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We propose a systematic methodology for defining tournament solutions
as extensions of maximality. The central concepts of this methodology are
maximal qualified subsets and minimal stable sets. We thus obtain an in-
finite hierarchy of tournament solutions, encompassing the top cycle, the
uncovered set, the Banks set, the minimal covering set, and the tournament
equilibrium set. Moreover, the hierarchy includes a new tournament solution,
the minimal extending set, which is conjectured to refine both the minimal
covering set and the Banks set.
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1 Introduction

Given a finite set of alternatives and choices between all pairs of alternatives, how to
choose from the entire set in a way that is faithful to the pairwise comparisons? This
simple, yet captivating, problem is studied in the literature on tournament solutions. A
tournament solution thus seeks to identify the “best” elements according to some binary
dominance relation, which is usually assumed to be asymmetric and complete. Since
the ordinary notion of maximality may return no elements due to cyclical dominations,
numerous alternative solution concepts have been devised and axiomatized [see, e.g.,
22, 20]. Tournament solutions have numerous applications throughout economics, most
prominently in social choice theory where the dominance relation is typically defined
via majority rule [e.g., 12, 5]. Other application areas include multi-criteria decision
analysis [e.g., 1, 6], non-cooperative game theory [e.g., 13, 19, 10], and cooperative game
theory [15, 8].

In this paper, we approach the tournament choice problem using a methodology con-
sisting of two layers: qualified subsets and stable sets. Our framework captures most
known tournament solutions and allows us to provide unified proofs of axiomatic prop-
erties and inclusion relationships between tournament solutions.



In general, we consider six standard properties of tournament solutions: monotonicity
(MON), independence of unchosen alternatives (IlUA), the weak superset property (WSP),
the strong superset property (SSP), composition-consistency (COM), and irregularity
(IRR). The point of departure for our methodology is to collect the maximal elements
of so-called qualified subsets, i.e., distinguished subsets that admit a maximal element.
In general, families of qualified subsets are characterized by three properties (closure,
independence, and fusion). Examples of families of qualified subsets are all subsets with
at most two elements, all subsets that admit a maximal element, or all transitive subsets.
Fach family yields a corresponding tournament solution and we thus obtain an infinite
hierarchy of tournament solutions. The tournament solutions corresponding to the three
examples given above are the set of all alternatives except the minimum, the uncovered
set [12, 21], and the Banks set [2]. Our methodology allows us to easily establish a
number of inclusion relationships between tournament solutions defined via qualified
subsets (Proposition 2) and to prove that all such tournament solutions satisfy WSP
and MON (Proposition 1). Based on an axiomatic characterization using minimality
and a new property called strong retentiveness, we show that the Banks set is the finest
tournament solution definable via qualified subsets (Theorem 1).

Generalizing an idea by Dutta [11], we then propose a method for refining any suitable
solution concept S by defining minimal sets that satisfy a natural stability criterion with
respect to S. A crucial property in this context is whether S always admits a unique
minimal stable set. For tournament solutions defined via qualified subsets, we show that
this is the case if and only if no tournament contains two disjoint stable sets (Lemma 2).
As a consequence of this characterization and a theorem by Dutta [11], we show that
an infinite number of tournament solutions (defined via qualified subsets) always admit
a unique minimal stable set (Theorem 3). Moreover, we show that all tournament
solutions defined as unique minimal stable sets satisfy WSP and IUA (Proposition 4), SSP
and various other desirable properties if the original tournament solution is defined via
qualified subsets (Theorem 4), and MON and COM if the original tournament solution
satisfies these properties (Proposition 5 and Proposition 6). The minimal stable sets
with respect to the three tournament solutions mentioned in the paragraph above are
the minimal dominant set, better known as the top cycle [16, 28], the minimal covering
set [11], and a new tournament solution that we call the minimal extending set (ME ).
Whether MFE satisfies uniqueness turns out to be a highly non-trivial combinatorial
problem and remains open. If true, ME would be contained in both the minimal covering
set and the Banks set while satisfying all of the desirable properties listed above. We
conclude the paper by axiomatically characterizing all tournament solutions definable
via unique minimal stable sets (Proposition 7) and investigating the relationship between
ME and the tournament equilibrium set [26].

When considering qualified subsets that are maximal in terms of cardinality rather
than set inclusion and using a slightly modified definition of stability, our framework also
captures quantitative tournament solutions such as the Copeland set and the bipartisan
set [see 7].



2 Preliminaries

The core of the problem studied in the literature on tournament solutions is how to ex-
tend choices from sets consisting of only two elements to larger sets. Thus, our primary
objects of study will be functions that select one alternative from any pair of alterna-
tives. Any such function can be conveniently represented by a tournament, i.e., a binary
relation on the entire set of alternatives. Tournament solutions then advocate different
views on how to choose from arbitrary subsets of alternatives based on these pairwise
comparisons [see, e.g., 20, for an excellent overview of tournament solutions].

2.1 Tournaments

Let X be a universe of alternatives. The set of all finite subsets of set X will be
denoted by Fy(X) whereas the set of all non-empty finite subsets of X will be denoted
by F(X). A tournament T is a pair (A, >), where A € F(X) and > is an asymmetric
and complete (and thus irreflexive) binary relation on X, usually referred to as the
dominance relation.® Intuitively, a > b signifies that alternative a is preferable to b.
The dominance relation can be extended to sets of alternatives by writing A > B when
a = bforalla € Aand b € B. When A or B are singletons, we omit curly braces to
improve readability. We further write T(X) for the set of all tournaments on X. For
a given tournament 7' = (A, >) and an alternative a, the dominion of a is denoted by
D(a) = {b € A| a > b} and the dominators of a by D(a) = {b € A |b = a}. The
order of T refers to the cardinality of A and T is called regular if |D(a)| = |D(b)| for all
a,b € A. A tournament isomorphism of two tournaments T' = (A, =) and 7" = (A’, ')
is a bijective mapping 7 : A — A’ such that a > b if and only if 7(a) >’ 7(b).

2.2 Components and Decompositions

An important structural concept in the context of tournaments is that of a component. A
component is a subset of alternatives that bear the same relationship to all alternatives
not in the set.

Let T = (A, >) be a tournament. A non-empty subset B of A is a component of T' if
for all a € A\ B either B = a or a = B. A decomposition of T is a set of pairwise disjoint
components { By, ..., By} of T such that A = Ule B;. Given a particular decomposition
B = {Bi,...,Bi} of T, the summary of T is defined as the tournament on the individual
components rather than the alternatives. Formally, the summary 7 = (B, =) of T is the
tournament such that for all 4,j € {1,...,k} with i # j,

B; = Bj ifandonly if B; > Bj.

Conversely, a new tournament can be constructed by replacing each alternative with a
component. For notational convenience, we tacitly assume that N C X. For pairwise

IThis definition slightly diverges from the common graph-theoretic definition where > is defined on
A rather than on X. However, it facilitates the sound definition of tournament functions (such as
tournament solutions or concepts of qualified subsets).



disjoint sets Bi,..., B C X and tournaments T = ({1, k}=), Ty = (B1,=1), -+,
Ty = (B, =), the product of Ty, ..., Ty with respect to T, denoted by II(T', T4, ..., Tk),
is a tournament (A, >) such that A = Ule B, and for all by € B;, by € By,

by = by ifand only if 4= jand by =; by, ori # j and i = j.

2.3 Tournament Functions

A central aspect of this paper are functions that, for a given tournament, yield one
or more subsets of alternatives. We will therefore define the notion of a tournament
function. A function on tournaments is a tournament function if it is independent of
outside alternatives and stable with respect to tournament isomorphisms. A tournament
function may yield a (non-empty) subset of alternatives—as in the case of tournament
solutions—or a set of subsets of alternatives—as in the case of qualified or stable sets.

Definition 1. Let Z € {Fo(X),F(X),F(F(X))}. A function f : T(X) — Z is a
tournament function if

(i) f(T) = f(T") for all tournaments T = (A, =) and T" = (A, ") such that =] =
=4, and

(it) f((mw(A),>")) =n(f((A,>))) for all tournaments (A, ), (A’',>"), and tournament
isomorphisms® m: A — A" of (A, =) and (A, ).

For a given set A € F(X) and tournament function f, we overload f by also writ-
ing f(A), provided the dominance relation is known from the context. For two tourna-
ment functions f and f', we write f' C f if f/(T) C f(T) for all tournaments 7.

2.4 Tournament Solutions

The first tournament function we consider is max~ : T(X) — Fyo(X), which returns the
undominated alternatives of a tournament. Formally,

ij((A, =) ={a € A| D(a) = 0}.

Due to the completeness of the dominance relation, this function returns at most one al-
ternative in any tournament. Moreover, maximal—i.e., undominated—and maximum—
i.e., dominant—elements coincide. In social choice theory, the maximum of a majority
tournament is commonly referred to as the Condorcet winner. Obviously, the dominance
relation may contain cycles and thus fail to have a maximal element. For this reason,
a variety of alternative concepts to single out the “best” alternatives of a tournament
have been suggested. Formally, a tournament solution S is defined as a function that
associates with each tournament 7' = (A, >) a non-empty subset S(T) of A.

27(A) is a shorthand for the set {n(a) | a € A}.



Definition 2. A tournament solution S is a tournament function S : T(X) — F(X)
such that mjx(T) C S(T) C A for all tournaments T = (A, =).?

The set S(T') returned by a tournament solution for a given tournament 7' is called
the choice set of T whereas A\ S(T') consists of the unchosen alternatives. If S” C S
for two tournament solutions S and S’, we say that S’ is a refinement of S or that S’ is
finer than S.

2.5 Properties of Tournament Solutions

The literature on tournament solutions has identified a number of desirable properties
for tournament solutions. In this section, we will define six of the most common prop-
erties.* In a more general context, Moulin [23] distinguishes between monotonicity and
independence conditions, where a monotonicity condition describes the positive associ-
ation of the solution with some parameter and an independence condition characterizes
the invariance of the solution under the modification of some parameter.

In the context of tournament solutions, we will further distinguish between properties
that are defined in terms of the dominance relation and properties defined in terms of
the set inclusion relation. With respect to the former, we consider monotonicity and
independence of unchosen alternatives. A tournament solution is monotonic if a chosen
alternative remains in the choice set when extending its dominion and leaving everything
else unchanged.

Definition 3. A tournament solution S satisfies monotonicity (MON) if a € S(T)
implies a € S(T") for all tournaments T = (A,>=), T' = (A,>'), and a € A such that
=lav{ay = =la\{a} and a = b implies a =" b for all b € A.

A solution is independent of unchosen alternatives if the choice set is invariant under
any modification of the dominance relation between unchosen alternatives.

Definition 4. A tournament solution S is independent of unchosen alternatives (IUA)
if S(T') = S(T") for all tournaments T = (A, =) and T" = (A, =') such that =|g)u{a} =
~'s(ryugay for all a € A.

With respect to set inclusion, we consider a monotonicity property to be called the
weak superset property and an independence property known as the strong superset
property. A tournament solution satisfies the weak superset property if an unchosen
alternative remains unchosen when other unchosen alternatives are removed.

Definition 5. A tournament solution S satisfies the weak superset property (WSP) if
S(B) C S(A) for all tournaments T = (A, ) and B C A such that S(A) C B.

3Laslier [20] is slightly more stringent here as he requires the maximum be the only element in S(T)
whenever it exists.

4Our terminology slightly differs from the one by Laslier [20] and others. Independence of unchosen
alternatives is also called independence of the losers or independence of non-winners. The weak
superset property has been referred to as et or the Aizerman property.



The strong superset property states that a choice set is invariant under the removal
of unchosen alternatives.

Definition 6. A tournament solution S satisfies the strong superset property (SSP) if
S(B) = S(A) for all tournaments T = (A, >) and B C A such that S(A) C B.

The difference between WSP and SSP is precisely another independence condition
called idempotency. A solution is idempotent if the choice set is invariant under repeated
application of the solution concept, i.e., S(S(T")) = S(T') for all tournaments 7. When S
is not idempotent, we define S*(T') = S(S*~1(T)) inductively by letting S*(T) = S(T)
and S®(T) = Nyen S™(T).

The four properties defined above (MON, IUA; WSP, and SSP) will be called basic
properties of tournament solutions. The conjunction of MON and SSP implies IUA. It is
therefore sufficient to show MON and SSP in order to prove that a tournament solution
satisfies all four basic properties.

Two further properties considered in this paper are composition-consistency and ir-
reqularity. A tournament solution is composition-consistent if it chooses the “best”
alternatives from the “best” components.

Definition 7. A tournament solution S is composition-consistent (COM) if for all tour-
naments T, Ty, ..., Ty, and T such that T =1I(T,Ty,...,Ty), S(T) = UieS(T) S(T;).

Finally, a tournament solution is irregular if it is capable of excluding alternatives in
regular tournaments.

Definition 8. A tournament solution S satisfies irregularity (IRR) if there exists a
regular tournament T = (A, >) such that S(T') # A.

3 Qualified Subsets

In this section, we will define a class of tournament solutions that is based on identifying
significant subtournaments of the original tournament, such as subtournaments that
admit a maximal alternative.

3.1 Concepts of Qualified Subsets

A concept of qualified subsets is a tournament function that, for a given tournament
T = (A, ), returns subsets of A that satisfy certain properties. Each such set of sets
will be referred to as a family of qualified subsets. Two natural examples of concepts of
qualified subsets are M, which yields all subsets that admit a maximal element, and M*,
which yields all non-empty transitive subsets. Formally,

M((4,>)) = {BCA| ij(B) # (0} and
M*((A,>)) = {BCA| mgx(C) # () for all non-empty C' C B}.

M and M* are examples of concepts of qualified subsets, which are formally defined
as follows.



Definition 9. Let Q : T(X) — F(F(X)) be a tournament function such that My (T) C
QT) CM(T). Q is a concept of qualified subsets if it meets the following three condi-
tions for every tournament T = (A, >).

(Closure) Q(T) is downward closed with respect to M: Let Q € Q(T'). Then, Q' € Q(T)
for all Q' € M(T) with Q" C Q.

(Independence) Qualified sets are independent of outside alternatives: Let A" € F(X)
and @ C ANA’. Then, Q € Q(A) if and only if Q € Q(A").

(Fusion) Qualified sets may be merged under certain conditions: Let Q1,Q2 € Q(T') and
Q1\ Q2 = Qa2. Then Q1 U Q2 € Q(T) if there is a tournament T' € T(X) and
Q € QT") such that |Q1 U Q2| < Q).

Whether a set is qualified only depends on its internal structure (due to independence
and the isomorphism condition of Definition 1). While closure, independence, and the
fact that all singletons are qualified are fairly natural, the fusion condition is slightly
more technical. Essentially, it states that if a qualified subset dominates another qualified
subset, then the union of these subsets is also qualified. The additional cardinality
restriction is only required to enable bounded qualified subsets. For every concept of
qualified subsets Q and every given k € N, Q; : T(X) — F(F(X)) is a tournament
function such that

0(T) = {B € O(T) | |B| < k}.

It is easily verified that Qj is a concept of qualified subsets. Furthermore, M and M*
(and thus also Mj, and M}) are concepts of qualified subsets. Since only tournaments
of order 4 or more may be intransitive and admit a maximal element at the same time,

My, = M; for k € {1,2,3}.

3.2 Maximal Elements of Maximal Qualified Subsets

For every concept of qualified subsets, we can now define a tournament solution that
yields the maximal elements of all inclusion-maximal qualified subsets, i.e., all qualified
subsets that are not contained in another qualified subset.

Definition 10. Let Q be a concept of qualified subsets. Then, the tournament solution
Sq is defined as
So(T) = {max(B) | B € max(Q(T))}.

Since any family of qualified subsets contains all singletons, Sq(T") is guaranteed to be
non-empty and contains the Condorcet winner whenever one exists. As a consequence,
Sq is well-defined as a tournament solution.

The following tournament solutions can be restated via appropriate concepts of qual-
ified subsets.



Condorcet non-losers. Sy, is arguably the largest non-trivial tournament solution. In
tournaments of order two or more, it chooses every alternative that dominates at least
one other alternative. We will refer to this concept as Condorcet non-losers (CNL) as it
selects everything except the minimum (or Condorcet loser) in such tournaments.

Uncovered set. Sy((T") returns the uncovered set UC(T') of a tournament 7', i.e., the set
consisting of the maximal elements of inclusion-maximal subsets that admit a maximal
element. The uncovered set is usually defined in terms of a subrelation of the dominance
relation called the covering relation [12, 21].

Banks set. Sy (T) yields the Banks set BA(T) of a tournament T [2]. M*(T) contains
subsets that not only admit a maximum, but can be completely ordered from maximum
to minimum such that all of their non-empty subsets admit a maximum. Sy« (7)) thus
returns the maximal elements of inclusion-maximal transitive subsets.

In the remainder of this section, we will prove various statements about tournaments
solutions defined via qualified subsets. For a set B and an alternative a ¢ B, the short
notation [B, a] will be used to denote the set BU{a} and the fact that max<(BU{a}) =
{a}. In several proofs, we will make use of the fact that whenever a ¢ Sqo(T), there
is some b € Sq(T) for every qualified subset [Q,a] such that [Q U {a},b] € Q(T"). We
start by showing that every tournament solution defined via qualified subsets satisfies
the weak superset property and monotonicity.

Proposition 1. Let Q be a concept of qualified subsets. Then, Sq satisfies WSP and
MON.

Proof. Let T = (A,>) be a tournament, a ¢ Sg(A), and A’ C A such that So(T) U
{a} C A’. For WSP, we need to show that a ¢ Sq(A’). Let [Q,a] € Q(A"). Due to
independence, [Q,a] € Q(A). Since a &€ Sg(A), there has to be some b € Sg(A) such
that [Q U {a},b] € Q(A). Again, independence implies that [Q U {a},b] € Q(A"). Hence,
a Q SQ(A/)

For MON, observe that a € Sg implies that there exists [@, a] € maxc(Q(T)). Define
T" = (A, ~) by letting T'| g\ {a} = T'|a\{o} and a =" b for some b € A with b - a. Clearly,
[@, a] is contained in Q(7”) due to independence and the fact that b ¢ Q. Now, assume
for contradiction that there is some ¢ € A such that [Q U {a}, ] € Q(T”). Since a >’ b,
¢ # b. Independence then implies that [Q U {a}, ¢] € Q(T), a contradiction. O

Proposition 1 implies several known statements, namely that CNL, UC', and BA satisfy
MON and WSP. All three concepts are known to fail idempotency (and thus SSP). CNL
trivially satisfies [IUA whereas this is not the case for UC and BA [see 20]. We also
obtain some straightforward inclusion relationships, which define an infinite hierarchy of
tournament solutions ranging from CNL to BA.

Proposition 2. Sy C Sy, SMZ C Sm,, S, € Sq,, and Sg C Sq, for every concept
of qualified subsets Q and k € N.



Proof. All inclusion relationships follow from the following observation. Let T be a
tournament and Q and Q' concepts of qualified subsets such that for every [Q,a] €
maxc (Q(T)), there is [Q', a] € maxc(Q'(T)). Then, Sg C Sqr. O

It turns out that the Banks set is the finest tournament solution definable via qualified
subsets. In order to show this, we introduce a new property called strong retentiveness,
which prescribes that the choice set of every dominator set is contained in the original
choice set. Alternatively, it can be seen as a variant of WSP because it states that a
choice set may not grow when an alternative and its entire dominion are removed from
the tournament.

Definition 11. A tournament solution S satisfies strong retentiveness if S(D(a)) C
S(A) for all tournaments T = (A, >) and a € A.

Lemma 1. Let Q be a concept of qualified subsets. Then, Sq satisfies strong retentive-
ness.

Proof. Let (A, =) be a tournament, a € A an alternative, and B = D(a). We show
that b € Sq(B) implies that b € Sg(A). Let [Q,b] be a maximal qualified subset in B,
ie., [@Q,b] € maxc(Q(B)). If [Q,b] € maxc(Q(A)), we are done. Otherwise, there has
to be some ¢ € A such that [Q U {b},c] € Q(A). Furthermore, [@Q,b] > a and a > ¢
because otherwise [Q U {b}, ¢] would be qualified in B as well. We can now merge the
qualified subsets [@,b] and [{a},b] according to the fusion condition. We claim that
[QU{a},b] € maxc(Q(A)). Assume for contradiction that there is some d € A such that
[QU {a,b},d] € Q(A). Since d € D(a), independence implies that [Q U {a, b},d] € Q(B).
This is a contradiction because [@,b] was assumed to be a mazimal qualified subset
of B. O

Theorem 1. The Banks set is the finest tournament solution satisfying strong reten-
tiveness and thus the finest tournament solution definable via qualified subsets.

Proof. Let S be a tournament solution that satisfies strong retentiveness and 7' = (A4, >)
a tournament. We first show that BA(A) C S(A). For every a € BA(A), there has to
be maximal transitive set [Q,a] C A. Let Q = {q1,...,qn} with ¢; > ¢; for all i < j.
We show that B = ()_; D(¢;) = {a}. Since a = Q, a € B. Assume for contradiction
that b € B with b # a. Then b > @ and either [Q U {b},a] or [Q U {a},b] is a transitive
set, which contradicts the maximality of [@,a]. The repeated application of strong
retentiveness implies that

S(A4) 2 S(D(gn)) 2 S(D(gn) N D(gn-1)) 2 --- 2 S(B) = S({a}) = {a}
and hence that a € S(A). The statement now follows from Lemma 1. O

Some appeal of the above characterization comes from the fact that several other
tournament solutions have been characterized using related conditions and minimality.
For example, the top cycle is the smallest tournament solution satisfying the strongest
expansion consistency condition 87 [4] and the uncovered set the smallest one satisfying



a weakening of 81 called 7 [22]. Strong retentiveness, which characterizes the Banks
set, is a weakening of v and can be further weakened to retentiveness by restricting
the inclusion of Definition 11 to all a € S(A). Retentiveness then characterizes the
tournament equilibrium set [26].

4 Stable Sets

In this section, we propose a general method for refining any suitable solution concept S
by formalizing the stability of sets of alternatives with respect to S. This method is
based on the notion of stable sets [29] and generalizes covering sets as introduced by
Dutta [11].

4.1 Stability and Directedness

The reason why we are interested in maximal—i.e., undominated—alternatives is that
dominated alternatives can be upset by other alternatives; they are unstable. The ra-
tionale behind stable sets is that this instability is only meaningful if an alternative is
upset by something which itself is stable. Hence, a set of alternatives B is said to be
stable if it consists precisely of those alternatives not upset by B. In von Neumann and
Morgenstern’s original definition, a is upset by B if some element of B dominates a.
In our generalization, a is upset by B if a ¢ S(B U {a}) for some underlying solution
concept S.°

As an alternative to this fixed-point definition, which will be formalized in Corollary 1,
stable sets can be seen as sets that comply with internal and external stability in some
well-defined way. First, there should be no reason to restrict the selection by exclud-
ing some alternative from it and, secondly, there should be an argument against each
proposal to include an outside alternative into the selection.® In our context, external
stability with respect to some tournament solution S is defined as follows.

Definition 12. Let S be a tournament solution and T = (A, ) a tournament. Then,
B C A is externally stable in T' with respect to tournament solution S (or S-stable)
if a ¢ S(BU{a}) for alla € A\ B. The set of S-stable sets for a given tournament
T = (A, >) will be denoted by Ss(T) ={B C A| B is S-stable in T'}.

Externally stable sets are guaranteed to exist since the set of all alternatives A is
trivially S-stable in (A, >) for every S. We say that a set B C A is internally stable
with respect to S if S(B) = B. For now, we will focus on external stability because
it will be seen later that certain conditions imply the existence of a unique minimal
externally stable set, which also satisfies internal stability. We define S (T') to be the

5Von Neumann and Morgenstern’s definition can be seen as the special case where a is upset by B if
a ¢ max-(B U {a}).

6 A large number of solution concepts in the social sciences spring from similar notions of internal and/or
external stability [see, e.g., 29, 24, 27, 25, 11, 3, 10]. Wilson [30] refers to stability as the solution
property.
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tournament solution that returns the union of all inclusion-minimal S-stable sets in T,
i.e., the union of all S-stable sets that do not contain an S-stable set as a proper subset.

Definition 13. Let S be a tournament solution. Then, the tournament solution S is

defined as R
STy =J mgin(SS(T)).

It is easily verified that S is well-defined as a tournament solution as there are no S-
stable sets that do not contain the Condorcet winner whenever one exists. We will only
be concerned with tournament solutions S that (presumably) admit a unigue minimal
S-stable set in any tournament. It turns out it is precisely this property that is most
difficult to prove for all but the simplest tournament solutions. A tournament 7' contains
a unique minimal S-stable set if and only if 8g(T") is a directed set with respect to set
inclusion, i.e., for all sets B,C € 8g(T') there is a set D € 8g(T') contained in both B
and C. We say that 8g is directed when 8g(T) is a directed set for all tournaments 7.
Throughout this paper, directedness of a set of sets 8 is shown by proving the stronger
property of closure under intersection, i.e., BN C € 8 for all B,C € §. A set of sets 8
pairwise intersects if BNC # () for all B,C € 8. We will prove that, for every concept of
qualified subsets Q, 8g, is closed under intersection if and only if 85, pairwise intersects.
In order to improve readability, we will use the short notation 8q for 8g,.

Lemma 2. Let Q be a concept of qualified subsets. Then, Sq is closed under intersection
if and only if Sq pairwise intersects.

Proof. The direction from left to right is straightforward since the empty set is not
stable. The opposite direction is shown by contraposition, i.e., we prove that 8q does
not pairwise intersect if 8¢ is not closed under intersection. Let T = (A,>) be a
tournament and B, By € 8g(T") be two sets such that C' = By N By & 8q(T'). Since C
is not Sg-stable, there has to be a € A\ C such that a € So(C U {a}). In other words,
there has to be a set @ C C such that [Q, a] € maxc(Q(C U{a})). Define

Bi={beB;|b>Q}and By={be By | b= Q}.

Clearly, (Bf\ B5) NC = 0 and (B \ B}) N C = {). Assume without loss of generality
that a € B;. It follows from the stability of By, that B; has to contain an alternative by
such that b; > [@Q, a]. Hence, Bj is not empty. Next, we show that B] N Bj = (). Assume
for contradiction that there is some b € B} N BS. If b > a, independence implies that
[Q U {a},b] € Q(C U {a}), which contradicts the fact that [@,a] is a maximal qualified
subset in C' U {a}. If, on the other hand, a > b, the set [ U {b}, a] is isomorphic to
[Q U {a},b1], which is a qualified subset of By U {a}. Thus, [Q U {b},a] € Q(C U {a}),
again contradicting the maximality of [@,a]. Independence, the isomorphism of [@, a]
and [@,b;], and the stability of By further require that there has to be an alternative
by € By such that by = [Q,b1]. Hence, B} and Bj are disjoint and non-empty.

Let @’ € B) and R be a maximal subset of Bj U@ such that [R,a] € Q(B{UQU{d'}).
We claim that @ has to be contained in R. Assume for contradiction that there exists

11



some b € @\ R. Clearly, [@,a] and [Q,d’] are isomorphic. It therefore follows from
independence that [@Q,a’] € Q(BjUQ U {d’}) and from closure that [(Q N R) U {b},d’] €
Q(BfUQU{d'}). Due to the stability of By, [R,d’] is not a maximal qualified subset
in By U{d'}, i.e., there exists a qualified subset that contains more elements. We may
thus merge the qualified subsets [R,a’] and [(Q N R) U {b},d’] according to the fusion
condition because R\ @ > @ and consequently R\ Q > (QNR)U{b}. We then have that
[RU{b},d] € Q(B; UQ U {d'}), which yields a contradiction because R was assumed
to be a maximal set such that [R,d’] € Q(B] UQ U {a’}). Hence, @ C R. Due to the
stability of By in T', there has to be a ¢ € By such that ¢ > [R, d']. Since B} contains all
alternatives in By that dominate Q C R, it also contains ¢. Independence then implies
that [R,a'] ¢ maxc(Qx(B1UQU{d'})).

Thus, Bj U Q is stable in Bf U B, U Q. Since @ is contained in every maximal set
R C Bj UQ such that [R,d'] € Q(Bj UQ U {d’}) for some o' € B}, B} (and by an
analogous argument Bj) remains stable when removing (). This completes the proof
because B] and B) are two disjoint Sg-stable sets in Bj U Bj. O

Dutta has shown by induction on the tournament order that tournaments admit no
disjoint Sy-stable sets (so-called covering sets).

Theorem 2 (Dutta). 8y pairwise intersects.

Dutta [11] also showed that covering sets are closed under intersection, which now
also follows from Lemma, 2.7

Naturally, finer solution concepts also yield smaller minimal stable sets (if their unique-
ness is guaranteed).

Proposition 3. Let S and S’ be two tournament solutions such that 8g is directed and
S"C 8. Then, S" C S and Sg pairwise intersects.

Proof. The statements follow from the simple fact that every S-stable set is also S’-
stable. Let B C A be a minimal S-stable set in tournament (A, >). Then, a € S(BU{a})
for every a € A\ B and, due to the inclusion relationship, a ¢ S"(BU{a}) C S(BU{a}).
As a consequence, B is S’-stable and has to contain the unique minimal S’-stable set
since 8g is directed. Sg pairwise intersects because two disjoint S-stable sets would also
be S’-stable, which contradicts the directedness of Sg. O

As a corollary of the previous statements, the set of Sy, -stable sets for every k is
closed under intersection.

Theorem 3. Sy, is closed under intersection for all k € N.

Proof. Let k € N. We know from Proposition 2 that Sy, € Sy, and from Theorem 2
and Lemma 2 that 8y is directed. Proposition 3 implies that 8y, pairwise intersects.
The statement then straightforwardly follows from Lemma 2. O

7As Dutta’s definition requires a stable set to be internally and externally stable, he actually proves
that the intersection of any pair of coverings sets contains a covering set. A simpler proof, which
shows that externally Syc-stable sets are closed under intersection, is given by Laslier [20].
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Interestingly, Syr,, the set of all dominant sets, is not only closed under intersection,
but in fact totally ordered with respect to set inclusion.

We conjecture that the set of all Sy«-stable sets also pairwise intersects and thus
admits a unique minimal element. However, the combinatorial structure of transitive
subtournaments within tournaments is extraordinarily rich [see, e.g., 31, 14] and it seems
that a proof of the conjecture would be significantly more difficult than Dutta’s.

Conjecture 1. Sy« is closed under intersection.

Using Lemma 2, the conjecture entails that Sy¢+ for all k& € N is also closed under
intersection. This trivially holds for & < 3 since SMZ = 8y, in this case. The weakest
version of Conjecture 1 that is not directly implied by Theorem 2 is that Sy is closed
under intersection. We were able to show this by reducing it to a large, but finite, number
of cases that were checked using a computer. Unfortunately, this exercise did not yield
enough insight to prove Conjecture 1. We will see in Section 4.3 that Conjecture 1
is a weakened version of a conjecture by Schwartz [26], which was verified for small
tournaments using a computer.

Two well-known examples of minimal stable sets are the top cycle of a tournament,
which is the minimal stable set with respect to Sy,, and the minimal covering set, which
is the minimal stable set with respect to Sy.

Minimal dominant set. The minimal dominant set (or top cycle) of a tournament
T = (A,>) is given by TC(T) = Sy, (T') = CNL, i.e., it is the smallest set B such that
B >~ A\ B [16, 28].

Minimal covering set. The minimal covering set of a tournament T is given by
MC(T) = Su(T) = UC, i.e., it is the smallest set B such that for all a € A\ B, there
exists b € B so that every alternative in B that is dominated by a is also dominated
by b [11].

The proposed methodology also suggests the definition of a new tournament solution
that has not been considered in the literature before.

Minimal extending set. The minimal extending set of a tournament 7' is given by
ME(T) = Sy-(T) = BA, i.e., it is the smallest set B such that no a € A\ B is the
maximal element of a maximal transitive subset in B U {a}.

The minimal extending set will be further analyzed in Section 4.3.

4.2 Properties of Minimal Stable Sets

If 8g is directed—and we will only be concerned with tournament solutions S for which
this is (presumably) the case—S satisfies a number of desirable properties.

Proposition 4. Let S be a tournament solution such that Sg is directed. Then, S
satisfies WSP and IUA.
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Proof. Clearly, any minimal S-stable set B remains S-stable when losing alternatives are
removed or when edges between losing alternatives are modified. In the latter case, B
also remains minimal. In the former case, the minimal S-stable set is contained in B. [

It can be shown that sets that are stable within a stable set are also stable in the
original tournament when the underlying tournament solution is defined via a concept
of qualified subsets Q. This lemma will prove very useful when analyzing Sq.

Lemma 3. Let T = (A, >) be a tournament and Q a concept of qualified subsets. Then,
SQ(B) - SQ(A) for all B € SQ(A)

Proof. We prove the statement by showing that the following implication holds for all
BC A, Ce8q(B),and a € A:

if a € So(BU{a}) then a & So(C U {a}).

To see this, let a € Sq(B U {a}) and assume for contradiction that there exist [Q,a] €
maxc Q(C'U {a}). Then there has to be b € B such that [Q U {a},b] € Q(B U {a})
because [@, a] € maxc Q(B U {a}). Now, if b € C, closure and independence imply that
[QU{a},b] € Q(C U{a}), contradicting the maximality of [Q,a]. If, on the other hand,
b € B\ C, then there has to be ¢ € C such that [Q U {b},c] € Q(C U {b}). No matter
whether ¢ > a or a > ¢, Q U {a, c} is isomorphic to [Q U {b}, ¢|] and thus also a qualified
subset, which again contradicts the assumption that [Q, a] was maximal. ]

We are now ready to show a number of appealing properties of unigue minimal stable
sets when the underlying solution concept is defined via qualified subsets.

Theorem 4. Let Q be a concept of qualified subsets such that Sq is directed. Then,
(i) So C SE,

(ii) ;S\Q(AQ<T)U{CL}) = 5o(T) for all tournaments T = (A,>) and a € A (in particular,
So(T') is internally stable),

(i13) Sq satisfies SSP, and
(iv) So = So.

Proof. Let T = (A, >) be a tournament. The first statement of the theorem is shown by
proving by induction on k that SS(T) is an Sg-stable set. For the basis, let B = Sq(7T).
Then, So(BU{a}) C B for every a € A\ B due to WSP of Sq (Proposition 1) and thus
B is Sg-stable. Now, assume that B = SS(T) is Sg-stable and let C' = Sgo(B). Again,
WSP implies that a ¢ So(C U {a}) for every a € B\ C, i.e., C € 8g(B). We can thus
directly apply Lemma 3 to obtain that C' = SSH(T) € 8q(T). As the minimal So-stable
set is contained in every Sg-stable set, the statement follows.

Regarding internal stability, assume for contradiction that So(So(T)) C So(T). How-
ever, Lemma 3 implies that SQ(§Q(T)) is Sg-stable, contradicting the minimality of
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So (T'). The remainder of the second statement follows straightforwardly from internal
stability. If So(So(T) U {a}) = C C So(T) for some a € A\ So(T), WSP implies that
So(50(T)) C C, contradicting internal stability.

Regarding SSP, let B = So(T') and assume for contradiction that C' = Sq(A’) ¢ B
for some A’ with B C A’ ¢ A. Clearly, C is Sg-stable not only in A’ but also in B,
which implies that C' € 8g(B). According to Lemma 3, C' is also contained in 8g(A),
contradicting the minimality of So(T).

Finally, for §2(T) = §Q<T ), we show that every Sg-stable set is §Q—§table and that
every minimal Sg-stable set is Sg-stable set. The former follows from Sq(T") C So(T),

which is a consequence of the first statement of this theorem. For the latter statement,

let B € ming(S:s;Q (T")). We first show that §Q(B U{a}) =B for all a € A\ B. Assume

for contradiction that Sq(B U {a}) = C C B for some a € A\ B. Since Sy satisfies
SSP, So(BU{a}) = C for all a € A\ B. As a consequence, C' is Sg-stable in B U {a}
for all @ € A\ B and, due to the definition of stability, also in A. This contradicts
the assumption that B was the minimal S-stable set. Hence, So(B U {a}) = B for all
a € A\ B. By definition of Sg, this implies that a & So(B U {a}) and thus that B is
So-stable. O

The second statement of Theorem 4 allows us to characterize stable sets using the
fixed-point formulation mentioned at the beginning of this section, which unifies internal
and external stability.

Corollary 1. Let Q be a concept of qualified subsets such that Sq is directed and T =
(A, =) a tournament. Then,

So(T) = min{B C A|B = L Sa(BU{a})}.
- a€A

There may very well be more than one internally and externally Sg-stable set in a
tournament. For example, the proof of Theorem 4 implies that S§°(7T") is internally and
externally Sg-stable.

We have already seen that §Q satisfies some of the basic properties defined in Sec-
tion 2.5. It further turns out that S inherits monotonicity and composition-consistency
from S.

Proposition 5. Let S be a tournament solution such that 8g is directed and S satisfies
MON. Then, S satisfies MON as well.

Proof. Let T = (A, >) be a tournament with a,b € A, a € §(T), and b > a, and let the
relation >’ be identical to > except that a =" b. Denote T’ = (A, >') and assume for
contradiction that a ¢ S(T”). Then, there has to be a minimal S-stable set B C A\ {a}
in T'. We show that B is also S-stable in T', a contradiction. If b & B, this would clearly
be the case because S satisfies [UA. If, on the other hand, b € B, the only reason for
B not to be S-stable in T' is that a € S((B U {a}),>). However, monotonicity of S
then implies that a € S((B U {a}),>’), which is a contradiction because B is S-stable
inT". O
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Proposition 6. Let S be a tournament solution that satisfies COM. Then, S satisfies
COM as well.

Proof. Let S be a composition-consistent tournament solution and 7' = (A,>) =
I(T,Ty,...,T}) a product tournament with 7' = ({1,...,k},=), Tt = (B1,>1), ...,
T, = (Bg,>k). For a subset C of A, let C; = C N B; for all i € {1,...,k} and
C =U;. ¢,20{i}. We will prove that C C A is S-stable if and only if

(i) C is S-stable in T', and
(ii) C;is S-stable in T; for all i € {1,...,k}.

Consider an arbitrary alternative a € A\ C. For C to be S-stable, a should not be
contained in S(C U{a}). Since S is composition-consistent, a may be excluded for two
reasons. First, a may be contained in an unchosen component, i.e., a € B; such that
i & S(C'U{i}). Secondly, a may not be selected despite being in a chosen component,
i.e., a € B; such that i € S(C U {i}) and a & S(C; U {a}). This directly establishes the
claim above and consequently that S is composition-consistent. 0

The previous propositions and theorems allow us to deduce several known statements
about TC and MC, in particular that both concepts satisfy all basic properties and that
MC' is a refinement of UC™ and satisfies COM.

We conclude this section by generalizing the axiomatization of the minimal covering
set [11] to abstract minimal stable sets. One of the cornerstones of the axiomatization
is S-exclusivity, which prescribes under which circumstances a single element may be
dismissed from the choice set.?

Definition 14. A tournament solution S’ satisfies S-exclusivity if, for every tournament
T = (A=), S'"(T) = A\ {a} implies that a ¢ S(A).

If S always admits a unique minimal S-stable set and S satisfies SSP, which is always
the case if S is defined via qualified subsets, then S can be characterized by SSP, S-
exclusivity, and inclusion-minimality.

Proposition 7. Let S be a tournament solution such that S8g is directed and S satisfies
SSP. Then, S is the finest tournament solution satisfying SSP and S-exclusivity.

Proof. Let S be a tournament solution as desired and S’ a tournament solution that
satisfies SSP and S-exclusivity. We first prove that § C S’ by showing that S’ (T) is
S-stable for every tournament 7' = (4, ). Let B = S'(T) and a € A\ B. It follows from
SSP that (B U {a}) = B and from S-exclusivity that a ¢ S(B U {a}), which implies
that B is S-stable. Since S (T') is the unique inclusion-minimal S-stable set, it has to be
contained in all S-stable sets. The statement now follows from the fact that S satisfies
SSP and S-exclusivity. O

Hence, T'C is the finest tournament solution satisfying SSP and CNL-exclusivity, MC
is the finest tournament solution satisfying SSP and UC-exclusivity, and MFE is the finest
tournament solution satisfying SSP and BA-exclusivity if Conjecture 1 holds.

8 UC-exclusivity is the property v** used in the axiomatization of MC' [20].
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4.3 The Minimal Extending Set

As mentioned in Section 4.1, the minimal extending set is a new tournament solution
that has not been considered before. In analogy to UC-stable sets, which are known
as covering sets, we will call BA-stable sets ertending sets. B is an extending set of
tournament 7' = (A, >) if, for all a € B, every transitive path (or so-called Banks
trajectory) in BU{a} with maximal element a can be extended, i.e., there is b € B such
that b dominates every element on the path. In other words, B C A is an extending set
if foralla € A\ B, a ¢ BA(BU{a}).

If Conjecture 1 is correct, ME satisfies all properties defined in Section 2.5, is a
refinement of BA due to Propositions 4 and 5 and Theorem 4, and is a refinement of
MC since, according to 3, every covering set is also an extending set. We refer to Figure 1
for an example tournament where ME happens to be strictly contained in MC.°

Figure 1: Example tournament 7' = (A, >) where MC and ME differ (MC(T) = A and
ME(T) = A\ {a10}). Omitted edges are assumed to point downwards by
convention. Gray circles denote components, but a1y only dominates ag, ag,
and ag.

ME bears some resemblance to Schwartz’s tournament equilibrium set TEQ [26],
which is defined as the minimal retentive set of a tournament. There are some interesting
similarities between retentiveness and stability and, as in the case of ME, the uniqueness
of a minimal retentive set and thus the characteristics of TF() remain an open problem
[26, 18, 17]. It can be shown that Schwartz’s conjecture is stronger than ours and has
a number of interesting consequences such as that TEQ itself can be represented as a
minimal stable set and is strictly contained in ME [7]. Formally,

TEQ = TEQ C ME.

9The smallest example of this kind requires only eight alternatives, but is less intuitive.
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Hence, any counter-example to Conjecture 1 also constitutes a counter-example to
Schwartz’s conjecture, for which a recent computer analysis failed to find a counter-
example in all tournaments of order 12 or less and a fairly large number of random
tournaments [9].

A remarkable property of MFE is that, just like BA, it is capable of ruling out alterna-
tives in regular tournaments, i.e., it satisfies IRR [20]. No irregular tournament solution
is known to satisfy all four basic properties. However, if Conjecture 1 were true, MFE
would be such a concept (see Table 1).

5 Conclusion

We proposed a unifying treatment of tournament solutions based on maximal qualified
subsets and minimal stable sets. A central role in this theory may be ascribed to Conjec-
ture 1, a statement of considerable mathematical depth that has a number of appealing
consequences on minimal stable sets, some of which have been proved already.

(i) Every tournament 7' admits a unique minimal dominant set TC(T) (as shown
by 16). T'C satisfies all basic properties and is the finest solution concept satisfying
SSP and CNL-exclusivity. TC C CNL.

(ii) Every tournament 7' admits a unique minimal covering set MC(T) (as shown
by 11). MC satisfies all basic properties and is the finest solution concept satisfying
SSP and UC-exclusivity. MC C UC and MC C TC.

(7ii) Every tournament 7" admits a unique minimal extending set ME(T) (open prob-
lem). ME satisfies all basic properties and is the finest solution concept satisfying
SSP and BA-exclusivity. ME C BA and ME C MC.

Schwartz’s conjecture, a stronger version of Conjecture 1, furthermore implies similarly
desirable statements about TEQ.

Table 1 and Figure 2 summarize the properties and set-theoretic relationships of the
considered tournament solutions, respectively. As mentioned in the introduction, our
framework can be adapted to capture quantitative tournament solutions such as the
Copeland set and the bipartisan set.
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Solution Concept  Origin MON IUA WSP SSP COM IRR

Sy, (CNL) v v v - - -
Sm (ve) Fishburn [12], Miller [21] v - v - v -
Sy=  (BA) Banks [2] v - v - v v
Sy, (TC) Good [16], Smith [28] v v v v - -
Sy (MC) Dutta [11] v v v v v -
Svi+ (ME) N N v

“This statement relies on Conjecture 1.

Table 1: Properties of tournament solutions (MON: monotonicity, IUA: independence

of unchosen alternatives, WSP: weak superset property, SSP: strong superset
property, COM: composition-consistency, IRR: irregularity). See Laslier [20] for
all results not shown in this paper.
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