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Abstract

Coalition formation is concerned with the question of how to
partition a set of agents into disjoint coalitions according to
their preferences. Deviating from most of the previous work,
we consider an online variant of the problem, where agents
arrive in sequence and whenever an agent arrives, they have
to be assigned to a coalition immediately and irrevocably. The
scarce existing literature on online coalition formation has fo-
cused on the objective of maximizing social welfare, a de-
manding requirement, even in the offline setting. Instead, we
seek to achieve stable coalition structures in an online setting,
and focus on stability concepts based on deviations by single
agents. We present a comprehensive picture in additively sep-
arable hedonic games, leading to dichotomies, where positive
results are obtained by deterministic algorithms and negative
results even hold for randomized algorithms.

Introduction
The formation of stable coalition structures is an impor-
tant concern in multi-agent systems. The key question is
how to partition a set of agents into reasonable coalitions.
A standard framework for this is the consideration of he-
donic games (Drèze and Greenberg 1980). In these games,
a set of agents expresses their preferences over subsets of
agents containing themselves, i.e., their potential coalitions.
The output is then a coalition structure, where all agents are
assigned to a unique coalition. In our work, we consider ad-
ditively separable hedonic games, one of the most prominent
classes of hedonic games, where cardinal utilities for single
agents encode the preferences, and a sum-based aggregation
obtains the utility for a coalition.

Hedonic games have been used to model various aspects
of group interaction, such as the formation of research teams
(Alcalde and Revilla 2004) or the detection of communi-
ties (Aziz et al. 2019). A commonality of most research is
that the focus is on a single game, which is fully specified
and for which a desirable outcome is searched. However,
this misses an important feature of many real-life scenarios:
Agents might arrive over time and have to be assigned to
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existing coalitions. For instance, in a company, most work-
ers are assigned to a department or team, and new hires join
existing teams.

Based on such considerations, Flammini et al. (2021b)
have introduced an online variant of hedonic games that
adds the arrival of agents over time. Their goal is to achieve
high social welfare, and they find that a greedy algorithm
performs best in a competitive analysis. However, this algo-
rithm has an unbounded competitive ratio even if the number
of agents or the utility range is unbounded. In subsequent
work, Bullinger and Romen (2023a) show that it is possi-
ble to get rid of utility dependencies of the competitive ratio
under certain model assumptions, e.g., a uniformly random
arrival of agents. They achieve a competitive ratio of Θ(n),
which is essentially the best approximation guarantee that
we can hope for by efficient algorithms because, for every
ϵ > 0, it is NP-complete to approximate social welfare by
a factor of n1−ϵ (Flammini, Kodric, and Varricchio 2022,
Theorem 17).1

By contrast, the scarce existing literature on online coali-
tion formation omits other common objectives in coalition
formation. Stability probably is the most studied solution
concept for hedonic games in general and additively separa-
ble hedonic games in particular (see, e.g., Bogomolnaia and
Jackson 2002; Sung and Dimitrov 2010; Aziz, Brandt, and
Seedig 2013; Woeginger 2013; Gairing and Savani 2019;
Brandt, Bullinger, and Tappe 2022; Brandt, Bullinger, and
Wilczynski 2023; Bullinger 2022). In our work, we close
this research gap and consider the question of whether no-
tions of stability can be achieved in an online manner.

We focus on stability concepts based on deviations by sin-
gle agents, namely Nash stability, individual stability, con-
tractual Nash stability, and contractual individual stability.
In addition, we study Pareto optimality, which is particu-
larly interesting because it is a natural weakening of the de-
manding objective of maximizing social welfare while it can
still be interpreted as a notion of stability (Morrill 2010).
We present a comprehensive picture of the capabilities and
impossibilities of online algorithms aiming to compute sta-
ble partitions. For this, we consider natural utility restric-
tions, such as symmetry or the distinction of friends and en-

1This result even holds for the class of aversion-to-enemies
games that we will introduce and investigate later.
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strict FENG FEG AFG AEG

NS ✗(Th. 5) ✗(Th. 5) ✗(Th. 5) ✗(Th. 5) ✗(Th. 5)
IS ✗(Th. 5) ✗(Th. 5) ✗(Th. 5) ✗(Th. 5) ✗(Th. 5)
CNS ✗(Th. 2) ✗(Th. 4) ✓(Th. 1) ✗(Th. 2) ✓(Th. 1)
CIS ✓(Co. 1) ✗(Th. 4) ✓(Co. 1) ✓(Co. 1) ✓(Co. 1)
PO ✓(Th. 3) ✗(Th. 4) ✓(Th. 3) ✓(Th. 3) ✓(Th. 3)

Table 1: Computability of stable partitions by online algo-
rithms; for definitions of stability concepts and utility re-
strictions, see ?? . A checkmark (✓) means that there ex-
ists a deterministic online algorithm that can compute the
desired partition. A cross (✗) means that there exists no ran-
domized online algorithm that outputs the desired partition
with probability bounded away from 0. All negative results
hold even for the case of symmetric games. Of the positive
results, only the results for CNS need symmetry.

emies, which lead to subclasses of additively separable he-
donic games like appreciation-of-friends games or aversion-
to-enemies games (Dimitrov et al. 2006). Our findings are
summarized in Table 1.

A large part of our results is negative and proves the
nonexistence of randomized algorithms capable of comput-
ing stable coalition structures under strong utility restric-
tions. This is even the case for solution concepts like Pareto
optimality or contractual Nash stability, for which solutions
are guaranteed to exist in any hedonic game (Aziz and Sa-
vani 2016). By contrast, we obtain deterministic online algo-
rithms capable of computing contractually Nash-stable and
Pareto-optimal coalition structures in restricted classes of
games. While such positive results seem rare, they entail
very strong stability guarantees. The associated algorithms
do not only output a final stable coalition structure but they
maintain stability throughout the entire arrival process of
agents. Otherwise, they would fail their promised guarantee
on a partial instance. Hence, these algorithms are suitable
for every application with an indefinite time horizon, where
new agents can arrive continuously.

Related Work
Our work contributes to two streams of work: the consider-
ation of coalition formation models in economic theory and,
more recently, the AI literature as well as the investigation
of online algorithms in related settings, mostly in theoretical
computer science. Here, we give an account of both.

Coalition formation in the framework of hedonic games
was first studied by Drèze and Greenberg (1980) and pop-
ularized two decades later (Banerjee, Konishi, and Sönmez
2001; Cechlárová and Romero-Medina 2001; Bogomolnaia
and Jackson 2002). Bogomolnaia and Jackson (2002) intro-
duced additively separable hedonic games (ASHGs), which
are since then an ongoing subject of study. Aziz and Savani
(2016) present a survey of this stream of work. The majority
of the research on ASHGs considers the offline setting and
focuses on the computational complexity of stability con-
cepts (Dimitrov et al. 2006; Olsen 2009; Sung and Dimitrov
2010; Aziz, Brandt, and Seedig 2013; Gairing and Savani

2019; Flammini et al. 2021b; Brandt, Bullinger, and Tappe
2022; Bullinger 2022), but some more recent studies also
consider economic efficiency in the sense of Pareto optimal-
ity (Elkind, Fanelli, and Flammini 2020; Bullinger 2020), or
strategyproofness (Flammini et al. 2021a). Most important
to our work, Dimitrov et al. (2006) and Brandt, Bullinger,
and Tappe (2022) consider stability in succinct classes of
hedonic games based on the distinction of friends and ene-
mies, and the previously cited work settles the complexity
of many single-agent stability notions (including all of the
notions we consider here) in the offline setting. Moreover,
Bullinger (2020) presents a polynomial-time algorithm to
compute Pareto-optimal partitions for symmetric ASHGs.

Like we mentioned in the introduction, online ASHGs
have been introduced by Flammini et al. (2021b) and sub-
sequently been studied by Bullinger and Romen (2023a).
Moreover, Pavone et al. (2022) study online hypergraph
matching. Their model can be interpreted as coalition forma-
tion with bounded coalition sizes. In contrast to Flammini
et al. (2021b) and Bullinger and Romen (2023a), Pavone
et al. (2022) do not assume additively separable utilities and
agents do not have to be matched immediately at arrival, but
they depart from the market unmatched after a fixed time.
All three works solely consider the maximization of social
welfare or the minimization of total cost.

In addition, a recent series of work considers devia-
tion dynamics for hedonic games, which constitute an-
other time-dependent model of coalition formation (see,
e.g., Bilò et al. 2018; Brandt, Bullinger, and Wilczyn-
ski 2023; Carosi, Monaco, and Moscardelli 2019). In par-
ticular, ASHGs and close variants are studied in depth
(Bilò, Monaco, and Moscardelli 2022; Boehmer, Bullinger,
and Kerkmann 2023; Brandt, Bullinger, and Tappe 2022;
Bullinger and Suksompong 2023).

From the literature on online algorithms, most related
to our setting is online matching, which originates from
the seminal paper by Karp, Vazirani, and Vazirani (1990).
Huang and Tröbst (2023) very recently survey this line of
work. Matchings can be seen as a variant of hedonic games,
where coalitions are restricted to be of size at most 2. Dif-
ferent to our work, the input instances are bipartite and only
one side of the agents appears online. The objective in online
matching is usually to find a matching of maximum cardinal-
ity or weight. Karp, Vazirani, and Vazirani (1990) introduce
the famous ranking algorithm, which achieves a competitive
ratio of 1 − 1/e. Subsequent work considers related models
with edge weights, all agents arriving online, or nonbipar-
tite matching (Feldman et al. 2009; Wang and Wong 2015;
Huang et al. 2018). While it is possible to achieve the com-
petitive ratio of 1 − 1/e in the weighted setting (Feldman
et al. 2009), this is usually impossible if all agents arrive
online (Wang and Wong 2015; Huang et al. 2018).

Additionally, stability has been considered for online
matching to some extent. Doval (2022) extends stability ac-
cording to Gale and Shapley (1962) to an online setting, and
shows that her extension can always be satisfied. Still, her
model has several conceptual differences to the online mod-
els discussed thus far. Most notably, agents do not have to be
matched immediately (but suffer from a discount in utility if
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matched later) and may arrive in batches. Moreover, Gajula-
palli et al. (2020) study a two-stage process for school choice
with the goal of preserving stability. While this is in gen-
eral not possible, they present efficient algorithms that max-
imize the number of additionally matched agents or mini-
mize the number of reallocations compared to the matching
of the first stage. More loosely related, Benadè and Sahoo
(2023) touch upon an online model for recommender sys-
tems, where they investigate stability mostly experimentally.

Preliminaries
In this section, we present preliminaries. For an integer i ∈
N, we define [i] := {1, . . . , i}.

Additively Separable Hedonic Games
Let N be a finite set of n agents. Any subset of N is called
a coalition. We denote the set of all possible coalitions con-
taining agent i ∈ N by Ni := {C ⊆ N : i ∈ C}. A coali-
tion structure (or partition) is a partition of the agents. Given
an agent i ∈ N and a partition π, let π(i) denote the coali-
tion of i, i.e., the unique coalition C ∈ π with i ∈ C.

A hedonic game is a pair (N,≿) consisting of a set N
of agents and a preference profile ≿ = (≿i)i∈N where ≿i

is a weak order over Ni which represents the preferences of
agent i. The semantics is that agent i strictly prefers coalition
C to coalition C ′ if C ≻i C ′ and is indifferent between
coalitions C and C ′ if C ∼i C

′.
An additively separable hedonic game (ASHG) consists

of a set N of agents and a tuple u = (ui)i∈N of utility
functions ui : N → Q, such that, for every pair of coali-
tions C,C ′ ∈ Ni, it holds that C ≿i C ′ if and only if∑

j∈C ui(j) ≥
∑

j∈C′ ui(j) (Bogomolnaia and Jackson
2002). We usually represent an ASHG by the pair (N, u).
Clearly, an ASHG is a hedonic game. We abuse notation and
extend the definition of u to coalitions C ∈ Ni and partitions
π by ui(C) :=

∑
j∈C ui(j) and ui(π) := ui(π(i)), respec-

tively. Also, an ASHG can be represented equivalently by a
complete directed graph G = (N,E) with weight ui(j) on
arc (i, j). An ASHG is said to be symmetric if, for every pair
of agents i, j ∈ N , it holds that ui(j) = uj(i). In this case,
we also write u(i, j) := ui(j). A symmetric ASHG can be
naturally represented by a complete undirected graph. Fol-
lowing Aziz, Brandt, and Seedig (2013), an ASHG is said to
be strict if, for every pair of agents i, j ∈ N , it holds that
ui(j) ̸= 0.

There are various important subclasses of ASHGs with
restricted utility values. Given a subset U ⊆ Q, an ASHG
is called a U -ASHG if, for every pair of agents i, j ∈ N ,
it holds that ui(j) ∈ U . In particular, there are ASHGs
that allow a natural interpretation in terms of friends and
enemies. A U -ASHG is called an appreciation-of-friends
game (AFG), aversion-to-enemies game (AEG), friends-
and-enemies game (FEG), or friends-enemies-and-neutrals
game (FENG) if U = {n,−1}, U = {1,−n}, U =
{1,−1}, or U = {1, 0,−1}, respectively (Dimitrov et al.
2006; Brandt, Bullinger, and Tappe 2022). In all of these
games, the utility for a coalition depends on the distinction
of friends and enemies, i.e., players that yield positive and

Nash Stability

Contractual Nash Stability Individual Stability

Contractual Individual Stability

Welfare Optimality

Pareto Optimality

Figure 1: Logical relationships between our solutions con-
cepts (see, e.g., Aziz and Savani 2016). An arrow from con-
cept α to concept β indicates that if a partition satisfies α,
then it also satisfies β. For reference, we also depict welfare
optimality.

negative utility, respectively. In FEGs and FENGs, friends
and enemies have equal importance, whereas in AFGs, a sin-
gle friend outweighs an arbitrary number of enemies, and in
AEGs, a single enemy annihilates any number of friends.

Solution Concepts
In this section, we define the solution concepts considered
in this paper. An overview of their logical relationships is
depicted in Figure 1. We assume that we are given a fixed
ASHG (N, u).

Notions of stability capture agents’ incentives to perform
deviations (Bogomolnaia and Jackson 2002; Dimitrov and
Sung 2007). A single-agent deviation performed by agent i
transforms a partition π into a partition π′ where π(i) ̸=
π′(i) and, for all agents j ̸= i, it holds that π(j) \ {i} =
π′(j) \ {i}. The basic idea of deviations is that the deviating
agent should have an immediate benefit from a deviation.
A Nash deviation is a single-agent deviation performed by
agent i such that ui(π

′) > ui(π). Any partition in which no
Nash deviation is possible is said to be Nash-stable (NS).

The drawback of Nash stability is that only the prefer-
ences of the deviating agent are considered, which might
seem too demanding in a context of cooperation. Therefore,
various refinements have been proposed, which addition-
ally require the consent of the abandoned or the welcoming
coalition. An individual deviation (or contractual deviation)
is a Nash deviation by agent i transforming π into π′ such
that, for all agents j ∈ π′(i)\{i} (or j ∈ π(i)\{i}), it holds
that uj(π

′) ≥ uj(π). Then, a partition is said to be individ-
ually stable (IS) or contractually Nash-stable (CNS) if it al-
lows for no individual or contractual deviation, respectively.
A single-agent deviation is called a contractual individual
deviation if it is both a contractual deviation and an individ-
ual deviation. A partition is said to be contractually individ-
ually stable (CIS) if it allows for no contractual individual
deviation. For a more concise notation, we refer to devia-
tions with respect to stability concept α ∈ {NS, IS, CNS,
CIS} as α deviations, e.g., IS deviations for α = IS. Simi-
larly, we refer to a partition satisfying stability concept α as
α partition.

Finally, we also consider Pareto optimality, which can be
seen as a stability guarantee, where the whole set of agents
cannot perform a group deviation. A partition π′ is said to
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Pareto-dominate a partition π if, for every agent i ∈ N , it
holds that ui(π

′) ≥ ui(π), and there exists an agent j ∈ N
with uj(π

′) > uj(π). A partition π is said to be Pareto-
optimal (PO) if it is not Pareto-dominated by another parti-
tion. Pareto optimality is a classical concept of economic
efficiency, and already was a primal objective during the
birth of hedonic games (Drèze and Greenberg 1980). Note
that Pareto optimality is a weakening of welfare optimal-
ity, which was the objective in the literature on online AS-
GHs thus far (Flammini et al. 2021b; Bullinger and Romen
2023a).

Online Coalition Formation
In this section, we introduce our model of online coalition
formation following the notation of Bullinger and Romen
(2023a). The online setting is not restricted to ASHGs, so
we define it for a general hedonic game G = (N,≿). Let
Σ(G) := {σ : [|N |] → N bijective} be the set of all orders
of the agent set N . Given a subset of agents M ⊆ N , let
G[M ] be the hedonic game restricted to agent set M . More-
over given a partition π of a set N and a subset of agents
M ⊆ N , we define π[M ] as the partition restricted to M as
π[M ] := {C ∩M : C ∈ π,C ∩M ̸= ∅}. Specifically, if M
consists of all agents except a single agent i ∈ N , then we
write π − i := π[N \ {i}].

An instance of an online coalition formation problem is a
pair (G, σ), where G = (N,≿) is a hedonic game and σ ∈
Σ(G). An online coalition formation algorithm for instance
(G, σ) gets as input the sequence G1, . . . , Gn, where, for
every i ∈ [n], Gi := G[{σ(j) : 1 ≤ j ≤ i}]. Then, for
every i ∈ [n], the algorithm has to produce a partition πi of
{σ(j) : 1 ≤ j ≤ i} such that

• the algorithm has only access to Gi and
• πi − σ(i) = πi−1.

The output of the algorithm is the partition πn. Given an on-
line coalition formation algorithm ALG , let ALG(G, σ) be
its output for instance (G, σ). If σ is clear from the context,
we omit it from this notation and simply write ALG(G).

More informally, the algorithm iteratively creates a parti-
tion such that it only has access to the utilities of the cur-
rently present agents when irrevocably adding a new agent
to an existing or new coalition. In addition to deterministic
algorithms, we also consider randomized algorithms. This
means that the decisions as to which coalition an agent is
added to can be random.

Unlike welfare optimality, stability concepts do not nat-
urally yield a quantitative maximization objective, and we
cannot directly perform the usual competitive analysis. In-
stead, we have qualitative objectives that are either satisfied
or not by an output. Therefore, we desire algorithms that
output stable partitions with high probability if agents arrive
online, which once again is a quantitative objective.

Consider a solution concept α ∈ {NS, IS, CNS, CIS, PO}
and an algorithm ALG . We define the α guarantee of ALG
as

Wα(ALG) := inf
G

min
σ∈Σ(G)

P(ALG(G, σ) is α).

Here, the probability is taken according to the randomized
decisions of ALG . Hence, Wα(ALG) is the worst-case
probability that ALG outputs an α partition.

Note that the α guarantee of deterministic algorithms is
either one—if the algorithm always outputs an α partition—
or zero—if the algorithm does not output an α partition for
some input instance.

Results
In this section, we present our results. For the consideration
of stability in online coalition formation, only instances that
allow for a desired partition are relevant. Otherwise, no al-
gorithm, and therefore especially no online algorithm, can
make any guarantee.2

In the literature on stability in ASHGs, two restrictions
have turned out to be vital for the existence of stable parti-
tions, namely symmetry and severe utility restrictions (Bo-
gomolnaia and Jackson 2002; Brandt, Bullinger, and Tappe
2022). In particular, in symmetric ASHGs, Nash-stable par-
titions (and therefore partitions satisfying all weaker sta-
bility notions) are guaranteed to exist (Bogomolnaia and
Jackson 2002). Moreover, in (possibly asymmetric) FEGs,
AEGs, and AFGs, it is guaranteed that individually sta-
ble and contractually Nash-stable partitions exist (Brandt,
Bullinger, and Tappe 2022). In this section, we will see (the
conjunction of) which of these assumptions are sufficient to
allow for the computation of stable outcomes in an online
manner, and which of the results in the offline setting cause
problems online.

Contractual Nash Stability
We start with the consideration of CNS, where every agent
in the abandoned coalition can veto a single-agent deviation.
As a warm-up, we start with a simple proposition that gives
a first insight, why computing stable partitions in an online
manner is a nontrivial task. Even the conjunction of sym-
metry and utility restrictions is not sufficient for computing
CNS partitions.

Proposition 1. There exists no deterministic online algo-
rithm, which always outputs a CNS partition for symmetric
AFGs.

Proof. Assume for contradiction that ALG always outputs
a CNS partition for symmetric AFGs. Consider a game, with
agent set {a, b, c} and symmetric utilities u(a, b) = −1 and
u(a, c) = u(b, c) = 3 with the arrival order a, then b, then c.
When b arrives, ALG has to create a new coalition as oth-
erwise the adversary stops with a coalition that is not CNS.
When c arrives, ALG cannot form a new singleton coalition
as otherwise a (or b) has a CNS deviation to join c. Assume
without loss of generality that ALG forms {a, c}. Then, b
has a CNS deviation to join them.

2We can also take the viewpoint of comparing the capabilities
of online algorithms with offline possibilities: if no stable partition
exists in an instance, then any online algorithm is as good as an
optimal offline algorithm.
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Algorithm 1: Contractually Nash-stable partition of online
symmetric {−y, x}-ASHGs for y ≥ x > 0.

Input: Symmetric {−y, x}-ASHG
Output: Contractually Nash-stable partition π

π ← ∅
for i = 1, . . . , n do
Ni ← {j ∈ [i− 1] : u(ai, aj) > 0}
if ∃j ∈ Ni with |π(aj)| = 1 then

π ← π \ {{aj}} ∪ {{ai, aj}}
else if ∃j ∈ Ni with |π(aj)| > 1 then
π ← π \ {π(aj)} ∪ {π(aj) ∪ {ai}}

else
π ← π ∪ {{ai}}

return π

However, the previous result seems to rely on small nega-
tive utilities. In fact, for other restricted classes, we can com-
pute CNS partitions with an online algorithm. The basic idea
of our algorithm is to establish that agents in a coalition of
size at least 2 are not allowed to leave their coalition be-
cause some other agent would veto this. Moreover, we use
our assumption on the utility values to achieve that agents in
singleton coalitions can never gain positive utility by joining
a constructed coalition.

Theorem 1. Let y ≥ x > 0. Then, there exists a determinis-
tic online algorithm, which always outputs a CNS partition
for symmetric {−y, x}-ASHGs.

Proof. Let y ≥ x > 0 and consider a symmetric {−y, x}-
ASHG with agent set N = {ai : 1 ≤ i ≤ n} and arrival
order a1, . . . , an. We apply Algorithm 1 to compute a par-
tition π. This algorithm proceeds as follows. Whenever a
new agent arrives, we check if there are agents with posi-
tive utility for this agent. Assume that this is the case. First,
we check if some of them is in a singleton coalition, and
if yes, then the new agent joins such a singleton coalition.
Otherwise, we add ai to any coalition of an agent with posi-
tive utility. If no such agent exists, we form a new singleton
coalition.

We claim that the partition π is contractually Nash-stable.
We show the claim by induction. Recall that, for every i ∈
[n], πi is the partition created by the algorithm after agent ai
has been assigned to a coalition.

Claim 1. For every i ∈ [n], the following statements are
true:

1. The partition πi is CNS.
2. For every coalition C ∈ πi with |C| ≥ 2 and ak ∈ C,

there exists an agent aℓ ∈ C with u(ak, aℓ) = x.
3. For every k ∈ [i] with |πi(ak)| = 1, it holds that, if ℓ ∈ [i]

with u(ak, aℓ) = x, then |πi(aℓ)| ≥ 2 and u(ak, b) =
−y for all b ∈ πi(aℓ) \ {aℓ}

Proof. All three statements are true for i = 1. Assume
now that the statements are true for some 1 ≤ i < n. Let
Ni+1 := {j ∈ [i] : u(ai+1, aj) > 0}. We start by proving

the second and third assertion by a case distinction accord-
ing to the different cases in the algorithm.

Assume first that there exists j ∈ Ni+1 with |πi(aj)| = 1
and that we have πi+1 = πi\{{aj}}∪{{aj , ai+1}}. Clearly,
the second assertion for i + 1 follows by induction and
u(ai+1, aj) = x. For the third assertion, let k ∈ [i+ 1] with
|πi+1(ak)| = 1 and consider ℓ ∈ [i+1] with u(ak, aℓ) = x.
Since |πi+1(ai+1)| = 2, it holds that k ̸= i + 1. By the in-
duction hypothesis for the third assertion, the third assertion
is true unless ℓ ∈ {i + 1, j}. Moreover, again by the induc-
tion hypothesis for the third assertion, u(ak, aj) = −y, and
therefore the assertion is true if ℓ = i+ 1.

Next, assume that there exists no j ∈ Ni+1 with
|πi(aj)| = 1, but Ni+1 ̸= ∅ and that πi+1 = πi \{πi(aj)}∪
{πi(aj)∪{ai+1}}. Note that the second assertion is true for
agent ai+1 because aj ∈ πi+1(ai+1). For all other agents,
the second assertion follows by induction. As there exists no
j ∈ Ni+1 with |π(aj)| = 1, the third assertion follows by
induction.

Finally, if Ni+1 = ∅, then πi+1 = πi ∪ {{ai+1}}. Hence,
the second assertion follows by induction and the third as-
sertion follows by induction for all agents except for ai+1.
For ai+1, it is true because Ni+1 = ∅.

It remains to prove the first assertion. We show how it
follows from the second and third assertion. By the second
assertion, no agent in a coalition of size at least 2 is allowed
to leave their coalition and can therefore not perform a CNS
deviation. On the other hand, by the third assertion, no agent
in a singleton coalition can improve their utility by joining
any other coalition. Hence, πi+1 is a CNS partition. This
completes the proof of the claim. ◁

The assertion of Theorem 1 follows from Claim 1 for the
case i = n. □

In particular, Theorem 1 applies to symmetric FEGs and
AEGs. For the latter, we need to deal with variable utility
values that depend on the number of players. However, The-
orem 1 applies to individual games, and each AEG satis-
fies the conditions of the theorem. By contrast, Theorem 1
breaks down if we additionally allow for the utility value
of 0, even if the positive and negative utilities are restricted
further. We defer this result to the consideration of CIS,
where we get it as a byproduct.

To conclude this section, we show how to strengthen
Proposition 1 for randomized algorithms. The idea is to
construct a random instance where every deterministic al-
gorithm performs badly. We can then apply Yao’s princi-
ple (Yao 1977) to bound the performance of any random-
ized algorithm. The idea is to create a random version of
the game in Proposition 1. In this game, every deterministic
algorithm succeeds to compute a CNS partition with proba-
bility at most 1/2. Modifying this instance by concatenating
k copies of this instance, every deterministic algorithm suc-
ceeds with probability at most 2−k.
Theorem 2. Let ALG be any randomized online algorithm
for symmetric AFGs. Then, it holds that WCNS(ALG) = 0.

Proof. Let k ∈ N be a positive integer. We define the ran-
dom AFG G = (N, u) where N =

⋃
i∈[k] Ni for Ni =
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{ai, bi, ci}. The random utilities are given by u(ai, bi) = −1
and, with probability 1/2 each, it holds that u(ai, ci) =
u(bi, ci) = 3k or u(ai, ci) = u(bi, ci) = −1. Note that
3k is the number of agents. All other utilities are set to −1.
The randomizations for the utilities within Ni and Nj for
1 ≤ i < j ≤ k are performed independently. The agents ar-
rive in the order N1, . . . , Nk and within a set Ni, first ai, then
bi, then ci. In other words, G is a uniformly random choice
from a set of 2k instances, each of which is a composition
of k gadgets drawn independently from the same distribu-
tion. Each of the gadgets is similar to the game considered
in Proposition 1.

Now, let ALG be an arbitrary deterministic algorithm for
AFGs and define π := ALG(G). By the proof of Proposi-
tion 1, for every i ∈ [k], ALG fails with probability 1/2 on
G[Ni].

Moreover, by design of the random instance, if ALG
computes a CNS partition on G, then, for all i ∈ [k], π[Ni]
is CNS for G[Ni]. Indeed, if u(ai, ci) = u(bi, ci) = −1,
then π is CNS only if all agents in Ni are in singleton coali-
tions, and hence π[Ni] is CNS for G[Ni]. If u(ai, ci) =
u(bi, ci) = 3k, then ai ∈ π(ci) and bi ∈ π(ci) as these
agents would perform a CNS deviation to join ci, otherwise.
Hence, π[Ni] = {Ni}, which is CNS for G[Ni].

Now, observe that, by the arrival sequence of the agents,
the performance of ALG on Ni is at most as good as the
performance of the best algorithm for G[Ni]. Therefore, us-
ing independence of the random selection of the utilities,
the probability that ALG computes a CNS partition on G
is bounded by the product of the probabilities that π[Ni] is
CNS for G[Ni]. Hence, π is a CNS partition with probability
at most 2−k.

By Yao’s principle, no randomized algorithm can com-
pute a CNS partition with probability more than 2−k for ev-
ery (deterministic) symmetric AFG. Since k is chosen arbi-
trarily, this proves the assertion.

Contractual Individual Stability and Pareto
Optimality
Next, we consider CIS, which is the weakening of CNS,
where an agent in the welcoming coalition can also veto
a single-agent deviation. Algorithm 1 can be used to com-
pute CIS partitions, even if we allow for strict and sym-
metric ASHGs as input. However, our next result achieves
even more and shows the existence of an online algorithm
for computing PO partitions in strict (and possibly nonsym-
metric) ASHGs. Recall that PO is a stronger notion than
CIS. The presented algorithm is an online adaptation of se-
rial dictatorships, an algorithmic approach that is known to
be successful for offline ASHGs (Aziz, Brandt, and Seedig
2013; Bullinger 2020) and online fair division (Aleksandrov
and Walsh 2019).3 The idea is to assign a dictator with ev-
ery created coalition and these are asked in the order of their
arrival whether they want newly arriving agents to be part of
their coalition.

3Similar to the online fair division literature, our online serial
dictatorship algorithm can be shown to have the additional desir-
able property of strategyproofness.

Algorithm 2: Pareto-optimal partition of online strict ASHG

Input: Strict ASHG
Output: Pareto-optimal partition π

π ← ∅, k ← 0
for i = 1, . . . , n do

if {j ∈ [k] : uℓj (ai) > 0} ̸= ∅ then
j∗ ← minj∈[k]{uℓj (ai) > 0}
π ← π \ {Cj∗} ∪ {Cj∗ ∪ {ai}}

else
k ← k + 1
Ck ← {ai}, ℓk ← ai
π ← π ∪ {Ck}

return π

Theorem 3. There exists a deterministic online algorithm,
which always outputs a PO partition for strict ASHGs.

Proof. Consider a strict ASHG with agent set N =
{ai : 1 ≤ i ≤ n} and arrival order a1, . . . , an. Apply Al-
gorithm 2 to compute a partition π. This algorithm proceeds
as follows: Whenever a new agent arrives, we ask for the ex-
isting coalitions whether the first agent in that coalition has a
positive utility for the new agent. If there exists such a coali-
tion, the new agent joins the coalition, which was created
first. Otherwise, the algorithm starts a new coalition with the
new agent.

For the proof, we use the notation from the algorithm and
assume that π = {Ci : 1 ≤ i ≤ m} for some m > 0. As-
sume further that these coalitions were formed in the order
C1, . . . , Cm and that agent ℓj was the first agent in coalition
Cj for all j ∈ [m]. Clearly, the algorithm fulfills the property
that, for all j ∈ [m], and agents x ∈ Cj \ {ℓj}, it holds that
uℓj (x) > 0. We refer to this property as observation (∗).

We are ready to prove that π is Pareto-optimal. Assume
that π′ is any partition such that, for all agents x ∈ N , it
holds that ux(π

′) ≥ ux(π). We claim that π′ = π.
By observation (∗) and the design of the algorithm, agent

ℓ1 is in their best coalition in π and, by strictness of the util-
ities, their best coalition is unique, so π′(ℓ1) = π(ℓ1) = C1.
We call this fact observation (∗∗). We now prove our claim
that π′ = π by induction over m, i.e., the number of coali-
tions in the partition π.

First, consider the case m = 1. Then, by observation (∗∗),
it holds that π′ = {π′(ℓ1)} = {π(ℓ1)} = π.

Now, assume that m > 1. By observation (∗∗), it suffices
to show that π′ \ {C1} = π \ {C1}. Consider the ASHG
restricted to the agent set N ′ =

⋃
2≤j≤m Cj . Then, π\{C1}

is the output of Algorithm 2 of the restricted ASHG if the
arrival order is the subsequence of the original arrival order.
Moreover, by assumption, for all x ∈ N , it holds that ux(π

′\
{C1}) ≥ ux(π \ {C1}). Hence, by induction, it holds that
π′ \ {C1} = π \ {C1}, as desired. This shows that π′ = π.

As a consequence, there exists no partition that Pareto-
dominates π and therefore π is Pareto-optimal.

Since, every Pareto-optimal partition is also a CIS parti-
tion, we obtain the following corollary.
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Corollary 1. There exists a deterministic online algorithm,
which always outputs a CIS partition for strict ASHGs.

Of course, Theorem 3 and Corollary 1 work for subclasses
of ASHGs like FEGs, AFGs, and AEGs. Interestingly, how-
ever, once we allow for a utility of 0, it is impossible to com-
pute CIS partitions, and therefore PO partitions, in an online
manner and this already holds for FENGs. This is a clear
contrast to offline hedonic games, where PO (and CIS) par-
titions are guaranteed to exist without any restriction on the
game.
Proposition 2. There exists no deterministic online algo-
rithm, which always outputs a CIS partition for symmetric
FENGs.

Proof. Assume for contradiction that ALG always outputs
a CIS partition for symmetric FENGs. Assume that the first
two agents to arrive are a and b with u(a, b) = 0.

If ALG forms {a, b}, then an agent c arrives with
u(a, c) = −1 and u(b, c) = 1. Then, {{a, b}, {c}} is no
CIS partition because b has a CIS deviation to join agent c.
However, forming {a, b, c} does not lead to a CIS partition
either, because then agent a has a CIS deviation to form a
singleton coalition.

On the other hand, if ALG forms two singleton coali-
tions for a and b, then consider an agent c with u(a, c) =
u(b, c) = 1. If ALG forms {a, c} or {c}, then b has a CIS de-
viation to join this coalition. If, however, ALG forms {b, c},
then a has a CIS deviation to join.

Similar to the previous section, we can extend this result
to randomized algorithms. We defer the details to the full
version (Bullinger and Romen 2023b).
Theorem 4. Let ALG be any randomized online algorithm
for symmetric FENGs. Then, it holds that WCIS(ALG) = 0.

Individual Stability
Finally, we consider individual stability, which is a strength-
ening of CIS and the complementary (but logically incom-
parable) notion of CNS, where each agent in the welcom-
ing (instead of abandoned) partition has the power to veto a
single-agent deviation. Even for the combination of symme-
try and utilities restricted to any positive and negative value,
online algorithms fail to be able to compute IS partitions.

Compared to the proofs of Theorems 2 and 4, simply con-
catenating identical games with negative utilities in between
can be problematic for some utility values. For instance, if
the positive utility is sufficiently large compared to the neg-
ative utility (e.g., in AFGs), then the grand coalition is IS
if each agent has a positive utility for some other agent. In-
stead, we prove the statement by considering one large ran-
dom adversarial instance for deterministic algorithms.

In this instance, depicted in Figure 2, we first have k2

agents arriving, which all have a mutual utility of −y. Then,
an agent b arrives that has a positive utility for a random
subset B of k of the first k2 agents. Finally, an agent c arrive
that has a positive utility for b and one random agent in B.
It can be shown that every deterministic algorithm computes
an IS partition with probability at most 1

k and we can ap-
ply Yao’s principle once again to obtain our theorem about

v3b v3c

v3a1 v3a2 v3d v3ak2. . .. . .

x x x

x

x

B

Figure 2: Adversarial instance for achieving individual sta-
bility in {−y, x}-ASHGs for x, y > 0. We only depict the
positive utilities of x. All remaining utilities are −y.

randomized algorithms. The proof can be found in the full
version.

Theorem 5. Let x, y > 0 and let ALG be any random-
ized online algorithm for symmetric {−y, x}-ASHGs. Then,
it holds that WIS(ALG) = 0.

Conclusion

In this paper, we have studied stability in online coalition
formation. We have considered stability notions based on
single-agent deviations and Pareto optimality. An overview
of our results is displayed in Table 1 in the introduction. Our
positive results follow from two deterministic algorithms.
The first one outputs CNS partitions for symmetric games
with utility restrictions that include FEGs and AEGs. The
second one applies to strict ASHGs and outputs PO parti-
tions. The latter is interesting because PO has the flavor of
both stability and optimality.4

By contrast, we obtain negative results in the sense that
there exists no randomized algorithm that can guarantee any
fixed probability to output a stable partition. Surprisingly,
our negative results even encompass concepts like CIS and
PO, for which solutions are guaranteed to exist in every he-
donic game. Hence, the online capabilities of algorithms can
be severely weaker than offline possibilities. Negative re-
sults naturally extend to stronger solution concepts. For in-
stance, a consequence of our negative results for IS and CNS
is the NS guarantee of 0 for all considered game restrictions.

We believe that it is an important step to depart from the
mere consideration of welfare maximality in online coali-
tion formation. There is plenty of space for future research in
this direction. Possible directions include to consider other
solution concepts, such as fairness notions. We want to re-
mark, however, that notions of group stability might not
yield many positive results. For instance, since the strict
core is a strengthening of CIS, Theorem 4 also applies for
the strict core. Moreover, it would be interesting to consider
game classes different from ASHGs.

4Notably, however, both of the two algorithms may output par-
titions of negative social welfare for instances where the maximum
social welfare is positive, and therefore yield no approximation
guarantee for maximizing social welfare.
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