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Introduction

A recurring problem in various disciplines is of the following form: there is a set of
alternatives and any pair of alternatives can be compared with each other. A pairwise
comparison reveals which of the two alternatives is better than the other. Moreover,
comparisons may be cyclic (a is better than b, which is better than c, which is better
than a) and probabilistic (a beats b with probability 2/3). Since none of the alternatives
needs to be superior to all the other ones, central normative questions in this context are
which concepts are suitable to take over the role of the conventional notion of maximality
and which axiomatic properties these concepts should satisfy. At the same time, one can
consider dynamic processes in which a population of entities, each associated with an
alternative, engages in pairwise interactions such that the loser of a pairwise comparison
will be associated with the alternative of the winner. Descriptive questions in this context
concern the resulting sequence of distributions and its convergence behavior.

Below is a list of six diverse areas where such questions have recently appeared.

Game playing (Balduzzi et al., 2018; Vinyals et al., 2019). When using machine learning
to master difficult two-player games via self-play, large populations of bots compete
with each other in pairwise matchups. Given the recorded wins and losses, how can a
“universal sparring partner” be randomly selected such that, against any other bot, the
expected number of wins is at least as large as the expected number of losses?

Voting (Brandl et al., 2016). There is a group of voters, each of which rank-orders
the set of available candidates. Which lotteries over the candidates satisfy desirable
properties such as Condorcet-consistency (a candidate that beats all other candidates in
pairwise comparisons is selected with probability 1), population-consistency (whenever
two disjoint electorates agree on a lottery, this lottery should also be chosen for the union
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of both electorates), and independence of clones (the probability with which a candidate
is selected is unaffected by introducing clone of other candidates)?

Machine learning (Dudík et al., 2015; Balsubramani et al., 2016). A company has
several online ads targeted at different user groups. Each time a user visits a website he
is confronted with two ads and the website tracks which of the ads, if any, the user clicks
on. Initially, no information on user behavior is available. Which randomly generated
sequence of ads minimizes expected regret? Here, the regret of a sequence of ads is the
maximal probability that a fixed sequence of identical ads is more successful in attracting
clicks by a random user.

Opinion formation (Brandl and Brandt, 2024). There is a group of agents, each of
which entertains one of many possible opinions. Agents come together in random pairwise
interactions, in which they try to convince each other of their opinion. There are fixed
probabilities with which one opinion beats another and, with some small probability, an
agent randomly changes his opinion. What can be said about the distribution of opinions
when running this process for a large number of rounds?

Population biology (Laslier and Laslier, 2017; Grilli et al., 2017). There is a continuum
of individuals, which are assigned to some species, and for each pair of species there is
a fixed probability with which one supplants the other. In each round, one individual
dies and is replaced with an individual whose species is determined as the result of
a competition based on pairwise random interactions: three individuals are randomly
selected and the winner of the comparison between the first two faces off against the
third one. Against which distribution of species does this process converge?

Quantum physics (Knebel et al., 2015). There is a continuum of quantum particles,
so-called bosons, which are assigned one of several possible quantum states. Bosons
engage in pairwise random interactions and there are fixed probabilities specifying with
which probability a boson transitions from one state to the other when encountering
another boson. What is the temporal average of quantum state distributions generated
by this process in the limit?

As it turns out, the answers to all these questions are intimately connected to mixed
equilibria of symmetric zero-sum games. That is precisely the class of games that Émile
Borel’s initial contribution to the theory of games, which is celebrated with this volume,
was exclusively concerned with (Borel, 1921, 1953).

The Model

Let A be a finite set of alternatives and ∆ = {p ∈ [0, 1]A :
∑

x∈A px = 1} the set of
all lotteries over alternatives. The square matrix M ∈ [0, 1]A×A describes the pairwise
comparisons between alternatives. For two alternatives x and y, Mxy ∈ [0, 1] says how
much x is preferred to y (1/2 represents indifference). By convention, Mxx = 0 and
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M =


a b c

a 0 1 1/6
b 0 0 2/3
c 5/6 1/3 0


︸ ︷︷ ︸

comparison matrix

M̃ =


a b c

a 0 1 −2/3
b −1 0 1/3
c 2/3 −1/3 0


︸ ︷︷ ︸

M−MT

Figure 1: Example of a comparison matrix M (center), its corresponding directed graph (left), and the
induced skew-symmetric matrix M̃ (right).

Mxy + Myx = 1 for all x, y ∈ A. These numbers could, for example, be interpreted
as dominance probabilities, relative strengths of pairwise comparisons, or as fractions
of voters who prefer one alternative to another. I will refer to them as dominance
probabilities here. The important special case where M is a binary matrix, i.e., all entries
of M are either 0 or 1, corresponds to complete and antisymmetric relations and thus
to tournament graphs. The matrix M induces a skew-symmetric matrix M̃ = M −MT,
i.e., M̃xy = −M̃yx for all x, y ∈ A.

Maximal Lotteries

Obviously, there need not be a “maximal” alternative x ∈ A in the sense that it defeats
every other alternative with a comparison probability of at least 1/2, i.e., M̃xy ≥ 0 for all
y ∈ A. However, it follows from the minimax theorem (von Neumann, 1928) that there
has to be a “maximal” lottery p ∈ ∆ such that pTM̃q ≥ 0 for all lotteries q ∈ ∆, i.e., p
performs at least as well as any other lottery. This amounts to maxp∈∆minq∈∆ pTM̃q = 0,
which holds because

max
p∈∆

min
q∈∆

pTM̃q = min
q∈∆

max
p∈∆

pTM̃q = min
q∈∆

max
p∈∆

−qTM̃p

= −max
q∈∆

min
p∈∆

qTM̃p = −max
p∈∆

min
q∈∆

pTM̃q,

where the first equality follows from the minimax theorem and the second one from the
skew-symmetry of M̃ . In game-theoretic terms, M̃ can be interpreted as a symmetric
zero-sum game. The value of any such game is 0 and the maximal lotteries described
above are the probability distributions of the maximin or Nash equilibrium strategies of
M̃ . It does not matter whether one takes the equilibrium strategies of the row or column
player since the game is symmetric. In summary,

a lottery p ∈ ∆ is maximal if pTM̃ ≥ 0

and every comparison matrix M admits at least one maximal lottery.
Consider, for example, pairwise comparisons among three alternatives A = {a, b, c}

given in Figure 1. The matrix M̃ admits a unique maximal lottery p = (1/6, 1/3, 1/2)T
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since

pTM̃ =

1/6
1/3
1/2

T 0 1 −2/3
−1 0 1/3
2/3 −1/3 0

 =
(
0 0 0

)
≥ 0.

The term maximal lottery goes to back to Fishburn (1984) who introduced this concept
in the context of social choice theory. The idea to circumvent the Condorcet paradox—
which lies at the heart of Arrow’s impossibility theorem—by introducing the notion of a
randomized Condorcet winner can be traced back to Kreweras (1965). Maximal lotteries
have been rediscovered several times under various names. Depending on whether the
comparison matrix is binary or not, the support of maximal lotteries has been analyzed
under the name bipartisan set (a term proposed by Roger Myerson) or essential set
(Laffond et al., 1993; Dutta and Laslier, 1999). Felsenthal and Machover (1992) refer
to maximal lotteries as the game theory procedure and Rivest and Shen (2010) as the
game theory method. More recently, maximal lotteries have been rediscovered again in
machine learning, where they are called von Neumann winners in the context of dueling
multi-armed bandits (Dudík et al., 2015; Balsubramani et al., 2016) or Nash averaging
when evaluating the performance of players in round-robin tournaments (Balduzzi et al.,
2018; Vinyals et al., 2019).

Uniqueness and Support Size

Fisher and Ryan (1992) and Laffond et al. (1993) have shown independently that there
is a unique maximal lottery when M is binary. This statement was strengthened by
Laffond et al. (1997) who extended it to matrices whose entries are fractions with odd
denominators. An even weaker sufficient condition based on congruencies was provided by
Le Breton (2005). In a more abstract sense, maximal lotteries are almost always unique
since the set of all matrices M that admit multiple maximal lotteries has measure zero and
is nowhere dense in [0, 1]A×A. This follows from considering the dimension of the kernel
of sub-matrices of M̃ . Fisher and Reeves (1995) and Brandl (2017) analyzed the size of
the support of maximal lotteries for random matrices. Under fairly general symmetric
distributions of matrices, maximal lotteries randomize over half of the alternatives on
average.

Axiomatic Properties

Maximal lotteries satisfy a number of axiomatic properties that are deemed desirable in
various contexts. In the following, the ML probability of an alternative is the probability
that a maximal lottery assigns to the alternative based on a given comparison matrix.

• Any alternative that defeats every other alternative with probability greater than
1/2 has ML probability 1. Such an alternative corresponds to a strict pure Nash
equilibrium of M̃ . Similarly, any alternative that is defeated by every other
alternative with probability greater than 1/2 has ML probability 0 (Laffond et al.,
1993; Laslier, 2000).
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• A lottery that is maximal for two comparison matrices is also maximal for any
convex combination of both matrices (Brandl et al., 2016; Brandl and Brandt,
2019).

• A lottery remains maximal when removing alternatives with ML probability 0
(Laffond et al., 1993; Laslier, 2000).

• A maximal lottery is unaffected by reducing the dominance probabilities of alterna-
tives with ML probability 0. In particular, the dominance probabilities between
two such alternatives are irrelevant (Laslier, 1997).

• When increasing the dominance probability of x against y, then the ML probability
of x relative to the ML probability of y does not decrease (Brandl et al., 2022).

• The ML probability of an alternative is unaffected by cloning other alternatives.
More generally, maximal lotteries of comparison matrices that admit a substitution
decomposition can be decomposed into the maximal lotteries of each component
(Laffond et al., 1996; Laslier, 2000; Brandl et al., 2016).

In probabilistic social choice, some of these properties have been used to completely
characterize maximal lotteries. There are characterizations using Arrow’s independence
of irrelevant alternatives and Pareto efficiency (Brandl and Brandt, 2020) as well as
population-consistency and composition-consistency (Brandl et al., 2016), and Condorcet-
consistency and a strong version of Moulin’s participation condition (Brandl et al., 2019).1

The support of maximal lotteries has been characterized using axioms that prescribe
consistency with respect to variable sets of alternatives (Laslier, 2000; Brandt et al., 2018).
Moreover, versions of these axioms have been used to characterize Nash equilibrium in
zero-sum games (Brandl and Brandt, 2019).

Computation and Dynamics

Maximal lotteries correspond to equilibrium strategies of a zero-sum game and can thus
be computed in polynomial time via linear programming. This entails a number of
convenient technical properties, e.g., the set of maximal lotteries for a given comparison
matrix is convex and the function that maps a comparison matrix to the corresponding set
of maximal lotteries is upper hemi-continuous. It follows from the well-known reduction
from linear programs to symmetric two-player zero-sum games due to Dantzig (1951) that
deciding whether an action is played with positive probability in a symmetric zero-sum
game is at least as hard as deciding feasibility of a linear program. The latter problem is
known to be P-complete, which implies P-completeness of the former (see, also, Brandt
and Fischer, 2008). As a consequence,

computing maximal lotteries belongs to the “hardest” problems that can be solved in
polynomial time.

1Note, however, that maximal lotteries violate strategyproofness. In fact, only random dictatorships are
strategyproof and efficient (Gibbard, 1977; Hylland, 1980).
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Figure 2: Simulation of a simple replacement process that approaches the unique maximal lottery of
the comparison matrix M given in Figure 1.
There are 3,000 entities, who are initially all of type a, and the process runs for 300,000
rounds. In each round, two random entities engage in a pairwise comparison with probability
0.98. With the remaining probability, the type of a random entity “mutates” to a random
type. The green line depicts the distribution of types among the entities over time while the
red line depicts the temporal average of type distributions until the given round. The type
distribution corresponding to the maximal lottery is (500, 1000, 2500).

As alluded to at the beginning of this essay, maximal lotteries emerge through several
simple dynamic processes in which entities change their type based on the comparison
matrix. These types of entities could be agents that entertain the same opinion, creatures
that belong to the same species, or particles that are in the same quantum state. Let
me here consider the discrete and probabilistic model due to Brandl and Brandt (2024),
where there is a fixed finite number of entities, each of which belongs to some type. The
initial distribution of types is irrelevant. Types correspond to alternatives and are thus
elements of A. In each round of the process two random entities come together and are
randomly compared with respect to the dominance probabilities of the comparison matrix
M . The entity of the inferior type is replaced with one of the superior type. Additionally,
every now and then, the type of a random entity “mutates” to a random type.2 It can be
shown that,

when the number of entities is sufficiently large and the process is run for sufficiently
many rounds, the distribution of types among the entities is close to a maximal lottery of
the comparison matrix with high probability.

As a consequence, the temporal average of type distributions converges to a lottery close
2Without these mutations, the distribution of types will eventually be degenerate with probability 1.
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to a maximal lottery with probability 1. Moreover, the probability that the distribution
is close to a maximal lottery increases exponentially fast. Figure 2 shows an example
run of this process for the comparison matrix given in Figure 1. The continuous and
deterministic version of this process is related to the replicator equation in population
dynamics and evolutionary game theory (see, e.g., Taylor and Jonker, 1978; Schuster and
Sigmund, 1983; Hofbauer and Sigmund, 1998).

Apart from providing a strong argument for the natural emergence of maximal lotteries,
this result is also of interest from a computational perspective. Since computing a
maximal lottery is equivalent to solving a linear program, the process can be seen as
a probabilistic algorithm that approximates a polynomial-time computable function
represented by the comparison matrix. In contrast to traditional computing devices such
as Turing machines, the dynamic process is based on unordered elementary entities that
randomly interact according to very simple replacement rules.

Outlook

In this essay, I gave several examples where equilibrium strategies of symmetric zero-
sum games, whose study was initiated by Émile Borel, appear unexpectedly in diverse
fields such as economics, computer science, biology, and physics. Some of the attractive
properties of equilibrium distributions such as their robustness with respect to clones
have been observed independently and repeatedly with different applications in mind.
I believe this area offers a lot of potential for inter-disciplinary research, in particular,
with respect to the recent developments in machine learning and dynamic processes.
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