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Abstract
Coalition formation considers the question of how to partition a set of n agents into disjoint
coalitions according to their preferences. We consider a cardinal utility model with additively
separable aggregation of preferences and study the online variant of coalition formation, where the
agents arrive in sequence and whenever an agent arrives, they have to be assigned to a coalition
immediately. The goal is to maximize social welfare. In a purely deterministic model, the greedy
algorithm, where an agent is assigned to the coalition with the largest gain, is known to achieve an
optimal competitive ratio, which heavily relies on the range of utilities.

We complement this result by considering two related models. First, we study a model where
agents arrive in a random order. We find that the competitive ratio of the greedy algorithm is
Θ
(

1
n2

)
, whereas an alternative algorithm, which is based on alternating between waiting and greedy

phases, can achieve a competitive ratio of Θ
(

1
n

)
. Second, we relax the irrevocability of decisions by

allowing to dissolve coalitions into singleton coalitions, presenting a matching-based algorithm that
once again achieves a competitive ratio of Θ

(
1
n

)
. Hence, compared to the base model, we present

two ways to achieve a competitive ratio that precisely gets rid of utility dependencies. Our results
also give novel insights in weighted online matching.
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1 Introduction

Coalition formation is a vibrant topic in multi-agent systems. The goal is to partition a set
of n agents into disjoint coalitions. We consider the framework of hedonic games, where the
agents have preferences for the coalitions they are part of by disregarding externalities [18].
More specifically, we assume that each agent has cardinal utilities for each other agent and
that utilities for coalitions are aggregated in an additively separable way by taking sums [7].

Most of the hedonic games literature considers an offline setting, where a fully specified
instance is given. By contrast, in many real-life situations, such as the formation of teams in a
company, the agents are not all present in the beginning but rather join an ongoing coalition
formation process over time. With this motivation in mind, Flammini et al. [22] proposed
an online version of hedonic games, where agents arrive one by one. Upon arrival, an agent
reveals their preferences for coalitions containing the agents present thus far, and has to be
added immediately and irrevocably to an existing coalition (or to a new singleton coalition).
Flammini et al. [22] seek to find algorithms that have high social welfare in a worst-case
analysis against an adaptive adversary that is allowed to select an arbitrary instance and
an arbitrary arrival order of the agents. The performance of an algorithm is measured with
respect to its competitive ratio, that is, the worst-case ratio of the social welfare of the
computed solution compared to the social welfare of the optimal offline solution. Their main
result is that the greedy algorithm, which adds every agent to the best possible coalition
upon arrival, has the optimal competitive ratio of Θ

(
1
n

Umin
Umax

)
, where Umax and Umin are the

maximum and minimum absolute value of a non-zero single-agent utility in the adversarial
instance, respectively.1 In other words, for a fixed number of agents the competitive ratio is
infinite if the maximum or minimum utility is not bounded.

Arguably, unbounded utilities give a lot of power to an adversary. The following example
by Flammini et al. [22] exploits this. Consider the situation where the first two arriving
agents have a mutual utility of 1. If an algorithm adds the second agent to the coalition of
the first agent, then the adaptive adversary can set the utility of 1 as the minimum utility
and add agents with large positive and negative utilities that bring no gain to this coalition.
Hence, the welfare of the large positive utilities is lost, and the algorithm performs badly.
Otherwise, if an algorithm puts the second agent into a singleton coalition, then the adversary
can set the utility of other arriving agents to 0, and the loss of the welfare of the single
positive edge leads to an unbounded competitive ratio.

As a consequence, we want to see whether we can perform better if the adversary has
less power in two related models. First, we consider a model where the adversary is still
capable of fixing a bad instance. However, agents arrive in a random order according to a
permutation of the agents selected uniformly at random. We show that the greedy algorithm
achieves a competitive ratio of Θ

( 1
n2

)
. Moreover, we present an alternative algorithm with a

competitive ratio of Θ
( 1

n

)
, which is based on alternating between waiting and greedy phases.

Second, we allow an algorithm to dissolve a coalition into singleton coalitions to revert bad
previous decisions. We present a 1

6 -competitive online matching algorithm, which can be used
to achieve a competitive ratio of Θ

( 1
n

)
for online coalition formation. Hence, compared to

the deterministic model, we present a novel algorithm, whose competitive ratio gets precisely
rid of utility dependencies. We conclude by showing boundaries for optimal algorithms in
both settings. Moreover, we discuss why the worst-case analysis for our presented algorithm
does not generalize for any algorithm.

1 Flammini et al. [22] simplify the exposition by scaling the utilities such that Umin is always 1.
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2 Related Work

Hedonic games originated from economic theory [18] more than four decades ago. However,
their broad consideration only started about two decades later [3, 7, 16]. In particular,
Bogomolnaia and Jackson [7] introduced additively separable hedonic games (ASHGs), which
are since then an ongoing subject of study. A large part of the research on ASHGs focuses
on the computational complexity of stability measures [2, 9, 13, 17, 22, 23, 29, 30], but
some more recent studies also consider economic efficiency in the sense of Pareto optimality
[12, 19], popularity [8], or strategyproofness [21]. In general, maximizing social welfare is
NP-hard, even if utilities are symmetric and only attain the values −1 and 1 [2]. Moreover,
even though Bullinger [12] presents a polynomial-time algorithm to compute Pareto-optimal
partitions for symmetric ASHG, the partitions computed by this algorithm can have negative
social welfare. All of the literature discussed thus far considers ASHG in an offline setting.

The online variant only came under scrutiny very recently and has been researched far
less. Flammini et al. [22] introduce the problem and focus on deterministic algorithms with
guarantees to social welfare. Strictly speaking, they consider a variant of games equivalent
to ASHGs, where utilities are scaled by a factor of 2. In particular, they consider games
restricted by a maximum coalition size or maximum number of coalitions.

Moreover, there is a recent stream of research on dynamic models of coalition formation
[4, 10, 15]. Instead of agents arriving over time, there exists an initial partition, which
is altered over discrete time steps based on deviations of agents. Some of this literature
explicitly deals with ASHGs or close variants [5, 6, 9, 14].

From the online algorithms literature, most related to our work is the online matching
problem, which was first considered in the seminal paper by Karp et al. [27] considering
online bipartite matching. In this work, an unweighted, bipartite graph is given, and the
agents of one side appear online. The goal is to find a matching of maximum cardinality.
Karp et al. [27] introduce the famous ranking algorithm, which achieves a competitive ratio
of 1 − 1

e . An overview of this research is presented in the very recent book chapter by Huang
and Tröbst [25].

Our model of online coalition formation can be viewed as a generalization of the setting
by Karp et al. [27], with the following modifications: (i) there are edge weights, (ii) all
vertices arrive online, (iii) the underlying graph is not necessarily bipartite, and (iv) coalitions
can be arbitrary subsets of agents. While condition (iv) is specific to coalition formation,
conditions (i)-(iii) have been studied in the literature, albeit, to the best of our knowledge,
not in the combination of all three. Feldman et al. [20] consider condition (i), i.e., a bipartite
setting with edge weights, where one side of the vertices arrives online. They show that
the natural greedy algorithm is 1

2 -competitive, and they provide an algorithm matching the
competitive ratio of 1 − 1

e from Karp et al. [27]. An important condition in this setting is
free disposal, which essentially requires that a previous matching can be dissolved upon the
arrival of a better option. Wang and Wong [31] consider condition (ii), i.e., online bipartite
matching where both sides arrive online. They can beat the greedy algorithm by a primal-dual
algorithm achieving a competitive ratio of 0.532 < 1 − 1

e . Finally, Huang et al. [24] consider
the conjunction of conditions (ii) and (iii), i.e., fully online (non-bipartite) matching. They
extend the ranking algorithm to this setting and show that it is 0.5211-competitive. Both
Wang and Wong [31] and Huang et al. [24] show that a competitive ratio of 1− 1

e is impossible
to achieve in their respective settings. Interestingly, the competitive ratio of 1 − 1

e can be
beaten in the random arrival model [26, 28].
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3 Preliminaries

In this section, we present our model. For an integer i ∈ N, we define [i] := {1, . . . , i}.
Additionally, for any set N , define

(
N
2
)

:= {e ⊆ N : |e| = 2}.

3.1 Additively Separable Hedonic Games
Let N be a finite set of n agents. Any subset of N is called a coalition. We denote the set of
all possible coalitions containing agent i ∈ N by Ni = {C ⊆ N : i ∈ C}. A coalition structure
(or partition) is a partition of the agents. Given an agent i ∈ N and a partition π, let π(i)
denote the coalition of i, i.e., the unique coalition C ∈ π with i ∈ C.

A hedonic game is a pair (N,≿) consisting of a set N of agents and a preference profile
≿ = (≿i)i∈N , where ≿i is a weak order over Ni that represents the preferences of agent i.
A hedonic game is called an additively separable hedonic game (ASHG) if there exists a
complete, undirected, and weighted graph G = (N,E,w) with edge set E =

(
N
2
)

and weight
function w : E → Q, such that, for every agent i ∈ N and every pair of coalitions C,C ′ ∈ Ni,
it holds that C ≿i C

′ if and only if
∑

j∈C w({i, j}) ≥
∑

j∈C′ w({i, j}) [7].2 We then speak of
the ASHG given by G. We abbreviate w(i, j) = w({i, j}). Moreover, since we only consider
complete graphs, we shorten notation and write G = (N,w), where w :

(
N
2
)

→ Q, instead
of G = (N,E,w) to fully specify an underlying graph. For an agent i ∈ N and a coalition
C ∈ Ni or a partition π, we define the utility of i for C or π by ui(C) :=

∑
j∈C w(i, j) and

ui(π) := ui(π(i)), respectively.
Additionally, we extend the weight function to sets of edges F ⊆

(
N
2
)

by w(F ) :=∑
e∈F w(e). A matching is a coalition structure π such that, for all C ∈ π, it holds that

|C| ≤ 2. A matching π is represented by its edge set M(π) := {C ∈ π : |C| = 2} ⊆
(

N
2
)
. We

then write w(π) := w(M(π)) for the weight of matching π.

3.2 Online Coalition Formation
In this section, we introduce our model of online coalition formation and appropriate
objectives. Consider an ASHG given by G = (N,w). Given a subset of agents N ′ ⊆ N ,
let G[N ′] denote the subgraph induced by agent set N ′. Moreover, given a partition π

of N and a subset of agents N ′ ⊆ N , we define π[N ′] as the partition restricted to N ′ as
π[N ′] := {C ∩N ′ : C ∈ π,C ∩N ′ ̸= ∅}. Specifically, if N ′ = N \ {i} for some agent i ∈ N ,
we write π − i instead of π[N ′].

In an online setting, previous decisions influence the capabilities of an algorithm to
form a partition in the next step. Given a partition π and an agent i not covered by π,
let A(π, i) denote the set of available partitions, when the tentative partition is π and the
newly arriving agent is i. As a default, we assume the standard setting where A(π, i) =
AS(π, i) := {π′ : π′ − i = π}. We also consider algorithms that have the capability to
dissolve a coalition completely. We say that an algorithm acts under free dissolution if
A(π, i) = AD(π, i) := AS(π, i) ∪

⋃
C∈π,j∈C{(π \ {C}) ∪ {{i, j}} ∪ {{k} : k ∈ C \ {j}}}.

Free dissolution is the natural extension of free disposal by Feldman et al. [20] in the
domain of matching adapted to coalitions of size larger than 2. In addition, we define
Σ(N) := {σ : [|N |] → N bijective} as the set of all orders of the agent set N .

2 Since our focus will be on social welfare, the consideration of undirected graphs is without loss of
generality because the social welfare of a partition is invariant under the symmetrization wS({x, y}) =
1
2 (wx(y) + wy(x)) given directed edges with weights wi(j).



M. Bullinger and R. Romen 5

An instance of an online coalition formation problem is a tuple (G, σ), where G = (N,w)
defines an ASHG and σ ∈ Σ(N). An online coalition formation algorithm for instance (G, σ)
gets as input the sequence G1, . . . , Gn, where, for every i ∈ [n], Gi = G[{σ(1), . . . , σ(i)}].
Then, for every i ∈ [n], the algorithm produces a partition πi of {σ(1), . . . , σ(i)} such that
the algorithm has only access to Gi and for i ≥ 2, it holds that πi ∈ A(πi−1, σ(i)).

The output of the algorithm is the partition πn. Given an online coalition formation
algorithm ALG, let ALG(G, σ) be its output for instance (G, σ).

In other words, the algorithm iteratively builds a partition such that, whenever an agent
arrives, the only knowledge is the game restricted to the present agents, and the algorithm
has to irrevocably assign the new agent to an existing coalition or start a new coalition
(or, under free dissolution, dissolve any coalition before making its decision). If an online
coalition formation algorithm creates a matching in any step, we speak of an online matching
algorithm.

Our benchmark algorithm is the greedy algorithm as introduced by Flammini et al. [22].

▶ Definition 1 (Greedy algorithm). On input (G, σ), in the ith step, i ≥ 2, the greedy
algorithm (GDY ) forms πi = arg maxπ∈A(πi−1,σ(i)) SW(π) if there exists π ∈ A(πi−1, σ(i))
with SW(π) > SW(πi−1), and πi = πi−1 ∪ {{σ(i)}}, otherwise.

Hence, GDY assigns each arriving agent to the available coalition such that the increase in
social welfare is maximized, or creates a new singleton coalition if no increase is possible.

3.3 Competitive Analysis
The competitive analysis needs a quantifiable objective and we follow Flammini et al. [22]
by considering social welfare. The social welfare of a partition π is defined as SW(π) =∑

i∈N ui(π). A partition π is said to be welfare-optimal if, for every partition π′, it holds
that SW(π) ≥ SW(π′). Given a hedonic game G, let π∗(G) be a welfare-optimal partition.
We say that an online coalition formation algorithm ALG is c-competitive3 if

inf
G

min
σ∈Σ(N)

SW(ALG(G, σ))
SW(π∗(G)) ≥ c.

Equivalently, this means that, for all instances (G, σ), it holds that SW(ALG(G, σ)) ≥
cSW(π∗(G)). The competitive ratio of an algorithm ALG, denoted by cALG, is the maximum
c such that ALG is c-competitive. Note that the competitive ratio is always at most 1.

In addition, we consider online coalition formation with a random arrival order, where we
assume that the arrival order is selected uniformly at random. In the random arrival model,
the competitive ratio of an algorithm ALG is defined as

inf
G

Eσ [SW(ALG(G, σ))]
SW(π∗(G)) ≥ c.

There, the expectation is over the uniform selection of an arrival order σ from Σ(N). Note
that if π is a matching, then w(π) = 1

2 SW(π). Hence, in the competitive analysis of online
matching algorithms, we can as well consider the weight of matchings instead of their social
welfare.

3 Here, we use the convention that 0
0 = 1 and x

0 = 0 for any x ∈ Q<0. Also, note that Flammini et al. [22]
define the competitive ratio in the inverse way such that it is always at least 1. Here, we prefer the
more common definition in the online matching literature.
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Figure 1 The example contains n = 2m + 2 agents. There are m agents in each of the sets X

and Y . The utility between a and any agent in X and b and any agent in Y is ϵ. All omitted edges
represent utilities of −1.

4 Random Arrival Model

In this section, we analyze algorithms aiming at achieving a high social welfare in the random
arrival model. Interestingly, while in the deterministic arrival model, the specific utility
values affect the competitive ratio of the greedy algorithm (and any other algorithm) [22],
in the random arrival model, the dependency is solely on the number of agents. For our
analysis of algorithms in this section we use the notation x ≺σ y to say that σ−1(x) < σ−1(y)
for x, y ∈ N and an arrival order σ.

▶ Theorem 2. The competitive ratio of GDY for ASHGs under a random arrival order
satisfies Θ

( 1
n2

)
.

Proof. First, we show that the competitive ratio of GDY satisfies O
( 1

n2

)
by providing an

example where it performs “bad”. Let ϵ > 0 and consider the ASHG given by Gϵ = (N,wϵ)
depicted in Figure 1. The agent set is N = X ∪ Y ∪ {a, b}, where |X| = |Y | = m. Utilities
are given by wϵ(a, b) = 1, wϵ(a, x) = wϵ(b, y) = ϵ for x ∈ X and y ∈ Y , and all other weights
are −1. Clearly, for sufficiently small ϵ, the optimal solution has a value of 2 (with {a, b} the
only non-singleton coalition). By inspecting the limit case for ϵ tending to 0, the value of the
greedy algorithm (and therefore also its competitive ratio) is at most twice the probability of
forming {a, b}, i.e.,

cGDY = inf
G

Eσ [SW(GDY (G, σ))]
SW(π∗(G)) ≤ inf

ϵ>0

Eσ [SW(GDY (Gϵ, σ))]
2

≤ Pσ({a, b} ∈ GDY (Gϵ, σ)).

We compute

Pσ({a, b} ∈ GDY (Gϵ, σ)) = Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b)Pσ(a ≺σ b)
+ Pσ({a, b} ∈ GDY (Gϵ, σ) | b ≺σ a)Pσ(b ≺σ a)

= 2Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b)Pσ(a ≺σ b).

The second equality follows by symmetry. Next, we sum over all possible arrival positions
of b by summing over the number of alternatives that arrive before b in addition to a. Note
that if more than m agents arrive before b, excluding a, then, by the pigeonhole principle,
some x ∈ X arrives before b and forms a coalition with a. This prevents the coalition {a, b}
from forming so all terms of the sum for i > m are 0. Conditioned on a arriving before b,
the coalition {a, b} forms if and only if all i agents arriving before b are from Y since those
agents will not form a coalition with a. We derive4

4 For the first inequality, note that it holds that P(A | B)P(B) = P(A, B) =
∑

C
P(A, B, C) =

∑
C
P(A |

B, C)P(B, C) =
∑

C
P(A | B, C)P(B | C)P(C) for arbitrary events A, B, and C and probability

measures P.
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cGDY ≤ 2
m∑

i=0
Pσ({a, b} ∈ GDY (Gϵ, σ) | a ≺σ b, σ−1(b) = i+ 2)

· Pσ(a ≺σ b | σ−1(b) = i+ 2)Pσ(σ−1(b) = i+ 2)

= 2
m∑

i=0
Pσ({d : d ≺σ b} \ {a} ⊆ Y | a ≺σ b, σ−1(b) = i+ 2)

· Pσ(a ≺σ b | σ−1(b) = i+ 2)Pσ(σ−1(b) = i+ 2).

We compute all individual terms in the previous sum. First, the probability that the
i agents arriving before b are all from Y is Pσ({d : d ≺σ b} \ {a} ⊆ Y | a ≺σ b, σ−1(b) =
i+ 2) = (m

i )
(2m

i ) , i.e., the number of possibilities to draw i agents from Y divided by the number
of possibilities to draw i agents from Y ∪X.

Second, the probability that a arrives before b when b arrives in position i + 2 is
Pσ(a ≺σ b | σ−1(b) = i + 2) = i+1

2m+1 because we have i + 1 chances to draw a among the
remaining 2m+ 1 alternatives. Finally, due to the random arrival order, the probability that
agent b arrives in a certain fixed position is Pσ(σ−1(b) = i+ 2) = 1

2m+2 . Together, we obtain

cGDY ≤ 2
m∑

i=0

(
m
i

)(2m
i

) i+ 1
2m+ 1

1
2m+ 2 = 2

m2 + 3m+ 2 ∈ O

(
1
m2

)
= O

(
1
n2

)
.

Next, we show that the competitive ratio of GDY satisfies Ω
( 1

n2

)
. Consider an arbitrary

ASHG given by G = (N,w) and let E+(G) =
{
e ∈

(
N
2
)

: w(e) > 0
}

be the set of agent pairs
with positive weights. Then, the welfare-optimal partition π∗(G) satisfies SW(π∗(G)) ≤
2
∑

e∈E+(G) w(e). Furthermore, the social welfare of GDY is at least twice the utility between
the first arriving pair of agents from E+(G). Indeed, until the arrival of a pair of agents with
positive utility, every agent is assigned to a singleton coalition. Thus, since every pair in
E+(G) has equal probability to be the first such pair, the expected social welfare of GDY is

at least the average, i.e., Eσ[SW(GDY (G, σ))] ≥
∑

e∈E+(G)
2w(e)

|E+(G)| and the competitive ratio
is then at least

cGDY = inf
G

Eσ[SW(GDY (G, σ))]
SW(π∗(G)) ≥ inf

G

∑
e∈E+(G)

2w(e)
|E+(G)|

2
∑

e∈E+(G) w(e) = inf
G

1
|E+(G)| ∈ Ω

(
1
n2

)
.

Altogether, we have shown that cGDY is of order Θ
( 1

n2

)
. ◀

The natural question is whether we can obtain better algorithms than the greedy algorithm.
A simple attempt to achieve a better algorithm is to make use of randomization. The
performance of the greedy algorithm was bounded because in the worst case, the value of
greedy is equal to the average weight of a positive edge. However, we can easily achieve the
average weight of a random matching, improving the performance to 1/n. For simplicity, we
assume first that n is even and known to the algorithm in advance. We first analyze a simple
online matching algorithm.

▶ Definition 3 (Random matching algorithm). The random matching algorithm (RMA) leaves
the first n

2 agents unmatched. Then, we select a bijection ϕ :
[

n
2
]

→
[

n
2
]

uniformly at random.
For 1 ≤ i ≤ n

2 , if the weight between the
(

n
2 + i

)
th agent and the ϕ(i)th agent is positive,

then these are matched. Otherwise, the
(

n
2 + i

)
th remains unmatched.
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We determine the competitive ratio of RMA.

▶ Proposition 4. RMA has a competitive ratio of Θ
( 1

n

)
for matching instances under a

random arrival order when n is known.

Proof. Consider an instance given by G = (N,w) such that there exists agents a, b ∈ N with
w(a, b) = 1, and w(x, y) = 0 if {x, y} ≠ {a, b}. Then, the maximum weight matching has
weight 1, but RMA has only a chance of(2

1
)(

n−2
n
2 −1
)(

n
n
2

) · 1
n

= n

2(n− 1) · 1
n

= Θ
(

1
n

)
,

to have a and b in the same coalition. There, the first part of the product is the chance that a
and b appear in different stages of the algorithm, and the factor of 1/n is the probability that
they are matched conditioned on them arriving in different stages. Hence, the competitive
ratio of RMA satisfies O

( 1
n

)
.

On the other hand, in an execution of RMA, every positive edge has a probability of
n

2(n−1) · 1
n to contribute to the computed matching. Let E+ =

{
e ∈

(
N
2
)

: w(e) > 0
}

. Hence,
Eσ[RMA(G, σ)] =

∑
e∈E+

n
2(n−1) · 1

nw(e) ≥ 1
2nw(E+). Since any matching is of weight at

most w(E+), we conclude that

cRMA ≥ 1
2n = Ω

(
1
n

)
.

◀

Our next goal is to derandomize this algorithm while maintaining the same competitive
ratio. A natural way to do this is to have the first half of the agents form singleton coalitions,
and the second half of the agents join the best available coalition. This yields a deterministic
algorithm achieving a competitive ratio of 1

n . First, we maintain the assumption that n
is even and known to the algorithm beforehand. However, after we have analyzed this
algorithm, we will show that we can drop this additional assumption and that a variation of
the algorithm still achieves the same competitive ratio asymptotically.

▶ Definition 5 (Waiting greedy algorithm). The waiting greedy algorithm (WGDY ) places the
first n

2 agents in singleton coalitions. Then, for the remaining n
2 agents, it assigns coalitions

greedily.

The upper bound of the performance of WGDY is again attained by the game depicted
in Figure 1. The analysis is more involved and relies on investigating the distribution of the
agents in the second phase. We defer the complete proof to Appendix A in the appendix and
restrict attention to the lower bound. Appendix A also contains all other missing proofs.

▶ Theorem 6. The competitive ratio of WGDY for ASHGs under a random arrival and
known and even n is Θ

( 1
n

)
.

Proof of lower bound. We show that WGDY ∈ Ω
( 1

n

)
. Consider an arbitrary ASHG given

by G = (N,w). Let Π(n) =
{

(A,B) : A ∪B = N, |A| = |B| = n
2
}

be the set of partitions of
the agent set N into two equally-sized subsets.

Let (A,B) ∈ Π(n). Define E+(A,B) =
{
e = {a, b} ∈

(
N
2
)

: w(e) > 0, a ∈ A, b ∈ B
}

. We
claim that if the agents in A and B arrive in the first and second stage, respectively, then
the weight of the obtained partition is at least 1

nw(E+(A,B)). Let PA,B denote the event
that the partition (A,B) realizes.
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Consider an arbitrary agent b ∈ B. Let a1(b), . . . , ar(b)(b) ∈ A be the agents in A such
that {b, ai(b)} ∈ E+(A,B), where r(b) ∈ N is their number. Assume that w(a1(b), b) ≥
w(a2(b), b) ≥ · · · ≥ w(ar(b)(b), b). Let i ∈ [r(b)]. In the event PA,B , an agent b ∈ B arrives as
the ( n

2 + i)th agent (i.e., the ith agent within B) with a probability of 2
n . Moreover, when b

arrives as the ( n
2 + i)th agent, then at most i− 1 coalitions have formed so far, and therefore

some agent in {a1(b), . . . , ai(b)} is still in a singleton coalition. Hence, the increase in weight
caused by b is at least the weight of forming a singleton coalition with the worst partner in
{a1(b), . . . , ai(b)}, that is, w(ai(b), b). Let Ib be the random variable denoting the gain in
social welfare caused by the arrival of b.

Hence, in the event PA,B , the attained expected social welfare satisfies

Eσ[SW(WGDY (G, σ)) | PA,B ] ≥
∑
b∈B

Eσ[Ib | PA,B ]

=
∑
b∈B

r(b)∑
i=1

Eσ

[
Ib | PA,B , σ

−1(b) = n

2 + i
]
Pσ

(
σ−1(b) = n

2 + i | PA,B

)

=
∑
b∈B

r(b)∑
i=1

Eσ

[
Ib | PA,B , σ

−1(b) = n

2 + i
] 2
n

≥
∑
b∈B

r(b)∑
i=1

w(ai(b), b)
2
n

= 2
n

∑
b∈B

∑
e∈E+(A,B) : b∈e

w(e) = 2
n
w(E+(A,B)).

Hence, the expected social welfare of the partition computed by WGDY is

Eσ [SW(WGDY (G, σ))] ≥ 1
|Π(n)|

∑
(A,B)∈Π(n)

2
n
w
(
E+(A,B)

)
≥ 1

2
2
n
w
(
E+) . (1)

In the first inequality, we have used that each partition in Π(n) is realized with equal prob-
ability, and in the second inequality, we have used that an edge in E+ =

{
e ∈

(
N
2
)

: w(e) > 0
}

is in E+(A,B) for at least half of the partitions in Π. The latter holds because there are
n2
/4 edges between A and B and n(n−1)/2 edges in total.

Additionally, the social welfare of any partition is at most 2w(E+). Combining this with
Equation (1), we obtain

cWGDY ≥
w(E+)

n

2w(E+) = 1
2n ∈ Ω

(
1
n

)
.

◀

Next, we show that we can still use a variant of this algorithm even if we do not know n.
The idea is to run WGDY on an exponentially growing number of agents repeatedly, possibly
not finishing the last iteration.
▶ Definition 7 (Iterated waiting algorithm). The iterated waiting algorithm (IWA) alternates
between placing 2i agents in singleton coalitions and then assigning 2i agents to coalitions
with the previous 2i agents greedily. The parameter is set to i = 0 at the start and is increased
by 1 after 2i+1 agents arrive.

The lower bound in the analysis follows, because IWA completes an execution of WGDY
for a sufficiently large number of agents. For the upper bound, we can once again use the
game in Figure 1. The analysis is even more involved as in Theorem 6 because we need to
consider dependencies of the distributions of the agents between the phases of IWA.
▶ Theorem 8. IWA has a competitive ratio of c ∈ Θ

( 1
n

)
.
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a33a0 a33a1 a33a2 a33a3 a33ak a33ak+11 1 + ϵ 1 + 2ϵ 1 + kϵ. . .

Figure 2 Family of instances for upper bound of the competitive ratio of GDY for matching
instances under free dissolution.

5 Deterministic Model under Free Dissolution

In this section, we consider the model with deterministic arrivals under free dissolution. For
bipartite online matching instances, where one side of the agents is present offline, Feldman
et al. [20] show that GDY , i.e., transitioning to best coalitions within AD(π, i) achieves a
competitive ratio of 1

2 . However, if all vertices arrive online, then GDY does not even achieve
a constant competitive ratio.

▶ Proposition 9. In the deterministic model with free dissolution, GDY has a competitive
ratio of Θ( 1

n ) in the matching domain.

Proof. First, note that GDY will definitely match a pair of agents with the highest possible
weight Wmax. Moreover, every matching has weight at most n

2Wmax, and therefore cGDY ∈
Ω( 1

n ).
For the upper bound, consider the family of instances depicted in Figure 2. Let ϵ > 0

and k ∈ N even. Consider Gk,ϵ = (Nk,ϵ, wk,ϵ) where Nk,ϵ = {ai : 0 ≤ i ≤ k + 1 and, for
i ∈ [k + 1], wk,ϵ(ai−1, ai) = 1 + (i− 1)ϵ. All other weights are set to 0. Let the arrival order
be (a0, a1, . . . , ak, ak+1). Let M∗(Gk,ϵ) be the maximum weight matching for the instance
given by Gk,ϵ.

Then, M∗(Gk,ϵ) =
{

{a2i, a2i+1} : 0 ≤ i ≤ k
2
}

and GDY outputs the matching {{ak, ak+1}}.
Hence,

inf
ϵ>0

SW(GDY (Gk,ϵ, σk))
SW(M∗(Gk,ϵ, σk)) = inf

ϵ>0

1 + kϵ
k
2 + 1

4k(k + 2)ϵ
= 2
k

∈ Θ
(

1
n

)
.

◀

The non-zero edges in the construction of the previous proposition even induce bipartite
graphs, and it is therefore essential for the result by Feldman et al. [20] that one side of the
agents is present offline. Proposition 9 indicates that even achieving a constant competitive
ratio is a non-trivial task for an online matching algorithm for weighted graphs. In fact, as
we will see in Section 6, the usual result of achieving a competitive ratio of 1/2 with some
algorithm [27, 20, 31] is impossible. Still, we can modify the greedy algorithm to achieve a
constant competitive ratio.

▶ Definition 10 (Dissolution threshold algorithm). Given a matching π and a newly arriving
vertex i, the dissolution threshold algorithm (DTA) is the greedy algorithm for the available
matchings A(π, i) = {(π − j) ∪ {{i, j}} : {j} ∈ π} ∪ {(π \ {C}) ∪ {{i, j}, {k}} : C = {j, k} ∈
π,w(i, j) ≥ 2w(j, k)}.

In words, DTA only dissolves a matched pair if the weight of the new edge compared to the
weight of the dissolved edge is larger by at least a factor of 2.

▶ Theorem 11. In the deterministic model with free dissolution, DTA has a competitive
ratio of 1

6 in the matching domain.
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a33

a33

a0

b0

2 − ϵ

a33

a33

a1

b1

4 − ϵ

a33

a33

a2

b2

8 − ϵ

a33

a33

a3

b3

16 − ϵ

a33

a33

ak

bk

2k+1 − ϵ

a33

a33

ak+1

bk+1

2k+1 − ϵ

1 2 4 2k. . .

Figure 3 Family of instances for tightness of competitive ratio in Theorem 11.

Proof. We show first that cDTA ≤ 1
6 . To this end, we define a family of instances (Gk,ϵ)k≥1,ϵ>0

with a sufficiently large gap between the social welfare of the algorithmic and optimal solutions.
The construction is depicted in Figure 3.

Let Gk = (Nk, wk) where Nk = {ai, bi : 0 ≤ i ≤ k + 1}. The edge weights are given by
w(ai, bi) = 2i+1−ϵ for 0 ≤ i ≤ k, w(ak+1, bk+1) = 2k+1−ϵ, and w(ai, ai+1) = 2i for 0 ≤ i ≤ k.
All other weights are set to 0. The arrival order σk is (a0, a1, b0, a2, b1, . . . , ak+1, bk, bk+1).

Consider an execution of DTA for (Gk,ϵ, σk). It is easy to see that DTA(Gk,ϵ, σk) =
{{ak, ak+1}}, hence SW(DTA(Gk,ϵ)) = 2k. On the other hand, the maximum weight
matching for Gk,ϵ (and sufficiently small ϵ) is M∗(Gk,ϵ) = {{ai, bi} : 0 ≤ i ≤ k + 1} with
SW(M∗(Gk,ϵ)) = 2k+1 + 2k+2 − 2 − (k + 2)ϵ. Hence,

cDTA = inf
G,σ

SW(DTA(G, σ))
SW(M∗(G, σ)) ≤ inf

k≥1,ϵ>0

SW(DTA(Gk,ϵ, σk))
SW(M∗(Gk,ϵ))

= inf
k≥1,ϵ>0

2k

2k+1 + 2k+2 − 2 − (k + 2)ϵ = 1
6 .

Next, we show that cDTA ≥ 1
6 . Let M be the matching produced by DTA and let M∗ be

a maximum weight matching. Without loss of generality, we may assume that all edges in
M∗ have positive weight. Further let F ⊆ E be the set of edges that were formed by DTA
at some point, i.e., F consists of the edges in M as well as all edges that have been dissolved.
The key idea is to consider the relation induced by the replacement of edges. More precisely,
given two edges e, e′ ∈ F , we say that e dominates e′ with respect to replacement, written as
e ≻R e′, if there exists a chain of edges e0, . . . , ej such that e0 = e′, ej = e and for i ∈ [j],
the formation of ei has lead to the dissolution of ei−1. Note that M consists precisely of the
maximal elements in F with respect to ≻R.

We define a function µ : M∗ → 2F as follows. Let m = {a, b} ∈ M∗ and assume that
b arrives after a. For a set of edges F ′ ⊆ F , we define max≻R

(F ′) = {f ∈ F ′ : ∄f ′ ∈
F with f ′ ≻R f}.

If, at the arrival of b, a is already matched with c and 2w(a, c) > w(a, b), then µ(m) =
max≻R

{f ∈ F : f ≿R {a, c}, a ∈ f}. If, at the arrival of b, a is already matched with c

and 2w(a, c) ≤ w(a, b), then b is matched with some d and we define µ(m) = max≻R
({f ∈

F : f ≿R {a, c}, a ∈ f} ∪ {f ∈ F : f ≿R {b, d}, b ∈ f}). If at the arrival of b, a is unmatched,
then b is matched with some d and we define µ(m) = max≻R

{f ∈ F : f ≿R {b, d}, b ∈ f}.
Note that µ always maps to a non-empty set. Indeed, if a is unmatched or matched to an
agent c with 2w(a, c) ≤ w(a, b), then b will certainly be matched because matching with a is
an eligible option. Note that µ is a set-valued function, but for all m ∈ M∗, it holds that
|µ(m)| ≤ 2. Moreover, the only case where µ(m) contains two edges is if we are in the second
case and the edge {a, b} is not created.

Bounding the weight of M∗ proceeds in three steps. First, we bound the weights of edges
in M∗ by their image set in F . Then, we show that each edge in F is only in the image of
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few edges. Lastly, we bound the weight accumulated by edges dominated with respect to ≻R.
To illustrate the proof, it is useful to consider the example in Figure 3 from the first

part of the proof. There, F = {{ai, ai+1} : 0 ≤ i ≤ k}. Moreover, the maximum weight
matching is M∗ = {{ai, bi} : 0 ≤ i ≤ k+ 1}. For 0 ≤ i ≤ k we have µ({ai, bi}) = {{ai, ai+1}}
according to the first case in the definition of µ. In addition, µ({ak+1, bk+1}) = {{ak, ak+1}},
also according to the first case in the definition of µ.

▷ Claim 12. For all m ∈ M∗, it holds that w(m) ≤ 2w(µ(m)).

Proof. Let m = {a, b} ∈ M∗ and assume that b arrives after a. Assume first that, at the
arrival of b, a is already matched with c and 2w(a, c) > w(a, b). Then, for every edge f ∈ F

with f ≿R {a, c} and a ∈ f , there exists a sequence of edges e0, . . . , ej such that e0 = e, ej = f

and for i ∈ [j], ei has replaced ei−1. Hence, w(e) = w(e0) ≤ w(e1) ≤ · · · ≤ w(ej) = w(f). It
follows that w(m) < 2w(a, c) ≤ 2w(µ(m)).

Assume next that, at the arrival of b, a is already matched with c and 2w(a, c) ≤ w(a, b).
Then, b will be matched with an agent d such that w(b, d) ≥ w(a, b) − w(a, c). As in the
first case, w(a, c) ≤ w(max≻R

{f ∈ F : f ≿R {a, c}, a ∈ f}) and w(b, d) ≤ w(max≻R
{f ∈

F : f ≿R {b, d}, b ∈ f}).
If d ∈ {a, c}, then {a, b} ≾R f for all f ∈ µ(m) and w(m) = w(a, b) ≤ w(µ(m)).

Otherwise, i.e., if d ̸= a and d ̸= c, then {a, c} ∩ {b, d} = ∅ and therefore also max≻R
{f ∈

F : f ≿R {a, c}, a ∈ f} ≠ max≻R
{f ∈ F : f ≿R {b, d}, b ∈ f}. Hence, w(m) ≤ w(b, d) +

w(a, c) ≤ w(µ(m)).
Finally, assume that a is unmatched. Then, b will be matched with an agent d such

that w(b, d) ≥ w(a, b). As before, w(b, d) ≤ w(max≻R
{f ∈ F : f ≿R {b, d}, b ∈ f}), and we

conclude w(m) ≤ w(b, d) ≤ w(µ(m)) ≤ 2w(µ(m)). This completes the proof of the claim.
◁

Next we bound the number of edges that map to the same edge. Given an edge e ∈ F ,
define µ−1(e) := {m ∈ M∗ : µ(m) = e}.

▷ Claim 13. If e ∈ M , then |µ−1(e)| ≤ 2. If e ∈ F \M , then |µ−1(e)| ≤ 1.

Proof. By definition of µ, for every m ∈ M∗ and m′ ∈ µ(m), m′ ∩m ̸= ∅. Let e ∈ F . Since
M∗ is a matching, there can be at most one edge in M∗ with a non-empty intersection with
each of the two endpoints of e. Hence, |µ−1(e)| ≤ 2 and the first part of the claim holds.

Now, let e = {a, b} ∈ F \M and assume for contraction that there exist edges m,m′ ∈ M∗

with m ≠ m′, e ∩ m = {a}, e ∩ m′ = {b}, and e ∈ µ(m) ∩ µ(m′). Since, e /∈ M , the edge
e was replaced during the algorithm by another edge e′. By definition of DTA, it holds
that e ∩ e′ ̸= ∅, say e ∩ e′ = {a}. Moreover, e′ ≻R e, contradicting that e ∈ µ(m). Hence,
|µ−1(e)| ≤ 1. ◁

It remains to bound the weight of replaced edges. For this, we introduce the following
notation. For e ∈ M , define Fe = {e′ ∈ F : e ≻R e′}.

▷ Claim 14. For all e ∈ M , it holds that w(Fe) ≤ w(e).

Proof. Let e ∈ M . Since each edge can only replace a single other edge, Fe is of the form
{e1, . . . , ej} for some j ≥ 0 such that, for all i ∈ [j−1], ei has replaced ei+1, and e has replaced
e1. Moreover, since a replacement only happens upon a sufficiently large weight improvement,
we know that, for all i ∈ [j − 1], w(ei) ≥ 2w(ei+1), and w(e) ≥ 2w(e1). Hence, for all i ∈ [j],
it holds that w(ei) ≤ 2−iw(e). Hence, w(Fe) =

∑j
i=1 w(ei) ≤ w(e)

∑j
i=1 2−i ≤ w(e). ◁



M. Bullinger and R. Romen 13

Combining all three claims, we compute

w(M∗) =
∑

m∈M∗

w(m)
Claim 12

≤
∑

m∈M∗

2w(µ(m))
Claim 13

≤ 4
∑
e∈M

w(e) + 2
∑

e∈F \M

w(e)

Claim 14
≤ 4

∑
e∈M

w(e) + 2
∑
e∈M

w(e) = 6w(M).

◀

The next two lemmas let us apply DTA as an online coalition formation algorithm.

▶ Lemma 15. Let G = (N,w) be a complete weighted graph and M∗ a maximum weight
matching of G. Then, w(M∗) ≥ 1

nw(E+), where E+ =
{
e ∈

(
N
2
)

: w(e) > 0
}

.

▶ Lemma 16. Let ALG be a c-competitive algorithm for online matching. Then, ALG is
c
n -competitive for online coalition formation.

Proof. Let (G, σ) be an arbitrary instance of online coalition formation. Let M∗ be a
maximum weight matching for the underlying weighted graph G, and let π∗ be a partition
maximizing social welfare. Let E+ = {e ∈ E : w(e) > 0} be the set of positive edges. Then,

SW(ALG(G, σ)) ≥ c 2w(M∗) ≥ c 2 1
n
w(E+) ≥ c

n
SW(π∗).

The first inequality holds because ALG is a c-competitive algorithm in the matching domain.
The second inequality follows from Lemma 15. The last inequality holds because twice the
sum of positive edges is an upper bound for the social welfare of any partition. ◀

As a consequence, we can apply DTA in the coalition formation domain to obtain a
Θ(1/n)-competitive algorithm under free dissolution.

▶ Corollary 17. DTA is 1
6n -competitive for coalition formation in the deterministic model

under free dissolution.

6 Boundaries for Optimal Algorithms

In both of our models, we have found algorithms with a competitive ratio of Θ
( 1

n

)
. This

raises the question, whether it is possible to achieve even better algorithms, for instance,
with a constant competitive ratio. While we leave the ultimate answer to this question open,
in this section, we give some insight why the optimal algorithm may be hard to find. We
start with upper bounds for the performance of any algorithm in our two settings.

▶ Proposition 18. In the random arrival model, no online coalition formation algorithm
achieves a competitive ratio of more than 1

2 .

Proof. Let ALG be any online coalition formation algorithm. Assume for contradiction that
ALG is c-competitive for some c > 1

2 .
First, note that for any x > 0, if the edge between the first two agents has a weight of

x, then ALG has to form a coalition of size 2. Otherwise, the competitive ratio is 0 in the
instance where just these two agents arrive.

Now, we define a family of instances similar to the instance in Figure 1, with the difference
that the agents in the sets X and Y also have positive utilities. Let ϵ > 0 be a sufficiently
small number and k be a positive integer. Consider the ASHG given by Gk,ϵ = (Nk,ϵ, wk,ϵ),
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a1

a2

a3

a4 a5

1

1

1

1

1

3

3

0

Figure 4 Instance for online coalition formation algorithm with free dissolution. The two missing
edges have a weight of w(a1, a4) = w(a1, a5) = −12.

where Nk,ϵ = {a, b}∪X∪Y with |X| = |Y | = k. Hence, there are a total of n = 2k+2 agents.
Utilities are given as wk,ϵ(a, b) = 1, wk,ϵ(a, x1) = wk,ϵ(b, y1) = wk,ϵ(x1, x2) = wk,ϵ(y1, y2) = ϵ

for x1, x2 ∈ X and y1, y2 ∈ Y . All other utilities are −1.
For ϵ sufficiently small, the social welfare is approximately maximized if the only non-

singleton coalition is {a, b}.
Consider a random arrival order σ. If the first pair of agents are both from X or both

from Y , then SW(ALG, σ) ≤ n2ϵ.
In all other cases, i.e., for the other (k + 1)2 possibilities for the first two agents, the

social welfare is at most 1. Hence,

cALG ≤ inf
k>0

inf
ϵ>0

Eσ

[
SW(ALG(Gk,ϵ, σ))

]
≤ inf

k>0
inf
ϵ>0

(k + 1)2 +
[(

n
2
)

− (k + 1)2]n2ϵ(
n
2
)

= inf
k>0

inf
ϵ>0

(k + 1)2

(2k+2)(2k+1)
2

+ f(n)ϵ = inf
k>0

k + 1
2k + 1 = 1

2 .

There, f(n) denotes a function only depending on n. The infimum is attained in the limit
for k to infinity. ◀

▶ Proposition 19. In the deterministic arrival model, no online coalition formation algorithm
achieves a competitive ratio of more than 1

3 under free dissolution.

Proof. Let ALG be any online coalition formation algorithm with free dissolution. Assume
for contradiction that ALG is c-competitive for some c > 1

3 .
Consider the ASHG given by G = (N,w) depicted in Figure 4. The agents arrive

in the order (a1, a2, a3, a4, a5). Since the algorithm is c-competitive for c > 1
3 , it has to

maintain a coalition structure that has a social welfare of strictly more than 1
3 of the current

maximum social welfare. As a consequence the algorithm is forced to form the partitions
{{a1, a2}}, {{a1, a2, a3}}, and {{a1, a2, a3}, {a4}} after a2, a3, and a4 arrive, respectively.
If the algorithm forms a different partition at any of these steps, then it achieves a social
welfare of at most 1

3 of the current maximum social welfare. Thus, the adversary can stop
and then cALG ≤ 1

3 , a contradiction.
Finally, agent a5 arrives. In the ASHG given by G, the maximum social welfare of 9

is achieved by the partition π∗ = {{a1}, {a2, a3, a4, a5}}. However, the partition before a5
arrives is {{a1, a2, a3}, {a4}}. It is easy to see that the highest social welfare that can be
achieved with free dissolution is 3. This contradicts the assumption that cALG > 1

3 . ◀

A similar bound holds for the online matching setting. As we have already discussed
in Section 5, our next result is a surprising contrast to the usual possibility of achieving
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a1 a2

a3a4a5

a6 1

1ϕϵ

ϕϵ

ϕϵ

Figure 5 Instance for online matching algorithm with free dissolution. We have ϕϵ = 1+
√

5
2 + ϵ

and the missing edges have weight 0. The figure depicts the case in the proof where b = a1.

a competitive ratio of 1/2 in many related settings [27, 20, 31]. Interestingly, once again,
our construction only uses bipartite instances. Hence, the crucial property why we cannot
achieve a better competitive ratio is that all agents arrive online.

▶ Proposition 20. In the deterministic arrival model, no online matching algorithm achieves
a competitive ratio of more than ψ under free dissolution, where ψ := 2

3+
√

5 ≈ 0.382.

Proof. Let ALG be any online coalition formation algorithm with free dissolution. Let
ψ = 2

3+
√

5 and assume for contradiction that ALG is c-competitive for some c > ψ.
We provide an adversarial strategy along the game depicted in Figure 5. Since the

algorithm is c-competitive, it has to maintain a coalition structure that has a social welfare
of strictly more than a c-fraction of the current maximum social welfare.

First, two agents a1 and a2 arrive with w(a1, a2) = 1. Hence, ALG has to form the edge
{a1, a2}. Now, an agent a3 arrives with w(a1, a3) = 0 and w(a2, a3) = 1. Then, ALG only
maintains a matching of positive weight if it leaves a3 unmatched, or if it dissolves {a1, a2}
and forms {a2, a3}. Since the resulting situation is completely symmetric, we assume without
loss of generality that ALG leaves a3 unmatched.

Let ϵ > 0 and consider the constant ϕϵ := 1+
√

5
2 + ϵ.5 Next, an agent a4 arrives with

w(a1, a4) = ϕϵ and w(a2, a4) = w(a3, a4) = 0. Now, ALG only maintains a matching of
positive weight if it leaves a4 unmatched, or if it dissolves {a1, a2} and forms {a1, a4}. In
the former case, ALG creates a matching of weight 1, while the maximum weight matching
is M1 = {{a1, a4}, {a2, a3}} with w(M1) = 1 + ϕϵ. This implies that cALG ≤ 1

1+ϕϵ
=

1
1+ 1+

√
5

2 +ϵ
< 1

1+ 1+
√

5
2

= 2
3+

√
5 = ψ < c, a contradiction. Hence, ALG has to dissolve {a1, a2}

and form {a1, a4}.
Next, an agent a5 arrives with w(a4, a5) = ϕϵ and w(a1, a5) = w(a2, a5) = w(a3, a5) = 0.

Similar to the situation after the arrival of the third agent, ALG has to leave a4 unmatched,
or to dissolve {a1, a4} and form {a4, a5}. Let b ∈ {a1, a5}, such that ALG creates the
matching {{a4, b}}.

Now, an agent a6 arrives with w(b, a6) = ϕϵ and w(x, a6) = 0 for all x ∈ {ai : i ∈ [5]}\{b}.
Hence, ALG will achieve a matching of weight at most ϕϵ. For b′ ∈ {a1, a4} with b′ ̸= b,
consider the matching M2 = {{a2, a3}, {b, a6}, {b′, a4}}. Then, w(M2) = 1 + 2ϕϵ. Hence,

cALG ≤ lim
ϵ→0

ϕϵ

1 + 2ϕϵ
=

1+
√

5
2

1 + 1 +
√

5
= 1 +

√
5

2(2 +
√

5)
= 2

3 +
√

5
= ψ < c.

This is our final contradiction, and hence such an algorithm cannot exist. ◀

5 To maintain games with rational weights, we can restrict attention to those ϵ where ϕϵ is rational.
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Finally, we want to discuss general obstacles for finding classes of instances on which all
algorithms perform poorly. Interestingly, the performance of GDY , WGDY , and IWA is
bounded by the same class of instances, namely the instances depicted in Figure 1. This
raises the question whether this instance is a general worst-case instance. Our next result
shows that this is not the case, unless there exists an algorithm that achieves a constant
competitive ratio whenever the number of agents is known. Indeed, if there exists some
highly valuable edge, then we can make use of an optimal stopping algorithm to achieve a
good competitive ratio. To this end, we show how to apply the odds algorithm [11]. The
details are discussed in Appendix B.

▶ Proposition 21. Let I be a set of ASHGs and λ ∈ (0, 1] a constant such that for each ASHG
in I given by G = (N,w), the maximum weight edge emax has a weight w(emax) ≥ λ · π∗(G),
where π∗(G) maximizes social welfare. Then, there exists an online coalition formation
algorithm ALG with cALG ∈ Θ (1) on I in the random arrival model with known n.

7 Conclusion

We have considered two models of online coalition formation that both facilitate the existence
of good algorithms compared to a deterministic arrival model. First, we have diminished the
power of the adversary by considering a random arrival of agents. Second, we have increased
the capabilities of an algorithm by allowing coalition dissolution. Both models allow for
algorithms that achieve a competitive ratio of Θ( 1

n ). Interestingly, this precisely gets rid of
weight dependencies of the best algorithm in the deterministic model.

In both approaches, matchings play an important role. In the random arrival model, we
present an algorithm whose output dominates the weight of a randomly created matching.
Hence, matchings occur implicitly in the analysis of the algorithm. Under free dissolution,
our coalition formation algorithm is itself a matching algorithm. The key challenge is to
achieve a constant competitive ratio for online matching under the most general model,
where all agents arrive online, and input graphs are weighted and possibly non-bipartite.
The idea of our algorithm is to enhance the greedy algorithm by adding a threshold for the
improvement in social welfare whenever dissolving a coalition (or edge).

Our work offers several promising directions for future research. First, while we have some
indication that it is hard to obtain algorithms with a competitive ratio better than Θ( 1

n ),
we leave open the question whether there are algorithms obtaining a constant competitive
ratio. Moreover, it would be interesting to find the optimal online matching algorithm for
a fully online model with weighted non-bipartite input instances. Finally, there are many
other classes of coalition formation games, such as fractional hedonic games [1] or ordinal
classes of hedonic games. Considering a random arrival model or coalition dissolution for
these games might lead to intriguing discoveries.
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A Omitted Proofs

In this appendix, we provide all proofs missing in the main paper.
Throughout the appendix, we use the following notation for a fixed arrival order σ. Given

an agent x ∈ N and arrival time k ∈ [n], we denote by Ax
≤k, Ax

=k, and Ax
≥k the events that

σ−1(x) ≤ k, σ−1(x) = k and σ−1(x) ≥ k, respectively.

A.1 Random Arrival Model
We start with the results in Section 4. First, we complete the analysis of WGDY by proving
the upper bound for its performance.

▶ Theorem 6. The competitive ratio of WGDY for ASHGs under a random arrival and
known and even n is Θ

( 1
n

)
.

Proof of upper bound. We complete the proof by proving that WGDY has a competitive
ratio of O

( 1
n

)
. To this end we consider again the ASHG given by Gϵ = (N,wϵ) in Figure 1,

as defined in the proof of Theorem 2.
As in the proof of Theorem 2, in the limit case for small ϵ, the optimal solution has a

social welfare of 2 and the social welfare of the partition computed by WGDY is equal to
twice the probability of matching a with b.

We start by splitting the probability that {a, b} form a coalition by differentiating whether
a and b arrive in the same phase of the algorithm and which one arrives first. If they arrive
in different phases, then, because of symmetry, the probability that the coalition {a, b} forms
is the same. If both of them arrive in the first or second phase, then {a, b} does not form and
thus the probability is 0. Indeed, in the first phase no coalitions are formed and in the second
phase, a, b are directly matched to some agent x ∈ X or y ∈ Y , respectively because n+ 1
agents arrive in the first phase and thus, because of the pigeonhole principle, at least one
agent of each of X and Y arrives in the first phase. Thus, we can without loss of generality
assume that a arrives in the first phase and b in the second. The probability that a arrives
in the first phase is 1

2 and then the probability that b arrives in the second phase is m+1
2m+1 .

To shorten the notation we replace the conditions in conditional probabilities by “·” after
their first appearance. We obtain

cWGDY ≤ Pσ({a, b} ∈ WGDY (Gϵ, σ))
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= Pσ({a, b} ∈ WGDY (Gϵ, σ) | Aa
≤m+1, A

b
≥m+2)Pσ(Aa

≤m+1, A
b
≥m+2)

+ Pσ({a, b} | Aa
≥m+2, A

b
≤m+1)Pσ(Aa

≥m+2, A
b
≤m+1)

= 2Pσ({a, b} ∈ WGDY (Gϵ, σ) | Aa
≤m+1, A

b
≥m+2)Pσ(Aa

≤m+1, A
b
≥m+2)

= 2Pσ({a, b} ∈ WGDY (Gϵ, σ) | · )Pσ(Ab
≥m+2 | Aa

≤m+1)Pσ(Aa
≤m+1)

= 2Pσ({a, b} ∈ WGDY (Gϵ, σ) | · ) m+ 1
2m+ 1

1
2

= m+ 1
2m+ 1Pσ({a, b} ∈ WGDY (Gϵ, σ) | · ).

Next, we sum over the number of agents y ∈ Y that arrive in the second phase. The
probability that exactly i agents from Y arrive in the second phase can be computed using
the hypergeometric distribution. We now know that b arrives in the second phase, as do i
agents y ∈ Y . The probability that {a, b} is formed is then equal to the probability that
all agents that arrive before b are from Y . To compute this, we sum over the number of
agents from Y that arrive before b and fix the position where b arrives. We can calculate the
probability that many agents from Y arrive before b by using the hypergeometric distribution
again. Furthermore, the probability that b arrives in a fixed position in the second half is

1
m+1 . Once we simplify this expression, we see that WGDY ∈ O

( 1
n

)
.

cWGDY ≤ m+ 1
2m+ 1

m∑
i=0

Pσ

(
{a, b} ∈ WGDY (Gϵ, σ)

∣∣∣ |{y ∈ Y : Ay
≤m+1}| = i, ·

)
· Pσ

(
|{y ∈ Y : Ay

≤m+1}| = i
∣∣∣ ·
)

= m+ 1
2m+ 1

m∑
i=0

(
m
i

)(
m

m−i

)(2m
m

) Pσ({a, b} ∈ WGDY (Gϵ, σ) | · )

= m+ 1
2m+ 1

m∑
i=0

(
m
i

)(
m

m−i

)(2m
m

) i∑
j=0

Pσ({a, b} ∈ WGDY (Gϵ, σ) | Ab
=m+2+j , · )

· Pσ(Ab
=m+2+j | · )

= m+ 1
2m+ 1

m∑
i=0

(
m
i

)(
m

m−i

)(2m
m

) i∑
j=0

Pσ({d : d ≺σ b, Ad
≥m+2} ⊆ Y | · )

· Pσ(σ−1(b) = m+ 2 + j | · )

= m+ 1
2m+ 1

m∑
i=0

(
m
i

)(
m

m−i

)(2m
m

) i∑
j=0

(
i
j

)(
m
j

) 1
m+ 1

= 1
m+ 1 = 2

n
∈ O

(
1
n

)
◀

Next, we provide the details for the analysis of IWA.

▶ Theorem 8. IWA has a competitive ratio of c ∈ Θ
( 1

n

)
.

Proof. Observe that, on each subproblem given by a certain i, IWA simply performs an
execution of WGDY for a subset of 2i+1 agents. We use our insights gained about WGDY
to give a guarantee on the performance of IWA.

Let i∗ be the last index such that IWA has completed both phases. We claim that
2i∗+1 ≥ n

4 . Assume for contradiction that 2i∗+1 < n
4 . Then, the number of agents that have
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arrived until the completion of iteration i∗ is
∑i∗

i=0 2i+1 ≤ 2 · 2i∗+1 < n
2 . Hence, there are

still 2i∗+2 agents left to complete another iteration, a contradiction.
Let J ⊆ N be the random subset of agents in the last completed iteration. Let E+(J) ={

e ∈
(

J
2
)

: w(e) > 0
}

. By the same computation as in the proof of Theorem 6 for deriving
Equation (1), we obtain

Eσ∼Σ(N) [SW(IWA(G, σ))] ≥ Eσ∼Σ(J) [SW(WGDY (G[J ], σ))] ≥ 1
n
w(E+(J)).

Since the set J is a uniformly random subset of N of size 2i∗+1, it follows that every edge
in G is present in G[J ] with equal probability.

Hence, for E+ =
{
e ∈

(
N
2
)

: w(e) > 0
}

, for n ≥ 5, it holds that

w(E+(J)) ≥
(n

4
2
)(

n
2
)w(E+) = 1

16
n(n− 4)
n(n− 1)w(E+) ≥ 1

64w(E+).

For n ≤ 4, the social welfare is equal to twice the weight of any positive edge with
probability at least 1/6, and therefore at least 1

3w(E+).
Analogous to the proof of Theorem 6, we obtain that cIWA ≥ 1

128n ∈ Ω
( 1

n

)
.

We proceed with the upper bound for the competitive ratio. Once again, we consider
the ASHG given by Gϵ = (N,wϵ) in Figure 1, as defined in the proof of Theorem 2. Similar
to the proofs of Theorems 2 and 6, in the limit case for small ϵ, the optimal solution has a
social welfare of 2 and the social welfare of the partition computed by IWA is equal to twice
the probability of matching a and b. We only consider values of n such that n =

∑k
i=0 2i+1

for some k ∈ N. This assures that IWA completes all iterations.
By definition, IWA performs WGDY on 2i+1 agents in iteration i. The coalition {a, b}

can therefore only form if a and b arrive in the same iteration i. To compute the probability
that this coalition forms in a given iteration i, we proceed analogously to the proof in
Theorem 6. There is one major difference that complicates the necessary computations. We
cannot use the pigeonhole principle to determine whether agents from both X and Y exist
in a phase, and we thus need to account for the exact number of agents from the sets X and
Y . As a consequence, it is also possible that the coalition {a, b} forms even if both agents
arrive in the second phase of the same iteration. Indeed, even if a and b both do not arrive
in the first phase, it can still happen that only agents from Y and a arrive before b arrives.

Let us consider a fixed iteration i. There are 2i agents that arrive in the first phase
of iteration i and 2i agents that arrive in the second phase for a total of 2i+1 agents per
iteration. The arrival time of the first agent from iteration i is 1 +

∑i−1
j=0 2j+1 = 2i+1 − 1 and

of the last agent is
∑i

j=0 2j+1 = 2i+2 − 2. To shorten the notation let Ax
i,1 and Ax

i,2 denote
the events that agent x arrives in the first and second phase of iteration i, i.e., they represent
the events Ax

≥2i+1−1 ∩ Ax
≤2i+1+2i−2 and Ax

≥2i+1+2i−1 ∩ Ax
≤2i+2−2, respectively. Because of

symmetry, we combine the cases where a arrives before and after b to one case where a arrives
before b. Furthermore, we estimate the case where both the agents a and b arrive in the
second phase also with the case where a arrives in the first and b in the second phase. This
is possible, since, whenever the coalition {a, b} forms, all agents before and between a and b
are from one of the two sets X and Y . We can then move one of them to the first phase and
they would still form a coalition. Since the probability that both arrive in different phases is
also larger than both arriving in the second phase we have an upper bound. We obtain

cIWA ≤ Pσ ({a, b} ∈ IWA (Gϵ, σ))
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=
i∗∑

i=0
2Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)
Pσ

(
Aa

i,1, A
b
i,2
)

+ Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,2, A
b
i,2
)
Pσ

(
Aa

i,2, A
b
i,2
)

≤
i∗∑

i=0
4Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)
Pσ

(
Aa

i,1, A
b
i,2
)

=
i∗∑

i=0
4Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
) 2i

n

2i

n− 1

=
i∗∑

i=0

22i+2

n2 − n
Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)

.

Next, we compute Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)

for iteration i. First, we sum over
the number of agents j from Y that arrive in the second phase of iteration i and then we sum
over all relevant arrival times of b. These are in the range [2i+1 + 2i − 1, 2i+1 + 2i − 1 + j]
as in all other cases the probability is 0. Next, we compute the probability that the
coalition {a, b} forms using the hypergeometric distribution as we did in Theorem 6. We
then simplify the expression and finally bound it from above by using the inequality6∑2i−1

j=0
(m

j )( m
2i−1−j)

( 2m
2i−1)

1
2i−j ≤ 1

2i which holds for m ≥ 0 and m+2 > 2i. Note that these conditions

are fulfilled since 2m+ 2 = n =
∑i∗

i=0 2i+1 = 2
∑i∗

i=0 2i and thus
∑i∗

i=0 2i = m+ 1 < m+ 2.
For brevity, we shorten the conditions in the conditional probabilities by “·” after their first
appearance.

Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)

=
2i−1∑
j=0

Pσ

(
{a, b} ∈ IWA (Gϵ, σ)

∣∣∣|{y ∈ Y : Ay
i,2}| = j, ·

)
Pσ(|{y ∈ Y : Ay

i,2}| = j | ·)

=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) Pσ ({a, b} ∈ IWA (Gϵ, σ) | ·)

=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) j∑
k=0

Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Ab

=2i+1+2i−1+k, ·
)
Pσ(Ab

=2i+1+2i−1+k | ·)

=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) j∑
k=0

1
2i
Pσ ({a, b} ∈ IWA (Gϵ, σ) | ·)

=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) j∑
k=0

1
2i
Pσ

(
{d ∈ N \ {a, b} : d ≻σ b ∧Ad

i,2} ⊆ Y | ·
)

=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) j∑
k=0

1
2i

(
j
k

)(2i−1
k

)

6 We omit the proof for this inequality as it is a long and tedious computation that adds nothing of
value to the proof. The correctness of the inequality in the given value ranges can be verified using
mathematical software.
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=
2i−1∑
j=0

(
m
j

)(
m

2i−1−j

)( 2m
2i−1

) 1
2i − j

≤ 1
2i

With the assumption n =
∑i∗

i=0 2i+1 and the two previous equations it follows that

cIWA ≤
i∗∑

i=0

22i+2

n2 − n
Pσ

(
{a, b} ∈ IWA (Gϵ, σ) | Aa

i,1, A
b
i,2
)

≤
i∗∑

i=0

22i+2

n2 − n

1
2i

= 2
n2 − n

i∗∑
i=0

2i+1

= 2n
n2 − n

= 2
n− 1 ∈ O

(
1
n

)
.

We have shown that the competitive ratio is O
( 1

n

)
. We conclude that IWA has a

competitive ratio of cIWA ∈ Θ
( 1

n

)
and this bound is tight. ◀

A.2 Deterministic Model under Free Dissolution
We continue with the proof of the lemma about maximum weight matchings in Section 5.

▶ Lemma 15. Let G = (N,w) be a complete weighted graph and M∗ a maximum weight
matching of G. Then, w(M∗) ≥ 1

nw(E+), where E+ =
{
e ∈

(
N
2
)

: w(e) > 0
}

.

Proof. Let G = (N,w) be an arbitrary complete and weighted graph and M∗ a maximum
weight matching of G. Let E+ =

{
e ∈

(
N
2
)

: w(e) > 0
}

be the set of edges of positive
weight. We prove the assertion by induction over n = |N |. For n = 1 and n = 2, the
statement is clearly true. Assume now that n ≥ 3. If M∗ = ∅, then E+ = ∅ and the
assertion is true. Hence, we may assume that M∗ ̸= ∅. Let m = {a, b} ∈ M∗ and define
E+

m = {e ∈ E+ : e ∩ m ̸= ∅}. Consider m′ = {c, d} ∈ M∗ with m′ ̸= m. Since M∗ is a
maximum weight matching, it holds that

w(m) + w(m′) ≥ max(0, w(a, c)) + max(0, w(b, d)) (2)

and

w(m) + w(m′) ≥ max(0, w(a, d)) + max(0, w(b, c)). (3)

Let NU ⊆ N and NM ⊆ N be the set of unmatched and matched vertices, respectively.
Suppose that NU = {x1, . . . , xk}. By maximality of M∗, for all j ∈ [k], it holds that

w(m) ≥ max(0, w(a, xj)) + max(0, w(b, xj+1)).

There, we identify xk+1 = x1. Hence,∑
j∈[k]

max(0, w(a, xj)) + max(0, w(b, xj) ≤ |NU |w(m). (4)
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Combining Equations (2)–(4), we obtain

w(E+
m) = w(m) +

∑
v∈NM \m

max(0, w(a, v)) + max(0, w(b, v))

+
∑

v∈NU

max(0, w(a, v)) + max(0, w(b, v))

≤ w(m) + (|NM | − 2)w(m) + 2
∑

m′∈M∗\{m}

w(m′) + |NU |w(m)

= (n− 1)w(m) + 2
∑

m′∈M∗\{m}

w(m′). (5)

We can apply induction for G[N \m] to obtain

(n− 2)w(M∗ \ {m}) ≥ w(E+ \ E+
m). (6)

Combining Equations (5) and (6) yields the assertion. ◀

B Optimal Stopping Algorithm for Known n

The goal of this section is to prove Proposition 21. Throughout the section, we assume that
the number of arriving agents is known to the algorithm. We introduce a new algorithm that
we will analyze under a random arrival order.7

The key idea is to interpret the computation of a partition in an online ASHG as an
optimal stopping problem for independent events. Let J1, . . . , Jn be mutually independent
indicator events. A time step k is called a success time if Jk = 1. In an optimal stopping
problem the indicator events J1, . . . , Jn are observed sequentially and in each step the
algorithm may stop the process. The goal is to stop at the last success time, i.e., the goal
is to maximize the probability to stop at the last time step where the corresponding event
happens.

An optimal algorithm for this problem is the odds strategy that stops at the first success
time after a certain stopping time. The optimal stopping time s as well as the resulting
success probability of the algorithm can be computed in sublinear time [11, Theorem 1]. Let
pk = P(Jk = 1) be the probability that the kth event happens and let rk = pk

1−pk
be the so

called odds of Ik. The odds algorithm then sums the odds in reverse order until their sum
exceeds one at time step s or sets s = 1 otherwise. The algorithm then returns the optimal
stopping time s. More precisely, if we are in the first case, then the algorithm returns the
largest s such that

∑n
i=s ri ≥ 1.

For 2 ≤ k ≤ n, let Jk be the event “the maximum weight edge connected to the kth agent
is strictly larger than all edges among the first k − 1 agents”. We show next that the events
J2, . . . , Jn are mutually independent. This allows us to execute the odds algorithm.

We start with some notation. Let Ek = {(a, b) ∈ E : Aa
≤k ∧Ab

≤k}, ek = arg maxe∈Ek
w(e),

and ek = (ak, bk). The set Ek contains all edges between the first k agents, edge ek is the
maximal weight edge among those, and ak and bk are the agents that are connected by ek.
It holds that event Jk occurs if and only if Aak

=k or Abk

=k.

7 Without further assumptions, it is not possible to extend this algorithm to unknown n [11, Chapter 4].
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▶ Lemma 22. Let an ASHG be given for which all edge weights are pairwise different.
Consider indices 2 ≤ k1 < k2 < · · · < kj ≤ n for some j ≤ n. Then, it holds that

P

(
j⋂

i=1
Jki

)
=

j∏
i=1

2
ki

. (7)

In particular, the events J2, . . . , Jn are mutually independent.

Proof. Let j ≤ n and consider indices 2 ≤ k1 < k2 < · · · < kj ≤ n.
We count the number of arrival orders where the events Jk1 , Jk2 , . . . , Jkj happen simulta-

neously and divide by the total number of arrival orders. For this we iterate over the agents
in the reverse arrival order. Let t ∈ [n] be the arrival time we are currently considering.
There are two cases, either ∃i ∈ [j] such that t = ki or ∀i ∈ [j] : t ̸= ki. In the first case, event
Jki happens if Aaki

=ki
or Abki

=ki
, i.e., there are two choices, either aki or bki arrive at time t. In

the second case, any of the remaining t alternatives can arrive. The indices k1, . . . , kj index
the first case. Let 1 ≤ l1 < l2 < · · · < ln−j ≤ n be the indices of the second case. The total
number of arrival orders in which the events Jk1 , Jk2 , . . . , Jkj

happen simultaneously is thus∏j
i=1 2

∏n−j
i=1 li. We divide by the total number of arrival orders n! and get

P

(
j⋂

i=1
Jki

)
=
∏j

i=1 2
∏n−j

i=1 li
n! =

∏j
i=1 2∏j
i=1 ki

=
j∏

i=1

2
ki

.

This proves Equation (7). As a consequence,

P

(
j⋂

i=1
Jki

)
=

j∏
i=1

2
ki

=
j∏

i=1
P(Jki

).

The second equality follows from applying Equation (7) for single events. Hence, we have
shown mutual independence of J2, . . . , Jn. ◀

We consider the following algorithm.

▶ Definition 23 (Maximum edge algorithm). The maximum edge algorithm (MAXE) executes
the odds algorithm [11] offline to compute an optimal stopping time s, where n and pk = 2

k

for all k ∈ {2, . . . , n} is used as input. Next, the odds strategy is performed online, i.e., no
coalition is formed until at least s agents arrived, then the first edge that is larger than all
previously seen edges is matched if its weight is strictly larger than 0. If multiple such edges
arrive in a step, then the one with highest weight is matched.

The key insight of identifying MAXE with an optimal stopping problem is captured in
the next lemma.

▶ Lemma 24. If the odds algorithm for input length n and probabilities pk = 2
k for all

k ∈ {2, . . . , n} stops with the last 1, then MAXE outputs a partition of social welfare
2w(emax).

Proof. The arrival of the largest edge corresponds to the last time k where Jk occurs. ◀

We now show that MAXE has a constant competitive ratio for every set of instances in
which an algorithm that matches only one edge can achieve a constant competitive ratio.
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▶ Proposition 21. Let I be a set of ASHGs and λ ∈ (0, 1] a constant such that for each ASHG
in I given by G = (N,w), the maximum weight edge emax has a weight w(emax) ≥ λ · π∗(G),
where π∗(G) maximizes social welfare. Then, there exists an online coalition formation
algorithm ALG with cALG ∈ Θ (1) on I in the random arrival model with known n.

Proof. Consider first the case of ASHGs given by graphs with pairwise different edge weights.
By Lemma 22, we can apply the odds theorem [11, Theorem 1] for input length n and
probabilities pk = 2

k for all k ∈ {2, . . . , n}. Then, the odds algorithm has a probability of
at least 1

2e to terminate successfully [11, Theorem 2]. There, e denotes Euler’s number.
Moreover, by Lemma 24, MAXE computes a partition of social welfare 2w(emax) if the
odds algorithm terminates successfully. Hence, since w(emax) ≥ λ · π∗(G), we get that
cMAXE ≥ λ

e ∈ Θ (1).
To obtain an algorithm without pairwise different edge weights, we can perturb every

arriving edge by independently drawn random variables that select a perturbation from the
interval [−ϵ, ϵ] uniformly at random, where ϵ > 0 is sufficiently small (this can be selected
after observing the first positive edge and can be set to a fraction of this edge). Hence, the
perturbed weights are pairwise different with probability 1. By the first part of the proof,
MAXE computes a partition with social welfare at least 2(w(emax) − ϵ), whenever the odds
algorithm terminates successfully. ◀
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