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Abstract

We study coalition formation in the framework of fractional hedonic
games (FHGs). The objective is to maximize social welfare in an online
model where agents arrive one by one and must be assigned to coalitions
immediately. For the basic setting, computing maximal matchings achieves
the optimal competitive ratio, which is, however, unbounded for unbounded
agent valuations.

We achieve a constant competitive ratio in two related settings while
carving out further connections to matchings. If algorithms can dissolve
coalitions, then the optimal competitive ratio of 1

6+4
√

2
is achieved by a

matching-based algorithm. Moreover, we perform a tight analysis for the
online matching setting under random arrival with an unknown number
of agents. This entails a randomized 1

6
-competitive algorithm for FHGs,

while no algorithm can be better than 1
3
-competitive.

1 Introduction
The formation of coalitions is a widely studied problem at the intersection of
artificial intelligence, game theory, and the social sciences (Ray, 2007; Aziz and
Savani, 2016). The goal is to form groups from a set of agents, which could
represent members of a society or, more broadly, firms or computer programs.
We call the resulting coalition structure a partition, and agents have preferences
concerning their assigned coalition. This setting has undergone in-depth scrutiny
in game theory where a particularly appealing and well-studied class of coalition
formation games are hedonic games (Drèze and Greenberg, 1980). Their central—
hedonic—aspect is that the preferences of an agent only depend on the members
of her coalition but not on the structure or members of other coalitions.

However, even under this natural restriction, stating preferences explicitly
requires the consideration of an exponentially large set of potential coalitions.
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Hence, for the sake of computational tractability, a significant amount of research
has been undertaken concerning hedonic games with inherently concise preference
representations. One way of achieving this is to derive an agent’s preferences over
coalitions from her preferences over single agents. For instance, agents might
assign a subjective valuation to each other agent, which can then be aggregated
to obtain utilities over coalitions. This approach gives rise to the classes of
additively separable (ASHG) or fractional (FHG) hedonic games (Bogomolnaia
and Jackson, 2002; Aziz et al., 2019). In this work, we focus on FHGs, in which
the utility an agent assigns to a coalition is the average utility she assigns to
the coalition members (assuming a utility of 0 for herself). This model has been
argued to be suitable for the analysis of network clustering and can be used to
represent basic economic scenarios such as the bakers-and-millers game (Aziz
et al., 2019).

An important aspect of real-world coalition formation processes is that agents
arrive over time. This has motivated the study of an online model of hedonic
games (Flammini et al., 2021b). In the basic model, agents arrive one by one
and have to be assigned to existing coalitions immediately and irrevocably. The
objective is to achieve high social welfare, defined as the sum of agents’ utilities.
Unfortunately, this is a demanding objective in FHGs: if Vmin and Vmax are the
minimum and maximum permitted absolute value of nonzero utilities, the best
possible competitive ratio is Vmin

4Vmax
.

A crucial role in achieving welfare approximations has been to employ match-
ings, which can be interpreted as partitions with coalitions of size at most 2.1 For
instance, the aforementioned competitive ratio is attained by forming maximal
matchings, which is even the best deterministic approach for unweighted games
(Flammini et al., 2021b). Moreover, the best known polynomial-time approxima-
tion algorithm for social welfare in offline FHGs, achieving a 2-approximation,
is to form a maximum weight matching (Flammini et al., 2021a). Similarly,
in the related model of ASHGs, maximum weight matchings achieve an n-
approximation of social welfare, where n is the number of agents. At the same
time, an n1−ϵ-approximation is NP-hard to compute for any ϵ > 0 (Flammini
et al., 2022), even if weights are bounded globally (Bullinger et al., 2025). Our
work extends this intuition by considering two more sophisticated models of
online FHGs, where we show that online matching algorithms achieve a constant
optimal or close to optimal performance.

In the first model, the algorithm gets the additional power to dissolve coali-
tions. We show that a matching algorithm achieves the optimal competitive ratio
of 1

6+4
√
2
, which is a factor 1

2 worse than the best online matching algorithm in
the corresponding matching domain. In the second setting, the algorithm cannot
revoke matching decisions, but agents arrive in a uniformly random order. This
also avoids the worst-case example by Flammini et al. (2021b), which crucially
relies on specifying valuations based on the previous decisions of algorithms.
We achieve a 1

6 -competitive algorithm, while no algorithm can be better than

1A notable exception are online FHGs with nonnegative weights, for which the optimal
algorithm forms coalitions of unbounded size (Flammini et al., 2021b).
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1
3 -competitive. The latter result relies on a tight analysis of matching algorithms
with an unknown number of agents, for which a competitive ratio of 1

3 is optimal.
Since we prove this result on the tree domain, a specific domain of instances
where positive valuations form trees, it directly transfers algorithmic limitations
to the coalition formation setting. We thus once again observe the power of
matching algorithms when analyzing an online coalition formation model.

2 Related Work
The hedonic formation of coalitions traces back to Drèze and Greenberg (1980),
while hedonic games in the form studied today have been conceptualized by
Bogomolnaia and Jackson (2002). The latter paper introduces the class of ASHGs,
in which utilities for coalitions are obtained through a sum-based aggregation of
individual valuations. Fractional hedonic games were introduced later by Aziz
et al. (2019). An overview of hedonic games can be found in the book chapters
by Aziz and Savani (2016) and Bullinger et al. (2024).

Several authors studied various notions of stability in FHGs (Brandl et al.,
2015; Bilò et al., 2015, 2018; Kaklamanis et al., 2016; Aziz et al., 2019; Brandt
and Bullinger, 2022), while Aziz et al. (2015) consider welfare maximization. In
addition to examining algorithms for (utilitarian) social welfare, they consider
the maximization of egalitarian and Nash welfare. They prove NP-hardness of
finding optimal partitions for the different objectives and give polynomial-time
approximation algorithms. Matching algorithms are shown to yield reasonable
approximation ratios. In particular, Aziz et al. (2015) show that a maximum
weight matching (MWM) is a 1

4 -approximation of social welfare in general,
unconstrained FHGs. This analysis was later improved and made tight by
Flammini et al. (2021a) who prove that MWMs yield precisely a 1

2 -approximation.
An online model for hedonic games was first studied by Flammini et al.

(2021b), who consider FHGs and ASHGs.2 They investigate the model where
agents arrive in an adversarial order. They give lower and upper bounds for
deterministic algorithms on the achievable competitive ratio for maximizing
social welfare. Except for simple FHGs, their results are rather discouraging
because the competitiveness crucially depends on the range of valuations. For
ASHGs, Bullinger and Romen (2023) consider the random arrival and the free
dissolution models and show that these dependencies vanish. We achieve similar
results for FHGs. Furthermore, going beyond welfare maximization, Bullinger
and Romen (2024) study stability and Pareto optimality for online ASHGs with
adversarial agent arrival.

There is a vast body of literature on online matching. A recent survey
is given by Huang et al. (2024). Here, we only discuss the works that are
closest to our setting. For unweighted graphs, Gamlath et al. (2019) give the
online algorithm with the currently best known competitive ratio for maximum
cardinality matchings with adversarial vertex arrival. Kesselheim et al. (2013)

2Flammini et al. (2021b) refer to their model as a “coalition structure generation problem”
and, therefore, adopt a purely graph-theoretic instead of a game-theoretic perspective.
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study MWMs with random vertex arrival on one side of bipartite graphs and
show that the upper bound of 1

e , which stems from the fact that the scenario
generalizes the secretary problem, can be matched by an algorithm. Ezra et al.
(2022) propose an algorithm for approximating an MWM in general weighted
graphs with random vertex arrival where the total number of vertices to arrive is
known in advance. They also show the asymptotic tightness of that algorithm’s
competitive ratio by considering a family of graphs where all edge weights differ
by a large factor, so there is only one valuable edge for a matching. Finally,
Bullinger and Romen (2023) study online MWM under free dissolution.

3 Preliminaries and Model
We begin by introducing some notation. For i ∈ N, we denote [i] := {1, . . . , i}.
For a set S and i ∈ N, let

(
S
i

)
:= {T ⊆ S | |T | = i}, i.e.,

(
S
i

)
denotes the set

of all subsets of S of size i. Next, for a graph G = (V,E) and a set of vertices
S ⊆ V , let G[S] denote the subgraph of G induced by S. Finally, we denote
the indicator function by χ(·). It takes a Boolean argument as an input and
returns 1 if it is true and 0, otherwise.

3.1 Hedonic Games
Let N be a finite set of agents. A nonempty subset C ⊆ N is called a coalition.
The set of coalitions containing agent i ∈ N is denoted by Ni := {C ⊆ N | i ∈ C}.
A set π of disjoint coalitions containing all members of N is a partition of N . A
matching is a partition in which all coalitions have size at most 2.3 For agent
i ∈ N and partition π, let π(i) denote the unique coalition in π that i belongs to.

A (cardinal) hedonic game is a pair G = (N, u) where N is the set of agents
and u = (ui)i∈N is a tuple of utility functions ui : Ni → Q. Agents seek to
maximize utility and prefer partitions in which their coalition achieves a higher
utility. Hence, we define the utility of a partition π for agent i as ui(π) := ui(π(i)).
We denote by n(G) := |N | the number of agents and write n if G is clear from
the context.

Following Aziz et al. (2019), a fractional hedonic game (FHG) is a hedonic
game (N, u), where for each agent i ∈ N there exists a valuation function
vi : N \ {i} → Q such that for all C ∈ Ni it holds that ui(C) =

∑
j∈C\{i}

vi(j)
|C| .

Since the valuation functions contain all information for computing utilities, we
also represent an FHG as the pair (N, v), where v = (vi)i∈N is the tuple of
valuation functions. Additionally, an FHG can be succinctly represented as a
complete directed weighted graph where the weights of directed edges induce
the valuation functions.

An FHG (N, v) is said to be symmetric if for every pair of distinct agents
i, j ∈ N , it holds that vi(j) = vj(i). We write v(i, j) for the symmetric valua-
tion between i and j. A complete undirected weighted graph can represent a

3In contrast to the standard definition of matchings, we assume that unmatched agents are
part of a matching in the form of singleton coalitions.
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symmetric FHG. For simplicity, we also denote this graph by (N, v) Moreover,
an FHG is said to be simple if for every pair of distinct agents i, j ∈ N , it holds
that vi(j) ∈ {0, 1}. Simple FHGs can be represented by directed unweighted
graphs (where edges represent valuations of 1). Finally, a symmetric FHG is
said to belong to the tree domain if every connected component of the edges
with positive weight in the associated undirected graph forms a tree, and every
other edge has a negative weight smaller than the negative sum of all positive
edge weights.

The desirability of a partition is measured in terms of social welfare. Given an
FHG G = (N, v), we define the social welfare of a coalition C ⊆ N as SW(C) :=∑

i∈C ui(C) and of a partition π as SW(π) :=
∑

i∈N ui(π) =
∑

C∈π SW(C).
We denote by π∗(G) a partition that maximizes social welfare in G. Note that we
can replace both vi(j) and vj(i) by 1

2 (vi(j)+ vj(i)) for all i, j ∈ N , which results
in a symmetric FHG in which the social welfare of every partition remains the
same (Bullinger, 2020). Hence, it suffices to consider symmetric FHGs instead of
the full domain of FHGs. However, note that this technique cannot be applied
to simple FHGs (or other restricted classes of FHGs) as the symmetrization may
result in nonsimple FHGs. Given c ≤ 1, a partition π is called a c-approximation
to social welfare in game G if SW(π) ≥ c · SW(π∗(G)).

If π is a matching, then SW(π) also denotes the weight of the matching (since
for each matched pair, both agents contribute 1

2 of the edge weight). Hence,
maximizing social welfare among matchings is precisely the maximum weight
matching (MWM) problem.

3.2 Online Models and Competitive Analysis
We assume an online model of FHGs where agents arrive one by one and have
to be assigned to new or existing coalitions in a predefined way. For an agent
set N , define Σ(N) := {σ : [|N |] → N bijective}. This is interpreted as the set
of all arrival orders.

An instance (G, σ) of an online FHG consists of an FHG G = (N, v) and an
arrival order σ ∈ Σ(N). An online coalition formation algorithm ALG produces
on input (G, σ) a sequence ALG(G, σ)1, . . . , ALG(G, σ)n(G) of partitions such
that for all input tuples (G, σ) and (H, τ) and k ∈ N with k ≤ min{n(G), n(H)}
it holds that ALG(G, σ)k = ALG(H, τ)k whenever vσ(i)(σ(j)) = vτ(i)(τ(j)) for
all i, j ∈ [k].4 This condition says that the algorithmic decision to form the kth
partition can only depend on the information the algorithm has obtained until the
kth agent arrives. Furthermore, decisions must be identical if all valuations are
identical up to this agent’s arrival. The output of the algorithm is the partition
produced when the final agent is added; we denote ALG(G, σ) := ALG(G, σ)n(G)

Moreover, an algorithm’s decisions are assumed to be irrevocable, i.e., agents
can only be added to an existing or a completely new coalition. Formally,
this means that for all instances (G, σ) and 2 ≤ k ≤ [n(G)], we require that

4We later consider randomized algorithms, for which the produced random partition has to
be identical.
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ALG(G, σ)k[{σ(i) | 1 ≤ i ≤ k− 1}] = ALG(G, σ)k−1, i.e., the (k− 1)st partition
is the kth partition restricted to the first k − 1 agents. An algorithm may,
however, have the additional power to dissolve a partition before adding a new
agent. In this case, we say that the algorithm operates under free dissolution
and additionally allow that ALG(G, σ)k[{σ(i) | 1 ≤ i ≤ k − 1}] is of the form
(ALG(G, σ)k−1 \ C) ∪ {{i} | i ∈ C} for some C ∈ ALG(G, σ)k−1.

The objective is to achieve a good welfare approximation. We say that ALG
is c-competitive5 if

inf
G

min
σ∈Σ(N)

SW[ALG(G, σ)]

SW[π∗(G)]
≥ c.

Equivalently, this means that for all instances, (G, σ), ALG produces a
c-approximation of social welfare.

In addition, we consider a model where the agents arrive in a uniformly random
arrival order. The objective is then to achieve high welfare in expectation. We
denote by ALG(G) the random partition produced with respect to a uniformly
random arrival order. An algorithm ALG is said to be c-competitive under
random arrival if

inf
G

Eσ∼Σ(N) [SW[ALG(G)]]

SW[π∗(G)]
≥ c.

In both models, the competitive ratio cALG of ALG is the supremum c such that
ALG is c-competitive. Note that the competitive ratio is always at most 1.

We also consider randomized algorithms, which can use randomization to
decide which coalition an agent should be added to. In this case, the competitive
ratio is measured with respect to the expected social welfare of the random
partition constructed by the randomized algorithm.

The competitive ratio is also defined for subclasses of FHGs, such as simple
and symmetric FHGs, where the infimum is only taken over games from that
subclass. Finally, the competitive ratio is also defined for online matching
algorithms, for which the weight of the matching produced by an algorithm is
compared with the weight of an MWM.

4 Connections between Matchings and FHGs
The first significant connection between MWMs and welfare maximization in
FHGs is that the former yields a 1

2 -approximation for the latter. In Section A,
we show a very instructive alternative proof of this theorem originally shown
by Flammini et al. (2021a). Our argument establishes the connection between
MWM and FHGs via random matchings. More precisely, it is easy to see that
the social welfare of the MWM is at least as much as the sum of the social welfare
of random matchings on an arbitrary partition of the agents. Furthermore, we
show that a random matching in a coalition is a 1

2 -approximation of the social
welfare of the coalition. If we apply these arguments to the optimal partition,
the theorem follows directly.

5We use the convention that 0
0
= 1 and x

0
= 0 for any x ∈ Q with x < 0.
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Theorem 1 (Flammini et al. (2021a)). Every MWM is a 1
2 -approximation of

social welfare in FHGs.

This implies the same guarantee for online algorithms: c-competitive online
matching algorithms are c

2 -competitive for online FHGs. We can use this insight
to make an interesting observation: it is known that no deterministic online
algorithm can achieve a competitive ratio of better than 1

4 for simple symmetric
FHGs (Flammini et al., 2021b). However, there exists a randomized online
matching algorithm for MWM on unweighted graphs (i.e., maximum cardinality
matching) that beats a competitive ratio of 1

2 (Gamlath et al., 2019), i.e., achieves
a competitive ratio of 1

2 +2ϵ∗ for some constant ϵ∗ > 0. We can apply Theorem 1
to conclude that randomization can be utilized to beat the best deterministic
algorithm in this case.

Corollary 1. There exists ϵ∗ > 0 and a randomized online coalition formation
algorithm for simple and symmetric FHGs with competitive ratio 1

4 + ϵ∗.

In contrast to Theorem 1, negative results for MWM, i.e., impossibilities of
achieving a certain competitive ratio, do not transfer to FHGs. They only imply
that it is impossible to create a matching of a certain quality. This does not
rule out that an online algorithm can create a partition with larger coalitions
that achieve more social welfare. However, we now show that negative results
are inherited on domains where positive valuations form a tree (while other
valuations are sufficiently negative).

Theorem 2. Let c ≤ 1 and assume that no c-competitive (randomized) algorithm
exists for online MWM on the tree domain. Then, no c-competitive (randomized)
online coalition formation algorithm exists for symmetric FHGs.

Proof. We show a proof by contraposition. Assume a c-competitive online
coalition formation algorithm ALG for symmetric FHGs exists. We construct a
c-competitive algorithm ALG ′ on the tree domain that never forms a coalition
of size three or more. To this end, let ALG ′ simulate ALG , i.e., whenever a new
agent and her valuations are revealed to ALG ′, it feeds the same input to ALG .
Then, ALG ′ observes the output of ALG . If the new agent is in a coalition of
size two with positive social welfare, then ALG ′ forms the same coalition. In all
other cases, ALG ′ puts the new agent into a singleton coalition. Additionally, if
ALG dissolves a coalition in the coalition dissolution setting, then ALG ′ also
dissolves the matched pair from this coalition if necessary. In particular, ALG ′

only returns (random) matchings and, therefore, is a matching algorithm.
On the tree domain, ALG ′ achieves at least as high (expected) welfare as

ALG because the large negative valuations make every coalition of size more than
two have negative social welfare. Consequently, every coalition of size at least 3
achieves less welfare than when it was dissolved into singleton coalitions (or pairs
of positive valuation). Thus, ALG ′ is c-competitive on the tree domain against
all possible partitions and, therefore, in particular, against all matchings.
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Interestingly, negative results for MWM are usually essentially6 achieved on
the tree domain (Badanidiyuru Varadaraja, 2011; Bullinger and Romen, 2023),
which makes the previous theorem very powerful. However, even if we have a
tight result for MWM where the lower bound is achieved on the tree domain,
Theorems 1 and 2 leave a gap of a factor of 2. As we will see, closing this gap
can take significant effort.

5 FHGs under Coalition Dissolution
We first consider the setting where algorithms should perform well regardless of
a fixed arrival order but where algorithms can dissolve coalitions. In this setting,
there exists an online matching algorithm achieving a competitive ratio of 1

3+2
√
2

(McGregor, 2005; Bullinger and Romen, 2023).7 We can apply Theorem 1 to
obtain an algorithmic guarantee for FHGs.

Theorem 3. There exists an online coalition formation algorithm operating
under free dissolution with a competitive ratio of at least 1

6+4
√
2
.

The algorithm mentioned above is optimal for the matching domain in the tree
domain (Badanidiyuru Varadaraja, 2011). By Theorem 2, no online algorithm is
better than 1

3+2
√
2
-competitive. We can, however, improve upon this result by

proving a bound matching Theorem 3.
We illustrate here the main ideas for its proof and defer the full proof to

Section B. The proof technique is similar to the proof by Badanidiyuru Varadaraja
(2011) in the matching domain. However, we construct an enhanced version of
the adversarial instance, where the partitions produced by an algorithm continue
to be matchings, but the partition with the highest welfare is better than the
best matching by a factor of about 2.

Theorem 4. No deterministic online coalition formation algorithm operating
under free dissolution has a competitive ratio of more than 1

6+4
√
2

for symmetric
FHGs.

Proof sketch. The crucial idea is to use an algorithm that allegedly beats a
competitive ratio of 1

6+4
√
2

to construct a sequence of real numbers (xi)i∈N with
x1 = 1, xi ≥ 0 for i ≥ 2, and such that for all i ∈ N, it holds that

xi ≥ β

xi+1 +

i+1∑
j=1

xj

 (1)

where β > 1
3+2

√
2
. Such a sequence of numbers does not exist (Badanidiyuru

Varadaraja, 2011).
6These constructions usually contain 0-weights, which can be replaced with large negative

weights.
7McGregor (2005) achieves this competitive ratio in the much related edge arrival model.

In the full version of their paper, Bullinger and Romen (2023) showed that it is preserved in a
vertex arrival model.
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Figure 1: Illustration of Phase i in the construction of the adversarial instance
in the proof of Theorem 4. Each star attached to ai and bi contains ℓi leaves.

The adversarial instance is established in phases, and in each phase, we
determine a new element of a sequence (yi)i∈N that satisfies an inequality of the
type of Inequality 1.8

Throughout the execution of the instance, the algorithm can only maintain
a single coalition with positive welfare of yi containing exactly two agents, say
{ai, bi}. We now illustrate a Phase i for some fixed i ∈ N. A visualization
is provided in Figure 1. All agents that newly appear have a mutual positive
valuation with exactly one of ai and bi, a valuation of 0 for some other agents,
and a high negative valuation for most agents, in particular for the other agent
in {ai, bi}. The new agents form “star” coalitions with ai and bi. In the first
part of a stage, we achieve a situation where stars with ℓi leaves have arrived
for both endpoints, where all of their positive valuations are yi. These are the
leftmost stars attached to ai and bi in Figure 1.

Then, we let new star coalitions arrive while incrementing their positive
valuations by ϵi in each step. Eventually, the algorithm has to dissolve {ai, bi}
and form a new coalition with one of these agents and a new agent of valuation
yi + j∗ϵi. This has to happen as otherwise, edges of unbounded weight arrive,
which would lead to an unbounded competitive ratio.

In the previous step, i.e., when agents with valuations of yi + k∗ϵi, where
k∗ = j∗ − 1 were arriving, we had two “star” coalitions with ai and bi, which
we now call Ci and Di, respectively. Then, a version of Inequality 1 can be
established with two differences: (1) instead of β, we have 2γ, where γ is the
competitive ratio of our algorithm, and (2) there is an error term dependent on
ϵi. For this, we compare yi, i.e., the social welfare of {ai, bi}, with the social
welfare of the partition containing Di and Cj for 1 ≤ j ≤ i, where the Cj evolve
from earlier phases. Note that Ci and Di have a welfare of about 2(yi + j∗ϵi).

A crucial idea is to control the error terms to be very small in sum by having
ϵi decay exponentially for i tending to infinity, while the number of leaves ℓi
grows as 1−ϵi

ϵi
. This allows to prove Inequality 1 for β = γ + 1

6+4
√
2
.

8It is easy to eventually transform this sequence to the exact desired form of (xi)i∈N.
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6 FHGs with Random Arrival
Based on Section 4, a reasonable strategy to obtain good online algorithms for
FHGs is to consider good online matching algorithms. For the matching setting
under random arrival, Ezra et al. (2022) provide an algorithm that achieves a
competitive ratio of 5

12 − O( 1n ) if the algorithm has access to the number of
arriving agents n. Knowledge of n is relevant for achieving this competitive ratio.
In the first phase of the algorithm, a subset of k agents is not matched at all,
and the optimal competitive ratio is achieved for k :=

⌊
n
2

⌋
. However, one can

also apply their algorithm by setting k to a fixed constant. By setting k = 3,
one obtains an online matching algorithm that is 1

3 − O( 1n )-competitive. We
obtain the following theorem.

Theorem 5. There exists a randomized online matching algorithm with a
competitive ratio under random arrival of at least 1

3 −O( 1n ).

By applying Theorem 1, we can interpret this algorithm as a coalition
formation algorithm, which implies the following corollary.

Corollary 2. There exists a randomized online coalition formation algorithm
with a competitive ratio under random arrival of at least 1

6 −O( 1n ).

Ezra et al. (2022) show that the competitive ratio of their matching algorithm
for known n is asymptotically optimal, i.e., no algorithm achieves a competitive
ratio of more than 5

12 . However, if n is unknown, a competitive ratio of 5
12 is off

limits. As we show next, a competitive ratio of 1
3 is asymptotically optimal in

the matching domain. Our proof leverages the approach by Ezra et al. (2022) in
a much enhanced way: while their worst-case instances is a family of complete
graphs in which weights are drawn in a specific way, we need the interplay of two
sets of instances whose positive edges form stars and double stars. Moreover,
we want our result to hold on the tree domain so that we can apply Theorem 2.
However, while it is comparably easy to use large negative weights in a setting
with deterministic arrival if specifically tailored large negative edges arrive early
in a random setting, we need to be careful that algorithms cannot infer useful
information from the edge weights, such as the number of agents or the weight
of best matchings. Hence, besides the positive weights, we must draw negative
weights from an infinite set. We defer the proofs of intermediary lemmas to
Section C.

Theorem 6. No randomized online matching algorithm has a competitive ratio
under random arrival of more than 1

3 on the tree domain.

Proof. In the following proof, we assume that all algorithms are randomized and
operate under random arrival.

Let I, J ⊆ N with |I|, |J | < ∞, I ∩ J = ∅ and I ̸= ∅, i.e., they are finite and
disjoint, and I is nonempty. We design a family of instances with n = 2+ |I|+ |J |
agents based on two symmetric valuation functions, one for stars and one for
bi-stars, dependent on I, J . Additionally, the instance depends on a value for

10
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weights of negative edges, parameterized by x, and an error threshold ϵ, as
specified below. Given such I and J , we define tB := max I ∪ J , i.e., tB is the
largest number in I ∪J . We arbitrarily select an integer x > tB +2 and let ϵ > 0
be a constant with ϵ ≤ 1

2 . Let N = {a, b} ∪ {di : i ∈ I} ∪ {dj : j ∈ J} be the set
of agents.

First, we define a star instance Sx,ϵ
I,J by setting the following symmetric

valuations:9 For all i ∈ I, we set v(a, di) =
(
1
ϵ

)i. All remaining valuations are
set to −

(
1
ϵ

)x. We set tS := max I, i.e., the edge of maximum weight is {a, dtS}
with a weight of

(
1
ϵ

)tS . Note that tS > 0 as I ̸= ∅.
Moreover, we define a bi-star instance Bx,ϵ

I,J with the following symmetric
valuations: Recall that tB = max I ∪ J . For all i ∈ I and j ∈ J , we set
v(a, di) =

(
1
ϵ

)i and v(b, dj) =
(
1
ϵ

)j . We set v(a, b) =
(
1
ϵ

)tB+1. Finally, all
remaining valuations are set to −

(
1
ϵ

)x. Note that the pair {a, b} has the highest
valuation of

(
1
ϵ

)tB+1.
Hence, given the same set of parameters, a star and bi-star instance only

differ with respect to the valuations of b with a and agents in {dj : j ∈ J}. We
denote the set of all star instances with any permissible parameter combination
of I, J , x, and ϵ as S. Similarly, we denote the set of all bi-star instances as B.

Note that the algorithm can only distinguish star and bi-star instances once
a and b have arrived in a bi-star instance. In fact, once a has arrived in a star
instance, or one of a and b has arrived in a bi-star instance, an algorithm sees
the star with one of these agents. However, all other agents, and in particular
b if we are in a star instance, are only connected by large constant negative
valuations and are indistinguishable. Furthermore, the optimal matching for
star instances matches {a, dtS} and leaves all other agents alone with a social
welfare of

(
1
ϵ

)tS . Similarly, in bi-stars, the optimal matching matches {a, b} and
leaves all other agents as singletons with a social welfare of

(
1
ϵ

)tB+1.
Additionally, by the choice of x, both types of instances belong to the tree

domain. Indeed, positive valuations are
(
1
ϵ

)i for some i ≤ x − 2 and occur at
most once each. Hence, since ϵ ≤ 1

2 , we have that the sum of valuations is at
most

∑x−2
i=1

(
1
ϵ

)i ≤ ( 1ϵ )x−1
<
(
1
ϵ

)x.
Given an algorithm ALG , we want to find a relationship between its compet-

itive ratio and the probability of matching the highest edge in star and bi-star
instances. We say that an algorithm is c-competitive for matching the maximum
weight edge if it matches the maximum weight edge with probability at least c in
star and bi-star instances. We obtain the following relationship. Its proof relies
on a separate analysis of stars and bi-stars.

Lemma 1. If there exists no algorithm for matching the maximum weight edge
with a competitive ratio of more than 1

3 , then there exists no online matching
algorithm on the tree domain with a competitive ratio of more than 1

3 .

9We omit references to parameters from the names of the valuation functions to avoid
overloading notation.
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Hence, in the following, we prove the nonexistence of such algorithms for
matching the maximum weight edge. We can assume that all instances are
defined for the same, i.e., fixed and sufficiently small ϵ. In the following steps, we
want to achieve certain conditions under which our algorithms operate without
loss of generality. This is similar to the reduction by Ezra et al. (2022) to an
“ordinal” setting. As a first step, we observe that we can restrict attention to
algorithms that, if at all, match the current maximum weight edge in each step.

Lemma 2. For every star instance, we may assume without loss of generality
that only the current maximum weight edge and no negative weight edges are
matched.

Proof. Consider an algorithm ALG for matching the maximum weight edge. We
modify this algorithm such that whenever it performs a randomized decision to
match an edge, it sets probabilities to 0 for matching edges that are not currently
the maximum weight edge or have negative weight. It then continues executing
ALG as if the decision of ALG had been performed. This algorithm has the
desired form and matches the maximum weight edge with at least the same
probability.

Consequently, we can restrict attention to algorithms that, at each step,
face the decision to match the current maximum weight edge, if possible, or do
nothing. From now on, we will only consider such algorithms.

We go one step further and show that when a matching decision is per-
formed (to match a current maximum weight edge), this can be assumed to be
independent of how the current state is achieved.

Lemma 3. For every star instance, we may assume without loss of generality
that our algorithm’s decisions only depend on which agents have arrived, whether
a has arrived and is matched, and whether the last arrived agent is part of the
current maximum weight edge.

From now on, we consider algorithms as per Lemma 3. Finally, we show that
algorithmic decisions can be made independently of b and agents associated with
J .

Lemma 4. For every star instance, we may assume without loss of generality
that our algorithms decisions are independent of agents b and agents associated
with J .

From now on, we consider algorithms that, additionally, fulfill the indepen-
dence of decisions of b and agents associated with J .

The combination of Lemmas 3 and 4 implies that an algorithm is fully
specified by the matching probabilities dependent on the observed weights but
not the arrival orders. From now on, we consider a fixed algorithm ALG and
assume for contradiction that it is cALG -competitive for matching the maximum
weight edge with cALG > 1

3 . Its matching parameters are given by a family of
functions fk :

(N
k

)
→ [0, 1], where k ∈ N. For each k, and subset Ix ⊆

(N
k

)
, let

x′ := max Ix. The value fk(I
x) equals the probability of matching the current

12
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maximum weight edge provided that a has arrived, is unmatched, the last arrived
agent is part of the maximum edge, a has revealed edges precisely to agents
corresponding to the set Ix \ {x′}, and x = x′ + 2 is the parameter for negative
edges. Note that the condition on x ensures that x > tS + 2.

Ideally, we would like a situation where the matching decision only depends
on the size of the set of agents that thus far has arrived and who can match
with a. While this can differ hugely for different algorithms, we can, however,
prove that we can find an infinite set such that the matching probability within
sets of the same size is within an arbitrarily small error window. The proof of
this statement is given by Ezra et al. (2022, Claim 4.3), based on an application
of the infinite version of Ramsey’s theorem (Ramsey, 1930).

Lemma 5 (Ezra et al., 2022). Let k ∈ N and δ > 0. Consider a collection of
set functions fi :

(N
i

)
→ [0, 1], i ∈ [k]. Then there exists an infinite set T ⊆ N

and constants p1, . . . , pk ∈ [0, 1] such that, for all i ∈ [k] and T ′ ∈
(
T
i

)
, it holds

that fi(T ′) = pi +O(δ).

By Lemma 5, we find an infinite set T ⊆ N and constants p1, . . . , pk ∈ [0, 1]
such that, for all i ∈ [k] and T ′ ∈

(
T
i

)
, it holds that pi = fi(T

′) +O(δ). Now,
consider a star instance S ∈ S based on parameters I, J , and x (at this point,
ϵ is irrelevant) such that I ∪ J ∪ {x− 2} ⊆ T and |I| = k − 1. By assumption,
pk = fk(I ∪ {x− 2}) +O(δ). We define hk := P(

⋃
i∈I({a, di} ∈ ALG(S))), i.e.,

the probability to match a. The key insight is to estimate this quantity.

Lemma 6. It holds that hk > 2
3 − 2

3k ±O(δ) 2−hk−1

k .

Finally, we want to use the performance on stars to bound the performance
on bi-stars. We essentially use that the prefix of every arrival order in every
bi-star is indistinguishable from a star instance until both a and b arrive.

Consider a bi-star instance B ∈ B such that I ∪ J ∪ {x− 2} ⊆ T , where x
defines its negative weights, and assume that |I| = |J |. As usual, the number
of agents is n, i.e., n = 2 + |I| + |J |. Fix a constant i ∈ {2, . . . , |I| + |J | + 2}.
Assume that the ith agent to arrive is either a or b and that the other agent
among {a, b} is already present. Without loss of generality, we assume that a
arrives first and b arrives at step i. Otherwise, we swap the names of a,b, and
I, J . In this case, at time i− 1 the set of present agents is {a} ∪ I ′ ∪ J ′ where
I ′ ⊆ I, J ′ ⊆ J . Clearly, Sx,ϵ

I′,J′ is a star instance.
Let k := |I ′|. The algorithm must match {a, b} in step i to match the

maximum weight edge, but this is only possible if a remains unmatched in
Sx,ϵ
I′,J′ . We have shown that the probability that a is matched in Sx,ϵ

I′,J′ is
hk > 2

3 − 2
k ±O(δ) 2−hk−1

k . Consequently, the probability that a is unmatched
in Sx,ϵ

I′,J′ is 1− hk < 1
3 + 2

3k ±O(δ) 2−hk−1

k . We now know that there exist δ > 0

and N ∈ N such that 2
3k ±O(δ) 2−hk−1

k ≤ 1
3

(
cALG − 1

3

)
for all k ≥ N . Note that

this works because hk−1 is a probability, so we can, for instance, choose δ = 1
k .

Let X be the random variable that counts the number of agents from I that

13



Draft – February 5, 2025

arrive before b. Note that there are
(
k
i

)
i!(k − i)! orders in which i elements from

I arrive before b. Hence, we have that

P(X < N) = 2 · P(X < N | σ−1(a) < σ−1(b))

· P(σ−1(a) < σ−1(b)) = P(X < N | σ−1(a) < σ−1(b))

=
1

(k + 1)!

N−1∑
i=1

(
k

i

)
i!(k − i)!

=
1

(k + 1)!

N−1∑
i=1

k! =
N − 1

k + 1
.

This tends to 0 for n tending to infinity. In the first line where we use symmetry
among a and b, we use that |I| = |J |. Therefore, there exists N ′ ≥ N such
that P(X < N) ≤ 1

3

(
cALG − 1

3

)
for all n ≥ N ′. For n ≥ N ′, we obtain that the

probability of {a, b} being matched in B in a uniformly random arrival order is
bounded by

P(X < N) + P(X ≥ N)

(
1

3
+

2

3N

)
≤ 1

3

(
cALG − 1

3

)
+

(
1

3
+

1

3

(
cALG − 1

3

))
≤ 1

3
+

2

3

(
cALG − 1

3

)
< cALG .

This contradicts our assumption that ALG was cALG -competitive.

Combining Theorem 6 with Theorem 2, we conclude that no online coalition
formation algorithm has a competitive ratio under random arrival of more than
1
3 .

Corollary 3. No randomized online coalition formation algorithm has a com-
petitive ratio under random arrival of more than 1

3 .

7 Conclusion
We have studied two different models for online coalition formation in FHGs
to maximize social welfare, a goal that does not allow for bounded competitive
ratios in the standard adversarial agent arrival model. Designing good online
coalition formation algorithms is deeply related to designing good online matching
algorithms. It is possible to leverage matching algorithms with little welfare loss,
while limitations for matching algorithms can be preserved if they hold on the
tree domain.

In the coalition dissolution model, we showed that the optimal competitive
ratio is 1

6+4
√
2
. Moreover, under random arrival, without the power to dissolve

coalitions, we proved a tight bound of 1
3 on the competitive ratio of any algorithm
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in the matching domain for an unknown number of agents. This then directly
implies an 1

3 upper bound for the FHG domain. Furthermore, the obtained
matching algorithm is 1

6 -competitive in the FHG domain. Closing the gap for
FHGs in the random arrival model remains an open problem.

Another future direction would be to study online modified fractional hedonic
games, which differ from FHGs in that the sum of valuation is divided by the
coalition size minus one (Olsen, 2012). We remark that our upper bound of 1

3 on
the competitive ratio under random arrival applies to this setting, too. Finally,
similar to the work by Bullinger and Romen (2024), it would be interesting to
study stability in online FHGs.
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Appendix
In the appendix, we present additional material and missing proofs.

A Simple proof of Theorem 1
In this section, we show an alternative proof for Flammini et al. (2021a, Theorem
1). The reason why we do so is twofold. First, our approach gives a deeper
insight into the connection between matching and coalition formation. Second,
our proof is built upon simple general ideas that might be of independent interest.
Consequently, our proof is more straightforward on both a formal and intuitive
level.

We use two ideas from matching. First, the social welfare of the global
maximum weight matching is at least as large as the social welfare of the union
of maximum weight matchings on an arbitrary partition of the agents. Second,
the social welfare of a maximum weight matching is at least as large as that of a
random matching. We combine these ideas and additionally show that a random
matching is a 1

2 approximation of the social welfare to conclude the proof. We
start with a lemma that proves the last step. To this end, we define a random
matching as a matching drawn uniformly from a set of matchings that partitions
the set of agent pairs. If the number of agents is even, it follows from a special
case of Baranyai (1973) that such a set exists. Otherwise, we first remove one
agent uniformly at random.

Lemma 7. The expected social welfare of a random matching is a 1
2 -

approximation of the social welfare of a coalition.

Proof. The social welfare of a coalition C is defined as

SW(C) =
∑
i∈C

ui(C)

=
∑
i∈C

∑
j∈C\{i}

vi(j)

|C|

= (|C| − 1)
∑
i∈C

1

|C|
∑

j∈C\{i}

1

|C| − 1
vi(j)

= (|C| − 1)Ei∼C

[
Ej∼C\{j} [vi(j)]

]
.

(2)

Where the expectation is taken with respect to the uniform distribution. This
equation shows that the welfare of a coalition C is |C| − 1 times the expected
valuation of a random agent pair from C, which is also equivalent to the average
weight of a valuation from a pair of agents of C. One can easily show that
the expected social welfare of a random matching within C is ⌊ |C|

2 ⌋ times the
expected valuation of a random agent pair from C. Therefore,

18



Draft – February 5, 2025

⌊
|C|
2

⌋
Ei∼C

[
Ej∼C\{j} [vi(j)]

]
≥|C| − 1

2
Ei∼C

[
Ej∼C\{j} [vi(j)]

]
Equation (2)

=
1

2
SW(C).

We have shown the expected social welfare of a random matching is a 1
2 -

approximation of the social welfare of a coalition.

Next, we present our proof that maximum weight matchings are a 1
2 approxi-

mation of the social welfare of the optimal partition.

Proof of Theorem 1. Let π∗ be an optimal partition. Furthermore, for a set of
agents C ⊆ N , let µ∗(C) denote an MWM on C and µR(C) denote a random
matching on C. We compute,

SW (µ∗(N)) ≥
∑
C∈π∗

SW (µ∗(C))

≥
∑
C∈π∗

E [SW (µR(C))]

Lemma 7
=

∑
C∈π∗

SW(C)

2

=
SW(π∗)

2
.

The first inequality holds because the social welfare of the global maximum
weight matching is at least as much as the sum of the social welfare of the
maximum weight matching on every coalition in the optimal partition. The
second inequality holds because the social welfare of maximum weight matching
is at least as good as that of random matchings. Finally, we apply Lemma 7
to show that maximum weight matchings are a 1

2 approximation for the social
welfare of FHGs.

B Full proof of Theorem 4
Our proof of Theorem 4 relies on a similar idea as the proof by Badanidiyuru
Varadaraja (2011), showing that there does not exist an online matching algo-
rithm (in an edge arrival setting) operating under free dissolution for which the
competitive ratio is better than 1

3+2
√
2
. His proof relies on two steps. First,

he shows that a particular sequence of real numbers cannot exist based on a
recursive set of inequalities. Second, he shows that the existence of an algorithm
with a competitive ratio of better than 1

3+2
√
2

implies the existence of just such
a sequence. We will use his first step as a black box and then use an adversarial
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instance of online FHGs to construct the sequence utilizing an online coalition
formation algorithm that achieves a competitive ratio of better than 1

6+4
√
2
. The

construction of our adversarial instance is similar to the one by Badanidiyuru
Varadaraja (2011). Still, while his optimal partition is a matching consisting of
coalitions of size 2, we construct the instance in a way such that the optimal
instance consists of coalitions that form stars (i.e., we have symmetric valuations
that are equal to some constant if they involve a special center agent and are 0,
otherwise). This accounts for the improvement of about a factor of 2 in the
welfare of the optimal partition.

We start by stating the lemma that captures the nonexistence of the sequence.

Lemma 8 (Badanidiyuru Varadaraja (2011)). Let β > 1
3+2

√
2
. Then there exists

no sequence (xi)i∈N with x1 = 1 and xi ≥ 0 for i ≥ 2 such that for all i ∈ N, it
holds that

xi ≥ β

xi+1 +

i+1∑
j=1

xj

 . (3)

Next, we evaluate the social welfare of a “star” coalition.

Lemma 9. Let x ∈ R. Consider a set of agents C such that there exists a ∈ C
with symmetric valuations v(a, b) = x for all b ∈ C \ {a} and v(b, b′) = 0 for all
b, b′ ∈ C \ {a} with b ̸= b′. Then it holds that SW(C) = 2 |C|−1

|C| x.

Proof. Assume that we are in the lemmas situation. Then, ua(C) = |C|−1
|C| x, and

for all b ∈ C \{a}, it holds that ub(C) = 1
|C|x. The assertion follows by summing

up utilities.

We are ready to prove our theorem.

Theorem 4. No deterministic online coalition formation algorithm operating
under free dissolution has a competitive ratio of more than 1

6+4
√
2

for symmetric
FHGs.

Proof. Let c := 1
6+4

√
2
. Assume for contradiction that ALG is an online coalition

formation algorithm operating under free dissolution that achieves a competitive
ratio of γ > c for symmetric FHGs. Let

β := 2

(
c+

1

2
(γ − c)

)
= γ + c, (4)

i.e., it holds that β > 2c = 1
3+2

√
2
. We will eventually derive a contraction to

Lemma 8 by constructing a sequence for this β.
We construct an adversarial instance for this algorithm by constructing a

symmetric graph G = (N,w), i.e., we specify the symmetric weights underlying
the valuations of an FHG.
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Figure 2: Illustration of the construction in the proof of Theorem 4 for an
exemplary algorithm ALG . We display all positive valuations. The remaining
valuations within the leaf sets La

1 , Lb
1, La

2 , and Lb
2 are zero, and all other

valuations are large negative numbers. We start with two agents, a1 and b1. We
first attempt to dispatch a set Lb

1 of leaves towards b1. However, our algorithm
might immediately decide to dissolve {a1, b1} and create a new coalition {a′1, b′1}.
We then might be able to have all the leaf agents in La

1 and Lb
1 arrive. This

completes the first part of Phase 1. Now, we start the second part, in which
we subsequently increment the valuations. ALG might decide to immediately
dissolve {a′1, b′1} when the next agent arrives. This defines agents a2, b2, and
coalition C1. We start with Phase 2. In the first part, the leaf agents La

2 and
Lb
2 might arrive without further interruption. Now assume that ALG would

dissolve {a2, b2} when the next agent arrives (their edge is indicated in bold).
This would give rise to the definition of C2 and D2, and we would obtain an
inequality for y2 by comparing with the guarantee for the coalition structure
containing the nonempty coalitions C1, C2, and D2.
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The construction maintains the property that the algorithm’s current partition
can only contain a single coalition with positive welfare and that coalition contains
exactly two agents. The adversarial instance is constructed in a sequence of
phases, where in every phase, we grow star-like structures around each of the
endpoints of the currently maintained nonsingleton coalition. In the first part of
Phase i, we achieve a star with ℓi leaves, while the algorithm does not change
the matched edges. In the second part of Phase i, we iteratively increase the
weight on the edges of the stars by ϵi until the algorithm changes the matched
edge. This has to happen eventually because the algorithm achieves a bounded
competitive ratio.

We now specify the two parameters of the construction. For i ∈ N, define

ϵi :=
γ − c

2γ
2−i and ℓi :=

⌈
1− ϵi
ϵi

⌉
. (5)

The definition of ℓi immediately implies that

ℓi
ℓi + 1

≥ 1− ϵi. (6)

We now specify the instance. Our whole construction is illustrated in Figure 2.
The first two agents that arrive are a1 and b1 such that v(a1, b1) = 1. Clearly,

ALG has to form the coalition {a1, b1} as otherwise, its competitive ratio would
be unbounded. For i ≥ 1, at the beginning of Phase i, there is a single coalition
with nonzero welfare containing precisely agents ai and bi.

Moreover, throughout the execution of the instance, all arriving agents will
have a positive (mutual) valuation for precisely one agent—one of the agents
that presently is in a coalition of positive welfare—, a zero valuation for some
agents, and a large negative valuation for all other agents. In particular, the
second agent in the coalition of positive welfare yields a large negative valuation,
and thus, joining this coalition leads to an overall negative welfare, which cannot
be performed by any algorithm with a positive competitive ratio. Hence, the
new agent only forms a coalition of positive welfare if the previously existing
coalition with positive welfare is dissolved.

Now let i ≥ 1 and assume that we are at the beginning of Phase i, i.e., so
far ALG has constructed a partition containing a single coalition with positive
welfare containing ai and bi. We set

yi := v(ai, bi). (7)

In the first part of Phase 1, we want to guarantee that at the end of this part,
there is a single coalition of positive welfare C = {a′i, b′i} such that for each of
a′i and b′i, ℓi agents have arrived such that there are 0-valuations among these
agents and a valuation of yi towards a′i or b′i. In other words, the instance
contains a bi-star as a substructure where all edges weigh yi.

We start by setting a′i := ai and b′i := bi. Now, we let arrive a set Lb
i of up

to ℓi agents that have a valuation of yi for bi, 0 for already arrived agents in Lb
i ,
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and a sufficiently large negative valuation for all other agents, e.g., a negative
value larger in absolute value than the sum of positive valuations of already
existing agents. As we argued before, the only way that ALG puts an agent in
Lb
i into a coalition of positive welfare is if the coalition of a′i and b′i is dissolved

and the new agent forms a coalition with b′i. In this case, we update agent labels:
b′i becomes the new a′i, and the newly arrived agent is the new b′i.

We repeat this until ℓi agents have arrived. Note that this has to happen at
some point as we would otherwise have a path of unbounded length with edge
weights equal to yi, which would give rise to a partition of social welfare more
than 1

γ yi, a contradiction.
Now, we repeat the same procedure with a′i: we let arrive a set La

i of up to
ℓi agents that have a valuation of yi for ai, 0 for already arrived agents in La

i ,
and a sufficiently large negative valuation for all other agents. If the algorithm
decides to dissolve {a′i, b′i} to form a coalition of a′i with a newly arrived agent,
we update agent labels: a′i stays the new a′i, and the newly arrived agent is the
new b′i. Note that this part must eventually end with all ℓi agents having arrived.
Otherwise, we have an unbounded number of agents that at some point had the
role of b′i, and each of them can form a coalition with an agent in their set Lb

i ,
which yields unbounded welfare.

We reach the end of the first part of Phase i and have established a pair
of agents {a′i, b′i} together with their sets La

i and Lb
i . Note that the coalitions

{a′i} ∪ La
i and {b′i} ∪ Lb

i are “star” coalitions as in the prerequisites of Lemma 9.
We now start the second part of Phase i. New agents for potential star

coalitions with slightly higher valuations arrive in this phase. We set La,0
i := La

i

and Lb,0
i := Lb

i . We proceed as follows until the algorithm dissolves a coalition
and forms a new coalition of positive welfare. For each j ≥ 1, we let a set La,j

i

with ℓi agents arrive that have a valuation of yi + jϵi for ai, 0 for already arrive
agents in La,j

i , and a sufficiently large negative valuation for all other agents.
Then we let a set Lb,j

i with ℓi agents arrive that have a valuation of yi + jϵi for
bi, 0 for already arrived agents in La,j

i , and a sufficiently large negative valuation
for all other agents.

Note that this part also has to terminate at some point as otherwise agents
with an unbounded valuation arrive, leading to a partition of welfare higher than
1
γ yi.

Once the algorithm forms a new coalition—say this happens when the j∗th
sets of agents arrive—we distinguish two cases: If a′i remains in a nonsingleton
coalition with the new agent z, we define Ci := {b′i} ∪ Lb,j∗−1

i and Di :=

{a′i} ∪ La,j∗−1
i and set ai+1 = a′i and bi+1 = z. Otherwise, if b′i remains in a

nonsingleton coalition with the new agent z, we define Ci := {a′i} ∪ La,j∗−1
i and

Di := {b′i} ∪ Lb,j∗−1
i and set ai+1 = b′i and bi+1 = z.

Then, the new agents ai+1 and bi+1 are the only agents in a coalition of
positive welfare yi+1 = v(ai+1, bi+1). Moreover, Ci and Di are “star” coalitions
that are disjoint from all previous coalitions Ck for k < i and where all nonzero
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valuations are yi+1 − ϵi. By Lemma 9, we obtain

SW(Ci) = SW(Di) = 2
ℓi

ℓi + 1
(yi+1 − ϵi). (8)

Consider the partition πi containing the coalitions Di, Cj for 1 ≤ j ≤ i, and
singleton coalitions for all agents not contained in these. This coalition already
exists right before the arrival of the agent such that the coalition {a′i, b′i} is
dissolved. Note that at this point, the social welfare of the partition created by
ALG is yi, where we add yi

2 for each of a′i and b′i. Since ALG is γ-competitive,
we obtain

yi ≥ γ · SW(πi)

= γ

SW(Di) +

i∑
j=1

SW(Cj)


(8)
= γ

2
ℓi

ℓi + 1
(yi+1 − ϵi) +

i∑
j=1

2
ℓj

ℓj + 1
(yj+1 − ϵj)


(6)
≥ γ

2(1− ϵi)(yi+1 − ϵi) +

i∑
j=1

2(1− ϵj)(yj+1 − ϵj)


≥ γ

2(yi+1 − 2yi+1ϵi) +

i∑
j=1

2(yj+1 − 2yj+1ϵj)


≥ γ

2(yi+1 − 2yi+1ϵi) +

i∑
j=1

2(yj+1 − 2yi+1ϵj)


= 2γ

yi+1 +

i∑
j=1

yj+1

− 2γyi+1

ϵi +

i∑
j=1

ϵj


(4), (5)
= (β + (γ − c))

yi+1 +

i∑
j=1

yj+1


− 2γyi+1

γ − c

2γ
2−i +

i∑
j=1

γ − c

2γ
2−j


≥ β

yi+1 +

i∑
j=1

yj+1


+ (γ − c)yi+1 − (γ − c)yi+1

2−i +

i∑
j=1

2−j
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= β

yi+1 +

i∑
j=1

yj+1

 .

We obtain our desired sequence by scaling the yi and starting with y2.
Formally, for i ∈ N, we set xi :=

yi+1

y2
. Then, x1 = y2

y2
= 1 and for i ≥ 2, it holds

that xi ≥ 0. Moreover, for i ≥ 1, our previous calculation implies that

xi =
yi+1

y2
≥ 1

y2
β

yi+2 +

i+2∑
j=2

yj


= β

yi+2

y2
+

i+2∑
j=2

yj
y2

 = β

xi+1 +

i+2∑
j=2

xj−1


= β

xi+1 +

i+1∑
j=1

xj

 .

Hence, we have constructed the desired sequence and obtained a contradiction
by applying Lemma 8.

C Missing proofs in Section 6
In this section, we prove auxiliary lemmas in the proof of Theorem 6. We
start with the proof of Lemma 1. Its proof relies on two auxiliary statements
concerning stars and bi-stars.

We first consider stars and want to estimate infS∈S P({a, dtS} ∈ ALG(S)),
i.e., the infimum of the probability with which the maximum weight edge is
matched in stars.

Lemma 10. For every online matching algorithm ALG, it holds that
infS∈S P({a, dtS} ∈ ALG(S)) ≥ cALG − ϵ for every ϵ > 0.

Proof. Consider some star instance S ∈ S. Then, by definition of the competitive
ratio,

E[SW(ALG(S))]

SW(π∗(S))
=

SW(ALG(S))(
1
ϵ

)tS ≥ cALG ,

where π∗(S) denotes the maximum weight matching. We compute

cALG

(
1

ϵ

)tS

≤ E[SW(ALG(S))]

=
∑

x,y∈N

P({x, y} ∈ ALG(S))v(x, y)

≤
∑
i∈I

P({a, di} ∈ ALG(S))v(a, di)
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=
∑

i∈I\{t}

P({a, di} ∈ ALG(S))

(
1

ϵ

)i

+ P({a, dtS} ∈ ALG(S))

(
1

ϵ

)tS

In the second line, we express the expectation over matchings in terms of single
edges. The third line follows from the fact that only the valuations between a

and the agents associated with I are positive. Dividing both sides by
(
1
ϵ

)tS
> 0,

we get

cALG ≤ P({a, dtS} ∈ ALG(S))

+
∑

i∈I\{t}

P({a, di} ∈ ALG(S))

(
1
ϵ

)i(
1
ϵ

)tS
≤ P({a, dtS} ∈ ALG(S))

+
∑

i∈I\{t}

P({a, di} ∈ ALG(S))ϵ

≤ P({a, dtS} ∈ ALG(S)) + ϵ.

The last inequality follows since P({a, x} ∈ ALG(S)) for x ∈ N forms a proba-
bility distribution since a cannot be matched with probability more than one.
Since S ∈ S was chosen arbitrarily, we obtain infS∈S P({a, dtS} ∈ ALG(S)) ≥
cALG − ϵ.

Next, we show that cALG − 2ϵ is a lower bound on the probability with which
ALG matches the two centers in bi-star instances. The proof is similar to that
of Lemma 10.

Lemma 11. For every online matching algorithm ALG, it holds that
infB∈B P({a, b} ∈ ALG(B)) ≥ cALG − 2ϵ for every ϵ > 0.

Proof. Consider a bi-star instance B ∈ B. Then, by definition of the competitive
ratio, it holds that

E[SW(ALG(B))]

SW(π∗(B))
=

SW(ALG(B))(
1
ϵ

)tB ≥ c,

where π∗(B) denotes the maximum weight matching. We compute

cALG

(
1

ϵ

)tB+1

≤ E[SW(ALG(B))]

=
∑

x,y∈N

P({x, y} ∈ ALG(B))v(x, y)

≤
∑
i∈I

P({a, di} ∈ ALG(B))v(a, di)
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+
∑
j∈J

P({b, dj} ∈ ALG(B))v(b, dj)

+ P({a, b} ∈ ALG(B))v(a, b)

=
∑
i∈I

P({a, di} ∈ ALG(B)

(
1

ϵ

)i

+
∑
j∈J

P({b, dj} ∈ ALG(B))

(
1

ϵ

)j

+ P({a, b} ∈ ALG(B))

(
1

ϵ

)t+1

In the second line, we express the expectation over matchings in terms of single
edges. In the subsequent step, we omit edges with large negative weight. Dividing
both sides by

(
1
ϵ

)t+1
> 0, we get

c ≤ P({a, b} ∈ ALG(B))

+
∑
i∈I

P({a, di} ∈ ALG(B))

(
1
ϵ

)i(
1
ϵ

)t+1

+
∑
j∈J

P({b, dj} ∈ ALG(B))

(
1
ϵ

)j(
1
ϵ

)t+1

≤ P({a, b} ∈ ALG(B))

+
∑
i∈I

P({a, di} ∈ ALG(B))ϵ

+
∑
j∈J

P({b, dj} ∈ ALG(B))ϵ

≤ P({a, b} ∈ ALG(B)) + 2ϵ.

The third inequality follows since P({a, x} ∈ ALG(B)) and P({b, x} ∈ ALG(B))
for x ∈ N form probability distributions since a and b cannot be matched with
probability more than one. Since B ∈ B was chosen arbitrarily, we obtain
infB∈B P({a, b} ∈ ALG(B)) ≥ cALG − 2ϵ.

We can combine Lemmas 10 and 11 to transition to the goal of proving that
there is no algorithm matching the maximum weight edge that is better than
1
3 -competitive.

Lemmas 10 and 11, we can transition to the goal to prove that there is no
algorithm matching the maximum weight edge that is better than 1

3 -competitive.

Lemma 1. If there exists no algorithm for matching the maximum weight edge
with a competitive ratio of more than 1

3 , then there exists no online matching
algorithm on the tree domain with a competitive ratio of more than 1

3 .
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Proof. Assume that there is a c-competitive online matching algorithm ALG
on the tree domain with a competitive ratio of c > 1

3 . Define ϵ := 1
3

(
c− 1

3

)
and consider c′ = c− 2ϵ > 1

3 . By Lemmas 10 and 11, ALG is c′-competitive for
matching the maximum weight edge.

Next, we prove our lemma concerning history independence.

Lemma 3. For every star instance, we may assume without loss of generality
that our algorithm’s decisions only depend on which agents have arrived, whether
a has arrived and is matched, and whether the last arrived agent is part of the
current maximum weight edge.

Proof. Consider an algorithm ALG restricted as per Lemma 2. We transform
this algorithm as follows: Consider the arrival of an agent and assume that
the algorithm wants to match with positive probability. This means that the
currently arrived agent is a or the agent of the maximum weight edge. Assume
that, so far, agents in the set A have arrived. Let H(A) be the history of the
algorithm so far, which captures the arrival order of agents in A as well as
all previous algorithmic decisions. Let H(A) be the set of all histories where
the agents in A arrive such that the last arrived agent is part of the current
maximum weight edge, and a is unmatched at the arrival of the last agent.

We obtain a new algorithm ALG ′ as follows. Upon the arrival of an agent
that leads to a matching decision in ALG involving agents A, the algorithm
ALG ′ ignores the history H(A). Instead, it samples a history H ′(A) ∼ H(A)
according to the probabilities of this history occurring in ALG . Then, it matches
the current maximum weight edge if and only if ALG would do so given the
history H ′(A).

By design, we have that ALG ′ performs H(A) like ALG performs for H ′(A).
Moreover, the distribution of the sampled histories is identical to the distribution
of the real histories. Hence, the performance of ALG ′ in terms of matching the
maximum weight edge is identical to the performance of ALG . However, the
decisions of ALG ′ only depend on the set of agents that has arrived, whether a
has arrived and is matched, and whether the last agent is part of the current
maximum weight edge.

Now, we prove that decisions can be assumed to be independent of b and J .

Lemma 4. For every star instance, we may assume without loss of generality
that our algorithms decisions are independent of agents b and agents associated
with J .

Proof. Consider an algorithm ALG restricted as per Lemma 2. Then, ALG
never matches a negative weight edge. Hence, the first matching decision can
happen when a arrives, and subsequently, ALG can only match the current
maximum weight edge. Moreover, once a has arrived, it is revealed which present
agents belong to I. We transform ALG so that every matching decision if it is
still possible to match, is made as if b and agents associated with J have not
yet arrived. In other words, ALG behaves on a star instance with respect to
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parameters I, J , x, and ϵ, as if J was the empty set. Note that the case of the
same instance where J really is the empty set is another star instance, and it
achieves the same performance as ALG achieved on this instance. Hence, its
competitive ratio can only improve as it now only depends on a smaller set of
star instances.

Next, we prove the lemma about hk.

Lemma 6. It holds that hk > 2
3 − 2

3k ±O(δ) 2−hk−1

k .

Proof. To prove the lemma, we additionally define rk := P({a, dtS} ∈ ALG(S)),
i.e., the probability to match a with dtS . We now show recursive formulas.
To this end, we partition all arrival orders of {a} ∪ {di : i ∈ I}, i.e., of the
agents relevant to matching, into three sets based on the last arriving agent.
The first two are the arrival orders σ ∈ Σ({a} ∪ {di : i ∈ I}) in which a or dtS
arrive last, i.e., σ(k) = a or σ(k) = dtS , respectively. They each make up a
1
k fraction of all arrival orders, i.e., P(σ(k) = a) = 1

k and P(σ(k) = dtS ) =
1
k .

In the remaining orders, one of the other alternatives arrives last. We have
P(σ(k) ̸= a ∧ σ(k) ̸= dtS ) =

k−2
k .

hk = P(
⋃
i∈I

({a, di} ∈ ALG(S)))

= P(
⋃
i∈I

({a, di} ∈ ALG(S))|σ(k) ̸= a ∧ σ(k) ̸= dtS )

· P(σ(k) ̸= a ∧ σ(k) ̸= dtS )

+ P(
⋃
i∈I

({a, di} ∈ ALG(S))|σ(k) = dtS )P(σ(k) = dtS )

+ P(
⋃
i∈I

({a, di} ∈ ALG(S))|σ(k) = a)P(σ(k) = a)

=
k − 2

k
hk−1 +

1

k
(hk−1 + (1− hk−1)(pk −O(δ)))

+
1

k
(pk −O(δ))

=
k − 1

k
hk−1 −

pk
k
hk−1 +

2pk
k

−O(δ)
2− hk−1

k

Whenever we apply the recursion, we use that for all i ∈ I, it holds that
(I \ {i}) ∪ {x− 2} ⊆ T . Furthermore, we have h2 = p2 −O(δ).

Moreover, we have

rk = P({a, dtS} ∈ ALG(S))

= P({a, dtS} ∈ ALG(S)|σ(k) ̸= a ∧ σ(k) ̸= dtS )

· P(σ(k) ̸= a ∧ σ(k) ̸= dtS )

+ P({a, dtS} ∈ ALG(S)|σ(k) = dtS )P(σ(k) = dtS )
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+ P({a, dtS} ∈ ALG(S)|σ(k) = a)P(σ(k) = a)

=
k − 2

k
rk−1 +

1

k
(pk −O(δ))(1− hk−1)

+
1

k
(pk −O(δ))

=
k − 2

k
rk−1 −

pk
k
hk−1 +

2pk
k

−O(δ)
2− hk−1

k

In addition, it holds that r2 = p2 − O(δ) since if it matches, in this case, it
matches the optimal edge.

Next, we compute hk − rk, i.e., the probability of matching a suboptimal
valuation in a star. The terms O(δ) 2−hk−1

k do not cancel out because, in general,
they can be different.

hk − rk =
k − 1

k
hk−1 −

pk
k
hk−1 +

2pk
k

−O(δ)
2− hk−1

k

− k − 2

k
rk−1 +

pk
k
hk−1 −

2pk
k

+O(δ)
2− hk−1

k

=
k − 1

k
hk−1 −

k − 2

k
rk−1 ±O(δ)

2− hk−1

k

(9)

Thus,

hk =
k − 1

k
hk−1 + rk − k − 2

k
rk−1 ±O(δ)

2− hk−1

k

=

(
k∑

i=2

i

k
ri +

i− 2

k
ri−1

)
±O(δ)

2− hk−1

k

= rk +

(
k−1∑
i=2

i

k
ri +

i− 1

k
ri

)
±O(δ)

2− hk−1

k

= rk +

(
k−1∑
i=2

1

k
ri

)
±O(δ)

2− hk−1

k

≥ cALG +
k − 2

k
cALG ±O(δ)

2− hk−1

k

= 2cALG − 2

k
cALG >

2

3
− 2

3k
±O(δ)

2− hk−1

k
.
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