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Abstract. We observe that ranking systems—a theoretical framework
for web page ranking and collaborative filtering introduced by Altman
and Tennenholtz—and tournament solutions—a well-studied area of so-
cial choice theory—are strongly related. This relationship permits a mu-
tual transfer of axioms and solution concepts. As a first step, we formally
analyze a tournament solution that is based on Google’s PageRank al-
gorithm and study its interrelationships with common tournament solu-
tions. It turns out that the PageRank set is always contained in both the
Schwartz set and the uncovered set, but may be disjoint from most other
tournament solutions. While PageRank does not satisfy various stan-
dard properties from the tournament literature, it can be much more
discriminatory than established tournament solutions.

1 Introduction

The central problem of the literature on tournament solutions is as appealing as
it is simple: Given an irreflexive, asymmetric, and complete binary relation over
a set, find the “maximal” elements of this set. As the standard notion of maxi-
mality is not well-defined in the presence of cycles, numerous alternative solution
concepts have been devised and axiomatized [see, e.g., 14, 12]. In social choice
theory, the base relation, which we call dominance relation, is usually defined
via pairwise majority voting, and many well-known tournament solutions yield
attractive social choice correspondences. Recently, a number of concepts have
been extended to the more general setting of incomplete dominance relations
[9, 17, 6, 5]. These generalized dominance relations are commonly referred to as
weak tournaments.

Motivated by the problem of ranking web pages based solely on the structure
of the underlying link graph, Altman and Tennenholtz [3] introduced the notion
of a ranking system, which maps each (strongly connected) directed graph to a
complete preorder on the set of vertices. Obviously, this notion is strongly re-
lated to that of a tournament solution. In fact, Moulin [14] identifies “ranking
the participants of a given tournament” as an important open problem. While
little effort has been made so far to solve this problem, this is precisely what
ranking systems achieve for strongly connected weak tournaments. Altman and
? This material is based upon work supported by the Deutsche Forschungsgemeinschaft
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Tennenholtz do not refer to the vast literature on tournament solutions, and their
recent work on ranking systems does not seem to be well known in the tourna-
ment community. This is regrettable for two reasons. For one, ranking systems
address a problem that has long been neglected in social choice theory. Secondly,
both research areas could benefit from a mutual transfer of concepts and axioms.
We take a first step in this direction by formally analyzing a tournament solution
that is based on Google’s PageRank ranking system.

2 Preliminaries

2.1 Weak Tournament Solutions

Fix an infinite set A. A weak tournament is a pair G = (A,�) of a finite set A ⊆
A of alternatives and an irreflexive and asymmetric dominance relation �⊆ A×
A. Intuitively, a � b means that a “beats” b in a pairwise comparison. We write
T for the set of all weak tournaments, T (A) for the set of all weak tournaments
on A, and G|A′ = (A′, A′×A′ ∩ �) for the restriction of G ∈ T (A) to a subset
A′ ⊆ A of the alternatives. A weak tournament is also called a dominance graph,
and a weak tournament (A,�) is a tournament if � is complete. In the presence
of (directed) cycles in the dominance relation, the concept of “best” or maximal
elements is no longer well-defined, and various solution concepts that take over
the role of maximality have been suggested. Some of these will be considered
in Section 3. Formally, a weak tournament solution is a total function S : T →
2A\{∅} such that for all G ∈ T (A), S(G) ⊆ A. We further require S to commute
with any automorphism of A, and to select the maximum, i.e., an alternative
that dominates any other alternative, whenever it exists.

2.2 The PageRank Set

PageRank assigns scores to pages on the Web based on the frequency with which
they are visited by a “random surfer” [7, 15]. Pages are then ranked in accordance
with these scores. It is straightforward to apply a similar idea to dominance
graphs, starting at some alternative and then randomly moving to one of the
alternatives that dominate the current one. Intuitively, this corresponds to a
contestation process where the status quo is constantly being replaced by some
dominating alternative. Arguably, alternatives that are chosen more frequently
according to this process are more desirable than alternatives that are chosen
less frequently.1 A tournament solution based on PageRank should thus choose
the alternatives visited most often by an infinite random walk on the dominance
graph.2

1 The key idea of this procedure is much older than PageRank and goes back to work
by Daniels [8] and Moon and Pullman [13].

2 It should be noted that transitions take place in the reverse direction of the domi-
nance relation, from a dominated to a dominating alternative.
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More formally, let G = (A,�) ∈ T (A) be a dominance graph, and let
d(a,G) = { b ∈ A | a � b } denote the dominion and d(a,G) = { b ∈ A | b � a }
the dominators of alternative a ∈ A. Further let α ∈ [0, 1] be a parameter called
the damping factor. Applying the original definition of Page et al. [15] to domi-
nance graphs, the PageRank score prα(a,G) of alternative a in G is given by

prα(a,G) = α

 ∑
b∈d(a,G)

pr(b,G)
|d(b,G)|

 +
(1− α)
|A|

.

That is, the score of a is determined by the scores of the alternatives it dominates,
normalized by the number of alternatives dominating these, plus a constant.

It is well known that a solution to this system of equations such that∑
a∈A prα(a,G) = 1 corresponds to a stationary distribution of a Markov chain,

and that a unique stationary distribution exists if the chain is irreducible, i.e.,
if the dominance graph is strongly connected [see, e.g., 11]. Undominated alter-
natives in the dominance graph lead to sinks in the Markov chain, thus making
it irreducible. This problem can be handled by attaching either a self-loop or
(uniform) transitions to all other states in the Markov chain to these sinks. The
latter method, being the one commonly used in web page ranking, is clearly
undesirable in the context of tournament solutions: For example, an undomi-
nated alternative that dominates some alternative inside a strongly connected
subgraph would no longer be selected. Instead, we obtain the transition matrix of
the Markov chain by transposing the adjacency matrix of the dominance graph,
changing the diagonal entry to 1 in every row with sum 0, and row-normalizing
the resulting matrix.

In the absence of sinks, prα is well-defined for every α < 1. In the context
of web page ranking, α has to be chosen carefully to accurately model the prob-
ability that a human user surfing the Web will stop following links and instead
move to a random page [see, e.g., 18]. Furthermore, the ability to differentiate
between elements with lower scores is lost as α increases. The situation is dif-
ferent when PageRank is to be used as a tournament solution. In this case we
want the solution to depend entirely on the dominance relation, and we are only
interested in the best alternatives rather than a complete ranking. We thus want
to compute prα for α as close to 1 as possible. It turns out that limα→1 prα(a,G)
is always well-defined [4], and we arrive at the following definition.

Definition 1. Let G ∈ T (A) be a weak tournament. The PageRank score
of an alternative a ∈ A is defined as pr(a,G) = limα→1 prα(a,G) where∑
a∈A prα(a,G) = 1. The PageRank set of G is given by PR(G) = { a ∈ A |

pr(a,G) = maxb∈A pr(b,G) }.3

Boldi et al. [4] further observe that limα→1 prα must equal one of the (pos-
sibly infinitely many) solutions of the system of equations for pr1. This can be
3 Another tournament solution based on random walks in tournaments, called the

Markov set, is described by Laslier [12]. While their definitions are similar, there
exists a tournament with five alternatives for which the two solutions are disjoint.
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used to relate the PageRank set to a well-known tournament solution called the
Schwartz set.

Definition 2. Let G ∈ T (A) be a weak tournament. A set X ⊆ A has the
Schwartz property if no alternative in X is dominated by some alternative not
in X. The Schwartz set T (G) is then defined as the union of all sets with the
Schwartz property that are minimal w.r.t. set inclusion.

We further write T (G) for the set of weak tournaments induced by the minimal
subsets of A with the Schwartz property.

It is well known from the theory of Markov chains that every solution of the
system of equations for α = 1 must satisfy pr1(a,G) = 0 for all a /∈ T (G), and
pr1(a,H)/pr1(b,H) = pr1(a,G)/pr1(b,G) if a, b ∈ A′ for some H = (A′,�′) ∈
T (G) [see, e.g., 11]. We thus have the following.

Fact 1. Let G ∈ T (A) be a weak tournament. Then, for all a ∈ A \
T (G), pr(a,G) = 0, and for all H = (A′,�′) ∈ T (G) and a, b ∈ A′,
pr(a,H)/pr(b,H) = pr(a,G)/pr(b,G).

In particular, PR(G) can be determined by directly computing pr1 for the
(strongly connected) graph G|T (G) if |T (G)| = 1, a property that always holds in
tournaments. If there is more than one minimal set with the Schwartz property,
relative scores of alternatives in different elements of T (G) may very well depend
on the dominance structure outside the Schwartz set, and it is not obvious that
scores can be computed directly in this case.

3 Set-Theoretic Relationships

It follows directly from Fact 1 that the PageRank set is always contained in
the Schwartz set. We will now investigate its relationship to various other tour-
nament solutions considered in the literature [see, e.g., 12, 6, 5]. In particular,
we look at the (bidirectional) uncovered set and three other solutions that are
always contained in the uncovered set.

Definition 3. The uncovered set UC (G) of a weak tournament G ∈ T (A) is
given by

UC (A) = {x ∈ A | y C x for no y ∈ A } ,

where aC b if a � b and for all c ∈ A, c � a implies c � b and b � c implies
a � c.

The Banks set B(G) of G contains the maximal element of each linear sub-
relation of the dominance relation induced by a set of alternatives that is itself
maximal w.r.t. set inclusion, i.e., a1 ∈ B(G) if there exists a subset A′ ⊆ A,
A′ = {a1, . . . , ak} such that

(i) ai � aj if 1 ≤ i < j ≤ k, and
(ii) there is no b ∈ A such that b � ai for all 1 ≤ i ≤ k.
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Fig. 1. PR(G) can have an empty intersection with UC 2(G), B(G), SL(G), and C(G).
An edge incident to a circle enclosing a set of alternatives is used to denote that there
is an edge for each of these alternatives.

The Slater set SL(G) of G consists of the maximal elements of those acyclic
relations that disagree with a minimal number of elements of the dominance
relation, i.e.,

SL(G) = { a ∈ A | d(a,G′) = ∅ for some G′ ∈ argmin
G′′∈T (A)

∆(G,G′′)} ,

where ∆((A,�), (A,�′)) = |{ (a, b) ∈ A×A | a � b and a �′ b }|.
The Copeland set C(G) of G is the set of all alternatives for which the

difference between the number of alternatives it dominates and the number of
alternatives it is dominated by is maximal, i.e.,

C(G) = { a ∈ A | a ∈ argmax
a′∈A

|d(a′, G)| − |d(a′, G)| } .

We further write UC k(G) = UC k−1(G|UC (G)) for the kth iteration of the un-
covered set. It is known that the Banks set intersects with all of these iterations,
whereas SL(G) may have an empty intersection with UC2(G). The main result
of this section is stated next.

Theorem 1. PR(G) is always contained in UC (G). PR(G) may have an empty
intersection with UC 2(G), B(G), SL(G), and C(G).

Proof. For the inclusion in the uncovered set, we actually prove a stronger state-
ment, namely that PR(G) ⊆ UC d(G), where UC d(G) is the set of downward
uncovered elements of G, and a ∈ A downward covers b ∈ A, denoted aCd b,
if a � b and for all c ∈ A, b � c implies a � c. Now consider a /∈ UC d(G).
By definition, there exists some b ∈ A such that bCd a. Furthermore, by Equa-
tion 2.2, prα(b) ≥ prα(a) for every α ∈ ]0, 1], and thus pr(b) ≥ pr(a), with
a strict inequality if pr(a) > 0. Since pr(c) must be strictly positive for some
c ∈ A, a /∈ PR(G) follows.

Now consider the dominance graphs in Figure 1. All three of them are
strongly connected, such that the system of equations given by Equation 2.2 has
a unique solution summing to 1 for α = 1. It is straightforward but somewhat
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cumbersome to verify that the solution for G1 is given by pr1(b,G1) = pb/1278
where pa = 114, pb = 93 if b ∈ A1, pb = 96 if b ∈ A2, pb = 112 if b ∈ A3, and
pb = 56 if b ∈ A4. Thus, PR(G1) = {a}. On the other hand, for all b ∈ A2 and
c ∈ A4, b covers c in G1, and for all b ∈ A3, b covers a in G|(A\A4), such that
a /∈ UC 2(G1) (more precisely, UC 2(G1) = A1 ∪A2 ∪A3).

For G2, the solution is given by pr1(a,G2) = 4/28, and pr1(b,G2) = 3/28 for
all b ∈ A \ {a}. Thus, PR(G2) = {a}. On the other hand, for every alternative
b ∈ A such that a � b, there exists an alternative c ∈ A such that c � a and
c � b. Furthermore, there are no alternatives b, c ∈ A such that a � b, a � c,
and b � c, and thus a /∈ B(G2) (more precisely, B(G2) = A \ {a}).

Finally, the solution for G3 is given by pr1(a,G3) = 4/12, pr1(b,G3) = 2/12
if b ∈ A′, and pr1(b,G3) = 1/12 if b ∈ A \ (A′ ∪ {a}), such that PR(G3) = {a}.
On the other hand, it is easily verified that { (a, b) | b ∈ A′ } is the only set of
two or fewer edges the removal of which makes G3 cycle-free. At the same time,
the members of A′ maximize the difference between out- and in-degree over all
vertices of G3. Thus, SL(G3) = C(G3) = A′. ut

4 Properties

In this section, we evaluate PageRank using standard properties from the litera-
ture on social choice theory and tournament solutions [see, e.g., 9, 12]. Although
some of the properties were originally introduced in the context of complete
dominance relations, they naturally extend to the incomplete case.

In the following definition we use the notion of a component of a dominance
graph. A nonempty subset X ⊆ A of alternatives is called a component of G ∈
T (A) if for all a, b ∈ X, d(a,G) \X = d(b,G) \X and d(a,G) \X = d(b,G) \X.

Definition 4. A weak tournament solution S satisfies

– monotonicity if a ∈ S(G) implies a ∈ S(G′) whenever G|A\{a} = G′|A\{a},
d(a,G′) ⊇ d(a,G), and d(a,G′) ⊆ d(a,G);

– the strong superset property (SSP) if for all A′ ⊆ A, S(G|A′) = S(G)
whenever A′ ⊇ S(G);

– the Aı̈zerman property if for all A′ ⊆ A, S(G|A′) ⊆ S(G) whenever A′ ⊇
S(G);

– idempotency if S(G|S(G)) = S(G);
– independence of the losers if S(G) = S(G′) whenever G|S(G) = G′|S(G);
– weak composition-consistency if for every G ∈ T (A), every component X

of G and a, b ∈ X, and every G′ ∈ T (A) such that G|A\{a} = G′|A\{a} and
G|A\{b} = G′|A\{b}, S(G) ∩ (A \X) = S(G′) ∩ (A \X) and S(G) ∩X 6= ∅
implies S(G′) ∩X 6= ∅;

– γ∗ if for all A1, . . . Am ⊆ A, a ∈ S(G|Ai
) for 1 ≤ i ≤ m implies

S(G|∪m
i=1Ai

) 6= ∪mi=1Ai \ {a}.

Property γ∗ is a very weak version of (and implied by) the expansion property γ.
Weak composition-consistency is a relaxation of composition-consistency, which
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in turn requires a tournament solution to select the best alternatives from the
best components for any partition of the set of alternatives into components.
Weak composition-consistence is weaker in that it does not require invariance
of the choice under addition and removal of alternatives within a component.
Finally, Aı̈zerman and idempotency are weakenings of SSP, their conjunction is
equivalent to SSP.

Two properties of PageRank scores will be useful in the following. For the
first property, consider a set A′ ⊆ A of alternatives with identical dominators
and dominion, such that no member of the dominion is dominated by any al-
ternative outside A′. If the size of A′ increases, then the PageRank scores are
distributed equally among all its members, while the PageRank scores of all
other alternatives remain the same.4

Lemma 1. Consider a dominance graph G = (A,�) such that |T (G)| = 1 and
a set A′ ⊆ A of alternatives such that for all a, b ∈ A′, d(a,G) = d(b,G) and
d(a,G) = d(b,G), and for all b ∈ d(a,G), d(b,G) = A′. Consider further a set
A′′ of alternatives with A ∩A′′ = ∅ and the dominance graph G′ = (A ∪A′′,�′)
such that for all a, b ∈ A, a �′ b if and only if a � b, and for all a ∈ A′, b ∈ A′′,
d(b,G′) = d(a,G) and d(b,G′) = d(a,G). Then, for all a ∈ A \ A′, pr(a,G′) =
pr(a,G), and for all a ∈ A′ ∪A′′, pr(a,G′) = |A′|/(|A′|+ |A′′|)pr(a,G).

Proof. Since |T (G)| = |T (G′)| = 1, Equation 2.2 has a unique solution for
α = 1 in both cases. Denote D = d(a,G) and D = d(a,G) for some arbitrary
a ∈ A′. The dominators and the dominion of each alternative a ∈ A \ (A′ ∪D)
are the same in both G and G′, such that pr1(a,G′) = pr1(a,G) if for all
b ∈ D, pr1(b,G′) = pr1(b,G). We show that the latter holds if for all b ∈ D,
pr(b,G′) = pr(b,G), and prove the statement of the lemma in the process.

For all a′ ∈ A′ ∪A′′ and a ∈ A′, we have

pr1(a′, G′) =
∑

b∈d(a′,G′)

pr1(b,G′)
|d(b,G′)|

=
∑

b∈d(a′,G′)

pr1(b,G′)
|A′|+ |A′′|

=

=
|A′|

|A′|+ |A′′|
∑

b∈d(a′,G′)

pr1(b,G′)
|A′|

=

=
|A′|

|A′|+ |A′′|
∑

b∈d(a,G)

pr1(b,G)
|d(b,G)|

=
|A′|

|A′|+ |A′′|
pr1(a,G) .

4 This bears some resemblance to the vote-by-committee axiom introduced by Altman
and Tennenholtz [3].
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Then, for all a ∈ D and a′ ∈ A′

pr1(a,G′) =
∑

b∈d(a,G′)

pr1(b,G′)
|d(b,G′)|

= |A′|pr1(a′, G′)
|D|

=

= (|A′|+ |A′′|) |A′|
|A′|+ |A′′|

pr1(a′, G′)
|D|

=
∑

b∈d(a,G)

pr1(b,G)
|D|

=

=
∑

b∈d(a,G)

pr1(b,G)
|d(b,G)|

= pr1(a,G) .

ut

It should be noted that the requirements of the lemma preclude any alternative
a ∈ A′ from covering other alternatives (both upward and downward), because
alternatives in d(a) are not allowed to be dominated by alternatives in d(a), nor
can a dominate an alternative in the dominion of a member of its own dominion.
Hence, the lemma does not contradict the fact that covered alternatives cannot
have maximum PageRank score.

The second property we are going to prove states that if a regular dominance
structure is introduced for a set of alternatives with identical dominators and
dominion, then the PageRank score of these alternatives increases, while the
PageRank scores of all other alternatives decrease uniformly.

Lemma 2. Consider a dominance graph G = (A,�) with |T (G)| = 1 and a
set A′ ⊆ A of alternatives, |A′| ≥ 3, such that for all a, b ∈ A′, pr(a,G) > 0,
d(a,G) = d(b,G), and d(a,G) = d(b,G). Consider further the dominance graph
G′ = (A,�′) such that for all a ∈ A and b ∈ A\A′, a �′ b if and only if a � b and
b �′ a if and only if b � a, and for all a, b ∈ A′, d(a,G′|A′) = d(b,G′|A′) > 0.
Then, for all a ∈ A′, pr(a,G′) = (d(a,G′)/d(a,G))pr(a,G), and for all a, b ∈
A \A′, pr(a,G′)/pr(b,G′) = pr(a,G)/pr(b,G).

Proof. Again denote D = d(a,G) and D = d(a,G) for some arbitrary a ∈ A′,
and let m = d(a,G′|A′). Consider a solution of the system of equations described
by Equation 2.2 for G and α = 1. Since G and G′ only differ in the restriction to
A′, the same solution also satisfies Equation 2.2 for G′ and all a ∈ A \ (A′ ∪D).
Furthermore, by construction, for all a ∈ A′,

pr1(a,G′) =
∑

b∈d(a,G′)

pr1(b,G′)
d(b,G′)

=
∑

b∈d(a,G)

pr1(b,G)
d(b,G)

+
m

m+D
pr1(a,G′)

and thus

pr1(a,G′) =
m+D

D
pr1(a,G) = (1 +

m

D
)pr1(a,G) .
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Then, for all a ∈ D,

pr1(a,G′) =
∑

b∈d(a,G′)

pr1(b,G′)
|d(b,G′)|

=
∑
b∈A′

pr1(b,G′)
|D|

+
∑

b∈d(a,G′)\A′

pr1(b,G′)
|d(b,G′)|

=

=
∑
b∈A′

m+D
D

pr1(b,G)

m+ |D|
+

∑
b∈d(a,G)\A′

pr1(b,G)
|d(b,G)|

=

=
∑
b∈A′

pr1(b,G)
|D|

+
∑

b∈d(a,G)\A′

pr1(b,G)
|d(b,G)|

= pr1(a,G) .

Normalization of this solution yields the statement of the lemma. ut

We use these properties to prove the main result of this section.

Theorem 2. PR satisfies monotonicity. PR does not satisfy SSP, idempotency,
Aı̈zerman, independence of the losers, weak composition-consistency, and γ∗.

Proof. As for monotonicity, it is obvious from Equation 2.2 that the score of an
alternative a ∈ A can never be decreased by having it dominate some alternative
it did not dominate before, neither can this increase the score of some other al-
ternative by more than the increase in the score of a. In particular, an alternative
with maximum score will remain an alternative with maximum score.

For the Aı̈zerman property and idempotency, consider the dominance graph
G obtained from a (directed) three-cycle by replacing one of the alternatives
with a pair of alternatives, i.e., G = ({a, b, c1, c2},�) where a � b and for
i ∈ {1, 2}, b � ci and ci � a. By Lemma 1, c1 /∈ PR(G). On the other hand,
G|{a,b,c1} is a three-cycle and thus c1 ∈ PR(G|{a,b,c1}), violating the Aı̈zerman
property. By the same argument, PR(G) = {a, b} and thus PR(G|PR(G)) = {a},
violating idempotency. Dutta and Laslier [9] show that SSP is equivalent to the
conjunction of the Aı̈zerman property and idempotency, and the fact that PR
does not satisfy the former follows from the fact that it does not satisfy the
latter two.

For independence of the losers and weak composition-consistency, consider
a set A = ]3

i=1Ai of alternatives, |Ai| = 3 for i ∈ {1, 2, 3}, and dominance
graphs G ∈ T (A) such that each member of A1 dominates each member of A2,
each member of A2 dominates each member of A3, and each member of A3

dominates each member of A1. If G|A1 is a three-cycle while G|A2 and G|A3

do not contain any edges, then, by Lemma 2, PR(G) ∩ (A2 ∪ A3) = ∅. This
violates weak composition-consistency. If on the other hand G|Ai

is a three-cycle
for each set i ∈ {1, 2, 3}, then equation Equation 2.2 looks exactly the same for
all alternatives, and PR(G) = ∪3

i=1Ai. Together with the above, this violates
independence of the losers.

For γ∗, consider the dominance graph G shown in Figure 2 and the sets
A1 = {a1, a2, a3} and Ai = {a1, ai}, 4 ≤ i ≤ 8. It is easily verified that for
i = 1 and for 4 ≤ i ≤ 8, a1 ∈ PR(G|Ai

). On the other hand, G is strongly
connected and pr1(ai, G) is defined for all i, 1 ≤ i ≤ 8. Some computation
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Fig. 2. PR does not satisfy γ∗.

yields pr(a1, G) = 1/15 and for all i, 2 ≤ i ≤ 8, pr(ai, G) = 2/15. Thus,
PR(G) = A \ {a1}, violating γ∗. ut

Let us now consider a property of tournament solutions that is in some
sense orthogonal to the ones considered so far, namely discriminatory power.
Indeed, the above properties describe which elements should be chosen given that
some other elements are chosen as well, or should still be chosen as the overall
set of alternatives changes. As we have shown, the PageRank set is uniformly
smaller than both the Schwartz set and the uncovered set. We can again use
Lemma 1 to establish that PageRank can be arbitrarily more discriminatory than
every composition-consistent solution (e.g., UC, UC2, or B) in the sense that
there exist instances where PageRank yields a singleton and any composition-
consistent solution does not discriminate at all.

Theorem 3. For any composition-consistent solution concept S and any set A
of alternatives with |A| ≥ 5, there exists a dominance graph G ∈ T (A) such that
|PR(G)| = 1 and S(G) = A.

Proof. Given a set A of alternatives, |A| = k, partition A into sets A1, A2, and
A3 with |A1| = 1, |A2| = b(k− 1/2)c, and |A3| = d(k− 1/2)e and let G = (A,�)
with �= (A1×A2)∪(A2×A3)∪(A3×A1). Then, S(G) = A due to the fact that
S is invariant under automorphisms of {A1, A2, A3} and composition-consistent.
On the other hand, A2 and A3 each contain at least two alternatives if k ≥ 5,
and, by Lemma 1, PR(G) = A1. ut

Similar properties, although less severe, can also be shown individually for solu-
tions that are not composition-consistent, like the Slater set. We leave it as an
open problem whether there exist dominance graphs in which PageRank yields
a significantly larger choice than any of these sets.

It should finally be noted that PageRank has the advantage of being effi-
ciently computable (if |T (G)| = 1), whereas determining the Banks or the Slater
set is NP-hard even in tournaments [20, 1].
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5 Conclusion

The contribution of this paper is twofold. First, we identified a strong relation-
ship between ranking systems and tournament solutions. Secondly, we formally
analyzed PageRank using properties and solution concepts defined in the lit-
erature on tournament solutions. PageRank fails to satisfy a number of these
properties, but on the other hand is very discriminatory—a well-known issue of
most established tournament solutions [10]. It is open to debate whether these
results cast doubt upon the significance of PageRank as a tournament solution,
or the usefulness of some of the axiomatic properties used in the tournament
literature.

An interesting problem for future work is to unify axioms in the literature
on ranking systems [3, 2, 16, 19] and tournament solutions [e.g., 12]. Some of
these axioms are apparently based on very similar ideas.

Acknowledgements We thank Markus Holzer for helpful discussions and Paul
Harrenstein for comments on a draft of this paper.
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