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We consider randomized public good mechanisms with optional participa-
tion. Preferences over lotteries are modeled using skew-symmetric bilinear
(SSB) utility functions, a generalization of classic von Neumann-Morgenstern
utility functions. We show that every welfare-maximizing mechanism entices
participation and that the converse holds under additional assumptions. As a
corollary, we obtain a characterization of an attractive randomized voting rule
that satisfies Condorcet-consistency and entices participation. This stands
in contrast to Moulin’s well-known no-show paradox (J. of Econ. Theory, 45,
53–64, 1988), which shows that no deterministic voting rule can satisfy both
properties simultaneously.
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1 Introduction

The question we pursue in this paper is whether public good mechanisms that maximize
utilitarian social welfare entice participation in the sense that no group of agents is ever
better off by not participating in the mechanism. For standard utility representations,
where each agent assigns a numerical value to each alternative, this is obviously true. In
the context of voting, this entails the well-known fact that scoring rules (such as plurality
rule or Borda’s rule) entice participation.
Our focus in this paper lies on mechanisms that return lotteries over alternatives.

Clearly, if preferences over lotteries are given by von Neumann-Morgenstern utility func-
tions, every randomized mechanism that maximizes some affine combination of these
utility functions will also entice participation. We consider welfare maximization under
much loosened assumptions about preferences over lotteries. In particular, we assume
that preferences over lotteries are given by skew-symmetric bilinear (SSB) utility func-
tions, which assign a numerical value to each pair of lotteries. One lottery is preferred
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to another lottery if the SSB utility for this pair is positive. SSB utility theory is a gen-
eralization of von Neumann-Morgenstern utility theory, which neither requires the con-
troversial independence axiom nor transitivity (see, e.g., Fishburn, 1982, 1984b, 1988).
Independence requires that if lottery p is preferred to lottery q, then a coin toss between
p and a third lottery r is preferred to a coin toss between q and r (with the same coin used
in both cases). There is experimental evidence that both independence and transitivity
are violated systematically by human decision makers. The Allais Paradox (Allais, 1953)
is perhaps the most famous example pointing out violations of independence. Detailed
reviews of such violations, including those reported by Kahneman and Tversky (1979),
have been provided by Machina (1983, 1989) and McClennen (1988).1 Mas-Colell et al.
(1995, p. 181) conclude that “because of the phenomena illustrated [. . . ] the search
for a useful theory of choice under uncertainty that does not rely on the independence
axiom has been an active area of research”. Even the widely accepted transitivity axiom
has come under increasing scrutiny (see, e.g., May, 1954; Fishburn, 1970; Bar-Hillel and
Margalit, 1988; Fishburn, 1991; Anand, 1993, 2009). Anand (2009, p. 156) concludes
that “once considered a cornerstone of rational choice theory, the status of transitivity
has been dramatically reevaluated by economists and philosophers in recent years”.
SSB utility theory dispenses with independence and transitivity and therefore can

accommodate both effects, the Allais Paradox and the preference reversal phenomenon.
Despite a lack of transitivity, the Minimax Theorem (von Neumann, 1928) implies that,
for every SSB utility function and every compact and convex set of lotteries, there is
a maximal lottery, i.e., a lottery that is weakly preferred to any other lottery within
the set. In other words, the main appeal of transitivity—the existence of maximal
elements—remains intact. For a more thorough discussion of SSB utility theory, the
reader is referred to Fishburn (1984b, 1988).
Our main theorems show that every SSB welfare-maximizing mechanism entices par-

ticipation and that the converse holds under additional assumptions. This has interest-
ing consequences for the special case of randomized voting rules, i.e., mechanisms that
map an ordinal preference profile to a lottery. As first observed by Fishburn and Brams
(1983), there are voting rules where agents are better off by abstaining from the election.
This phenomenon is called the no-show paradox and Moulin (1988) has famously shown
that it pertains to all deterministic Condorcet-consistent voting rules.2 By contrast, our
first theorem implies that maximal lotteries, a randomized Condorcet-consistent voting
rule due to Fishburn (1984a), entices participation in a very natural sense. The underly-
ing notion of participation we consider is stronger than group-participation with respect
to stochastic dominance. Moreover, the second theorem implies that, under a mild tech-
nical assumption, maximal lotteries can even be characterized using participation and
Condorcet-consistency.

1Fishburn and Wakker (1995) give an interesting historical perspective on the independence axiom.
2This result has triggered a number of extensions by strengthening the theorem (Holzman, 1988; Sanver
and Zwicker, 2009; Peters, 2017; Brandt et al., 2017a), allowing for weak preferences (Duddy, 2014),
and considering set-valued or randomized voting rules (Pérez, 2001; Jimeno et al., 2009; Brandl et al.,
2015a,b; Brandt et al., 2017a) and random assignment rules (Brandl et al., 2017).
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2 Preliminaries

Let N = {1, 2, . . . } be an infinite set of agents and F(N) the set of all finite and non-
empty subsets of N. Moreover, A is a finite set of alternatives and ∆(A) the set of
all lotteries (or probability distributions) over A. A lottery is degenerate if it puts all
probability on a single alternative. We assume that preferences over lotteries are given by
skew-symmetric bilinear (SSB) utility functions as introduced by Fishburn (1982) (see,
also, Fishburn, 1984b, 1988). An SSB function φ is a function from ∆(A)×∆(A)→ R
that is skew-symmetric and bilinear, i.e.,

φ(p, q) = −φ(q, p) and
φ(λp+ (1− λ)q, r) = λφ(p, r) + (1− λ)φ(q, r)

for all p, q, r ∈ ∆(A) and λ ∈ [0, 1]. Lottery p is weakly preferred to lottery q if and only if
φ(p, q) ≥ 0. Note that, by skew-symmetry, linearity in the first argument implies linearity
in the second argument and that, due to bilinearity, φ is completely determined by its
function values for degenerate lotteries. Thus, every SSB function can be represented
by a skew-symmetric matrix in RA×A. As mentioned in Section 1, SSB utility theory is
more general than linear expected utility theory due to von Neumann and Morgenstern
(1947), henceforth vNM. In particular, every vNM function u is equivalent to an SSB
function φu, where φu(p, q) = u(p) − u(q), in the sense that both functions induce the
same preferences over lotteries.
We denote by Φ ⊆ RA×A the set of possible SSB functions called the domain. For

every N ∈ F(N), let φN = (φi)i∈N ∈ ΦN be a vector of SSB functions. If N = {i}, we
write φi with slight abuse of notation. For every N ∈ F(N) and φN ∈ ΦN , we define
φΣ
N =

∑
i∈N φi. A lottery p is welfare-maximizing for φN if

φΣ
N (p, q) ≥ 0 for all q ∈ ∆(A). (welfare maximization)

Thus, a lottery is welfare-maximizing if it is weakly preferred to any other lottery with
respect to the accumulated SSB functions. Such lotteries can be identified with mixed
maximin strategies of the symmetric zero-sum game given by φΣ

N .3 If agents are endowed
with vNM functions, welfare maximization is equivalent to maximizing the sum of ex-
pected utilities. Hence, welfare maximization for SSB functions generalizes welfare max-
imization for vNM functions. While there always exists a degenerate welfare-maximizing
lottery for vNM functions, this does not hold anymore in the more general model of SSB
utilities. However, the existence of a (not necessarily degenerate) welfare-maximizing
lottery is guaranteed by the Minimax Theorem (von Neumann, 1928).

3φΣ
N can be identified with a symmetric zero-sum game as follows: the set of mixed strategies of both
players is given by ∆(A). The payoff of the row player when he plays strategy p and the column
player plays strategy q is given by φΣ

N (p, q) = pTφΣ
Nq.
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The following example illustrates the definitions. Let N = {1, 2}, A = {a, b, c}, and

φ1 =

a b c( )0 2 4 a
−2 0 2 b
−4 −2 0 c

and φ2 =

a b c( )0 −3 −3 a
3 0 −3 b
3 3 0 c

.

The SSB function φ1 is equivalent to a vNM utility function that assign utilities 4, 2,
and 0 to a, b, and c, respectively. The unique most preferred lottery of agent 1 is the
lottery with probability 1 on alternative a. The SSB function φ2 is an example where the
intensities of all pairwise comparisons are identical in the sense that they are assigned
the same numerical value. This special case will be discussed later in the paper. Agent
2 prefers the lottery with probability 1 on c the most. The sum of both SSB functions is

φΣ
N = φ1 + φ2 =

 0 −1 1
1 0 −1
−1 1 0


and the unique welfare maximizing lottery according to φΣ

N is p = 1/3 a+1/3 b+1/3 c since
φΣ
N (p, x) = 0 for all x ∈ A and for every p′ ∈ ∆(A) \ {p}, there is some x ∈ A such that
φΣ
N (p′, x) < 0. In particular, there is no degenerate lottery that is welfare maximizing

for φΣ
N .

Our central objects of study are mechanisms that map a vector of SSB functions to
a lottery. A mechanism f is welfare-maximizing if it always returns welfare-maximizing
lotteries for vectors of SSB functions from Φ, i.e., for all N ∈ F(N) and φN ∈ ΦN , f(φN )
is welfare-maximizing.
We will consider welfare maximization in settings with optional participation. A

mechanism satisfies welfare participation if participating in the mechanism is always at
least as good as not participating in terms of accumulated SSB welfare. Formally, for
every N ∈ F(N), S ( N , and φN ∈ ΦN ,

φΣ
S (f(φN ), f(φN\S)) ≥ 0. (welfare participation)

As we will see in Section 4, this strong notion of participation has important consequences
even in settings in which the interpersonal comparison of utility is problematic, such as
in voting.

3 Welfare Maximization and Participation

We are now ready to prove two theorems that highlight the relationship between welfare
maximization and welfare participation. The first result shows that welfare maximization
implies welfare participation.

Theorem 1. Every welfare-maximizing mechanism satisfies welfare participation.
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Proof. Let N ∈ F(N), S ( N , φN ∈ ΦN , and f be a welfare-maximizing mechanism.
For p = f(φN ) and p′ = f(φN\S), we then have that

φΣ
N (p, q) ≥ 0 for all q ∈ ∆(A), and

φΣ
N\S(p′, q) ≥ 0 for all q ∈ ∆(A),

since, by assumption, f is welfare-maximizing for φN and φN\S . Thus, it follows that

φΣ
S (p, p′) = φΣ

N (p, p′)− φΣ
N\S(p, p′) = φΣ

N (p, p′)︸ ︷︷ ︸
≥0

+φΣ
N\S(p′, p)︸ ︷︷ ︸
≥0

≥ 0.

The second equality follows from skew-symmetry of φΣ
N\S . The inequality follows from

the fact that f is welfare-maximizing for φN and φN\S . Hence, f satisfies welfare par-
ticipation.

Clearly, Theorem 1 also holds for Cartesian domains that are not symmetric among
agents. The converse of Theorem 1 does not hold in full generality as every constant
function satisfies welfare participation but fails to be welfare-maximizing. However, for
sufficiently rich domains, the converse holds for mechanisms that satisfy two additional
properties.
These properties are homogeneity and weak welfare maximization. Homogeneity is

well-known in social choice theory (see, e.g., Smith, 1973; Young, 1977).4 In order to
define it, we introduce notation for making copies of utility vectors. For all N ∈ F(N)
and k ∈ N, let kN = {i + lmax(N) : i ∈ N and l ∈ {0, . . . , k − 1}} and φi = φj if
i ≡ j mod max(N). A mechanism f is homogeneous if replicating the entire set of
agents does not affect the outcome, i.e., f(φN ) = f(φkN ) for all k ∈ N and φN ∈ ΦN .
Homogeneity thus prescribes that the outcome of a mechanism should not depend on the
absolute number of agents as long as the relative composition of preferences is completely
identical.
In certain cases, there is no need for randomization in order to achieve welfare max-

imization, because there is a degenerate lottery that is weakly preferred to every other
lottery in terms of accumulated welfare. A mechanism f is weakly welfare-maximizing
if f(φN ) = p whenever p is degenerate and the unique welfare-maximizing lottery for
φN . Weak welfare maximization can thus be seen as a weak version of ex post wel-
fare maximization (recall that degenerate welfare-maximizing lotteries need not exist for
SSB utility functions). It is weaker than ex post welfare maximization because it is only
applicable when there is a unique welfare-maximizing alternative.
The following lemma shows that a degenerate lottery is the unique welfare-maximizing

lottery if and only if it is strictly preferred to every other degenerate lottery in terms of
welfare. We slightly abuse notation by identifying degenerate lotteries with alternatives.

Lemma 1. Let φN ∈ ΦN and x ∈ A. Then, x is the unique welfare-maximizing lottery
for φN if and only if φΣ

N (x, y) > 0 for all y ∈ A \ {x}.
4In the context of fair division, this property is often called replication invariance.
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Proof. For the direction from left to right, let x ∈ A be the unique welfare-maximizing
lottery for φN . Assume for contradiction that B = {y ∈ A \ {x} : φΣ

N (x, y) ≤ 0} 6= ∅.
Let p′ ∈ ∆(B) denote some lottery on B that is welfare-maximizing for φΣ

N restricted to
B, i.e., φΣ

N (p′, q) ≥ 0 for all q ∈ ∆(B) and p ∈ ∆(A) be the lottery that is equal to p′

on B and 0 otherwise, i.e., p(y) = p′(y) for all y ∈ B and p(y) = 0 for all y ∈ A \ B.
By the choice of B, we have that φΣ

N (p, y) ≥ 0 for all y ∈ B ∪ {x}. Moreover, for ε > 0
small enough, we have φΣ

N (εp + (1 − ε)x, y) ≥ 0 for all y ∈ A \ B, since φΣ
N (x, y) > 0.

Hence, εp + (1 − ε)x is also welfare-maximizing for φΣ
N and x cannot be the unique

welfare-maximizing lottery.
The direction from right to left follows from linearity of φΣ

N .

Next, we aim at showing that every homogeneous and weakly welfare-maximizing
mechanism that satisfies welfare participation is welfare-maximizing. This result does
not hold without making some assumptions about the richness of the domain of pref-
erences. We therefore impose two domain conditions. A domain Φ is symmetric if,
for all φ ∈ Φ, −φ ∈ Φ. Symmetry prescribes that it is aways possible to completely
disagree with any of the other agents. It can thus be seen as an axiom that ensures a
minimal degree of freedom with respect to the structure of preferences. A domain Φ is
non-imposing if, for all x ∈ A, there are N ∈ F(N) and φN ∈ ΦN such that φΣ

N (x, y) > 0
for all y ∈ A \ {x}. Non-imposition demands that for every degenerate lottery x there
is a preference profile such that x is the unique welfare-maximizing lottery. Hence,
non-imposition, prevents an extreme bias against certain alternatives in the domain of
admissible preferences.

Theorem 2. Let Φ be a symmetric and non-imposing domain. Every homogeneous,
weakly welfare-maximizing mechanism on Φ that satisfies welfare participation is welfare-
maximizing.

Proof. Let f be a homogeneous, weakly welfare-maximizing mechanism that satisfies
welfare participation. Assume for contradiction that f is not welfare-maximizing for
some N ∈ F(N) and φN ∈ ΦN , i.e., there is a lottery q such that φΣ

N (p, q) < 0, where
p = f(φN ). By linearity of φΣ

N , there is an alternative x such that φΣ
N (p, x) = c < 0.

Now, let N̄ be a set of agents disjoint from N and φN̄ ∈ ΦN̄ such that φN̄ = −φN .
Furthermore, let J be a set of agents that has empty intersection with N and N̄ and
φJ ∈ ΦJ such that φΣ

J (x, y) > 0 for all y ∈ A \ {x}. The sets N̄ and J exist, since N is
infinite and Φ is symmetric and non-imposing by assumption. Moreover, let d = φΣ

J (x, p)
and k be an integer such that kc+d < 0. It follows from homogeneity of f that f(φkN ) =
f(φN ) = p. By definition of φN̄ it follows that φΣ

kN + φΣ
kN̄

+ φΣ
J = φΣ

J . Hence, x is the
unique welfare-maximizing lottery for φkN∪kN̄∪J . This implies that x = f(φkN∪kN̄∪J)
by Lemma 1 and weak welfare maximization of f . Furthermore, we have

φΣ
kN̄ (p, x) + φΣ

J (p, x) = −(kc+ d) > 0.

Hence, the set of agents kN̄ ∪ J prefers abstaining (which yields p) to participating
(which yields x). This contradicts welfare participation.
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4 Randomized Voting Rules

We now turn to the important special case in which only ordinal preferences between
alternatives are known and consider randomized voting rules, i.e., functions that map
an ordinal preference profile to a lottery. Ordinal preferences are given in the form
of complete binary relations, which can be conveniently represented by SSB functions
whose entries are restricted to {−1, 0,+1}, where φi(x, y) = +1 if agent i prefers x to y,
φi(x, y) = −1 if he prefers y to x, and φi(x, y) = 0 if he is indifferent. We refer to this
representation as the canonical utility representation of ordinal preferences and define
randomized voting rules on the domain

ΦPC = {φ ∈ {−1, 0,+1}A×A : φ(x, y) = −φ(y, x) for all x, y ∈ A}.

Every such representation entails a complete preference relation over lotteries of alter-
natives (called the pairwise comparison (PC) preference extension). The natural inter-
pretation of this relation is that lottery p is preferred to lottery q if it is more likely that
p yields a better alternative than q than vice versa. This preference relation cannot be
represented by a vNM utility function and may be intransitive, even when preferences
over alternatives are transitive. For more details, please see Blavatskyy (2006), Aziz
et al. (2015, 2018), and Brandl and Brandt (2020). Aziz et al. (2015) have shown that
the preference relation induced by the canonical utility representation is a refinement of
stochastic dominance, i.e., if p stochastically dominates q, then p is also preferred to q
with respect to the canonical utility representation. A lottery stochastically dominates
another if the former yields more expected utility than the latter for every vNM func-
tion that is consistent with the ordinal preferences. A randomized voting rule satisfies
group-participation with respect to stochastic dominance (SD-group-participation) if no
group of agents can abstain from f such that each of the agents is individually better
off with respect to stochastic dominance. When only requiring this for singleton groups,
the corresponding property is called SD-participation.

Proposition 1. Every randomized voting rule that satisfies welfare participation satisfies
SD-group-participation.

Proof. Let N ∈ F(N), S ( N , φN ∈ ΦN
PC , and f a randomized voting rule that satisfies

welfare participation. Welfare participation of f implies
∑

i∈N φi(f(φN ), f(φN\S)) ≥ 0.
In particular, there is i ∈ S such that φi(f(φN ), f(φN\S)) ≥ 0. This implies that f(φN\S)
does not stochastically dominate f(φN ).

SD-participation is not easily satisfied. For example, Brandl et al. (2015b) have shown
that no majoritarian randomized voting rule can satisfy SD-participation and ex post
efficiency.5 By leveraging the results obtained in Section 3, we can derive a number of
statements concerning randomized voting rules that return so-called maximal lotteries.
A lottery is maximal for a given ordinal preference profile if it is welfare-maximizing

5A voting rule is majoritarian if its output only depends on the pairwise majority relation. A mechanism
is ex post efficient if it always assigns probability 0 to Pareto dominated alternatives.
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for the canonical utility representation. In the context of voting, maximal lotteries are
almost always unique and randomized voting rules that return maximal lotteries form
an attractive class of randomized voting rules (Fishburn, 1984a; Brandl et al., 2016; Aziz
et al., 2018; Brandl and Brandt, 2020). Maximal lotteries have also been considered in
the context of private good settings, such as randomized matching markets and house
allocation (e.g., Kavitha et al., 2011; Aziz et al., 2013; Brandt et al., 2017b).
First, Theorem 1 and Proposition 1 imply that returning maximal lotteries satisfies

SD-group-participation, independently of how ties between maximal lotteries are broken.

Corollary 1. Every randomized voting rule that returns maximal lotteries satisfies SD-
group-participation.

To illustrate maximal lotteries as well as the notions of welfare participation and
SD-participation consider the following example. Let N = {1, 2, 3}, A = {a, b, c}, and
agents’ preferences be defined such that first agent prefers a to b to c, the second b to c
to a, and the third c to a to b. Then,

φΣ
N =

∑
i∈N

φi =

 0 1 1
−1 0 1
−1 −1 0

+

0 −1 −1
1 0 1
1 −1 0

+

 0 1 −1
−1 0 −1
1 1 0

 =

 0 1 −1
−1 0 1
1 −1 0

 .

Just like in the example given in Section 2, the unique maximal lottery according to φΣ
N

is p = 1/3 a+ 1/3 b+ 1/3 c. Now, assume that the first agent leaves the electorate. In the
resulting two-agent profile, every lottery that randomizes between b and c happens to
be maximal. Observe that p is preferred to any such lottery q = λb+ (1−λ)c, λ ∈ [0, 1],
with respect to the canonical utility representation of the first agent because

φ1(p, q) =
(

1/3 1/3 1/3
) 0 1 1
−1 0 1
−1 −1 0

 0
λ

1− λ

 = 2/3 (1− λ) ≥ 0.

Furthermore, this preference is strict unless λ = 1. As a result, p is preferred to q
with respect to stochastic dominance whenever λ ≤ 2/3; otherwise, the lotteries are
incomparable. Hence, SD-participation is also not violated.

Theorem 2 entails an axiomatic characterization of randomized voting rules that re-
turn maximal lotteries. It is easily seen that ΦPC satisfies symmetry and non-imposition.
Alternative x is called a Condorcet winner for a given preference profile φN ∈ ΦN

PC if a
majority of agents prefers it to any other alternative, i.e., φΣ

N (x, y) > 0 for all y ∈ A\{x}.
A randomized voting rule is Condorcet-consistent if it always puts probability 1 on a
Condorcet winner. It follows from Lemma 1 that Condorcet-consistency is equivalent to
weak welfare maximization for the domain ΦPC . We thus obtain the following charac-
terization as a corollary of Theorem 2.

Corollary 2. Every homogeneous, Condorcet-consistent, randomized voting rule that
satisfies welfare participation returns maximal lotteries.

As discussed in Section 1, Corollary 2 can be contrasted with a classic result by Moulin
(1988) who showed that no Condorcet-consistent deterministic voting rule satisfies par-
ticipation.

8



5 Concluding Comments

Remark 1. The axioms used in Corollary 2 (and therefore also the ones used in
Theorem 2) are independent of each other. The rule that always returns the uniform
lottery over all alternatives satisfies homogeneity and welfare participation, but vio-
lates Condorcet-consistency. The rule that puts probability 1 on the Condorcet win-
ner whenever it exists and otherwise returns the uniform lottery satisfies homogene-
ity and Condorcet-consistency, but violates welfare participation. A rule that satisfies
Condorcet-consistency and welfare participation, but violates homogeneity, can be con-
structed as follows. Let |A| = 3, add some small ε > 0 to every positive entry and −ε to
every negative entry of φΣ

N and return a welfare-maximizing lottery of the resulting ma-
trix φ′. If there are several such lotteries, there has to be a degenerate welfare-maximizing
lottery (since |A| = 3) and the uniform lottery over those degenerate welfare-maximizing
lotteries for which the corresponding rows in φ′ contain the largest number of positive
entries should be returned.

Remark 2. Note that Corollary 2 also holds for any symmetric and non-imposing sub-
domain of ΦPC , and hence, in particular, for the domain consisting of all transitive and
complete preference relations and for the domain consisting of all transitive, complete,
and anti-symmetric preference relations.

Remark 3. Corollary 2 does not hold if welfare participation is weakened to SD-
group-participation. For example, the voting rule that returns the Condorcet winner
if one exists and the uniform lottery over all alternatives otherwise is homogeneous,
Condorcet-consistent, and satisfies SD-group-participation.6

Remark 4. Using similar arguments as in the proof of Theorem 2, maximal lotteries
can also be characterized by replacing Condorcet-consistency with non-imposition and
cancellation in Corollary 2. Non-imposition requires every degenerate lottery to be cho-
sen for at least one preference profile; cancellation prescribes that agents with completely
opposed preferences cancel each other out (see Young, 1974).

Remark 5. It is also possible to define a stronger notion of SD-participation where the
outcome when participating has to stochastically dominate the outcome when abstaining.
For this notion, Moulin’s (1988) result remains intact (Brandt et al., 2017a, Theorem
9).

Remark 6. The proof of Theorem 1 can be adapted to show that welfare-maximizing
mechanisms satisfy one-way monotonicity (Sanver and Zwicker, 2009). As a conse-
quence, randomized voting rules that return maximal lotteries satisfy SD-one-way-
monotonicity. This stands in contrast to Sanver and Zwicker (2009) and Peters (2017)
who have shown that no deterministic voting rule satisfies Condorcet-consistency and
half-way-monotonicity, a weakening of both one-way-monotonicity and participation.

Remark 7. Fishburn (1988, p. 85) has shown that a preference relation on ∆(A) is
continuous and convex if and only if it can be represented by a utility function that maps

6However, this rule violates ex post efficiency let alone the stronger notion of SD-efficiency, which is
satisfied by maximal lotteries.
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from ∆(A) × ∆(A) to R and is sign skew-symmetric and linear in the first argument.
Theorem 1 and Remark 6 also hold for this more general class of utility functions.
The existence of maximal elements in this framework is guaranteed by a result due to
Sonnenschein (1971).
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