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Abstract

Randomized voting rules are gaining increasing
attention in computational and non-computational
social choice. A particularly interesting class
of such rules are maximal lottery (ML) schemes,
which were proposed by Peter Fishburn in 1984 and
have been repeatedly recommended for practical
use. However, the subtle differences between dif-
ferent ML schemes are often ignored. Two canon-
ical subsets of ML schemes are C1 -ML schemes
(which only depend on unweighted majority com-
parisons) and C2 -ML schemes (which only depend
on weighted majority comparisons). We prove that
C2 -ML schemes are the only Pareto efficient—but
also among the most manipulable—ML schemes.
Furthermore, we evaluate the frequency of manipu-
lable preference profiles and the degree of random-
ization of ML schemes via extensive computer sim-
ulations. In general, ML schemes are rarely ma-
nipulable and often do not randomize at all, espe-
cially when there are only few alternatives. For up
to 21 alternatives, the average support size of ML
schemes lies below 4 under reasonable assump-
tions. The average degree of randomization (in
terms of Shannon entropy) of C2 -ML schemes is
significantly lower than that of C1 -ML schemes.

1 Introduction
When aggregating the preferences of multiple agents into
one collective choice, it is easily seen that completely sym-
metric situations call for randomization. Moreover, it has
been shown that—apart from guaranteeing impartiality—
randomization allows the circumvention of well-known im-
possibility results that have plagued social choice theory for
long [see, e.g., Gibbard, 1977, Brandl et al., 2016, 2018b,
Brandl and Brandt, 2018]. Two types of randomized vot-
ing rules that have been shown to be attractive from an ax-
iomatic point of view are random (serial) dictatorships and
maximal lottery (ML) schemes. While random dictator-
ships are renowned for being immune to strategic manipu-
lation, ML schemes satisfy desirable consistency conditions
(such as Condorcet-consistency, population-consistency, and

composition-consistency) as well as strong notions of Pareto
efficiency.

The notion of a maximal lottery was first conceived by
Kreweras [1965] and independently proposed and studied
in much more detail by Fishburn [1984a]. Interestingly,
maximal lotteries have been rediscovered several times by
economists [Laffond et al., 1993], mathematicians [Fisher
and Ryan, 1995], political scientists [Felsenthal and Ma-
chover, 1992], and computer scientists [Rivest and Shen,
2010]. In particular, Laffond et al. [1993, 1996], Dutta
and Laslier [1999], Laslier [2000], and Brandt et al. [2018]
have extensively studied the support of maximal lotteries,
called the bipartisan set or the essential set.1 Felsenthal
and Machover [1992] and Rivest and Shen [2010] also dis-
cuss whether ML schemes are suitable for real-world politi-
cal elections. Rivest and Shen conclude that “[the maximal
lotteries system] is not only theoretically interesting and op-
timal, but simple to use in practice; it is probably easier to
implement than, say, IRV [instant-runoff voting]. We feel
that it can be recommended for practical use.” More recently,
Peyre [2013] and Hoang [2017] have popularized maximal
lotteries in France under the name scrutin de Condorcet ran-
domisé (randomized Condorcet voting system), which al-
ludes to the fact that maximal lotteries are essentially ran-
domized (weak) Condorcet winners (see Section 3).2 Easy-
to-use voting tools for C1 -ML and C2 -ML are available on
the websites https://votation.ovh (in French) and
https://pnyx.dss.in.tum.de, respectively.

The literature on maximal lotteries often ignores the fact
that there are different variants of maximal lottery schemes,
which under certain circumstances may lead to completely
contradictory outcomes (e.g., two lotteries with disjoint sup-
port). All these (infinitely many) variants are captured by
Fishburn’s original classification of maximal lotteries [Fish-
burn, 1984a]. The two main candidates are C1 -ML schemes
(which only depend on unweighted majority comparisons)
and C2 -ML schemes (which only depend on weighted ma-
jority comparisons). C1 -ML schemes have, for example,

1The term bipartisan set was proposed by Nobel Prize Laureate
Roger Myerson [Laffond et al., 1993].

2Two French YouTube videos about maximal lot-
teries by Lê Nguyên Hoang enjoy immense popularity
(https://youtu.be/wKimU8jy2a8 and https:
//youtu.be/vAdGZkXhlNM).

https://votation.ovh
https://pnyx.dss.in.tum.de
https://youtu.be/wKimU8jy2a8
https://youtu.be/vAdGZkXhlNM
https://youtu.be/vAdGZkXhlNM
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Figure 1: Illustration of the definitions stated in Section 2. The
table on the left represents a preference profile R for three alter-
natives {a, b, c} and five agents. The number on top of each col-
umn denotes the number of agents with the corresponding prefer-
ence relation, e.g., there are two agents with the preference relation
%i : a, b, c. The corresponding matrix of majority margins and the
weighted digraph are displayed on the right. The majority relation
of R is cyclic, i.e., a �R b �R c �R a. Hence, R does not admit
a (weak) Condorcet winner. C1 -ML(R) = {1/3 a + 1/3 b + 1/3 c}
and C2 -ML(R) = {3/5 a+ 1/5 b+ 1/5 c}.

been considered by Kreweras [1965], Felsenthal and Ma-
chover [1992], Laffond et al. [1993], Fisher and Ryan [1995],
Peyre [2013], and Hoang [2017] while C2 -ML schemes have
been considered by Dutta and Laslier [1999], Laslier [2000],
Rivest and Shen [2010], Aziz et al. [2013], Brandl et al.
[2016], and Brandl and Brandt [2018]. In this paper, we pro-
vide a detailed analytical and experimental comparison of all
ML schemes.

2 Preliminaries
Let A = {a, b, . . . } be a finite set of m alternatives and
N = {1, . . . , n} be a set of n agents. A (weak) preference re-
lation on A is a complete and transitive binary relation on A.
The preference relation reported by agent i is denoted by %i,
and the set of all preference relations on A is denoted by R.
We write�i for the strict part of %i, i.e., x �i y if x %i y but
not y %i x, and∼i for the indifference part of %i, i.e., x ∼i y
if x %i y and y %i x. A preference relation %i is called strict
if it is anti-symmetric, i.e., either x �i y or y �i x for all
distinct alternatives x, y ∈ A. We will compactly represent
a preference relation as a comma-separated list with all alter-
natives among which an agent is indifferent placed in a set.
For example, x �i y ∼i z is represented by %i : x, {y, z}. A
preference profile R = (%1, . . . ,%n) is an n-tuple contain-
ing a preference relation for each agent. The set of all pref-
erence profiles is thus given by RN . For a preference profile
R ∈ RN , we denote by nxy = |{i ∈ N : x �i y}| the num-
ber of agents who strictly prefer x to y. The majority margin
of x over y is given by mxy = nxy −nyx. The majority mar-
gins between all pairs of alternatives can be represented by a
skew-symmetric matrix whose rows and columns are indexed
by alternatives; the majority margin of x over y is given in the
cell indexed by (x, y). Alternatively, majority margins can be
illustrated by a weighted digraph with an edge from x to y
with weight mxy if mxy > 0. The majority relation %R on
alternatives for a given preference profile R can be derived
from the majority margins: x %R y if and only if mxy ≥ 0.
An alternative x ∈ A is a Condorcet winner in R if x �R y
for all y ∈ A \ {x} and a weak Condorcet winner in R if
x %R y for all y ∈ A \ {x}. The preceding definitions are
illustrated in Figure 1.

We consider voting rules that randomize over alternatives.
The set of all lotteries over A is denoted by ∆(A), i.e.,
∆(A) = {p ∈ RA≥0 :

∑
x∈A p(x) = 1}, where p(x) is the

probability that p assigns to x. By supp(p) we denote the
support of a lottery p ∈ ∆(A), i.e., the set of all alternatives
to which p assigns positive probability. A lottery p is degen-
erate if |supp(p)| = 1. We write lotteries as convex com-
binations of alternatives, e.g., the uniform lottery on {a, b}
is denoted by 1/2 a + 1/2 b. A social decision scheme (SDS)
takes as input a preference profile R ∈ RN and returns a
lottery over A. Two common symmetry conditions for SDSs
are anonymity, i.e., the SDS is invariant under renaming the
agents, and neutrality, i.e., the SDS is symmetric with respect
to the alternatives. Furthermore, an SDS is majoritarian if it
only depends on the majority relation, i.e., f(R) = f(R̂)
whenever %R = %R̂.

Defining properties such as efficiency and strategyproof-
ness for SDSs requires to make assumptions about the agents’
preferences over lotteries based on their preferences over al-
ternatives. To this end, we consider lottery extensions, which
map a preference relation on the set of alternatives A to a
preference relation on the set of lotteries ∆(A). The most
common lottery extension is stochastic dominance (SD), ac-
cording to which a lottery p is preferred to another lottery q if
for every alternative x ∈ A, p is at least as likely to return an
alternative that is at least as good as x as q. Formally,

p %SD
i q ⇔

∑
y%ix

p(y) ≥
∑
y%ix

q(y) for all x ∈ A. (SD)

It is a well-known fact that p %SD
i q if and only if the ex-

pected utility of p is at least as large as that of q for every von
Neumann Morgenstern utility function consistent with %i.

Another important lottery extension is based on pairwise
comparisons of alternatives [Brandl et al., 2018b, Brandl and
Brandt, 2018]. A lottery p is preferred to another lottery q
according to pairwise comparisons (PC ) if p is more likely
to return a more preferred alternative than q. Formally,

p %PC
i q ⇔

∑
x%iy

p(x)q(y) ≥
∑
x%iy

p(y)q(x). (PC )

While the PC extension results in preferences over lotteries
that cannot be represented by any von Neumann Morgenstern
utility function, it represents a refinement of the SD exten-
sion, i.e., %SD

i ⊆ %PC
i [Fishburn, 1984b, Theorem 8]. In

contrast to the SD extension, which may result in incom-
plete preferences over lotteries, the PC extension yields a
complete preference relation over lotteries. If a �i b �i c,
p = 1/2 a+ 1/2 c, and q = 2/3 b+ 1/3 c, we have that p �PC

i q
but neither p %SD

i q nor q %SD
i p.

3 Maximal Lottery Schemes
In this paper, we focus on maximal lottery schemes, a class of
SDSs introduced by Fishburn [1984a]. Every maximal lottery
scheme is based on an odd and monotone function τ : Z→ R
with τ(1) = 1 and returns an optimal mixed strategy of the
symmetric zero-sum game induced by (τ(mxy))x,y∈A.3 For

3τ is odd if τ(−k) = −τ(k) for all k ∈ Z. Thus, τ(0) = 0 and
τ is completely defined by its values on positive integers.



every such function τ and every R ∈ RN , we define the
set MLτ (R) of maximal lotteries in R with respect to τ as
follows.

MLτ (R) = {p ∈ ∆(A) :
∑
x,y∈A

p(x)q(y)τ(mxy) ≥ 0

for all q ∈ ∆(A)}.

When τ is the identity function, maximal lotteries thus corre-
spond to randomized weak Condorcet winners in the follow-
ing sense: let p be a maximal lottery. Then, for any lottery q,
the expected number of agents who prefer the outcome of p
to that of q is larger than the expected number of agents who
prefer the outcome of q to that of p. Maximal lotteries can be
found via linear programming and thus in polynomial time.
An SDS f is a maximal lottery scheme based on τ if, for all
R, R̂ ∈ RN , f(R) ∈ MLτ (R) and f(R) = f(R̂) whenever
MLτ (R) = MLτ (R̂).

The function τ describes how different sizes of majori-
ties are traded off against each other. Roughly speaking,
the steeper the function τ , the more emphasize is given to
larger majorities. Two notable classes of ML schemes are ob-
tained for particularly natural choices of τ . The class of ML
schemes based on the sign function is denoted by C1 -ML,
in accordance with Fishburn’s [1977] classification of deter-
ministic voting rules. C1 -ML schemes are in fact the only
ML schemes that are C1 functions, i.e., that only depend
on the majority relation and thus treat all sizes of majorities
equally. The class of ML schemes based on the identity func-
tion is referred to as C2 -ML for short. When there is an
odd number of agents with strict preferences, both C1 -ML
and C2 -ML return a unique lottery, which follows from the
fact that optimal mixed strategies are unique in symmetric
zero-sum games with odd off-diagonal payoffs; moreover, the
support of this lottery contains an odd number of alternatives
[Laffond et al., 1997]. For the preference profile R from Fig-
ure 1, we have that MLτ (R) = {1/(τ(3)+2)(τ(3) a+b+c)}.
In particular, C1 -ML(R) = {1/3 a + 1/3 b + 1/3 c} and
C2 -ML(R) = {3/5 a+1/5 b+1/5 c}. Dutta and Laslier [1999,
Proposition 4.2] gave an example showing that the unique lot-
tery returned by C1 -ML can have disjoint support from the
unique lottery returned by C2 -ML.

A potential advantage of C1 -ML schemes is that they re-
quire less information than other ML schemes. It suffices to
only elicit the majority relation in order to compute the elec-
tion outcome.4

In the sequel, we derive analytical results about Pareto effi-
ciency and strategyproofness of ML schemes (cf. Sections 4
and 5) and complement these results by empirical findings
about the frequency of manipulation instances and the degree
of randomization under the impartial anonymous culture as-
sumption (cf. Section 6).

4However, as our simulations show, C2 -ML schemes also only
depend on the majority relation to a large extent. Precise majority
margins are only required for pairwise comparisons between a few
crucial alternatives.
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Figure 2: The preference profile R used in the proof of Theorem 4.2
is depicted on the left. The corresponding majority relation is illus-
trated on the right. Omitted edges point counter-clockwise.

4 Efficiency
A fundamental economic property is (Pareto) efficiency,
which prescribes that no agent can be made better off without
making another agent worse off. When assuming that lotter-
ies are compared based on stochastic dominance, one obtains
the notion of SD-efficiency. Formally, a lottery p ∈ ∆(A)
is SD-efficient for a preference profile R ∈ RN if there is
no lottery q ∈ ∆(A) such that q %SD

i p for all i ∈ N and
q �SD

j p for some j ∈ N . An SDS f is SD-efficient if f(R)

is SD-efficient for all R ∈ RN . In a similar vein, one can
define PC -efficiency, which results in an efficiency notion
that is stronger than SD-efficiency. Theorem 4.1 shows two
important facts regarding efficiency of ML schemes: first,
C2 -ML schemes are PC -efficient and, second, no other ML
schemes are even SD-efficient. The involved proof of this
theorem is omitted due to limited space.

Theorem 4.1. Every C2 -ML scheme is PC -efficient. No
other ML scheme is SD-efficient for all values of m and n.

Theorem 4.1 implies that no C1 -ML scheme is SD-
efficient. This raises the question whether there is any SD-
efficient majoritarian SDS. In Theorem 4.2 we show that the
answer to this question is negative when also assuming neu-
trality. The base case for the following proof was found with
the help of a computer.

Theorem 4.2. Every majoritarian and neutral SDS violates
SD-efficiency for m ≥ 9 (and n = 5, n = 7, or n ≥ 9), even
when preferences are strict.

Proof. We first prove the case m = 9 and n = 5. Let
A = {a, b, c, d, e, f, g, h, i} and consider the preference pro-
file R ∈ RN and the corresponding weighted majority graph
depicted in Figure 2. Every majoritarian and neutral SDS f
yields the uniform lottery p = 1/9 (a + b + c + d + e + f +
g+h+ i) over all alternatives in A for R due to the symmet-
rical structure of the majority relation of R. However, shift-
ing all the probabilities from the “red” alternatives g, h, and
i to the “green” alternatives d, e, and f yields another lottery
q = 1/9 (a+ b+ c) + 2/9 (d+ e+ f), which is SD-preferred
to p by all agents, i.e., q �SD

i p for all i ∈ N . This can be
checked by looking at R, because there is always a “green”
alternative directly above a “red” alternative for each agent.
Additional alternatives can be added at the bottom of each



preference relation. These alternatives will then be Pareto
dominated and do not break the symmetry among the first
9 alternatives. If f assigns positive probability to a Pareto
dominated alternative, it is SD-inefficient. Otherwise, f is
SD-inefficient with the same argument as for the casem = 9.
For more than 5 agents, analogous proofs can be obtained by
duplication and combination of profiles that induce the same
majority graph as R.

This impossibility is somewhat surprising since ex post ef-
ficient, majoritarian SDSs do exist. In fact, there is an ele-
gant characterization of such SDSs [see Brandt et al., 2016].
This characterization can be used to show that neutrality
is required for the impossibility since every SDS that puts
probability 1 on an ex post efficient alternative satisfies SD-
efficiency. Theorem 4.2 can be used as an argument against
majoritarian SDSs (i.e., SDSs based on C1 functions or so-
called tournament solutions) in general as the majority rela-
tion does not contain enough information to guarantee SD-
efficiency.

Theorem 4.2 implies Theorem 1 by Aziz et al. [2013] who
showed that no neutral, majoritarian, SD-efficient, and SD-
strategyproof SDS exists (although their result already holds
when m = 4).

5 Strategyproofness
In this section, we derive analytic results about the vulner-
ability of ML schemes to strategic manipulation. Just like
in Section 4, we consider manipulability when preferences
over lotteries are based on stochastic dominance. Formally,
an SDS f is SD-manipulable for a preference profile R ∈
RN if there is a preference profile R̂ ∈ RN and j ∈ N

such that %i = %̂i for all i 6= j and f(R̂) �SD
j f(R).

An SDS f is SD-strategyproof if it is not SD-manipulable
for any preference profile R ∈ RN . Analogously, one
can define PC -manipulability. The resulting notion of PC -
strategyproofness is stronger than SD-strategyproofness.

Since only few pairs of lotteries are comparable with re-
spect to stochastic dominance, agents can rarely manipulate
and SD-strategyproofness can be seen as a rather weak notion
of strategyproofness.5 Still, it has proved to be largely pro-
hibitive, even for general SDSs. Brandl et al. [2018a, Theo-
rem 3.1] showed that every anonymous and neutral SDS is ei-
ther SD-inefficient or SD-manipulable. Since every C2 -ML
scheme is anonymous and SD-efficient (cf. Theorem 4.1),
it follows that every neutral C2 -ML scheme violates SD-
strategyproofness. The following result shows that this short-
coming in fact pertains to all ML schemes.
Theorem 5.1. All ML schemes violate SD-strategyproofness
whenm ≥ 3 and n ≥ 3. This even holds for strict preferences
when m ≥ 4 and n is odd.

Proof. We first prove the case m = 3 and n = 3. Let
A = {a, b, c} and MLτ be an arbitrary ML scheme. Con-
sider the following preference profile R ∈ RN , where agent
i in the last column is indifferent between a and c, and the
corresponding matrix of majority margins.

5In fact, this notion is often called weak SD-strategyproofness.

1 1 1

a c b
b a {a, c}
c b

( a b c

a 0 1 0
b −1 0 1
c 0 −1 0

)

By the definition of ML schemes, we have that τ(1) = 1
independently of the choice of τ . Then, MLτ (R) = {λ a +
(1 − λ) c : 1/2 ≤ λ ≤ 1}. Now assume that the agent i
changes his preference relation to %̂i : b, c, a, i.e., he breaks
the tie between a and c. For the resulting preference profile
R̂ we have MLτ (R̂) = {q}, where q = 1/3 a + 1/3 b + 1/3 c.
Note that q �SD

i p for all p ∈ MLτ (R). Thus, agent i can
manipulate MLτ atR, which shows that no ML scheme based
on τ is SD-strategyproof.

Secondly, we prove the case m = 4 and n = 3 with strict
preferences only. Similar to the first case, let A = {a, b, c, d}
and MLτ be again an arbitrary ML scheme. Consider the
following preference profile R ∈ RN with the corresponding
matrix of majority margins.

1 1 1

a c b
d b d
c a a
b d c


a b c d

a 0 −1 1 1
b 1 0 −1 1
c −1 1 0 −1
d −1 −1 1 0


Again independently of the choice of τ , we have MLτ (R) =
{p}, where p = 1/3 a + 1/3 b + 1/3 c. Now assume that the
agent j in the last column changes his preference relation to
%̂j : b, d, c, a, i.e., he swaps a and c. The resulting preference
profile is denoted by R̂. The majority margins in R and R̂ are
the same except that mac = 1 and m̂ac = −1. Then we have
that MLτ (R̂) = {q}, where q = 1/3 b+ 1/3 c+ 1/3 d. Observe
that q �SD

j p. Hence, agent j can manipulate MLτ at R.
Both cases can be generalized to larger profiles via a con-

struction similar to the one by Brandl et al. [2018a, Lemma
4.1].

For all ML schemes except for C1 -ML schemes, Theo-
rem 5.1 also holds when there are only three alternatives and
preferences are strict.

The proof of Theorem 5.1 crucially relies on the fact that
Condorcet winners may fail to exist. Empirical studies have
however observed that almost all preferences profiles that ap-
pear in real-world elections admit a Condorcet winner (see
Footnote 7), in which case every ML scheme chooses the
Condorcet winner with probability 1. As it turns out, no ML
scheme can be PC -manipulated whenever there is a Con-
dorcet winner (not even to a profile without a Condorcet win-
ner), which remedies the seemingly severe implications of
Theorem 5.1 for most real-world settings. This statement has
been shown by Peyre [2013] and Hoang [2017] for C1 -ML
schemes.6 In particular, it implies that choosing the Con-

6Hoang [2017] showed Condorcet-proofness of the Randomized
Condorcet Voting System (RCVS), i.e., of C1 -ML schemes, which
corresponds to our notion of PC -strategyproofness for profiles with
a Condorcet winner.



dorcet winner on the domain of preference profiles that admit
a Condorcet winner is a strategyproof voting rule [see, e.g.,
Campbell and Kelly, 2003, Moulin, 1988, Lemma 10.3].
Theorem 5.2. Let R be a preference profile that admits a
Condorcet winner. Then, no ML scheme is PC -manipulable
at R.

This positive result for profiles that admit a Condorcet
winner is contrasted by the following negative result, which
shows that every C2 -ML scheme can be manipulated in every
sufficiently diverse profile without a weak Condorcet winner.
Theorem 5.3. Let R be a preference profile that does not ad-
mit a weak Condorcet winner and in which every preference
relation appears at least once. Then, every C2 -ML scheme
can be manipulated at R.

The non-trivial proofs of both theorems are omitted be-
cause of space restrictions. With minor adaptions in the proof,
it can be shown that Theorem 5.3 holds for every ML scheme
that is based on a strictly monotonic function τ .

6 Experimental Results
We have conducted various experiments concerning the ma-
nipulability and the degree of randomization of ML schemes.
For these experiments, we confined ourselves to profiles with
an odd number of agents with strict preferences. Recall that
for every such profile R, both C1 -ML(R) and C2 -ML(R)
contain a unique lottery with odd support size. Hence, on
this domain, all C1 -ML schemes coincide and all C2 -ML
schemes coincide. Within this section, we thus refer to the
unique C1 -ML scheme and the unique C2 -ML scheme as
C1 -ML and C2 -ML, respectively.

The stochastic preference model used for our experiments
is called impartial anonymous culture (IAC). Under IAC,
preference profiles form equivalence classes with two profiles
belonging to the same class if they are identical up to permu-
tations of the agents. Every equivalence class is assumed to
be equally likely. Impartial culture models are known to sig-
nificantly underestimate the likelihood of Condorcet winners
[see, e.g., Regenwetter et al., 2006]. Our results on the sup-
port size, degree of randomization, and manipulability of ML
schemes under IAC can thus be interpreted as upper bounds.
In real world settings, one would expect lower numbers.7

6.1 Support Sizes
For an odd number of agents with strict preferences, an ML
scheme returns a degenerate lottery if and only if there is
a Condorcet winner. Hence, the frequency of cases where
maximal lotteries do not randomize can be directly obtained
by looking at the number of profiles that admit a Con-
dorcet winner [see, e.g., Gehrlein, 2002, Regenwetter et al.,

7Gehrlein and Lepelley [2011] summarize 37 empirical studies
from 1955 to 2009 and concluded that “there is a possibility that
Condorcet’s Paradox might be observed, but that it probably is not a
widespread phenomenon.” Similar conclusions were drawn by Re-
genwetter et al. [2007], Mattei et al. [2012], Tideman and Plassmann
[2012]. Laslier [2010] and Brandt and Seedig [2014] report concrete
probabilities for the existence of Condorcet winners under various
distributional assumptions using computer simulations.
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Figure 3: Distributions of the support sizes of C1 -ML (left) and
C2 -ML (right) for m ∈ {5, 11, 21} and n ∈ {5, 51, 501} for
100.000 samples for every combination of parameters according to
the IAC model. The bars represent the frequency of a support with
size 1, 3, 5, and 7 or more stacked from bottom to top. Frequencies
lower than 3% are not labeled.

2006, Laslier, 2010, Gehrlein and Lepelley, 2011, Brandt and
Seedig, 2014]

Figure 3 shows the distribution of small supports of the two
canonical ML schemes under IAC for different numbers of al-
ternatives and agents, e.g., for m = 21 and n = 501, C1 -ML
and C2 -ML randomize over 5 or more alternatives in 31.4%
and 21.3% of the cases, respectively. Even with these extreme
parameters, the average support sizes are still relatively low
(3.18 and 2.87, respectively). In general, C2 -ML results in
slightly lower average support sizes than C1 -ML.

The extreme case of disjoint C1 -ML and C2 -ML supports
turns out to be extremely rare. We have found only a hand-
ful of these examples in millions of tested profiles. More-
over, the supports of C1 -ML and C2 -ML almost always co-
incide (largely due to the fact that Condorcet winners are
likely to exist). We have not encountered a single C1 -ML
SD-efficiency violation during our simulations.

6.2 Degree of Randomization
The support size is a rather crude value to measure the degree
of randomization because it ignores the values of non-zero
probabilities. We therefore evaluate the degree of random-
ization of a lottery p ∈ ∆(A) in terms of Shannon entropy
H(p) = −

∑
x∈supp(p) p(x) logb p(x). We set the basis of

the logarithm b = m to normalize the maximal entropy to 1,
which is attained for the uniform lottery.
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Figure 4: Average normalized Shannon entropies of ML schemes
with the lower boundary of each colored area corresponding to
C2 -ML and the upper boundary corresponding to C1 -ML. Ad-
ditionally, the average distances between these two ML schemes ac-
cording to the L1-norm are displayed as solid lines. The same set of
sampled profiles as in Figure 3 is used.

Figure 4 shows a considerable disparity between the aver-
age degree of randomization for C1 -ML and C2 -ML, which
widens as the number of agents or the number alternatives in-
creases. This behavior is also reflected when plotting the av-
erage distance between C1 -ML and C2 -ML according to the
L1-norm. Somewhat surprisingly, in contrast to C1 -ML, the
average degree of randomization of C2 -ML tends to slightly
decline for large n.

6.3 Strategyproofness
The analytic results we obtained in Section 5 suggest a strong
connection between the existence of Condorcet winners and
manipulability of C2 -ML schemes. When the number of
agents is large compared to the number of alternatives, there
is a high probability that every preference relation appears at
least once in a randomly chosen profile under the IAC model.
Moreover, when there is an odd number of agents with strict
preferences, the notions of weak and strict Condorcet winners
coincide. Hence, one would expect that the probability that
C2 -ML is SD-manipulable for a random profile converges to
the probability that no Condorcet winner exists as the num-
ber of agents grows. Figure 5 shows the empirical frequency
that C2 -ML is SD-manipulable in a randomly chosen pro-
file under the IAC model for various numbers of alternatives
and agents (solid lines). For a fixed number of alternatives,
this frequency converges relatively quickly to the probability
that no Condorcet winner exists (dashed lines), which con-
firms the above intuition. In addition, Figure 5 displays the
frequency of profiles at which C1 -ML is SD-manipulable for
5 alternatives (dashed line). It is significantly lower than for
C2 -ML for the same number of alternatives and decreases as
the number of agents increases. This can be explained by ob-
serving that the absolute values of majority margins are un-
likely to be 1 for large numbers of agents, which renders it
improbable that a single agent can affect the majority rela-
tion, and thus the returned lottery, at all.
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Figure 5: SD-Manipulability of C2 -ML (solid lines) with confi-
dence intervals for a confidence level of 95% (in color) and manip-
ulability of C1 -ML for m = 5 (dotted line). Each point is based on
2000 preference profiles sampled according to the IAC model and
on testing all possible deviations for each type of voter. The dashed
lines show the limit probabilities that no Condorcet winner exists for
n→∞ derived by Gehrlein [2002].

7 Conclusion and Discussion
We have provided an extensive comparison of ML schemes.
Our results can be used to guide the decision whether to
use C1 -ML or C2 -ML schemes. We showed that C2 -ML
schemes are the only SD-efficient ML schemes (and even
satisfy the stronger notion of PC -efficiency). Moreover, we
proved that all majoritarian and neutral SDSs violate SD-
efficiency, a statement that may be of independent inter-
est. C1 -ML efficiency failures are, however, extremely rare
and may not appear in actual use. We also showed that,
while all ML schemes are SD-manipulable, they are PC -
strategyproof whenever a Condorcet winner exists (which is
the case for most real-world preference profiles). Unsurpris-
ingly, C1 -ML is less manipulable then C2 -ML, simply be-
cause single agents are unlikely to be able to affect the out-
come of majoritarian SDSs. This observation is connected to
another potential drawback of C1 -ML: it is less responsive
than C2 -ML. For m = 3 and odd n, C1 -ML will randomize
with equal probabilities whenever there is no Condorcet win-
ner. While uniform lotteries may be easier to implement in
the real world and perhaps be more acceptable to the general
public, this rigidity comes at a cost. Consider, for example, a
profile for m = 3 and n = 100 such that 49 agents prefer c
to a to b, 48 agents prefer a to b to c, and 3 agents prefer b
to c to a. Then, C1 -ML selects b with probability 1/3 even
though 97 of 100 agents prefer a to b and no reasonable (de-
terministic) voting rule would select b. C2 -ML, on the other
hand, puts probability 0.04 on alternative b.8

Finally, we evaluated the degree of randomization of ML
schemes via computer simulations. When there are only few
alternatives, ML schemes usually do not randomize at all.

8In this example, Borda’s rule would select a while most other
rules (Kemeny’s rule, maximin, Schulze’s rule, ranked pairs, plural-
ity, and all runoff rules) would select c. C2 -ML puts probability
0.94 on c.



For up to 21 alternatives, the average support size of ML
schemes lies below 4 under reasonable assumptions. The av-
erage degree of randomization (in terms of Shannon entropy)
of C2 -ML schemes is significantly lower than that of C1 -ML
schemes.
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of Gösing, Austria (3–27 July 1962), pages 73–79, 1965.

G. Laffond, J.-F. Laslier, and M. Le Breton. The bipartisan
set of a tournament game. Games and Economic Behavior,
5(1):182–201, 1993.
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