satisfies Fishburn-participa-
tion if and only if it satisfies Fishburn-majority-participation.

Proof. Due to space restrictions we will only provide a short
proof sketch here, the full proof is available from the authors
upon request.

In general, we show that for every preference profileR that
allows for a Fishburn-manipulation by abstention by agent µ,
the two majority graphs %(R) and %(R−µ) together with %µ
satisfy all required conditions. In return, whenever we have
two majority relations %, %′ and a preference relation %µ
with the properties stated in Definition 1, we can assign inte-
ger weights to all pairs of alternatives and, by Debord [1987],
use these to determine a preference profile R′ that induces
the majority relation %′. Together with R = R′+µ we ob-
tain %(R′) = %′, %(R) = % and thus f(R′) �Fµ f(R) for
majoritarian SCFs f .

Fishburn-majority-participation can then be encoded in
propositional logic (with variables f%,X representing f(%) =
X) as the following simple transformation shows:

¬
(
f(%′) �Fµ f(%)

)
≡

∧
Y�FµX

(¬f%,X ∨ ¬f%,Y )

for all majority relations %, %′ and preference relations %µ
satisfying conditions (1) to (3).

4.2 Proof Extraction
A very interesting feature of the approach by Brandt and
Geist [2014] is the possibility to extract human-readable
proofs from an unsatisfiability result by the SAT solver. This
is done by computing a minimal unsatisfiable set (MUS),
an inclusion-minimal set of clauses that is still unsatisfi-
able.3 This MUS can then, assisted by our encoder/decoder
program, be read and transformed into a standard human-
readable proof. Different proofs can be found by varying the
MUS extractor or by encoding the problem for different sub-
domains, such as neighborhoods of a set of profiles or ran-
domly sampled subdomains, respectively.

5 Results and Discussion
In general, participation and strategyproofness are not log-
ically related. However, extending an observation by
Brandt [2015], it can be shown that strategyproofness implies
participation under certain conditions. The proof of this state-
ment is omitted due to space restrictions.
Lemma 2. Consider an arbitrary preference extension. Ev-
ery SCF that satisfies IIV and strategyproofness satisfies par-
ticipation. When preferences are strict, every majoritarian
SCF that satisfies strategyproofness satisfies participation.

As a consequence of Lemma 2, some positive results
for Kelly-strategyproofness and Fishburn-strategyproofness
carry over to participation. We will complement these results
by impossibility theorems for Fishburn-participation and a
positive result for Kelly-participation, which specifically does
not hold for Kelly-strategyproofness.

3We used PICOMUS, which is part of the PICOSAT distribution
[Biere, 2008].



5.1 Fishburn-participation
It turns out that Pareto-optimality is incompatible with
Fishburn-participation in majoritarian social choice. The cor-
responding Theorems 1 and 2 and their proofs were obtained
using the computer-aided method laid out in Section 4. In
order to simplify the original proofs, which were found by
the computer, we first state a lemma, which offers further
insights into the possible choices of majoritarian SCFs that
satisfy Fishburn-participation and Pareto-optimality.

To state Lemma 3 we introduce some additional notation:
an alternative x (McKelvey) covers an alternative y if x is at
least as good as y compared to every other alternative. For-
mally, x covers y if x � y and, for all z ∈ A, both y % z
implies x % z, and z % x implies z % y. The uncovered set
of %, denoted UC (%), is the set of all alternatives that are
not covered by any other alternative. By definition, UC is a
majoritarian SCF.

Brandt et al. [2014] have shown that every majoritarian and
Pareto-optimal SCF selects a subset of the (McKelvey) un-
covered set. We show that an SCF that additionally satisfies
Fishburn-participation furthermore only depends on the ma-
jority relation between alternatives in the uncovered set.
Lemma 3. Let f be a majoritarian and Pareto-optimal SCF
that satisfies Fishburn-participation. Let R,R′ be prefer-
ences profiles such that %(R)|UC (%(R)) = %(R′)|UC (%(R′)).
Then f(R) = f(R′) ⊆ UC (%(R)).

The proof of Lemma 3 is omitted due to space restrictions.4
Now, let us turn to our impossibility theorems. The

computer found these impossibilities even without using
Lemma 3. However, the formalization of the lemma allowed
the SAT solver to find smaller proofs and makes the human-
readable proofs more intuitive.
Theorem 1. There is no majoritarian and Pareto-optimal
SCF that satisfies Fishburn-participation if |A| ≥ 4.

Proof. Let f be a majoritarian and Pareto-optimal SCF sat-
isfying Fishburn-participation. We first prove the statement
for A = {a, b, c, d} and reason about the outcome of f for
some specific majority relations. Throughout this proof, we
are going to make extensive use of Lemma 1, which allows
us to apply Fishburn-majority-participation instead of regu-
lar Fishburn-participation. Intuitively, the proof strategy is
to alter the majority relations %, %′, and %′′ as depicted be-
low by letting varying agents join some underlying electorate,
which will exclude certain choices of f (by an application of
Fishburn-majority-participation), until we reach a contradic-
tion. In the figures of the strict part of the majority relations
we highlight alternatives that have to be chosen by f with a
thick border.

a b

cd

�

a b

cd

�+1

a b

cd

�+2

a b

cd

�+3

4Lemma 3 can be strengthened in various respects. It also holds
for the iterated uncovered set, all preference extensions satisfying
some mild conditions, and probabilisitic social choice functions.

First consider %. Adding an agent with preferences
%1 : {a, b, c}, d possibly yields %+1 where, due to symmetry,
f(%+1) = {a, b, c, d}. As f satisfies Fishburn-participation,
nothing that is strictly preferred to {a, b, c, d} according to
%F1 can be chosen in %. Thus, d ∈ f(%). Adding another
agent with %1 : b, {a, c, d} may also lead to %+1. Hence
f(%) 6= {b, d}, {a, b, d}, {b, c, d}.

a b

cd

�′

a b

cd

�′+1

a b

cd

�′+2

a b

cd

�′+3

In a similar fashion, we obtain—step by step and using the
majority relations depicted—that f(%) = {a, c, d}, f(%′) =
{a, b, d}, and finally f(%′′) = ∅, a contradiction. The details
of these cases have to be omitted due to space constraints and
are available from the authors upon request.
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cd
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cd

�′′+1

a b

cd

�′′+2

a b

cd

�′′+3

a b

cd

�′′+4

Now let |A| ≥ 5. It follows from Lemma 3 that the choice
of f does not depend on covered alternatives. Hence the state-
ment follows by extending the majority relations depicted
above to A such that all alternatives but a, b, c, d are covered.

We could verify with our computer-aided approach that
this impossibility still holds for strict preferences when there
are at least 5 alternatives.

Theorem 2. There is no majoritarian and Pareto-optimal
SCF that satisfies Fishburn-participation if |A| ≥ 5, even
when preferences are strict.

The shortest proof of Theorem 2 that we were able to ex-
tract from our computer-aided approach still uses 124 differ-
ent instances of manipulation by abstention. The proof of
Theorem 1, by comparison, consists of 10 such instances.
As a consequence, the complete proof of Theorem 2 has to
be omitted here; a computer-generated version, however, is
available from the authors upon request. Theorems 1 and 2
are both tight in the sense that, whenever there are less than
four or five alternatives, respectively, there exists an SCF that
satisfies the desired properties.

An interesting question is whether these impossibilities
also extend to other preference extensions. Given the
computer-aided approach, this can be easily checked by sim-
ply replacing the preference extension in the SAT encoder.
For instance, it turns out that the impossibility of Theorem 1
still holds if we consider a coarsening of Fishburn’s exten-
sion which can only compare sets that are contained in each
other. Kelly’s extension on the other hand does not lead to
an impossibility for |A| ≤ 5, which will be confirmed more
generally in the next section.



Extension Property Strict preferences Weak preferences

Kelly
Participation ‘ All set-monotonic SCFs that satisfy IIV (Theorem 3)

Strategy-
proofness ‘ All set-monotonic SCFsb a No Condorcet extensionb

Fishburn

Participation
a No majoritarian & Pareto-optimal SCF (|A| ≥ 5)

(Theorem 2) a
No majoritarian & Pareto-optimal SCF (|A| ≥ 4)
(Theorem 1)

‘ Few undiscriminating SCFs, e.g., CONDc, TC g , and POe (Lemma 2), and all scoring rulesf

Strategy-
proofness

a No majoritarian & Pareto-optimal SCF (|A| ≥ 5)d a No pairwise & Pareto-optimal SCF (|A| ≥ 4)a

‘ Few undiscriminating SCFs, e.g., CONDc, TC g , and POe

Table 2: Overview of results for participation and strategyproofness with respect to Kelly’s and Fishburn’s extension and
strict/weak preferences. The symbol ‘ marks sufficient conditions while a marks impossibility results. a: follows from a
result by Aziz et al. [2014] about probabilistic social choice functions, b: Brandt [2015], c: Brandt and Brill [2011], d: Brandt
and Geist [2014], e: Feldman [1979], f : Moulin [1988], g: Sanver and Zwicker [2012]

5.2 Kelly-participation
Theorems 1 and 2 are sweeping impossibilities within the do-
main of majoritarian SCFs. For Kelly’s extension, we ob-
tain a much more positive result that covers attractive ma-
joritarian and non-majoritarian SCFs. Brandt [2015] has
shown that set-monotonicity implies Kelly-strategyproofness
for strict preferences and that no Condorcet extension is
Kelly-strategyproof when preferences are weak. We prove
that set-monotonicity (and the very mild IIV axiom) im-
ply Kelly-participation even for weak preferences. We have
thus found natural examples of SCFs that violate Kelly-
strategyproofness but satisfy Kelly-participation.5

Theorem 3. Let f be an SCF that satisfies IIV and set-
monotonicity. Then f satisfies Kelly-participation.

Proof. Let f be an SCF that satisfies IIV and set-
monotonicity. Assume for contradiction that f does not sat-
isfy Kelly-participation. Hence there exist a preference pro-
file R and an agent i such that f(R−i) �Ki f(R). Let
X = f(R), Y = f(R−i), and Z = A \ (X ∪ Y ). By defini-
tion of Y �Ki X we have that x ∼i y for all x, y ∈ X ∩ Y .

We define a new preference relation %′i in which all al-
ternatives in Y are tied for the first place, followed by all
alternatives in X \ Y as they are ordered in %i, and all re-
maining alternatives in one indifference class at the bottom
of the ranking. Formally,

%i′ = (Y ×A) ∪%i|X ∪ (A× Z).
Let i′′ be an agent who is indifferent between all alterna-

tives, i.e., x ∼i′′ y for all x, y ∈ A. Since f satisfies IIV we
have that f(R−i+i′′) = f(R−i).

By definition, R−i+i′ is an f -improvement over both
R and R−i+i′′ . Hence, set-monotonicity implies that
f(R−i+i′) = f(R) and f(R−i+i′) = f(R−i+i′′). In sum-
mary, we obtain

f(R−i+i′) = f(R−i+i′′) = f(R−i) �Ki f(R) = f(R−i+i′),

which is a contradiction.
5It is easily seen that the proof of Theorem 3 straightforwardly

extends to group-participation, i.e., no group of agents can obtain a
unanimously more preferred outcome by abstaining.

Two rather undiscriminating SCFs that satisfy both IIV and
set-monotonicity are the Pareto rule and the omninomination
rule (which returns all alternatives that are ranked first by at
least one agent). Majoritarian SCFs satisfy IIV by definition
and there are several appealing majoritarian SCFs that sat-
isfy set-monotonicity, among those for instance the top cycle,
the minimal covering set, and the bipartisan set (see, e.g.,
[Brandt, 2015; Brandt et al., 2015]). These majoritarian SCFs
are sometimes criticized for not being discriminating enough.
The computer-aided approach described in this paper can be
used to find more discriminating SCFs that still satisfy Kelly-
participation. We thus found a refinement of the bipartisan
set that, for |A| = 5, selects only 1.43 alternatives on aver-
age, and satisfies Kelly-participation. For comparison, the bi-
partisan set (the smallest previously known majoritarian SCF
satisfying Kelly-participation) yields 2.68 alternatives on av-
erage.

6 Conclusion
Previous results have indicated a conflict between strate-
gic non-manipulability and Condorcet-consistency [Moulin,
1988; Pérez, 2001; Jimeno et al., 2009; Brandt, 2015]. For
example, Moulin [1988] has shown that no resolute Con-
dorcet extension satisfies participation and Brandt [2015] has
shown that no irresolute Condorcet extension satisfies Kelly-
strategyproofness. Theorem 3 addresses an intermediate
question and finds that—perhaps surprisingly—there are at-
tractive Condorcet extensions that satisfy Kelly-participation,
even when preferences are weak. On the other hand, we have
presented elaborate computer-generated impossibilities (The-
orems 1 and 2), which show that these encouraging results
break down once preferences are extended by the more re-
fined Fishburn extension. These findings improve our under-
standing of which behavioral assumptions allow for aggrega-
tion functions that are immune to strategic abstention.

An overview of the main results of this paper and how they
relate to other related results is given in Table 2.
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