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Abstract

In party-approval multiwinner elections the goal is to allocate
the seats of a fixed-size committee to parties based on the
approval ballots of the voters over the parties. In particular,
each voter can approve multiple parties and each party can
be assigned multiple seats. Two central requirements in this
setting are proportional representation and strategyproofness.
Intuitively, proportional representation requires that every suf-
ficiently large group of voters with similar preferences is rep-
resented in the committee. Strategyproofness demands that
no voter can benefit by misreporting her true preferences. We
show that these two axioms are incompatible for anonymous
party-approval multiwinner voting rules, thus proving a far-
reaching impossibility theorem. The proof of this result is
obtained by formulating the problem in propositional logic
and then letting a SAT solver show that the formula is unsatis-
fiable. Additionally, we demonstrate how to circumvent this
impossibility by considering a weakening of strategyproofness
which requires that only voters who do not approve any elec-
ted party cannot manipulate. While most common voting rules
fail even this weak notion of strategyproofness, we character-
ize Chamberlin–Courant approval voting within the class of
Thiele rules based on this strategyproofness notion.

1 Introduction
A central problem in multi-agent systems is collective de-
cision making: given the preferences of multiple agents over a
set of alternatives, a joint decision has to be made. While clas-
sic literature for this problem focuses on the case of choosing
a single alternative as the winner, there is also a wide range
of scenarios where a set of winners needs to be elected. For
instance, this is the case in parliamentary elections, where
the seats of a parliament are assigned to parties based on the
voters’ preferences. In the literature, parliamentary elections
are studied under the term apportionment and a crucial as-
sumption for their analysis is that voters are only allowed to
vote for a single party (Balinski and Young 2001; Pukelsheim
2014). However, this assumption has recently been criticized
because of its lack of flexibility and expressiveness (Brill,
Laslier, and Skowron 2018; Brill et al. 2020). Following Brill
et al. (2020), we thus study party-approval elections. In this
setting, the parliament, or more generally a multiset of fixed
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size, is elected based on the approval ballots of the voters,
i.e., each voter reports a set of approved parties instead of
only her most preferred one.

Two central desiderata for party-approval elections are pro-
portional representation and strategyproofness. The former
requires that the chosen committee should proportionally
reflect the voters’ preferences. The latter postulates that no
voter can benefit by misreporting her preferences. While Brill
et al. (2020) have shown that even core-stable committees,
which satisfy one of the highest degrees of proportionality,
always exist in party-approval elections, strategyproofness is
not yet well-understood for this setting. We thus analyze the
trade-off between strategyproofness and proportional repres-
entation for party-approval elections in this paper.

Our research question also draws motivation from related
models (see Figure 1 for details). Firstly, party-approval
elections can be seen as a special case of approval-based
committee (ABC) elections, where voters approve individual
candidates instead of parties and the outcome is a subset
of the candidates instead of a multiset. For ABC elections,
proportionality and strategyproofness have received signific-
ant attention (see, e.g., the survey by Lackner and Skowron
(2022)). Unfortunately, these axioms are jointly incompat-
ible for ABC voting rules (Peters 2018) and our study can
thus be seen as an attempt to circumvent this impossibility.
Even more, there are hints that these axioms could be com-
patible for party-approval elections: this setting lies logically
between ABC elections on the one side, and either apportion-
ment (where voters can only approve a single party instead of
multiple ones (Balinski and Young 2001; Pukelsheim 2014))
or fair mixing (where the outcome is a probability distribution
over the parties instead of a multiset (Bogomolnaia, Moulin,
and Stong 2005; Aziz, Bogomolnaia, and Moulin 2019)) on
the other side. Since strategyproofness and proportionality
are compatible in the latter two models, it seems reasonable
to conjecture positive results for party-approval elections.

Our contribution. Unfortunately, it turns out that strategy-
proofness conflicts even with minimal notions of propor-
tional representation in party-approval elections. To prove
this, we introduce the notions of weak representation and
weak proportional representation, which require that a party
is assigned at least 1 (resp. ℓ) out of k available seats if it
is uniquely approved by at least an 1

k (resp. ℓ
k ) fraction of
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the voters. Then, we show in Section 3 the following im-
possibility theorems (k, m, and n denote the numbers of
seats, parties, and voters, respectively):
• No anonymous party-approval rule satisfies weak repres-

entation and strategyproofness if k ≥ 3, m ≥ k + 1, and
2k divides n.

• No anonymous party-approval rule satisfies weak propor-
tional representation and strategyproofness and if k ≥ 3,
m ≥ 4, and 2k divides n.

The first result shows that the incompatibility of strategy-
proofness and proportional representation first observed for
ABC elections also prevails for party-approval elections.
Even more, our result implies such an impossibility for ABC
elections as our setting is more general. The main drawback
of the first result is that it requires more parties than seats
in the committee. While this assumption is true for many
applications inspired from ABC voting, this is not the case in
our initial example of parliamentary elections. However, our
second impossibility shows that strategyproofness is still in
conflict with proportional representation if k > m.

We prove both of these results with a computer-aided ap-
proach based on SAT solving, which has recently led to a
number of sweeping impossibility results (e.g., Brandl et al.
2021; Brandt, Saile, and Stricker 2022). In particular, our
computer proof relies on 635 profiles, which makes it the
largest computer proof in social choice theory (the previous
record is due to Brandl et al. (2021) and uses 386 profiles).

Finally, in Section 4 we investigate a weakening of
strategyproofness that only requires that voters who do not
approve any party in the elected committee cannot manipu-
late. Perhaps surprisingly, many commonly studied voting
rules fail this condition. We can thus characterize Chamberlin–
Courant approval voting as the only Thiele rule satisfying this
strategyproofness notion and weak representation proving an
attractive escape route to our impossibility results.

Related work. Party-approval elections have been intro-
duced by Brill et al. (2020) who showed that strong propor-
tionality axioms can be satisfied in this setting, but we are
not aware of any follow-up paper. We thus draw much inspir-
ation from ABC elections for which there is a large amount
of work on proportional representation (e.g., Aziz et al. 2017;
Sánchez-Fernández et al. 2017; Peters and Skowron 2020;
Brill et al. 2022) and strategyproofness (e.g., Aziz et al. 2015;
Peters 2018; Lackner and Skowron 2018) . For instance, Aziz
et al. (2017) analyze ABC voting rules with respect to more
restrictive variants of weak representation. The main message
from work on proportional representation is that there are few
ABC voting rules that guarantee strong representation axioms.
The results on strategyproofness are mostly negative: after
early results (Aziz et al. 2015; Lackner and Skowron 2018)
proving that no known rule satisfies both strategyproofness
and proportional representation, Peters (2018) showed that
these axioms are inherently incompatible for ABC voting
rules (see also Duddy 2014; Kluiving et al. 2020). Our im-
possibility theorems are closely connected to this result but
logically independent: we need stronger strategyproofness
and representation axioms and additionally anonymity, but
use a more flexible setting and no efficiency condition.

ABC
Models ordered by domain restrictions:

party-approval apportionment

fair mixing
Models ordered by output type:

party-approval ABC

Figure 1: Relation of party-approval elections to other voting
settings. An arrow from X to Y means that model X is
more general than model Y . In the settings in the top row,
elections return sets of alternatives but the models impose
different restrictions on the input profiles: for ABC voting
every input profile is allowed, for party-approval profiles each
voter can for each party (viewed as a set of alternatives) either
approve all of its members or none, and for apportionment
each voter must approve all members of exactly one party. In
the bottom row, the models are ordered with respect to their
output type: all of fair mixing, party-approval elections, and
ABC elections can take arbitrary approval profiles as input,
but fair mixing rules return a probability distribution over
the alternatives, party-approval rules choose a multiset of the
alternatives, and ABC rules choose a subset of the alternatives.
This shows that party-approval elections can be seen both as
generalization and special case of ABC elections.

2 Preliminaries
Let N = {1, . . . , n} denote a set of n voters and P =
{a, b, c, . . . } a set of m parties. Each voter i ∈ N is as-
sumed to have a dichotomous preference relation over the
parties, i.e., she partitions the parties into approved and dis-
approved ones. The approval ballot Ai ⊆ P of a voter i is
the non-empty set of her approved parties. With slight abuse
of notation, we omit commas and brackets when writing ap-
proval ballots. Let A denote the set of all possible approval
ballots. An approval profile A ∈ An is the collection of the
approval ballots of all voters. Given an approval profile A, the
goal in party-approval elections is to assign a fixed number
of seats to the parties. We call such an outcome a committee,
which is formally a multiset of parties W : P → N, and
W (x) denotes the number of seats assigned to party x. We
extend this notation also to sets of parties X ⊆ P by defining
W (X) =

∑
x∈X W (x). Furthermore, we indicate specific

committees by square brackets, e.g., [a, a, b] is the committee
containing party a twice and party b once. Let Wk denote the
set of all committees of size k.

A party-approval rule is a function f which takes an ap-
proval profile A ∈ An and a target committee size k as input
and returns a winning committee W ∈ Wk. In particular,
party-approval rules are resolute, i.e., there is always a single
winning committee. We define f(A, k, x) as the number of
seats assigned to party x by f for the profile A when choos-
ing a committee of size k. We extend this notion also to sets
by defining f(A, k,X) =

∑
x∈X f(A, k, x).

Two well-known properties of voting rules are anonymity
and Pareto optimality. Intuitively, anonymity requires that
all voters are treated equally, i.e., a party-approval rule f is
anonymous if f(A, k) = f(A′, k) for all committee sizes
k ∈ N and all approval profiles A,A′ ∈ An such that there



is a permutation π : N → N with A′
i = Aπ(i).

Next, we say that a party x Pareto dominates another party
y in an approval profile A if y ∈ Ai implies x ∈ Ai for
all i ∈ N and there is a voter i ∈ N with x ∈ Ai and
y ̸∈ Ai. Then, a party-approval rule f is Pareto optimal if
f(A, k, y) = 0 for all approval profiles A, committee sizes
k, and parties y that are Pareto dominated in A.

2.1 Proportional Representation
One of the central desiderata in committee elections is to
choose a committee that proportionally represents the voters’
preferences. The notion of justified representation, introduced
by Aziz et al. (2017), formalizes this idea by requiring that in
a committee of size k, any group of voters G ⊆ N with |G| ≥
n
k that agrees on a party should be represented. In this paper,
we we will consider a weakening of this property which
we call weak representation. Intuitively, weak representation
weakens justified representation by only considering cases
where all voters in G uniquely approve a single party x.
Definition 1 (Weak Representation). A party-approval rule
f satisfies weak representation if f(A, k, x) ≥ 1 for every
profile A, committee size k, party x, and group of voters G
such that |G| ≥ n

k and Ai = {x} for all i ∈ G.
Weak representation can be easily satisfied if we have more

seats in the committee than parties by simply assigning at
least one seat to every party. This, however, contradicts the
idea of proportional representation since a large part of the
chosen committee is independent of the voters’ preferences.
To address this issue, we consider weak proportional repres-
entation, which is a weakening of proportional justified rep-
resentation (Sánchez-Fernández et al. 2017). Clearly, weak
proportional representation implies weak representation.
Definition 2 (Weak Proportional Representation). A party-
approval rule f satisfies weak proportional representation if
f(A, k, x) ≥ ℓ for every profile A, committee size k, party
x, and group of voters G such that |G| ≥ ℓnk and Ai = {x}
for all i ∈ G.

2.2 Strategyproofness
Intuitively, strategyproofness requires that a voter cannot
benefit by lying about her true preferences. Consequently,
if a party-approval rule fails strategyproofness, we cannot
expect the voters to submit their true preferences, which may
lead to socially undesirable outcomes.
Definition 3 (Strategyproofness). A party-approval rule f is
strategyproof if f(A, k,Ai) ≥ f(A′, k, Ai) for all approval
profiles A,A′, committee sizes k, and voters i ∈ N such that
Aj = A′

j for all j ∈ N \ {i}.
The motivation for this strategyproofness notion stems

from the assumption that voters are indifferent between their
approved parties. Then, only the number of seats assigned
to these parties matters to the voters. this strategyproofness
notion is commonly used in ABC voting (e.g., Lackner and
Skowron 2018; Botan 2021), often under the name cardinality
strategyproofness, and equivalent notions are used for fair
mixing (e.g., Bogomolnaia, Moulin, and Stong 2005; Aziz,
Bogomolnaia, and Moulin 2019).

Since we will show that strategyproofness is in conflict
with minimal representation axioms, we also consider the
following weakening which requires that only voters without
representation in the committee cannot manipulate.
Definition 4 (Strategyproofness for Unrepresented Voters).
A party-approval rule f is strategyproof for unrepresented
voters if f(A, k,Ai) ≥ f(A′, k, Ai) for all approval profiles
A,A′, committee sizes k, and voters i ∈ N such that Aj =
A′

j for all j ∈ N \ {i} and f(A, k,Ai) = 0.
We believe this to be a sensible relaxation of strategy-

proofness because voters without any representation in the
committee are more prone to manipulate. Firstly, voters who
do have some representation may be more cautious to ma-
nipulate because they fear losing their representation when
misstating their preferences. Secondly, the benefit of having
additional representation in the committee is less straightfor-
ward than that of being represented at all.

2.3 Party-Approval Rules
Finally, we introduce three classes of party-approval rules.
Note that even though we define party-approval rules for a
fixed numbers of voters n and parties m, all subsequent rules
are independent of such details.

Thiele rules. Thiele rules are arguably the most well-
studied class of rules in the ABC setting. Introduced by Thiele
(1895), a w-Thiele rule f is defined by a non-increasing and
non-negative vector w = (w1, w2, . . . ) and chooses for each
committee size k the committee W ∈ Wk that maximizes
the score sw(W,A) =

∑
i∈N

∑W (Ai)
j=1 wj . Throughout the

paper, we assume without loss of generality that w1 = 1.
There are many well-known Thiele rules, such as:
• approval voting (AV): w = (1, 1, 1, . . .),
• proportional approval voting (PAV): w = (1, 1

2 ,
1
3 , . . .),

• Chamberlin–Courant approval voting (CCAV):
w = (1, 0, 0, . . .).

Sequential Thiele rules. Sequential Thiele rules are
closely related to Thiele rules: instead of optimizing the score
of the committee, these rules proceed in rounds and greedily
choose in each iteration the party that increases the score of
the committee the most. An important example of sequen-
tial Thiele rules is sequential proportional approval voting
(seqPAV) (defined by w = (1, 1

2 ,
1
3 , . . . )) .

Divisor methods based on majoritarian portioning. Brill
et al. (2020) introduced the concept of composite party-
approval rules, which combine a portioning method with
an apportionment method. In this paper, we focus on an im-
portant subclass of such composite rules, namely divisor
methods based on majoritarian portioning, because many of
these rules satisfy strong representation axioms (Brill et al.
2020). These methods first apply majoritarian portioning to
compute a weight wx for each party x. Majoritarian portion-
ing works in rounds and in each round, we determine the
party x that is approved by the most voters. Then, we set its
weight wx to the number of voters who approve x and remove
all corresponding voters from the profile. This process is re-
peated until no voters are left. Finally, for all parties x that



have no weight after all voters were removed, we set wx = 0.
After the portioning, we use a divisor method to allocate the
seats to the parties based on the weights wx. Divisor meth-
ods are defined by a monotone function g : N0 → R>0 and
proceed in rounds: in the i-th round, the next seat is assigned
to the party x that maximizes wx

g(txi−1)
, where txi−1 is the num-

ber of seats allocated to x in the previous i− 1 rounds. An
example of a divisor method is Jefferson’s method (where
g(x) = x+ 1).

Note that all rules defined above are irresolute, i.e., they
may declare multiple committees as tied winners of an elec-
tion. Since we investigate resolute voting rules in this paper,
we assume that ties are broken lexicographically: for every
k ∈ N, there is a linear tie-breaking order ≻k on the com-
mittees W ∈ Wk and, if a party-approval rule f declares
multiple committees as tied winners, we choose the best
one according to ≻k. Similarly, if any rule is tied between
multiple parties in a step, the tie is broken according to ≻1.
The assumption of lexicographic tie-breaking is standard in
the literature on strategyproofness (e.g., Faliszewski, Hem-
aspaandra, and Hemaspaandra 2010; Aziz et al. 2015).

3 Impossibility Results
In this section, we discuss the incompatibility of strategy-
proofness and proportional representation for party-approval
rules by proving two sweeping impossibility theorems.
Theorem 1. No party-approval rule simultaneously satisfies
anonymity, weak representation, and strategyproofness if k ≥
3, m ≥ k + 1, and 2k divides n.

Note that Theorem 1 does not hold for all combinations
of k, m, and n: we require that 2k divides n and that m ≥
k+ 1. The first assumption is mainly a technical one as we—
just like other authors (Peters 2018; Kluiving et al. 2020)—
could not find an argument to generalize the impossibility to
arbitrary values of n. However, many party-approval rules
(e.g., all Thiele rules and sequential Thiele rules) do not
change their outcome when adding voters who approve all
parties. For such rules, we can extend Theorem 1 to all n ≥
2k by simply adding voters who approve all parties.

On the other side, the assumption that m ≥ k + 1 is
crucial for Theorem 1: if m ≤ k, every rule that constantly
returns a fixed committee W with W (x) ≥ 1 for all x ∈ P
satisfies the considered axioms. Nevertheless, we can restore
the impossibility by strengthening weak representation to
weak proportional representation.
Theorem 2. No party-approval rule simultaneously satisfies
anonymity, weak proportional representation, and strategy-
proofness if k ≥ 3, m ≥ 4, and 2k divides n.

We believe that also the proofs of our results are of interest:
for showing Theorems 1 and 2, we rely on a computer-aided
approach called SAT solving. In the realm of social choice,
this technique was pioneered by Tang and Lin (2009) and
has by now been used to prove a wide variety of results (e.g.,
Peters 2018; Endriss 2020; Brandl et al. 2021). We refer to
Geist and Peters (2017) for an overview of this technique.

To apply SAT solving to our problems, we proceed in three
steps: first, we encode the problem of finding an anonymous

party-approval rule that satisfies strategyproofness and weak
representation for committees of size k = 3, m = 4 parties,
and n = 6 voters as logical formula. By letting a computer
program, a so-called SAT solver, show the formula unsatis-
fiable, we prove the base case of Theorems 1 and 2 for the
given parameters. Next, we generalize the impossibility to
larger values of k, m, and n based on inductive arguments.
Finally, we verify the computer proof. The following subsec-
tions discuss each of these steps in detail.
Remark 1. AV satisfies all axioms of Theorem 1 except
weak representation, and CCAV satisfies all axioms except
strategyproofness. These examples show that these axioms
are required for the impossibility. On the other hand, we could
not show that anonymity is necessary for the impossibility
and we conjecture that this axiom can be omitted.
Remark 2. For electorates where the committee size k is a
multiple of the number of voters n, there are voting rules
that satisfy weak proportional representation, anonymity, and
strategyproofness. We can simply let every voter choose k

n
parties of the committee independently of the ballots of other
voters. This is an important difference to the impossibility by
Peters (2018), which also holds in the case that n = k.
Remark 3. If k = 2, a variant of AV satisfies all axioms of
Theorems 1 and 2. For introducing this rule f , let ≻ denote
a linear order over the parties and mAV (A) the maximal
approval score of a party in the profile A. As first step, f
removes clones according to ≻, i.e., for all parties x, y such
that x ∈ Ai if and only if y ∈ Ai for all i ∈ N and x ≻ y,
we remove y from A. This results in a reduced profile A′.
Now, if mAV (A′) ̸= n

2 or there is only a single party with
approval score of n

2 , f assigns both seats to the approval
winner. Else, f assigns the seats to the best and second best
party with respect to ≻ that have an approval score of n

2 .

3.1 Computer-Aided Theorem Proving
The core observation for computer-aided theorem proving
is that for a fixed committee size k and fixed numbers of
parties m and voters n, there is a very large but finite number
of party-approval rules. Hence, we could, at least theoretic-
ally, enumerate all rules and check whether they satisfy our
requirements. However, the search space grows extremely
fast (for k = 3, m = 4, and n = 6, there are roughly
6.2 × 1014819544 party-approval rules) and we thus use a
different idea: we construct a logical formula which is sat-
isfiable if and only if there is an anonymous party-approval
rule that satisfies weak representation and strategyproofness
for the given parameters of k, m, and n. By showing that
the formula is unsatisfiable, we prove Theorems 1 and 2 for
fixed parameters. Moreover, we can use computer programs,
so-called SAT solvers, to show this.

Subsequently, we specify the variables and explain how
we construct the formula. The idea is to introduce a variable
xA,W for each profile A ∈ An and committee W ∈ Wk,
with the interpretation that xA,W is true if and only if
f(A, k) = W . However, for this formulation, the mere num-
ber of profiles becomes prohibitive when k = 3, m = 4, and
n = 6 and we thus apply several optimizations. First, we use
anonymity to drastically reduce the number of considered



profiles. This axiom states that the order of the voters does
not matter for the outcomes and we thus view approval pro-
files from now on as multisets of approval ballots instead of
ordered tuples. Next, we exclude certain approval profiles
from the domain by imposing three conditions: (i) no voter is
allowed to approve all parties, (ii) no party can be approved
by more than four voters, and (iii) the total number of ap-
provals given by all voters does not exceed eleven. We call
the domain of all anonymous profiles that satisfy these condi-
tions An

SAT . Clearly, if there is no anonymous party-approval
rule satisfying strategyproofness and weak representation on
An

SAT , there is also no such function on the full domain An.
For our final optimization, we note that weak representation
requires that a committee W cannot be returned for a pro-
file A if there is a party x with W (x) = 0 that is uniquely
approved by n

k or more voters. Hence, all corresponding vari-
ables xA,W must be set to false and we can equivalently omit
them. To formalize this, we define WR(A, k) as the set of
committees of size k that satisfy weak representation for the
profile A. Then, we add for every profile A ∈ An

SAT and
every committee W ∈ WR(A, k) a variable xA,W .

Next, we turn to the constraints of our formula. First, we
specify that the formula encodes a function f on An

SAT , i.e.,
for every profile A ∈ An

SAT , there is exactly one committee
W ∈ WR(A, k) such that xA,W = 1. For this, we add two
types of clauses for every profile A: the first one specifies
that at least one committee is chosen for A and the second
one that no more than one committee can be chosen.∨

W∈WR(A,k)

xA,W ∀A ∈ An
SAT∧

V,W∈WR(A,k):V ̸=W

¬xA,V ∨ ¬xA,W ∀A ∈ An
SAT

Since weak representation and anonymity are encoded in
the choice of variables, we only need to add the subsequent
constraints for strategyproofness. Here, AAi→Aj is the profile
derived from A by changing a ballot Ai to Aj .

¬xA,V ∨ ¬xA′,W ∀A,A′ ∈ An
SAT , V ∈ WR(A, k),

W ∈ WR(A′, k) : ∃Ai, Aj ∈ A :

A′ = AAi→Aj ∧W (Ai) > V (Ai)

For committees of size k = 3, m = 4 parties, and n =
6 voters, this construction results in a formula containing
21, 418, 593 constraints and a state-of-the-art SAT solver,
such as Glucose (Audemard and Simon 2018), needs less
than a minute to prove its unsatisfiability. Our code also
provides options which further reduce the size of the formula
to speed up the SAT solving (see the supplementary material
for details). Consequently, we derive the following result.
Proposition 1. There is no party-approval rule that satisfies
anonymity, weak representation, and strategyproofness if k =
3, m = 4, and n = 6.

3.2 Inductive Arguments
Since weak proportional representation implies weak repres-
entation, Proposition 1 proves Theorems 1 and 2 for fixed
parameters k, m, and n. To complete the proofs of these

theorems, we use inductive arguments to generalize the im-
possibilities to larger parameters and subsequently present
them for Theorem 1. For Theorem 2, only the third claim
needs to be adapted (see supplementary material).

Lemma 1. Assume there is no anonymous party-approval
rule f that satisfies weak representation and strategy-
proofness for committees of size k, m parties, and n voters.
The following claims hold:

(1) For every ℓ ∈ N, there is no such rule for committees of
size k, m parties, and ℓ · n voters.

(2) There is no such rule for committees of size k, m + 1
parties, and n voters.

(3) If k divides n, there is no such rule for committees of size
k + 1, m+ 1 parties, and n(k+1)

k voters.

Proof sketch. For all three claims, we prove the contrapos-
itive: if there is an anonymous party-approval rule f that
satisfies strategyproofness and weak representation for the in-
creased parameters, there is also such a rule g for committees
of size k, m parties, and n voters. Subsequently, we discuss
how to define the rule g for the three different cases:

(1) Assume there is ℓ ∈ N such that f is defined for commit-
tees of size k, m parties, and ℓ · n voters. Given a profile
A for m parties and n voters, g copies every voter ℓ times
to derive the profile A′. Then, g(A, k) = f(A′, k).

(2) Assume f is defined for committees of size k, m + 1
parties, and n voters. Given a profile A for m parties and
n voters, g first constructs the profile Axy by cloning a
party x ∈ P into a new party y /∈ P . More formally,
Axy is defined by Axy

i if x ̸∈ Ai and Axy
i = Ai ∪ {y}

otherwise. Finally, g(A, k, z) = f(Axy, k, z) for all z ̸=
x and g(A, k, x) = f(Axy, k, xy).

(3) Assume k divides n and f is defined for committees
of size k + 1, m+ 1 parties, and n(k+1)

k voters. In this
case, g maps a profile A for m parties and n voters to
the profile Āxy defined as follows: first g derives Axy as
explained in the previous case and then it adds n

k voters
with ballot xy. Finally, g(A, k, z) = f(Āxy, k+1, z) for
all z ̸= x and g(A, k, x) = f(Āxy, k + 1, xy)− 1.

For all cases, it remains to show that g is a well-defined
party-approval rule that satisfies anonymity, weak represent-
ation, and strategyproofness. Due to space restrictions, we
explain this only for case (1) and defer the remaining cases
to the supplementary material. In this case, we first observe
that g clearly inherits anonymity from f . Also, g satisfies
weak representation: if n

k or more voters uniquely approve
a party x in a profile A, at least ℓ·n

k voters uniquely approve
x in A′. Thus, g(A, x) = f(A′, x) ≥ 1 because f satisfies
weak representation. Finally, we prove that g is strategyproof.
Note for this that f(Ā, k, Āi) ≥ f(Ā′, k, Āi) for all profiles
Ā, Ā′ that only differ in the ballots of voters who report Āi

in Ā. This is true because we can transform Ā into Ā′ by
letting voters with ballot Āi manipulate one after another,
and strategyproofness shows for every step that the number
of seats assigned to parties in Āi cannot increase. Hence, g is



strategyproof because if A and A′ only differ in a single bal-
lot Ai, the enlarged profiles Ā and Ā′ differ in ℓ voters with
ballot Ai. Thus, g meets all requirements in case (1).

3.3 Verification

Since Proposition 1 is proved by automated SAT solving,
there is no complete human-readable proof for verifying
Theorems 1 and 2. The standard approach for adressing this
issue is to analyze minimal unsatisfiable subsets (MUSes) of
the original formula, i.e., subsets of the formula which are
unsatisfiable but removing a single constraint makes them
satisfiable. Such MUSes are typically much smaller than the
original formula, which makes it possible to translate them
into a human-readable proof. Unfortunately, this technique
does not work for Proposition 1 because all MUSes that we
found (by using the programs haifamuc and muser2 (Belov
and Marques-Silva 2012; Nadel, Ryvchin, and Strichman
2014)) are huge: even after applying several optimizations,
the smallest MUS still contained over 20,000 constraints and
635 profiles. Because of the size of the MUSes, any human-
readable proof would be unreasonably long and we thus
verify our results by other means. Firstly, we have published
the code used for proving Proposition 1 (Delemazure et al.
2022b), thus enabling other researchers to reproduce the
impossibility.

Secondly, we provide a human-readable proof for a weak-
ening of Proposition 1 that additionally uses Pareto optim-
ality. This proof is derived by applying the computer-aided
approach explained in Section 3.1 and by analyzing MUSes
of the corresponding formula. Hence, it showcases the cor-
rectness of our code. Unfortunately, the proof of this weaker
claim still takes 11 pages (even though the used MUSes only
consist of roughly 500 constraints), and we thus have to defer
it to the supplementary material.

Thirdly, we have—analogous to Brandl et al. (2018) and
Brandt, Saile, and Stricker (2022)—verified the correct-
ness of our results with the interactive theorem prover Isa-
belle/HOL (Nipkow, Paulson, and Wenzel 2002). Such in-
teractive theorem provers support much more expressive lo-
gics and we can hence formalize the entire theorems with
all the mathematical notions expressed in a similar way as
in Section 2. For instance, Figure 2 displays our Isabelle
formalization of weak representation. Our Isabelle/HOL im-
plementation thus directly derives Proposition 1 as well as
Theorems 1 and 2 from the definitions of the axioms. This
releases us from the need to check any intermediate steps
encoded in Isabelle because Isabelle checks the correctness
of these steps for us. Moreover, Isabelle/HOL is highly trust-
worthy as all proofs have to pass through an inference kernel,
which only supports the most basic logical inference steps.
Thus, to trust the correctness of our result, one only needs
to trust the faithfulness of our Isabelle implementation to
the definitions in Section 2. Such formal proofs are widely
considered to be the “gold standard” of increasing the trust-
worthiness of a mathematical result (e.g., Hales et al. 2017).
Our formal proof development is available in the Archive of
Formal Proofs (Delemazure et al. 2022a).

weak_rep_for_anon_papp_rules n P k f =
(anon_PAPP_rule n P k f ∧
(∀A x. anon_papp_profile n P A ∧
k * count A {x} ≥ n → count f(A) x ≥ 1))

Figure 2: The Isabelle/HOL code for weak representation.
Given the number of voters n, the set of parties P , a target
committee size k, and a function f , the code first verifies
that f is an anonymous party-approval rule for the given
parameters and then requires for every profile A (that is valid
for n and P) and every party x that x has at least one seat in
f(A) if at least n

k voters uniquely approve x.

4 Strategyproofness for Unrepresented Voters
Since cardinality strategyproofness does not allow for attract-
ive party-approval rules, we consider strategyproofness for
unrepresented voters (Definition 4) in this section. Instead
of prohibiting all voters from manipulating, this property re-
quires that only voters who do not approve any party in the
elected committee cannot manipulate.

As a first result, we prove that CCAV satisfies this axiom
and can even be characterized based on strategyproofness
for unrepresented voters and weak representation within the
class of Thiele rules. Hence, CCAV offers an attractive escape
route to Theorem 1

Theorem 3. CCAV is the only Thiele rule that satisfies
weak representation and strategyproofness for unrepresented
voters for all committee sizes k, numbers of parties m, and
numbers of voters n.

Proof. For proving this theorem, we show that CCAV satis-
fies the given axioms for all k, m, and n (Claim 1), and that
no other Thiele rule does so (Claim 2).

Claim 1: We start by proving that CCAV satisfies weak
representation and note for this that Aziz et al. (2017) have
shown that CCAV satisfies justified representation in the
ABC setting. It thus satisfies weak representation for party-
approval elections as this axiom is weaker than justified rep-
resentation and party-approval elections can be seen as spe-
cial case of ABC elections.

Next, we prove by contradiction that CCAV satisfies
strategyproofness for unrepresented voters. Hence, sup-
pose that there are a voter i ∈ N , profiles A1 and A2,
and a committee size k such that CCAV(A2, k, A1

i ) >
CCAV(A1, k, A1

i ) = 0 and A1
j = A2

j for all j ∈ N \ {i}.
To simplify notation, let W 1 = CCAV (A1, k) and W 2 =
CCAV (A2, k), and define s(W,A) = |{i ∈ N : Ai ∩W ̸=
∅}| as the CCAV-score of a committee W in a profile A.
Now, the definition of CCAV requires that s(W 1, A1) ≥
s(W 2, A1) and s(W 2, A2) ≥ s(W 1, A2). Moreover, since
W 1(A1

i ) = 0 and A1
j = A2

j for all voters j ∈ N \ {i}, it fol-
lows that s(W 1, A2) ≥ s(W 1, A1). Finally, we assumed that
W 2(A1

i ) > 0, which implies that s(W 2, A1) ≥ s(W 2, A2)
since A1

j = A2
j for all j ∈ N \ {i}. By combining

these inequalities, we obtain s(W 2, A2) ≥ s(W 1, A2) ≥
s(W 1, A1) ≥ s(W 2, A1) ≥ s(W 2, A2), which implies that
all scores are equal. However, lexicographic tie-breaking



implies then that we choose either W 1 or W 2 for both A1

and A2, which contradicts that W 1 = CCAV (A1, k) and
W 2 = CCAV (A2, k).

Claim 2: Next, we show that no other Thiele rule but
CCAV satisfies weak representation and strategyproofness
for unrepresented voters for all k, m, and n. First, observe
that AV clearly fails weak representation. Thus, let f be a
w-Thiele rule other than AV and CCAV. We will show that
f fails strategyproofness for unrepresented voters. Note for
this that there is an index j with w1 > wj since f is not
AV. We denote with j0 the smallest such index, which means
that ∀j < j0, wj = w1 = 1. If wj0 = 0, then j0 ≥ 3
because f is not CCAV. Let P = {a1, . . . , aj0 , b1, . . . , bj0}
be a set of m = 2j0 parties. We construct the profile A with
n = 2 ·

(
2j0
j0

)
− 2 voters and set the target committee size

to k = j0. The approval ballots of the voters are defined as
follows: voter 1 reports {a1, . . . , aj0}, voter 2 reports {b1}
and for every set X ⊆ P with |X| = j0, X ̸= {a1, . . . , aj0},
and X ̸= {b1, . . . , bj0}, there are two voters who report X
as their ballot.

First, note that every party appears in exactly nc =
2
(
2j0−1
j0−1

)
− 2 ballots of the voters Nc = N \ {1, 2}. Con-

sequently, every committee W of size j0 gets a total of∑
x∈P W (x)|{i ∈ Nc : x ∈ Ai}| = j0nc approvals from

these voters. We use this fact to compute the scores of a
committee W derived from these voters. Observe that the
committees WA = [a1, . . . , aj0 ] and WB = [b1, . . . , bj0 ] re-
ceive a score of j0nc from the voters in Nc because none of
them approves all parties in the committee and w1 = · · · =
wj0−1 = 1. On the other hand, for every other committee
W , there are at least two voters who approve all parties in
W . Hence, these voters assign a score of j0 − 1 + wj0 to the
committee. Since the total sum of approvals is constant we
derive that the remaining voters in Nc assign at most a score
of j0(nc − 2) to W . Hence, the score of W among voters in
Nc is upper bounded by j0nc−2(1−wj0). Finally, if we add
the first two voters, WA obtains a score of j0nc+j0−1+wj0 ,
WB of j0nc+1 < j0nc+j0−1+wj0 (because either j0 ≥ 3
or j0 = 2 and wj0 > 0), and the scores of other committees
is at most j0nc − 2(1 − wj0) + j0 < j0nc + j0 − 1 + wj0
(since wj0 < 1). Hence, f(A, j0) = WA.

Now, consider the profile A′ derived from A by changing
the approval ballot of voter 2 to {b1, . . . , bj0}. Then, the score
of the committee WA does not change and the score of WB is
now equal to the score of WA. Moreover, the same argument
as before shows that the score of all other committees is
still strictly lower. Hence, committees WA and WB are now
tied for the win. If the tie-breaking favors WB over WA,
we thus have f(A′, j0) = WB and voter 2 can manipulate
even though f(A, j0, A2) = 0. Otherwise, we can exchange
the roles of {a1, . . . , aj0} and {b1, . . . , bj0}. Hence, f fails
strategyproofness for unrepresented voters.

A natural follow-up question to Theorem 3 is whether
party-approval rules other than Thiele rules satisfy strategy-
proofness for unrepresented voters. We partially answer this
question by showing that all sequential Thiele rules (but AV)
and all divisor methods based on majoritarian portioning

(but AV) fail this axiom. Hence, even this weak notion of
strategyproofness is a challenging axiom for party-approval
elections. We defer the proof of this theorem completely to
the supplementary material; it works by constructing counter-
examples similar to Claim 2 in Theorem 3.

Theorem 4. All sequential Thiele rules except AV and all
divisor methods based on majoritarian portioning except AV
fail strategyproofness for unrepresented voters for some com-
mittee size k, number of parties m, and number of voters n.

Remark 4. CCAV becomes highly indecisive if k ≥ m since
every voter will approve at least one party in the chosen com-
mittee. Thus, many seats of the committee will be assigned
by the tie-breaking. Hence, CCAV is no attractive rule if
k > m. Similar arguments show that all w-Thiele rules that
have an index j with wj = 0 are strategyproof for unrep-
resented voters if k ≥ (j − 1)m: in this case, these rules
always choose a committee which guarantees every voter
j−1 representatives and strategyproofness for unrepresented
voters is trivially satisfied. Consequently, Theorem 3 needs
to quantify over the committee size, number of parties, and
number of voters.

Remark 5. All results of this section carry over into the ABC
setting. For the negative results this follows from the fact that
party-approval elections can be seen as a special case of ABC
elections (see Figure 1). The first claim of Theorem 3 holds
since our proof directly translates into the ABC setting.

5 Conclusion
We study the compatibility of strategyproofness and propor-
tional representation for party-approval multiwinner elec-
tions, where a multiset of the parties is chosen based on the
voters’ approval ballots. First, we prove based on a computer-
aided approach that strategyproofness and minimal notions of
proportional representation are incompatible for anonymous
party-approval rules. Thus, the incompatibility of strategy-
proofness and proportional representation first observed by
Peters (2018) for approval-based committee voting rules
(which return sets instead of multisets) also prevails in our
more flexible setting. As a second contribution, we invest-
igate a weakening of strategyproofness which requires that
only voters who do not approve any member of the com-
mittee cannot manipulate. Perhaps surprisingly, almost all
commonly studied party-approval rules fail even this very
weak strategyproofness notion. Conversely, we can character-
ize Chamberlin–Courant approval voting as the unique Thiele
rule that satisfies strategyproofness for unrepresented voters
and a weak representation axiom, thus offering an attractive
escape route to our previous impossibility theorem.

Our work offers several directions for future extensions.
In particular, we feel that strategyproofness for unrepresen-
ted voters deserves more attention; for example, we have
to leave it open whether weak proportional representation
is compatible with this axiom. Furthermore, one can see
strategyproofness and strategyproofness for unrepresented
voters as two extreme cases of a parameterization of strategy-
proofness and it thus might be interesting to consider quanti-
fied strategyproofness notions for party-approval elections.
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A Appendix
A.1 Optimizations for SAT Solving
As mentioned in Section 3.1, our code offers options
(--cleverWR and --SymmetryBreaking) that reduce
the size of the constructed formula and thus speed up the
SAT solving. Subsequently, we explain these options and
their correctness.

We start by discussing the option --cleverWR. The idea
of this option is that the interplay of weak representation
and strategyproofness can be used to restrict the set of feas-
ible committees for some profiles even further. In particular,
--cleverWR encodes the following lemma.

Lemma 2. Let f denote an anonymous party-approval rule
that satisfies strategyproofness and weak representation and
let k denote the target committee size. Moreover, we consider
a profile A and define X = {x ∈ P : ∃G ⊆ N : |G| ≥ n

k ∧
∀i ∈ G : Ai = x} as the set of parties that are each uniquely
approved by at least n

k voters. If there is a set of voters G =
{i1, . . . iℓ} ⊆ N such that |G| ≥ n

k , Ai1 ⊆ Ai2 ⊆ · · · ⊆ Aiℓ ,
and Ai1 ̸⊆ X , then f(A, k,Aiℓ) ≥ |Aiℓ ∩X|+ 1.

Proof. Let f denote an anonymous party-approval rule that
satisfies strategyproofness and weak representation, and con-
sider a profile A and a set of voters G = {i1, . . . , iℓ} as
defined in the lemma. Moreover, let X denote the set of
parties that are uniquely approved by at least n

k voters in
A. Weak representation requires that f(A, x) ≥ 1 for all
parties x ∈ X . For the sake of contradiction, we suppose that
f(A,Aiℓ) ≤ |Aiℓ ∩ X|. Since every party in X is chosen
at least once, it follows that f(A,Aiℓ) = |Aiℓ ∩ X|. Fur-
thermore, by assumption, there is a party y ∈ Ai1 ⊆ Ai2 ⊆
· · · ⊆ Aiℓ with y ̸∈ X . In particular, no voter in G approves
a party x ∈ X uniquely, i.e., the parties in Aiℓ ∩X will be
assigned at least one seat independent of the ballots of the
voters in G.

Next, we consider the sequence of profiles Aℓ+1, · · · , A1

such that Aℓ+1 = A and Aj is derived from Aj+1 by letting
voter ij ∈ G change her ballot to y. Now consider a single
step from Aj+1 to Aj and suppose that f(Aj+1, Aj+1

ij
) ≤

|Aj+1
ij

∩X|. By our previous observation, every party x ∈
Aij ∩ X is chosen at least once and the above inequality
is tight. Moreover, strategyproofness requires that |Aj+1

ij
∩

X| = f(Aj+1, Aj+1
ij

) ≥ f(Aj , Aj+1
ij

). Since each party

x ∈ Aj+1
ij

∩X must also be chosen at least once for Aj , it
follows that each of these parties is assigned exactly one seat
in f(Aj). Consequently, no party in Aj+1

ij
\X can be elected

for Aj because of strategyproofness. Since Aj
j−1 = Aj−1 ⊆

Aj , we thus derive that f(Aj , Aj
j−1) ≤ |Aj

j−1 ∩X|. Finally,
we can now repeat the same argument for Aj−1. Since we
assume that f(A,Aiℓ) = f(Aℓ+1, Aiℓ) ≤ |Aiℓ ∩ X|, we
infer inductively that f(A1, Ai1) ≤ |Ai1 ∩X|. In particular,
this means that still no party x ∈ Ai1 \X is chosen. However,
all voters in G now approve only y and weak representation
thus requires that this party is chosen. This is a contradiction,
which shows that f(A,Aiℓ) ≥ |Aiℓ ∩X|.

For instance, in the subsequent profile A, this lemma re-
quires that one seat is assigned to a or b, and one seat is
assigned to c or d when choosing committees of size k = 3.
We encode Lemma 2 just as weak representation: we omit
the variables xA,W if the committee W fails the lemma on
the profile A (e.g., for the profile A shown below, we do not
introduce a variable for the committee [a, a, a]). Or, more
formally, when the option --cleverWR is used, then we
only introduce variables for all profiles A ∈ ASAT and com-
mittees W ∈ WR(A, k) such that Lemma 2 is satisfied.

A: a ab b c cd d

Next, we turn to the option --SymmetryBreaking.
The idea for this optimization is that some profiles are sym-
metric, which allows us to treat outcomes analogously. For
instance, in the profile A shown above, the committee [a, b, c]
is symmetric to the committee [a, b, d]. Hence, if there is a
party-approval rule satisfying anonymity, weak represent-
ation, strategyproofness, and f(A, k) = [a, b, c], we can
construct another rule f ′ satisfying the same axioms and
f ′(A, k) = [a, b, d]. This is formalized by the next lemma.

Lemma 3. Let f be an anonymous party-approval rule that
satisfies strategyproofness and weak representation, and let
τ : P → P be a permutation of the parties. The party-
approval rule fτ (A, k, x) = f(τ(A), k, τ(x)), where τ(A)
denotes the profile such that τ(x) ∈ τ(A)i if and only if
x ∈ Ai for all i ∈ N and x ∈ P , satisfies the same axioms
as f .

Proof. Let f denote a party-approval rule that satisfies the
given axioms, and let τ : P 7→ P denote an arbitrary permuta-
tion on the parties. Moreover, define the party-approval rule
fτ as in the lemma. Clearly, fτ inherits anonymity from f .
Next, fτ satisfies weak representation: if a party x is uniquely
approved by at least n

k voters in A, then τ(x) is uniquely ap-
proved by at least n

k voters in τ(A). Since f satisfies weak
representation, fτ (A, k, x) = f(τ(A), k, τ(x)) ≥ 1 which
proves that fτ also satisfies this axiom. Finally, fτ inherits
strategyproofness from f ; otherwise there are two profiles
A and A′ and a voter i ∈ N such that Aj = A′

j for all
j ∈ N \ {i} and fτ (A′, k, Ai) > fτ (A, k,Ai). However,
this implies that f(τ(A′), k, τ(A)i) > f(τ(A), k, τ(A)i),
proving that f fails strategyproofness, too. Since this contra-
dicts our initial assumption, fτ must be strategyproof and
satisfies thus all required axioms.

As consequence of Lemma 3, we can remove for a single
profile all symmetric outcomes but one, and we choose the
profile A for this. In particular, note here that Lemma 2
requires for A that at least one seat is assigned to a or b
and that at least one seat is assigned to c or d. Moreover, all
committees satisfying this condition are symmetric to either
[a, a, c] or [a, b, c]. Or, in other words, if we show that no
party-approval rule satisfies anonymity, weak representation,
strategyproofness, and f(A, 3) ∈ {[a, a, c], [a, b, c]}, then
Lemmas 2 and 3 imply that no such rule exists in general.
Consequently, the option --SymmetryBreaking exactly
adds the constraint that either [a, a, c] or [a, b, c] must be
chosen for the profile A.



A.2 Proofs of the Inductive Arguments
In this section, we complete the proof of Lemma 1 and prove
also the inductive arguments required for Theorem 2. For
proving these results, we first discuss an auxiliary claim.

Fact 1. Assume that f is a party-approval rule that satisfies
strategyproofness and weak representation. For every subset
of parties X ⊆ P , profile A, committee size k, and integer
ℓ ≤ k, it holds that f(A,X) ≥ ℓ if |X| ≥ ℓ and at least
ℓ · ⌈n

k ⌉ voters report X as their approval ballot.

Proof. Consider arbitrary values for k, m, and n and assume
that f is a party-approval rule satisfying strategyproofness
and weak representation. We prove the statement by induction
on ℓ and first consider the case that ℓ = 1. Thus, let A
denote a profile and X a non-empty set of parties such that
Ai = X for at least ⌈n

k ⌉ voters. Moreover, consider the
profile A′ derived from A by letting all voters who report X
change their preference to approving a single party x ∈ X .
It follows from weak representation that f(A′, k, x) ≥ 1
and thus f(A′, k,X) ≥ 1. Then, a repeated application of
strategyproofness shows that f(A, k,X) ≥ f(A′, k,X) ≥ 1.
In more detail, we can let the voters approving X change their
preference one after another and strategyproofness states for
every step that the number of seats assigned to parties of X
cannot increase. This proves the induction basis.

For the induction step, we assume that the fact holds for
all profiles A, sets of parties X , and integers 1, . . . , ℓ and we
prove the claim for ℓ+ 1. Hence, consider a profile A, a set
of voters G, and a set of parties X such that |X| ≥ ℓ + 1,
|G| ≥ (ℓ+1)·⌈n

k ⌉, and Ai = G for all i ∈ G. Next, we derive
profile A′ from A by letting ⌈n

k ⌉ voters of G report a single
party x ∈ X and the remaining voters in G report A \ {x}.
Weak representation requires for A′ that x needs to be chosen
at least once. Moreover, the induction hypothesis implies that
f(A′, k,X \ {x}) ≥ ℓ because |X \ {x}| ≥ ℓ and at least
ℓ · ⌈n

k ⌉ voters report X \ {x}. Hence, f(A′, k,X) ≥ ℓ + 1
and a repeated application of strategyproofness shows that
f(A, k,X) ≥ f(A′, k,X). This proves the lemma.

Based on Fact 1, we show next Lemma 1.

Lemma 1. Assume there is no anonymous party-approval
rule f that satisfies weak representation and strategy-
proofness for committees of size k, m parties, and n voters.
The following claims hold:

(1) For every ℓ ∈ N, there is no such rule for committees of
size k, m parties, and ℓ · n voters.

(2) There is no such rule for committees of size k, m + 1
parties, and n voters.

(3) If k divides n, there is no such rule for committees of size
k + 1, m+ 1 parties, and n(k+1)

k voters.

Proof. The proof of claim (1) is in the main body and we
thus focus on the cases (2) and (3). For both cases we show
the contrapositive, and we focus first on the case that there is
an anonymous party-approval rule f for committees of size
k, m+1 parties, and n voters that satisfies strategyproofness
and weak representation. Based on f , we define another rule
g for committees of size k, m parties, and n voters as follows:

given a profile A for m parties and n voters, g derives a profile
Axy for m+ 1 parties by cloning a party x. Formally, Axy is
defined by Axy

i if x ̸∈ Ai and Axy
i = Ai ∪ {y} else (where

y is a new party). Then, we set g(A, k, z) = f(Axy, k, z) for
z ̸= x and g(Axy, k, x) = f(A, k, xy).

Subsequently, we prove that g is a party-approval rule
that satisfies all required axioms. First, g is well-defined for
committees of size k as it assigns exactly k seats to the m
parties given as input. Moreover, it clearly inherits anonym-
ity from f . Thirdly, g satisfies strategyproofness because
otherwise f would be manipulable, too. In more detail, as-
sume that a voter i can manipulate g at a profile A. Since
y ∈ Axy

i if and only if x ∈ Axy
i , g(A, k, x) = f(A, k, xy),

and g(A, k, z) = f(A, k, z), voter i can manipulate f at
Axy. Or, in other words, if f is strategyproof, g is, too. Fi-
nally, g also satisfies weak representation, which follows by
a case distinction on the parties. If a party z ̸= x is uniquely
approved by ⌈n

k ⌉ voters in the original profile A, then it
is also uniquely approved by these voters in Axy. Hence,
g(A, k, z) = f(Axy, k, z) ≥ 1 due to the weak representa-
tion of f . On the other hand, if x is uniquely approved by at
least ⌈n

k ⌉ voters, these voters approve xy in Axy . Then, Fact 1
shows that g(A, k, x) = f(Axy, k, xy) ≥ 1. This shows that
g satisfies all axioms and thus proves the second claim.

For the third case, suppose that k divides n and that f is
defined for committees of size k+1, m+1 parties, and n(k+1)

k
voters. In this case, g maps a profile A for m parties and n
voters to the profile Āxy defined as follows: first g derives
Axy as explained in the first paragraph and then it adds n

k

voters with ballot xy. Finally, g(A, k, z) = f(Āxy, k + 1, z)
for all z ̸= x and g(A, k, x) = f(Āxy, k + 1, xy)− 1. Note
that g is a well-defined party-approval rule for committees
of size k since Fact 1 ensures that f(Āxy, k + 1, xy) ≥ 1 for
all profiles A. Thus, g(A, k, z) ≥ 0 for all parties z.

Next, we show that g satisfies all required axioms and note
first that it clearly inherits anonymity from f . Moreover, an
analogous argument as in the last case shows that g is strategy-
proof. Finally, we prove that g satisfies weak representation.
Note for this that if a party z ̸= x is uniquely approved by at
least n

k voters in a profile A, it is also uniquely approved by
these voters in Āxy. Since n(k+1)

k(k+1) = n
k , it thus follows that

f(Āxy, k+1, z) ≥ 1 due to the weak representation of f and,
by definition, we infer g(A, k, z) ≥ 1. On the other hand,
if x is uniquely approved by at least n

k voters in A, there
are at least 2n

k voters in Āxy that report xy in Āxy. Since
n(k+1)
k(k+1) = n

k , we infer from Fact 1 that f(Āxy, k+1, xy) ≥ 2,
which implies that g(A, k, x) ≥ 1. Hence, g satisfies all
required axioms, which proves also the last case.

Finally, we discuss the inductive argument required for
Theorem 2. Since weak proportional representation implies
weak representation, we can use the first two cases of
Lemma 1 to increase the numbers of voters and parties.
Hence, we subsequently explain why we can increasing the
committee size without increasing the number of parties. By
first applying this lemma to get the desired committee size
and then using the two inductive arguments of Lemma 1,



Theorem 2 follows from Proposition 1.

Lemma 4. Assume that n, k are integers such that n is a
multiple of k. If there is no party-approval rule that satisfies
anonymity, strategyproofness, and weak proportional repres-
entation for committees of size k, m parties, and n voters,
there is also no such rule for committees of size k + 1, m
parties, and n(k+1)

k voters.

Proof. We prove the contrapositive and thus assume that
there is a party-approval rule f that satisfies anonymity,
strategyproofness, and weak proportional representation for
committees of the size k + 1, m parties, and n(k+1)

k voters.
Based on f , we construct a party-approval rule g for commit-
tees of size k, m parties, and n voters that satisfies the same
axioms. The rule g is defined as follows: given a profile A,
g appends n

k voters who only approve a party x to derive a
new profile A′. Finally, g(A, k, z) = f(A′, k + 1, z) for all
z ̸= x and g(A, k, x) = f(A′, k + 1, x)− 1.

It remains to show that g satisfies all requirements. First,
note that g is a well-defined party-approval rule for m,
n and k as g(A, k, z) ≥ 0 for all z ∈ P . In particular,
g(A, k, x) = f(A′, k + 1, x)− 1 ≥ 0 because weak propor-
tional representation requires that f(A′, k + 1, x) ≥ 1 since
at least n

k = n(k+1)
k(k+1) voters approve x uniquely in A′. Next, g

clearly inherits anonymity from f . As third point, note that g
satisfies strategyproofness because for all profiles A, g(A, k)
differs from f(A′, k + 1) only in the fact that f assigns one
more seat to x. Hence, if a voter could manipulate g, he can
manipulate f at the corresponding profile A′, contradicting
the strategyproofness of f . Finally, we show that g satisfies
weak proportional representation and consider for this a pro-
file A and a party z such that j ≥ ℓn

k voters uniquely approve
z. If z ̸= x, the same j voters approve z uniquely in A′ and
the weak proportional representation requires of f entails that
g(A, k, z) = f(A′, k+1, z) ≥ ℓ because j ≥ ℓn

k = ℓn(k+1)
k(k+1) .

On the other hand, if z = x, there are j + n
k ≥ (ℓ+1)n

k voters
who approve x uniquely in A′. Hence, we derive again that
g(A, k, x) = f(A′, k + 1, x) − 1 ≥ ℓ, which shows that g
satisfies all required axioms.

A.3 Proof of the Weakened Variant of
Proposition 1

As promised in Section 3.3, we discuss here a human-
readable proof of a weakened variant of Proposition 1 that
additionally uses Pareto optimality. For deriving this proof,
we use the computer-aided approach explained in Section 3.1
with two minor modifications. Firstly, we encode Pareto op-
timality. For doing so, we use the same idea as for weak
representation: we omit the variables for pairs of profiles
A ∈ An

SAT and committees W ∈ WR(A, k) such that W
fails Pareto optimality in A. Secondly, we use the optimiza-
tions described in Appendix A.1 to make the proof as short as
possible (note here that Lemma 3 also preserves Pareto optim-
ality). The proof shown below is then derived by investigating
the MUSes of this formula. Since the modifications are minor,
this human-readable proof showcases the correctness of our
computer program.

Proposition 2. There is no anonymous party-approval rule
that satisfies weak representation, Pareto optimality, and
strategyproofness if k = 3, m = 4, and n = 6.

Proof. Since we are only interested in committees of size
3 in the subsequent argument, we omit from now on the
committee size in our notation, i.e., f(A) stands for f(A, 3).
Now, assume for contradiction that there is an anonymous
party-approval rule g that satisfies strategyproofness, Pareto
optimality, and weak representation for k = 3, m = 4, and
n = 6. Using Lemma 3, it follows that there is also a rule
f that satisfies these axioms and that f(A1) = [a, a, b] or
f(A1) = [a, b, c] for the profile A1 shown below.

A1 a b ab c d cd

Next, we consider the profile A2. In this profile, a Pareto
dominates b in A2 which entails that f(A2, b) = 0. Moreover,
strategyproofness requires that f(A2, d) = 0: otherwise,
the voter with preference abc can manipulate by deviating
to A1. Finally, Lemma 2 implies that f(A2, ab) ≥ 1 and
f(A2, cd) ≥ 1 and hence, f(A2) ∈ {[a, a, c], [a, c, c]}.

A2 a ab c abc d cd

For deriving an impossibility from this point, we use the
profiles shown in Table 1 and several case distinctions for
our analysis. Note that the table also contains the profiles A1

and A2 again. Moreover, we use more short-hand notation
in the subsequent proofs. For every set X and profile Ak,
we define xk

X = f(Ak, X), i.e., xk
X denotes the number of

seats assigned to parties in X by f(Ak). Moreover, we write
down our derivations in table form to keep the proof as short
as possible. Each row of these tables contains a profile, the
possible committees for this profile, and an explanation of
why no other committee is feasible. Since we derive these
proofs from our computer program, there are exactly four
different reasons to why a committee is not possible: Pareto
optimality (PO), weak representation (WR), Lemma 2, and
strategyproofness (SP).

As example, we explain this notation for the first steps
in Case 1.1, where we show that f(A18) ̸= [c, c, c]. This
case starts by making two assumptions: firstly, we use the
assumption of Case 1 that f(A2) = [a, c, c] and secondly, we
suppose for contradiction that f(A18) = [c, c, c]. Next, we
derive f(A10) based on strategyproofness: if f(A10, c) <
3, then voter 4 can manipulate by deviating to A18, i.e.,
strategyproofness from A10 to A18 requires that f(A10, c) ≥
f(A18, c) = 3. As third step, we derive the possible com-
mittees for A29 by applying several axioms: (i) Pareto op-
timality requires that f(A29, b) = 0; (ii) weak representa-
tion states that f(A29, c) ≥ 1; (iii) Lemma 2 requires that
f(A29, ad) ≥ 1; and (iv) strategyproofness from A10 to A29

requires that f(A29, a) = 0. For the last point, note that the
first voter could manipulate by deviating from A10 to A29 if
f(A29, a) ≥ 1. Consequently, f(A29) ∈ {[c, c, d], [c, d, d]}.
The proof continues with such steps until it derives that no
feasible outcome remains for A13. This contradicts the defin-
ition of a party-approval rule and thus shows that the assump-
tion f(A18) = [c, c, c] is wrong.



A1: a b ab c d cd

A2: a ab c abc d cd

A3: a b c bc abc d

A4: a b c abc d cd

A5: a ab c c c ad

A6: a ab c c abc d

A7: a ab c c d ad

A8: a ab c c d cd

A9: a ab c c ad cd

A10: a c c c abc d

A11: a c c c d ad

A12: a c c c d cd

A13: a c c c ad ad

A14: a c c c ad cd

A15: a c c bc abc d

A16: a c c abc d d

A17: a c c abc d ad

A18: a c c abc d cd

A19: a c bc bc abc d

A20: b c c c abc d

A21: b c c c d cd

A22: b c c c ad bd

A23: b c c c bd cd

A24: b c c ac abc d

A25: b c c ac d cd

A26: b c ac abc d cd

A27: ab c c c ad bd

A28: ab c c c ad abd

A29: c c c abc d ad

A30: c c c abc d bd

A31: c c c abc ad bd

A32: a a a c abc d

A33: a a a c d ad

A34: a a a c d cd

A35: a a a c ad cd

A36: a a a abc d cd

A37: a a a d d bd

A38: a a a d d cd

A39: a a a d bd bd

A40: a a b b d ad

A41: a a b ab d d

A42: a a b c abc d

A43: a a b c d bcd

A44: a a b ac abc d

A45: a a b ac d ad

A46: a a b ac d bd

A47: a a b ac ad bd

A48: a a b abc d ad

A49: a a b d d ad

A50: a a b d d bd

A51: a a b d d bcd

A52: a a b d ad bd

A53: a a b d ad bcd

A54: a a b d cd bcd

A55: a a ab c abc d

A56: a a ab d d bd

A57: a a ab d d cd

A58: a a ab d d bcd

A59: a a c c d ad

A60: a a c c d abd

A61: a a c abc d d

A62: a a c abc d ad

A63: a a c abc d abd

A64: a a c abc d cd

A65: a a c abc d bcd

A66: a a c d d ad

A67: a a c d d abd

A68: a a c d d cd

A69: a a c d d bcd

A70: a a c d ad cd

A71: a a c d abd bcd

A72: a a ac abc d bd

A73: a a ac d bd bd

A74: a a abc d d cd

A75: a b b d d ad

A76: a b b d ad cd

A77: a b ab d d d

A78: a b ab d d ad

A79: a b ab d d cd

A80: a b d d d ad

A81: a b d d d bd

A82: a b d d ad bd

A83: a b d d ad cd

A84: a b d d cd bcd

A85: a b d ad cd bcd

A86: a ab d d d bd

A87: a ab d d cd bcd

A88: a c c d d ad

A89: a c c d d abd

A90: a c ac d d d

A91: a c ac d d ad

A92: a c ac d d abd

A93: a c abc d d ad

A94: a c abc d d abd

A95: a c d d d ad

A96: a c d d d abd

A97: a c d d d cd

A98: a c d d d bcd

A99: a c d d ad cd

A100: a c d d abd bcd

A101: a ac d d d cd

A102: a ac d d d bcd

A103: b ab d d d ad

A104: b ab d d ad cd

A105: c ac d d d ad

A106: c ac d d d abd

Table 1: Profiles used for the proof of Proposition 2.



Case 1: f(A2) = [a, c, c]
As first case, we suppose that f(A1) = [a, c, c] and use a case distinction with respect to A18 to derive an impossibility. Our

first derivation hence shows that there are only two possible outcomes for this profile: [c, c, c] and [a, c, c]. By showing that both
cases are not possible, we disprove that f(A2) = [a, c, c].

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A2: a ab c abc d cd [a, c, c] Assumption (Case 1)
A8: a ab c c d cd [a, c, c] x8

b = 0 (PO)
x8
ab ≥ 1 (Lemma 2)

x8
c ≥ x1

c = 2 (SP from A8 to A1)
A18: a c c abc d cd [a, c, c], [c, c, c] x18

b = 0 (PO)
x18
cd ≥ 2 (Lemma 2)

x18
abc ≥ x8

abc = 3 (SP from A18 to A8)

Case 1.1.: f(A18) ̸= [c, c, c]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A2: a ab c abc d cd [a, c, c] Assumption (Case 1)
A18: a c c abc d cd [c, c, c] Assumption (for contradiction)
A10: a c c c abc d [c, c, c] x10

c ≥ x18
c = 3 (SP from A10 to A18)

A29: c c c abc d ad [c, c, d], [c, d, d] x29
b = 0 (PO)

x29
c ≥ 1 (WR)

x29
ad ≥ 1 (Lemma 2)

x29
a ≤ x10

a = 0 (SP from A10 to A29)
A12: a c c c d cd [c, c, c] x12

c ≥ x18
c = 3 (SP from A12 to A18)

A14: a c c c ad cd [a, c, c], [a, a, c] x14
b = 0 (PO)

x14
c ≥ 1 (WR)

x14
ad ≥ 1 (Lemma 2)

x14
d ≤ x12

d = 0 (SP from A12 to A14)
A11: a c c c d ad [a, c, d] x11

b = 0 (PO)
x11
c ≥ 1 (WR)

x11
abc ≤ x29

abc ≤ 2 (SP from A29 to A11)
x11
cd ≤ x14

cd ≤ 2 (SP from A14 to A11)
A6: a ab c c abc d [a, c, c] x6

b = 0 (PO)
x6
ab ≥ 1 (Lemma 2)

x6
c ≥ x2

c = 2 (SP from A6 to A2)
A17: a c c abc d ad [a, c, d] x17

b = 0 (PO)
x17
c ≤ x11

c = 1 (SP from A11 to A17)
x17
ab ≤ x6

ab = 1 (SP from A6 to A17)
x17
abc ≥ x11

abc = 2 (SP from A17 to A11)
A7: a ab c c d ad [a, c, d] x7

b = 0 (PO)
x7
c ≥ 1 (WR)

x7
ab ≥ 1 (Lemma 2)

x7
abc ≤ x17

abc = 2 (SP from A17 to A7)
A8: a ab c c d cd [a, c, c] x8

b = 0 (PO)
x8
ab ≥ 1 (Lemma 2)

x8
c ≥ x2

c = 2 (SP from A8 to A2)
A9: a ab c c ad cd [a, c, c] x9

b = 0 (PO)
x9
ab ≥ 1 (Lemma 2)

x9
d ≤ x8

d = 0 (SP from A8 to A9)
x9
cd ≥ x7

cd = 2 (SP from A9 to A7)
A5: a ab c c c ad [a, c, c] x5

b = 0 (PO)
x5
ab ≥ 1 (Lemma 2)

x5
c ≥ x9

c = 2 (SP from A5 to A9)



A13: a c c c ad ad E x13
b = 0 (PO)

x13
d = 0 (PO)

x13
ab ≤ x5

ab = 1 (SP from A5 to A13)
x13
ad ≥ x11

ad = 2 (SP from A13 to A11)

Case 1.2: f(A18) ̸= [a, c, c]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A1: a b ab c d cd [a, a, c], [a, b, c] Assumption (Symmetry breaking)
A2: a ab c abc d cd [a, c, c] Assumption (Case 1)
A18: a c c abc d cd [a, c, c] Assumption (for contradiction)
A16: a c c abc d d [a, c, d] x16

b = 0 (PO)
x16
c ≥ 1 (WR)

x16
d ≥ 1 (WR)

x16
cd ≤ x18

cd = 2 (SP from A18 to A16)
A6: a ab c c abc d [a, c, c] x6

b = 0 (PO)
x6
ab ≥ 1 (Lemma 2)

x6
c ≥ x2

c = 2 (SP from A6 to A2)
A17: a c c abc d ad [a, c, d] x17

b = 0 (PO)
x17
abc ≥ 2 (Lemma 2)

x17
ad ≥ x16

ad = 2 (SP from A17 to A16)
x17
ab ≤ x6

ab = 1 (SP from A6 to A17)
A7: a ab c c d ad [a, c, d] x7

b = 0 (PO)
x7
c ≥ 1 (WR)

x7
ab ≥ 1 (Lemma 2)

x7
abc ≤ x17

abc = 2 (SP from A17 to A7)
A8: a ab c c d cd [a, c, c] x8

b = 0 (PO)
x8
ab ≥ 1 (Lemma 2)

x8
c ≥ x2

c = 2 (SP from A8 to A2)
A9: a ab c c ad cd [a, c, c] x9

b = 0 (PO)
x9
ab ≥ 1 (Lemma 2)

x9
d ≤ x8

d = 0 (SP from A8 to A9)
x9
cd ≥ x7

cd = 2 (SP from A9 to A7)
A5: a ab c c c ad [a, c, c] x5

b = 0 (PO)
x5
ab ≥ 1 (Lemma 2)

x5
c ≥ x9

c = 2 (SP from A5 to A9)
A13: a c c c ad ad [a, c, c] x13

b = 0 (PO)
x13
d = 0 (PO)

x13
ab ≤ x5

ab = 1 (SP from A5 to A13)
x13
ad ≥ x5

ad = 1 (SP from A13 to A5)
A11: a c c c d ad [c, c, d] x11

b = 0 (PO)
x11
ad ≤ x13

ad = 1 (SP from A13 to A11)
x11
abc ≤ x17

abc = 2 (SP from A17 to A11)
A29: c c c abc d ad [c, c, d] x29

b = 0 (PO)
x29
ad ≥ 1 (Lemma 2)

x29
a ≤ x11

a = 0 (SP from A11 to A29)
x29
abc ≥ x11

abc = 2 (SP from A29 to A11)
A15: a c c bc abc d [a, c, c] x15

b = 0 (PO)
x15
bc ≥ x6

bc = 2 (SP from A15 to A6)
x15
cd ≤ x18

cd = 2 (SP from A18 to A15)
A19: a c bc bc abc d [a, c, c], [c, c, d] x19

b = 0 (PO)
x19
c ≤ x15

c = 2 (SP from A15 to A19)
x19
bc ≥ x15

bc = 2 (SP from A19 to A15)



A3: a b c bc abc d W3 \ {[b, b, b], [b, b, c],
[b, c, c], [c, c, c]}

x3
bc ≤ x19

bc = 2 (SP from A19 to A3)

A4: a b c abc d cd [a, c, c] x4
d ≤ x1

d = 0 (SP from A1 to A4)
x4
ab ≤ x2

ab = 1 (SP from A2 to A4)
x4
bc ≤ x3

bc ≤ 2 (SP from A3 to A4)
A26: b c ac abc d cd [c, c, c] x26

a = 0 (PO)
x26
ac ≥ x4

ac = 3 (SP from A26 to A4)
A24: b c c ac abc d [c, c, c] x24

c ≥ x26
c = 3 (SP from A24 to A26)

A20: b c c c abc d [c, c, c] x20
c ≥ x24

c = 3 (SP from A20 to A24)
A30: c c c abc d bd [c, c, d] x30

a = 0 (PO)
x30
bd ≥ 1 (Lemma 2)

x30
b ≤ x20

b = 0 (SP from A20 to A30)
x30
ad ≤ x29

ad = 1 (SP from A29 to A30)
A25: b c c ac d cd [c, c, c] x25

c ≥ x26
c = 3 (SP from A25 to A26)

A21: b c c c d cd [c, c, c] x21
c ≥ x25

c = 3 (SP from A21 to A25)
A23: b c c c bd cd [b, b, c], [b, c, c] x23

a = 0 (PO)
x23
c ≥ 1 (WR)

x23
bd ≥ 1 (Lemma 2)

x23
d ≤ x21

d = 0 (SP from A21 to A23)
A22: b c c c ad bd [b, b, c], [b, c, c],

[b, c, d]
x22
a = 0 (PO)

x22
c ≥ 1 (WR)

x22
cd ≤ x23

cd ≤ 2 (SP from A23 to A22)
A28: ab c c c ad abd [a, c, c] x28

b = 0 (PO)
x28
d = 0 (PO)

x28
abd ≥ 1 (Lemma 2)

x28
a ≤ x5

a = 1 (SP from A5 to A28)
A27: ab c c c ad bd [a, c, c], [b, c, c] x27

abd ≤ x28
abd = 1 (SP from A28 to A27)

x27
ab ≥ x22

ab ≥ 1 (SP from A27 to A22)
A31: c c c abc ad bd E x31

bd ≥ x29
bd = 1 (SP from A31 to A29)

x31
ad ≥ x30

ad = 1 (SP from A31 to A30)
x31
abc ≥ x27

abc = 3 (SP from A31 to A27)
x31
ab ≤ x27

ab = 1 (SP from A27 to A31)

Case 2: f(A2) = [a, a, c]
For the second case, we assume that f(A2) = [a, a, c]. Subsequently, we infer the committees for multiple auxiliary profiles

before we can derive a contradiction.

Step 2.1: f(A62) = [a, a, d]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A2: a ab c abc d cd [a, a, c] Assumption (Case 2)
A64: a a c abc d cd [a, a, c], [a, a, d] x64

cd ≥ 1 (Lemma 2)
x64
a ≥ x2

a = 2 (SP from A64 to A2)
A61: a a c abc d d [a, a, d] x61

b = 0 (PO)
x61
d ≥ 1 (WR)

x61
cd ≤ x64

cd = 1 (SP from A64 to A61)
A62: a a c abc d ad [a, a, a] x62

abc ≥ 2 (Lemma 2)
x62
ad ≥ x61

ad = 3 (SP from A62 to A61)
f(A62) ̸= [a, a, d] (Contradiction assumption)

A32: a a a c abc d [a, a, a] x32
a ≥ x62

a = 3 (SP from A32 to A62)
A36: a a a abc d cd [a, a, d] x36

cd ≥ 1 (Lemma 2)
x36
c ≤ x32

c = 0 (SP from A32 to A36)
x36
a ≥ x64

a = 2 (SP from A36 to A64)



A34: a a a c d cd [a, a, d] x34
abc ≤ x36

abc = 2 (SP from A36 to A34)
x34
a ≥ x64

a = 2 (SP from A34 to A64)
A33: a a a c d ad [a, a, a] x33

a ≥ x62
a = 3 (SP from A33 to A62)

A35: a a a c ad cd E x35
cd ≥ 1 (Lemma 2)

x35
d ≤ x33

d = 0 (SP from A33 to A35)
x35
ad ≥ x34

ad = 3 (SP from A35 to A34)

Step 2.2: f(A68) = [a, c, d]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A68: a a c d d cd [a, d, d] x68
a ≥ 1 (WR)

x68
d ≥ 1 (WR)

x68
cd ≥ 2 (Lemma 2)

f(A68) ̸= [a, c, d] (Contradiciton assumption)
A2: a ab c abc d cd [a, a, c] Assumption (Case 2)
A62: a a c abc d ad [a, a, d] Step 2.1
A59: a a c c d ad [a, c, d] x59

a ≥ 1 (WR)
x59
c ≥ 1 (WR)

x59
abc ≤ x62

abc = 2 (SP from A62 to A59)
A70: a a c d ad cd [a, d, d] x70

a ≥ 1 (WR)
x70
cd ≥ x59

cd = 2 (SP from A70 to A59)
x70
ad ≥ x68

ad = 3 (SP from A70 to A68)
A66: a a c d d ad [a, d, d] x66

a ≥ 1 (WR)
x66
d ≥ x70

d = 2 (SP from A66 to A70)
A64: a a c abc d cd [a, a, c], [a, a, d] x64

cd ≥ 1 (Lemma 2)
x64
a ≥ x2

a = 2 (SP from A64 to A2)
A61: a a c abc d d [a, a, d] x61

b = 0 (PO)
x61
d ≥ 1 (WR)

x61
cd ≤ x64

cd = 1 (SP from A64 to A61)
A93: a c abc d d ad [a, d, d] x93

abc ≥ 1 (Lemma 2)
x93
a ≤ x66

a = 1 (SP from A66 to A93)
x93
ad ≥ x61

ad = 3 (SP from A93 to A61)
A88: a c c d d ad [c, d, d] x88

c ≥ 1 (WR)
x88
abc ≤ x93

abc = 1 (SP from A93 to A88)
A99: a c d d ad cd [d, d, d] x99

cd ≥ x88
cd = 3 (SP from A99 to A88)

x99
ad ≥ x68

ad = 3 (SP from A99 to A68)
A95: a c d d d ad [d, d, d] x95

d ≥ x99
d = 3 (SP from A95 to A99)

A97: a c d d d cd [d, d, d] x97
d ≥ x99

d = 3 (SP from A97 to A99)
A101: a ac d d d cd [a, d, d], [a, a, d] x101

b = 0 (PO)
x101
d ≥ 1 (WR)

x101
ac ≥ 1 (Lemma 2)

x101
c ≤ x97

c = 0 (SP from A97 to A101)
A91: a c ac d d ad [a, d, d], [c, d, d] x91

ac ≥ 1 (Lemma 2)
x91
abc ≤ x93

abc = 1 (SP from A93 to A91)
A90: a c ac d d d [a, d, d] x90

ac ≥ 1 (Lemma 2)
x90
cd ≤ x101

cd ≤ 2 (SP from A101toA90)
x90
d ≥ x91

d = 2 (SP from A90 to A91)
A105: c ac d d d ad E x105

ac ≥ 1 (Lemma 2)
x105
a ≤ x95

a = 0 (SP from A95 to A105)
x105
ad ≥ x90

ad = 3 (SP from A105 to A90)

Step 2.3: Deriving auxiliary profiles
As next step, we infer the outcomes for multiple profiles based on the previous insights. Since we use no contradiction

assumption in this step, the derived outcomes can be used in the subsequent deductions.



V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A2: a ab c abc d cd [a, a, c] Assumption (Case 2)
A62: a a c abc d ad [a, a, d] Step 2.1
A68: a a c d d cd [a, c, d] Step 2.2
A59: a a c c d ad [a, c, d] x59

a ≥ 1 (WR)
x59
c ≥ 1 (WR)

x59
abc ≤ x62

abc = 2 (SP from A62 to A59)
A70: a a c d ad cd [a, c, d] x70

a ≥ 1 (WR)
x70
abc ≤ x62

abc = 2 (SP from A62 to A70)
x70
d ≤ x68

d = 1 (SP from A68 to A70)
x70
cd ≥ x59

cd = 2 (SP from A70 to A59)
A64: a a c abc d cd [a, a, c] x64

b = 0 (PO)
x64
ad ≤ x70

ad = 2 (SP from A70 to A64)
x64
a ≥ x2

a = 2 (SP from A64 to A2)
A61: a a c abc d d [a, a, d] x61

b = 0 (PO)
x61
d ≥ 1 (WR)

x61
cd ≤ x64

cd = 1 (SP from A64 to A61)
A74: a a abc d d cd [a, a, d] x74

b = 0 (PO)
x74
d ≥ 1 (WR)

x74
c ≤ x61

c = 0 (SP from A61 to A74)
x74
abc ≥ x68

abc = 2 (SP from A74 to A68)
A57: a a ab d d cd [a, a, d] x57

b = 0 (PO)
x57
c = 0 (PO)

x57
d ≥ 1 (WR)

x57
ab ≥ x74

ab = 2 (SP from A57 to A74)
A38: a a a d d cd [a, a, d] x38

b = 0 (PO)
x38
c = 0 (PO)

x38
d ≥ 1 (WR)

x38
a ≥ x74

a = 2 (SP from A38 to A74)
A37: a a a d d bd [a, a, d] x37

b = 0 (PO)
x37
c = 0 (PO)

x37
cd ≤ x38

cd = 1 (SP from A38 to A37)
x37
bd ≥ x38

bd = 1 (SP from A37 to A38)
A39: a a a d bd bd [a, a, d] x39

b = 0 (PO)
x39
c = 0 (PO)

x39
d ≤ x37

d = 1 (SP from A37 to A39)
x39
bd ≥ x37

bd = 1 (SP from A39 to A37)
A73: a a ac d bd bd [a, a, d] x73

b = 0 (PO)
x73
c = 0 (PO)

x73
a ≤ x39

a = 2 (SP from A39 to A73)
x73
ac ≥ x39

ac = 2 (SP from A73 to A39)
A46: a a b ac d bd [a, a, b], [a, a, d] x46

c = 0 (PO)
x46
bd ≥ 1 (Lemma 2)

x73
bd ≤ x46

bd = 1 (SP from A46 to A73)
A34: a a a c d cd [a, a, c] x34

b = 0 (PO)
x34
cd ≥ 1 (Lemma 2)

x34
ad ≤ x70

ad = 2 (SP from A70 to A34)
x34
a ≥ x64

a = 2 (SP from A34 to A64)
A36: a a a abc d cd [a, a, c] x36

b = 0 (PO)
x36
cd ≥ 1 (Lemma 2)

x36
c ≤ x34

c = 1 (SP from A34 to A36)
x36
abc ≥ x34

abc = 3 (SP from A36 to A34)



A32: a a a c abc d [a, a, c] x32
b = 0 (PO)

x32
c ≥ x36

c = 1 (SP from A32 to A36)
x32
a ≥ x64

a = 2 (SP from A32 to A64)
A55: a a ab c abc d [a, a, c], [a, a, d] x55

b = 0 (PO)
x55
a ≤ x32

a = 2 (SP from A32 to A55)
x55
ab ≥ x32

ab = 2 (SP from A55 to A32)
A63: a a c abc d abd [a, a, d] x63

b = 0 (PO)
x63
a ≤ x32

a = 2 (SP from A32 to A63)
x63
d ≤ x61

d = 1 (SP from A61 to A63)
x63
abd ≥ x61

abd = 3 (SP from A63 to A61)
A60: a a c c d abd [a, c, d] x60

b = 0 (PO)
x60
a ≥ 1 (WR)

x60
c ≥ 1 (WR)

x60
abc ≤ x63

abc = 2 (SP from A63 to A60)
A71: a a c d abd bcd [a, c, d], [a, d, d] x71

b = 0 (PO)
x71
a ≥ 1 (WR)

x71
abc ≤ x63

abc = 2 (SP from A63 to A71)
x71
bcd ≥ x60

bcd = 2 (SP from A71 to A60)
A65: a a c abc d bcd [a, a, c], [a, a, d] x65

b = 0 (PO)
x65
bcd ≥ 1 (Lemma 2)

x65
cd ≤ x64

cd = 1 (SP from A64 to A65)
A42: a a b c abc d [a, a, c], [a, a, d] x42

bcd ≤ x65
bcd = 1 (SP from A65 to A42)

x42
ab ≤ x55

ab = 2 (SP from A55 to A42)

Step 2.4: f(A48) = [a, a, d]
Next, we prove that f(A48) = [a, a, d]. For this, we show first by contradiction that f(A48) ∈ {[a, a, a], [a, a, d]}.

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A48: a a b abc d ad [a, a, b], [a, b, d] x48
c = 0 (PO)

x48
a ≥ 1 (WR)

x48
ad ≥ 2 (Lemma 2)

x48
abc ≥ 2 (Lemma 2)

f(A48, 3) ̸= [a, a, a] (Contradiction assumption)
f(A48, 3) ̸= [a, a, d] (Contradiction assumption)

A44: a a b ac abc d [a, a, b], [a, b, b],
[a, b, d]

x44
c = 0 (PO)

x44
a ≥ 1 (WR)

x44
ad ≤ x48

ad = 2 (SP from A48 to A44)
A42: a a b c abc d E x42

ac ≤ x44
ac ≤ 2 (SP from A44 to A42)

x48
ad ≤ x44

ad = 2 (SP from A44 to A48)
f(A42) ∈ {[a, a, c], [a, a, d]} (Step 2.3)

As second step, we show by contradiction that f(R48) ̸= [a, a, a].

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A48: a a b abc d ad [a, a, a] Assumption (for contradiction)
A44: a a b ac abc d [a, a, a] x44

c = 0 (PO)
x44
ac ≥ x48

ac = 3 (SP from A44 to A48)
A72: a a ac abc d bd [a, a, d] x72

c = 0 (PO)
x72
abc ≥ 2 (Lemma 2)
x72
bd ≥ 1 (Lemma 2)

x72
b ≤ x44

b = 0 (SP from A44 to A72)
A46: a a b ac d bd [a, a, d] x46

abc ≤ x72
abc = 2 (SP from A72 to A46)

f(A46, 3) ∈ {[a, a, b], [a, a, d]} (Step 2.3)



A45: a a b ac d ad [a, a, a] x45
c = 0 (PO)

x45
ac ≥ x48

ac = 3 (SP from A45 to A48)
A47: a a b ac ad bd E x47

bd ≥ 1 (Lemma 2)
x45
d ≤ x47

d = 0 (SP from A47 to A45)
x45
ad ≥ x46

ad = 3 (SP from A45 to A46)

Step 2.5: f(A52) = [a, b, d]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A48: a a b abc d ad [a, a, d] Step 2.4
A40: a a b b d ad [a, b, d] x40

a ≥ 1 (WR)
x40
b ≥ 1 (WR)

x40
abc ≤ x48

abc = 2 (SP from A48 to A40)
A52: a a b d ad bd [a, d, d] x52

a ≥ 1 (WR)
x52
b ≤ x40

b = 1 (SP from A40 to A52)
x52
bd ≥ x40

bd = 2 (SP from A52 to A40)
f(A52) ̸= [a, b, d] (Contradiction assumption)

A50: a a b d d bd [a, d, d] x50
a ≥ 1 (WR)

x50
d ≥ x52

d = 2 (SP from A50 to A52)
A57: a a ab d d cd [a, a, d] Step 2.3
A56: a a ab d d bd [a, a, d] x56

c = 0 (PO)
x56
d ≥ 1 (WR)

x56
cd ≤ x57

cd = 1 (SP from A57 to A56)
x56
b ≤ x50

b = 0 (SP from A50 to A56)
A41: a a b ab d d [a, a, d] x41

c = 0 (PO)
x41
d ≥ 1 (WR)

x41
bd ≤ x56

bd = 1 (SP from A56 to A41)
A49: a a b d d ad [a, d, d] x49

a ≥ 1 (WR)
x49
d ≥ x52

d = 2 (SP from A49 to A52)
A78: a b ab d d ad [a, d, d] x78

ab ≥ 1 (Lemma 2)
x78
a ≤ x49

a = 1 (SP from A49 to A78)
x78
ad ≥ x41

ad = 3 (SP from A78 to A41)
A75: a b b d d ad [b, d, d] x75

c = 0 (PO)
x75
b ≥ 1 (WR)

x75
ab ≤ x78

ab = 1 (SP from A78 to A75)
A82: a b d d ad bd [d, d, d] x82

bd ≥ x75
bd = 3 (SP from A82 to A75)

x82
ad ≥ x50

ad = 3 (SP from A82 to A50)
A81: a b d d d bd [d, d, d] x81

d ≥ x82
d = 3 (SP from A81 to A82)

A86: a ab d d d bd [a, d, d], [a, a, d] x86
c = 0 (PO)

x86
d ≥ 1 (WR)

x86
ab ≥ 1 (Lemma 2)

x86
b ≤ x81

b = 0 (SP from A81 to A86)
A77: a b ab d d d [a, d, d] x77

c = 0 (PO)
x77
bd ≤ x86

bd ≤ 2 (SP from A86 to A77)
x77
d ≥ x78

d = 2 (SP from A77 to A78)
A80: a b d d d ad [d, d, d] x80

d ≥ x82
d = 3 (SP from A80 to A82)

A103: b ab d d d ad E x103
ab ≥ 1 (Lemma 2)

x103
a ≤ x80

a = 0 (SP from A80 to A103)
x103
ad ≥ x77

ad = 3 (SP from A103 to A77)

Step 2.6: f(A71) = [a, d, d]

V1 V2 V3 V4 V5 V6 Possible outcomes Reason



A71: a a c d abd bcd [a, c, d] f(A71) ∈ {[a, c, d], [a, d, d]} (Step 2.3)
f(A71) ̸= [a, d, d] (Contradiction assumption)

A52: a a b d ad bd [a, b, d] Step 2.5
A46: a a b ac d bd [a, a, b] x46

ad ≤ x52
ad = 2 (SP from A52 to A46)

f(A46) ∈ {[a, a, b], [a, a, d]} (Step 2.3)
A72: a a ac abc d bd [a, a, b] x72

c = 0 (PO)
x72
bd ≥ 1 (Lemma 2)

x72
b ≤ x46

b = 1 (SP from A46 to A72)
x72
abc ≥ x46

abc = 3 (SP from A72 to A46)
A44: a a b ac abc d [a, a, b] x44

c = 0 (PO)
x44
bd ≤ x72

bd = 1 (SP from A72 to A44)
x44
b ≥ x72

b = 1 (SP from A44 to A72)
A42: a a b c abc d [a, a, d] x42

ac ≤ x44
ac = 2 (SP from A44 to A42)

f(A42) ∈ {[a, a, c], [a, a, d]} (Step 2.3)
A43: a a b c d bcd [a, c, d] x71

a ≥ 1 (WR)
x43
abc ≤ x42

abc = 2 (SP from A42 to A43)
x43
abd ≤ x71

abd = 2 (SP from A71 to A43)
A54: a a b d cd bcd [a, d, d] x54

c = 0 (PO)
x54
a ≥ 1 (WR)

x54
cd ≥ x43

cd = 2 (SP from A54 to A43)
A48: a a b abc d ad [a, a, d] Step 2.4
A40: a a b b d ad [a, b, d] x40

c = 0 (PO)
x40
a ≥ 1 (WR)

x40
b ≥ 1 (WR)

x40
abc ≤ x48

abc = 2 (SP from A48 to A40)
A53: a a b d ad bcd [a, d, d] x53

a ≥ 1 (WR)
x53
bcd ≥ x40

bcd = 2 (SP from A53 to A40)
x53
ad ≥ x54

ad = 3 (SP from A53 to A54)
A49: a a b d d ad [a, d, d] x49

a ≥ 1 (WR)
x49
d ≥ x53

d = 2 (SP from A49 to A53)
A51: a a b d d bcd [a, d, d] x51

a ≥ 1 (WR)
x51
d ≥ x53

d = 2 (SP from A51 to A53)
A57: a a ab d d cd [a, a, d] Step 2.3
A58: a a ab d d bcd [a, a, d] x58

c = 0 (PO)
x58
d ≥ 1 (WR)

x58
b ≤ x51

b = 0 (SP from A51 to A58)
x58
cd ≤ x57

cd = 1 (SP from A57 to A58)
A41: a a b ab d d [a, a, d] x41

d ≥ 1 (WR)
x41
bcd ≤ x58

bcd = 1 (SP from A58 to A41)
A78: a b ab d d ad [a, d, d] x78

ab ≥ 1 (Lemma 2)
x78
a ≤ x49

a = 1 (SP from A49 to A78)
x78
ad ≥ x41

ad = 3 (SP from A78 to A41)
A75: a b b d d ad [b, d, d] x75

c = 0 (PO)
x75
b ≥ 1 (WR)

x75
ab ≤ x78

ab = 1 (SP from A78 to A75)
A76: a b b d ad cd [b, d, d] x76

c = 0 (PO)
x76
b ≥ 1 (WR)

x76
cd ≥ x75

cd = 2 (SP from A76 to A75)
A85: a b d ad cd bcd [d, d, d] x85

bcd ≥ x76
bcd = 3 (SP from A85 to A76)

x85
ad ≥ x54

ad = 3 (SP from A85 to A54)
A83: a b d d ad cd [d, d, d] x83

d ≥ x85
d = 3 (SP from A83 to A85)



A104: b ab d d ad cd [b, d, d] x104
c = 0 (PO)

x104
ab ≥ 1 (Lemma 2)

x104
a ≤ x83

a = 0 (SP from A83 to A104)
x104
cd ≥ x78

cd = 2 (SP from A104 to A78)
A79: a b ab d d cd [b, d, d] x79

c = 0 (PO)
x79
ad ≤ x104

ad = 2 (SP from A104 to A79)
x79
cd ≥ x78

cd = 2 (SP from A79 to A78)
A87: a ab d d cd bcd [b, d, d] x87

c = 0 (PO)
x87
ab ≥ 1 (Lemma 2)

x87
b ≤ x79

b = 1 (SP from A79 to A87)
x87
bcd ≥ x79

bcd = 3 (SP from A87 to A79)
A84: a b d d cd bcd [b, d, d] x84

c = 0 (PO)
x84
ab ≤ x87

ab = 1 (SP from A87 to A84)
x84
b ≥ x87

b = 1 (SP from A84 to A87)
A85: a b d ad cd bcd E x85

d ≤ x84
d = 2 (SP from A84 to A85)

x85
bcd ≥ x76

bcd = 3 (SP from A85 to A76)
x85
ad ≥ x54

ad = 3 (SP from A85 to A54)

Step 2.7: The final contradiction

V1 V2 V3 V4 V5 V6 Possible outcomes Reason

A71: a a c d abd bcd [a, d, d] Step 2.6
A67: a a c d d abd [a, d, d] x67

a ≥ 1 (WR)
x67
d ≥ x71

d = 2 (SP from A67 to A71)
A61: a a c abc d d [a, a, d] Step 2.3
A94: a c abc d d abd [a, d, d] x94

b = 0 (PO)
x94
abc ≥ 1 (Lemma 2)

x94
a ≤ x67

a = 1 (SP from A67 to A94)
x94
abd ≥ x61

abd = 3 (SP from A94 to A61)
A89: a c c d d abd [c, d, d] x89

c ≥ 1 (WR)
x89
abc ≤ x94

abc = 1 (SP from A94 to A89)
A69: a a c d d bcd [a, d, d] x69

a ≥ 1 (WR)
x69
d ≥ x71

d = 2 (SP from A69 to A71)
A100: a c d d abd bcd [d, d, d] x100

b = 0 (PO)
x100
abd ≥ x69

abd = 3 (SP from A100 to A69)
x100
bcd ≥ x89

bcd = 3 (SP from A100 to A89)
A98: a c d d d bcd [d, d, d] x98

d ≥ x100
d = 3 (SP from A98 to A100)

A102: a ac d d d bcd [a, a, d], [a, d, d] x102
b = 0 (PO)

x102
d ≥ 1 (WR)

x102
ac ≥ 1 (Lemma 2)

x102
c ≤ x98

c = 0 (SP from A98 to A102)
A92: a c ac d d abd [a, d, d], [c, d, d] x92

ac ≥ 1 (Lemma 2)
x94
abc ≤ x92

abc = 1 (SP from A92 to A94)
A90: a c ac d d d [a, d, d] x90

bcd ≤ x102
bcd ≤ 2 (SP from A102 to A90)

x90
d ≥ x92

d = 2 (SP from A90 to A92)
A96: a c d d d abd [d, d, d] x96

d ≥ x100
d = 3 (SP from A96 to A100)

A106: c ac d d d abd E x106
ac ≥ 1 (Lemma 2)

x106
c ≤ x90

c = 0 (SP from A90 to A106)
x106
a ≤ x96

a = 0 (SP from A96 to A106)



A.4 Proof of Theorem 4
Finally, we prove Theorem 4.

Theorem 4. All sequential Thiele rules except AV and all
divisor methods based on majoritarian portioning except AV
fail strategyproofness for unrepresented voters for some com-
mittee size k, number of parties m, and number of voters n.

Proof. Just as in the main body for Thiele rules, we present
here constructions for sequential Thiele rules and divisor
methods based on majoritarian portioning, proving that these
rules fail strategyproofness for unrepresented voters.

Sequential Thiele rules. Consider any sequential w-
Thiele rule f other than approval voting. Since, the vector
w is decreasing and f is not approval voting, there is an in-
dex j such that wj < 1. Let j∗ denote the first such index.
Moreover we define ℓ ∈ N, ℓ ≥ 4, as the smallest integer
such that wj∗ < ℓ−2

ℓ . Finally, consider the following two
profiles A and A′ with m = 4 parties and n = 4 · ℓ+1 voters
(the numbers before the preference relation indicate how of-
ten a preference relation is reported, e.g., ℓ voters approve
the set ab in A),

A: 1: b ℓ: ab ℓ: bd ℓ: ac ℓ− 1: cd 1: d
A′: 1: b ℓ: ab ℓ: bd ℓ: ac ℓ− 1: cd 1: ad

We will now show that an unrepresented voter can manipulate
f in A if k = j∗. Note for this that w1 = · · · = wj∗−1 = 1,
which implies that f assigns the first j∗ − 1 seats to the
approval winner. For the profile A, this means that these seats
go to party b as it is approved by 2ℓ+1 voters. Finally, the last
seat goes to party c. For proving this claim, let W x denote the
committee which assigns j∗ − 1 seats to party b and the last
seat to party x. Then, s(W c, A) = (j∗−1)(2ℓ+1)+2ℓ−1,
s(W a, A) = s(W d, A) = (j∗−1)(2ℓ+1)+ℓ · (1+wj∗) <

(j∗ − 1)(2ℓ+1)+ ℓ(1+ ℓ−2
ℓ ) = (j∗ − 1)(2ℓ+1)+ 2ℓ− 2,

and s(W b, A) = (j∗ − 1)(2ℓ + 1) + (2ℓ + 1)wj∗ < (j∗ −
1)(2ℓ+1)+(2ℓ+1) ℓ−2

ℓ < (j∗−1)(2ℓ+1)+2ℓ−3, which
proves our claim.

Next, consider the profile A′. Just as for A, f assigns the
first j∗ − 1 seats to the approval winner, which is in this
case a as both a and b are approved by 2ℓ + 1 voters and
the lexicographic tie-breaking chooses a. Finally, analogous
computations as for A show that the last seat then goes to
d, i.e., f(A′, j∗) chooses the committee that assigns j∗ − 1
seats to a and one seat to d. Since A and A′ differ only in
the preference of the last voter (who approves only d) and
f(A, j∗, d) = 0 < 1 = f(A′, j∗, d), this proves that an
unrepresented voter can manipulate f .

Divisor methods based on majoritarian portioning. Let
f denote a divisor method based on majoritarian portioning
other than approval voting. This means that there is a mono-
tone function g : N0 → R>0 such that f can be computed
as follows: in the i-th round, f assigns the next seat to the
party x that maximizes wx

g(tix)
(wx denotes the weight of party

x computed by majoritarian portioning, and tix denotes the
number of seats assigned to x in all previous iterations). Now,
since f is not approval voting, there are integers ℓ, j ∈ N

such that ℓ+1
g(j) ≤

ℓ
g(0) . Let ℓ∗, j∗ denote a pair of such indices

that minimize j∗, i.e., for all j′ < j∗ and ℓ ∈ N0, it holds
that ℓ+1

g(j′) >
ℓ

g(0) .
As next step, we show that we may assume that ℓ∗ ≥ 2.

If this is not the case then, ℓ∗ = 1. Note that ℓ∗ = 0 is
impossible as 1

g(j) > 0
g(0) . Now, if ℓ∗ = 1, our conditions

require that 2
g(j∗) ≤ 1

g(0) and 2
g(j) > 1

g(0) for every j ∈ N0

with j < j∗. We will show subsequently that we can set ℓ∗
to 3. In particular, we have 4

g(j∗) ≤ 2
g(0) < 3

g(0) , showing
that our first condition is met. Next, consider the condition
that 4

g(j) >
3

g(0) for all j < j∗ and assume for contradiction
that there is j′ ∈ N such that j′ < j∗ and 4

g(j′) ≤ 3
g(0) .

Since 4
g(0) > 3

g(0) , we can thus find an index j′′ ∈ N such
that j′′ < j∗, 4

g(j) > 3
g(0) for all j < j′′ and 4

g(j′′) ≤ 3
g(0) .

However, this contradicts the definition of j∗, as j∗ is the
minimal integer that meets our requirements. Hence, we can
set ℓ∗ to 3.

We use the insights of the last two paragraphs to define
two profiles A and A′ on n = 4ℓ∗ + 4 voters and m = 4
parties on which f fails strategyproofness for unrepresented
voters if k = j∗ + 1. In the profiles, the numbers before the
preference relation indicate how often a preference relation
is reported, e.g., ℓ∗ voters approve the set ab in A.

A: 2: c 2: d ℓ∗: ac ℓ∗: cd ℓ∗: ab ℓ∗: bd
A′: 2: c 2: ad ℓ∗: ac ℓ∗: cd ℓ∗: ab ℓ∗: bd

In profile A we see that in total, a and b are each approved
by 2ℓ∗ voters and c and d are each approved by 2ℓ∗+2 voters,
while in A′ two voters additionally approve a. When applying
majoritarian portioning (with lexicographic tie-breaking), we
derive for A that wa = 0, wb = 2ℓ∗, wc = 2ℓ∗ + 2, and
wd = 2. In more detail, we first allocate 2ℓ∗ + 2 votes to c
because of the lexicographic tie-breaking. After removing all
voters who approve c, the approval score of d is ℓ∗+2 and the
approval score of b is 2ℓ∗. Since ℓ∗ ≥ 2, we next allocate 2ℓ∗
votes to b. Finally, only the two voters who approve d remain,
giving d a weight of 2. Now, using the definition of ℓ∗ and
j∗, it follows that f assigns the first j∗ seats to c because
ℓ∗+1
g(j′) > ℓ∗

g(0) for all j′ < j∗. In contrast, ℓ∗+1
g(j∗) ≤

ℓ∗

g(0) implies
that the last seat goes to b. Hence, f outputs a committee W
with W (c) = j∗ and W (b) = 1

Analogous computations as for A show that majoritarian
portioning results in the following weights for A′: wa =
2ℓ∗ + 2, wb = 0, wc = 2, wd = 2ℓ∗. Then, a symmetric
analysis as for A shows that f elects the committee W ′ with
W ′(a) = j∗ and W ′(d) = 1. Finally, note that A and A′ only
differ in the ballot of the second type of voters. Since these
voters approve only d in A but W (d) = 0, strategyproofness
for unrepresented voters requires that d cannot obtain a seat if
these voters manipulate. However, by letting them deviate one
after another, the outcome changes eventually in their favor,
which means that f can be manipulated by unrepresented
voters.
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