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Abstract
The metric distortion of a randomized social choice
function (RSCF) quantifies its worst-case approx-
imation ratio of the optimal social cost when the
voters’ costs for alternatives are given by distances
in a metric space. This notion has recently attracted
significant attention as numerous RSCFs that aim to
minimize the metric distortion have been suggested.
However, such tailored voting rules have usually lit-
tle appeal other than their low metric distortion. In
this paper, we will thus study the metric distortion
of well-established RSCFs. In more detail, we first
show that C1 maximal lotteries, a well-known class
of RSCFs, have a metric distortion of 4 and further-
more prove that this is optimal within the class of
majoritarian RSCFs (which only depend on the ma-
jority relation). As second contribution, we perform
extensive computer experiments on the metric dis-
tortion of established RSCFs to obtain insights into
their average-case performance. These computer
experiments are based on a new linear program for
computing the metric distortion of a lottery on a
given profile and reveal that some classical RSCFs
perform almost as good as the best known RSCF
with respect to the metric distortion on randomly
sampled profiles.

1 Introduction
An important challenge in multi-agent systems is collective
decision making: given the possibly conflicting preferences
of a group of agents over some alternatives, a joint deci-
sion has to be made. To address this problem, researchers
in the field of social choice theory try to identify desirable
mechanisms to aggregate the agents’ preferences. In more
detail, social choice theory is mainly concerned with so-
cial choice functions (SCFs) and randomized social choice
functions (RSCFs), which formalize deterministic and ran-
domized voting rules: an SCF maps the voters’ preferences
(expressed as linear rankings of the alternatives) to a sin-
gle winner, and an RSCF returns a probability distribution
over the alternatives from which the final winner will be
chosen. Moreover, social choice theorists traditionally rea-
son for or against specific voting rules by showing that

they satisfy or fail desirable properties [Arrow et al., 2011;
Brandt et al., 2016].

As an alternative to this classic approach, Procaccia and
Rosenschein [2006] introduced the distortion of voting rules.
The idea of this notion is that voters have latent cardinal util-
ities over the alternatives and voting rules should hence try
to elect alternatives with high social welfare. However, SCFs
and RSCFs do not have access to the voters’ utilities, and the
distortion of a voting rule thus quantifies the worst-case ratio
between the (expected) social welfare of the elected alternative
and that of the optimal alternative. A prominent variant of
this problem has been suggested by Anshelevich et al. [2015]:
in the metric distortion setting, voters and alternatives are lo-
cated in a metric space and the distance between an alternative
and a voter specifies the cost occurred to a voter when the
alternative is elected. Voting rules should then try to select an
alternative with low social cost but, since voters only report
ordinal preferences, they can only approximate the optimal
social cost. The metric distortion of an SCF (resp. RSCF)
is hence the worst-case ratio between the (expected) social
cost of the elected alternative and of the optimal alternative,
where the worst-case is taken over all preference profiles and
all metric spaces that are consistent with the given profile.

The metric distortion of SCFs and RSCFs has recently
attained significant attention (see, e.g., the survey by An-
shelevich et al. [2021]). In particular, after Anshelevich et
al. [2015] and Anshelevich and Postl [2017] have shown
that no SCF (resp. RSCF) has a metric distortion of less
than 3 (resp. 2), numerous authors tried to find voting
rules with minimal metric distortion (see, e.g., [Anshele-
vich et al., 2018; Kempe, 2020; Kizilkaya and Kempe, 2022;
Charikar et al., 2023]). However, many of the suggested
voting rules are specifically tailored to minimize the metric
distortion and have otherwise little normative appeal. We
thus find it noteworthy that some well-established voting rules
also have a low metric distortion, in particular when con-
sidering RSCFs: for instance, the uniform random dictator-
ship, which is arguably the most prominent RSCF in the lit-
erature, has a metric distortion of 3 [Feldman et al., 2016;
Anshelevich and Postl, 2017]. As another example, it has
recently been shown that C2 maximal lottery (C2ML) rules,
another well-known class of RSCFs, also have a metric dis-
tortion of 3 [Charikar et al., 2023]. Since such established
voting rules satisfy numerous desirable properties, we find it
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worthwhile to study their metric distortion in more detail, even
though voting rules with lower metric distortion are known.

Our Contribution. The goal of this paper is to enhance the
understanding of the metric distortion of established RSCFs.
We will contribute to this end in two ways: firstly, we inves-
tigate the metric distortion of C1 maximal lottery (C1ML)
rules, a class of RSCFs that is well-known for satisfying weak
forms of strategyproofness and being robust to small changes
in the voters’ preferences [Laffond et al., 1993; Hoang, 2017;
Brandl et al., 2022]. C1ML rules intuitively choose random-
ized Condorcet winners: these rules return a lottery p such that,
for every lottery q, it is at least as likely that a majority of the
voters prefers an outcome drawn from p to an outcome drawn
from q than vice versa. As our first result, we show that every
C1ML rule has a metric distortion of 4 and give a lower bound
on their metric distortion that converges exponentially fast to 4
when the number of alternatives m increases. We furthermore
prove that the metric distortion of every majoritarian RSCF
(i.e., every RSCF that can only access the majority relation to
compute the winners) converges to 4 as m increases. Since
C1ML rules are majoritarian, they thus minimize the metric
distortion within this class of RSCFs when the numbers of
alternatives is unbounded. Our results thus settle the gap on
the optimal metric distortion of majoritarian RSCFs.

Secondly, we are also interested in moving past worst-case
analyses for the metric distortion of RSCFs because the corre-
sponding worst-case instances often seem unrealistic. To this
end, we conduct the first extensive computer experiments on
the metric distortion of four types of RSCFs: the uniform ran-
dom dictatorship, C1 maximal lottery rules, C2 maximal lot-
tery rules, and the RSCFs suggested by Charikar et al. [2023]
(we refer to these RSCFs as CRWW rules) which have the
best currently known metric distortion. In more detail, for
each combination of n ∈ {1 + 4k : k ∈ {1, . . . , 25}} and
m ∈ {5, 8, 11} and three different distributions on the voters’
preferences, we sample 1000 preference profiles with n vot-
ers and m alternatives, compute the lotteries chosen by our
RSCFs, and then compute the worst-case metric distortion for
the given lotteries and profiles. Hence, our experiments give
insights into the metric distortion of the considered RSCFs
for an average-case profile. Our simulation shows that C1ML
and C2ML rules perform very well on average-case profiles
as they are only slightly worse than CRWW rules. In light of
their normative appeal, this gives strong arguments for using
a C1ML or C2ML rule instead of an RSCFs that is designed
to minimize the metric distortion. To make our computer ex-
periments possible, we also derive a new linear program for
computing the metric distortion of a lottery for a given profile,
which might be of independent interest.

Related Work. To put our results into perspective, we will
next review the most relevant results in the literature and refer
to the survey by Anshelevich et al. [2021] for more details.
An overview of the upper and lower bounds for the metric
distortion of various classes of voting rules is given in Table 1.

The study of the metric distortion of deterministic SCFs was
initiated by Anshelevich et al. [2015] who have, e.g., shown
that the Copeland rule has a metric distortion of 5 and that no
SCF has a metric distortion of less than 3. Inspired by these

RSCF SCF
LB UB LB UB

All 2.112 2.753 3 3

Tops-only 3 3 ∞ ∞
Pairwise 3 3 3 2 +

√
5

Majoritarian 4 4 5 5

Table 1: Overview over the best known upper and lower bounds on the
metric distortion in various classes of voting rules. Each row together
with the labels “RSCF” and “SCF” determines a class of voting rules.
The columns labeled by “LB” and “UB” show the best known lower
and upper bounds for the metric distortion of rules within the given
class when there is an unbounded number of alternatives. The bold
numbers are shown in this paper.

results, numerous researchers have tried to find voting rules
with a metric distortion of 3. To this end, the metric distortion
of many known voting rules has been studied [Goel et al.,
2017; Skowron and Elkind, 2017; Anshelevich et al., 2018;
Anagnostides et al., 2022] which, however, did not result in
an SCF with a metric distortion of less than 5. It was thus
only in a recent line of work that SCFs with an optimal metric
distortion of 3 have been designed [Munagala and Wang, 2019;
Kempe, 2020; Gkatzelis et al., 2020; Kizilkaya and Kempe,
2022; Kizilkaya and Kempe, 2023]. Interestingly, the most
recent papers in this line of work try to design normatively
appealing SCFs with optimal metric distortion.

As an alternative approach to minimize the metric distor-
tion, researchers also started to study RSCFs. In particular,
Anshelevich and Postl [2017] have shown that no RSCF has a
metric distortion of less than 2 and that the uniform random
dictatorship has a metric distortion of 3. Moreover, Gross et
al. [2017] have proven that that all tops-only RSCFs (i.e., all
RSCFs that can only access the voters’ favorite alternatives)
have a metric distortion of at least 3 − 2

m when there are m
alternatives. Similarly, Charikar et al. [2023] have shown that
C2 maximal lottery rules have a metric distortion of 3 and it is
known that all pairwise RSCFs (i.e., all RSCFs that can only
access the numbers of voters that prefer x to y for all pairs
of alternative x, y) have a metric distortion of at least 3− 2

m
[Goel et al., 2017]. Thus, the uniform random dictatorship
minimizes the metric distortion within the class of tops-only
RSCFs and C2 maximal lottery rules within the class of pair-
wise RSCFs when the number of alternatives is unbounded.
We note that these results are analogous to our results on C1
maximal lottery rules and emphasize the important role of
well-known RSCFs in the metric distortion literature.

Finally, a number of further RSCFs have been suggested and
analyzed with respect to their metric distortion setting (e.g.,
[Gross et al., 2017; Fain et al., 2019; Gkatzelis et al., 2020]),
but none of these guarantees a metric distortion of strictly less
than 3 when the number of alternatives is unbounded. It was
hence only very recently that both the upper and lower bound
of the metric distortion of RSCFs has been improved: Charikar
and Ramakrishnan [2022] have shown that every RSCF has a
metric distortion of at least 2.112 and Charikar et al. [2023]
designed the CRWW rules with a metric distortion of 2.753.
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2 Model
Let Vn = {v1, . . . , vn} denote a finite set of n ≥ 1 voters
and let Xm = {x1, . . . , xm} denote a finite set of m ≥ 1
alternatives. We suppose that every voter v ∈ Vn reports a
preference relation ≻v, which is formally a complete, tran-
sitive, and anti-symmetric binary relation over Xm. The set
of all preference relations on Xm is denoted by R(Xm). A
preference profile R assigns every voter i ∈ N to a prefer-
ence relation ≻i and the set of all preference profiles over
an electorate Vn and a set of alternatives Xm is given by
R(Xm)Vn . In this paper, we will allow for both varying sets
of voters and alternatives. The set of all preference profiles
is hence given by R∗ =

⋃
n,m∈N R(Xm)Vn . Moreover, we

denote by R∗
m the set of all profiles on m alternatives, i.e.,

R∗
m =

⋃
n∈N R(Xm)Vn . Given a profile R, we will denote by

VR and XR the sets of voters and alternatives that are present
in the profile R, and by nR and mR the sizes of these sets.

Next, we will associate preference profiles with additional
notation to facilitate the definition of voting rules. We thus
define tv(R) as the top alternative of voter v in the profile R,
i.e., x = tv(R) is the alternative such that x ≻v y for all
y ∈ XR \ {x}. Furthermore, we let the support nxy(R) =
|{v ∈ VR : x ≻v y}| denote the number of voters who prefer
x to y in R. Finally, the majority relation ≿R of a profile R is
defined by x ≿R y if and only if nxy(R) ≥ nyx(R). That is,
x ≿R y if at least as many voters prefer x to y than vice versa.
Following the literature, ≻R denotes the strict part of ≿R (i.e.,
x ≻R y iff x ≿R y and not y ≿R x) and ∼R the indifference
part (i.e., x ∼R y iff x ≿R y and y ≿R x).

2.1 Randomized Social Choice Functions
The study object of this paper are randomized social choice
functions which are voting rules that may use chance to deter-
mine the winner of the election. To make this more formal,
we define lotteries as probability distributions over the alter-
natives: a lottery p over a set of alternatives XR is a function
of the type XR → [0, 1] such that

∑
x∈XR

p(x) = 1. We
furthermore denote by ∆(XR) the set of all lotteries over XR.
A randomized social choice function (RSCF) f is then a func-
tion that map every preference profile R ∈ R∗ to a lottery
p ∈ ∆(XR). We denote by f(R, x) the probability assigned
to alternative x in the profile R.

We next introduce four (classes of) RSCFs:

Uniform random dictatorship. The uniform random dic-
tatorship fRD picks a voter v ∈ VR uniformly at random
and implements her favorite alternative as the winner of the
election. More formally, fRD(R, x) = |{v∈VR : tv(R)=x}|

nR
for

every profile R ∈ R∗ and alternative x ∈ XR.

C2ML rules. C2 maximal lottery (C2ML) rules, which have
been suggested by Fishburn [1984] and recently promoted
by, e.g., Brandl et al. [2016], compute a randomized Con-
dorcet winner: these rules select a lottery p such that, for
all lotteries q, the expected number of voters that prefer the
outcome chosen from p to the outcome chosen from q is at
least as large as the expected number of voters that prefer
the outcome chosen from q to the outcome chosen from p.
To formalize this, we extend the support nxy(R) to lotteries

p, q by defining npq(R) =
∑

x,y∈A p(x)q(y)nxy(R). Then,
the set of C2 maximal lotteries is given by C2ML(R) =
{p ∈ ∆(XR) : ∀q ∈ ∆(XR) : npq(R) ≥ nqp(R)}. We note
that the set the of C2 maximal lotteries is always non-empty by
the minimax theorem and almost always a singleton [Laffond
et al., 1997; Le Breton, 2005]. Finally, an RSCF is a C2ML
rule if f(R) ∈ C2ML(R) for every profile R ∈ R∗.
C1ML rules. C1 maximal lottery (C1ML) rules, which go
back to Fishburn [1984], also choose a randomized Condorcet
winner but in a different sense: C1ML rules select a lottery
p such that, for all lotteries q, it is at least as likely that a
majority prefers the outcome chosen from p to an outcome
chosen from q than vice versa. To formalize this, we extend
the majority relation to lotteries p, q by defining p ≿R q if
and only if Px∼p,y∼q[x ≻R y] =

∑
x,y∈A : x≻Ry p(x)q(y) ≥∑

x,y∈A : x≻Ry p(y)q(x) = Px∼p,y∼q[y ≻R x]. The set
of set of C1 maximal lotteries is then C1ML(R) = {p ∈
∆(XR) : ∀q ∈ ∆(XR) : p ≿R q}. Just as for C2 maximal
lotteries, this set is always non-empty and almost always a
singleton. In particular, if the number of voters is odd, there
are unique C1 and C2 maximal lotteries. An RSCF is a C1ML
rule if f(R) ∈ C1ML(R) for all profiles R ∈ R∗.
CRWW rules. Finally, we introduce the RSCFs suggested
by Charikar et al. [2023], which we refer to as CRWW rules.
As a subroutine, these rules rely on another RSCF called
fβ−radius . To define this RSCF, we say x β-covers y in a
profile R for some β ∈ [0, 1] if nxy(R) ≥ βnR and nzx(R) ≥
βnR implies nzy ≥ βnR for all z ∈ XR. Moreover, we define
Uβ(R) as the set of alternatives that are not β-covered by any
other alternative in R and R|Uβ(R) as the profile that arises
from R by removing all alternatives that are not in Uβ(R).
Then, fβ−radius computes the uniform random dictatorship on
R|Uβ(R), i.e., fβ−radius(R) = fRD(R|Uβ(R)). Based on this
subroutine, constants B = 0.876353, p = 1

1+
∫ B
0.5

1
1−x2 dx

≈

0.552327, and the distribution ρ(β) = p
(1−p)(1−β2) on the

interval ( 12 , B), CCRW rules are defined as follows: with
probability p, we execute a C2ML rule and with probability
1− p, we sample a value β ∈ (0.5, B) from the distribution
ρ(β) and return fβ−radius(R). Hence, an RSCF f is a CCRW
rule if there is a C2ML rule f ′ such that f(R) = pf ′(R) +

(1− p)
∫ B

0.5
ρ(β)fβ−radius(R)dβ for all profiles R ∈ R∗.

We note that the uniform random dictatorship fRD , C2ML
rules, and C1ML rules are well-known in the social choice
literature. For example, fRD is known to be strategyproof
[Gibbard, 1977], whereas both C2ML rules and C1ML rules
satisfy strong agenda consistency conditions [Brandl et al.,
2016]. By contrast, CCRW rules are designed to minimize the
metric distortion and have otherwise little normative appeal.
Moreover, we note that fRD , C2ML rules, and C1ML rules
belong to important classes of RSCFs: fRD is a tops-only
RSCF as it only accesses the voters’ top alternatives tv(R),
C2ML rules are pairwise as they only access the supports
nxy(R) for all x, y ∈ XR, and C1ML rule are majoritarian
as they only access the majority relation ≿R to compute the
wining lottery. In more detail, an RSCF f is majoritarian if
f(R) = f(R′) for all profiles R,R′ ∈ R∗ with ≿R = ≿R′ .
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2.2 Metric Distortion
In order to assess the quality of RSCFs, we analyze their met-
ric distortion in this paper. The idea of this approach is that
voters and alternatives are embedded in a metric space and
that the distance between a voter v and an alternative x spec-
ifies the disutility that voter v experiences when alternative
x is selected. Following the utilitarian approach, the optimal
alternative is then the one that minimizes the total distance
to all voters. However, since voters only report their ordinal
preferences over the alternatives instead of their cardinal disu-
tilities, we cannot simply determine the best alternative. The
goal of metric distortion is then to select a lottery that approxi-
mates the optimal alternative well for every metric space that
is consistent with the given preference profile.

To formalize this, we call a function d : (VR ∪ XR)
2 →

R≥0 a metric if it satisfies for all x, y, z ∈ VR ∪ XR that i)
d(x, x) = 0, ii) d(x, y) = d(y, x), and iii) d(x, z) ≤ d(x, y)+
d(y, z). We note that some definitions of metrics also require
that d(x, y) > 0 if x ̸= y, but the literature on metric distortion
typically omits this condition since it does not affect the results.
The distance d(v, x) states the cost experienced by voter v
when alternative x is selected. The social cost of a alternative x
is thus sc(x, d) =

∑
v∈VR

d(v, x) and the social cost of lottery
p is sc(p, d) =

∑
x∈XR

p(x)sc(x, d). Finally, a metric d is
consistent with a profile R if x ≻v y implies d(v, x) ≤ d(v, y)
for all voters v ∈ VR and alternatives x, y ∈ XR and we
denote by D(R) the set of metrics that are consistent with R.

Given a profile R, the goal of metric distortion is to find a lot-
tery whose social cost is close to the optimal social cost for all
metric spaces that are consistent with R. We hence define the
metric distortion of a lottery p in a profile R as dist(p,R) =

maxd∈D(R)
sc(p,d)

miny∈A sc(y,d) . Note that miny∈A sc(y, d) might
be 0; in this case, we set dist(p,R) = ∞ if sc(p, d) > 0 and
dist(p,R) = 1 if sc(p, d) = 0. To simplify the presentation
of our results, we will use that ∞ > x for all x ∈ R and
y + z∞ = ∞ for all y ∈ R, z ∈ R>0. Next, the metric dis-
tortion dist(f) of an RSCF f is the worst-case distortion over
all possible profiles, i.e., dist(f) = supR∈R∗ dist(f(R), R).
To allow for a more fine-grained analysis, we further define
distm(f) = supR∈R∗

m
dist(f(R), R) as the metric distortion

of f when only profiles on m alternatives are considered. We
note that dist(f) = ∞ and distm(f) = ∞ if the respective
suprema are unbounded.

We recall here that the uniform random dictatorship fRD ,
C2ML rules fC2ML, and CRWW rules fCRWW have a met-
ric distortion of dist(fRD) = 3, dist(fC2ML) = 3, and
dist(fCCRW ) ≤ 2.753, respectively (i.e., the metric distor-
tion of these RSCFs corresponds to the first three entries in the
second column of Table 1). By contrast, the metric distortion
of C1ML rules is unknown.

3 Analysis of C1 Maximal Lottery Rules
As our first contribution, we will show that C1ML rules have
a metric distortion of 4, and that no other majoritarian RSCF
has a lower metric distortion when the number of alternatives
is unbounded. Due to space constraints, we defer all proofs
but the one of Theorem 1 to the supplementary material.

To prove of our results, we first show a strong relation
between the metric distortion of majoritarian RSCFs and dis-
tances in the majority relation. To this end, we define the
majority distance md(x, y,≿R) as the length of the short-
est path from x to y in the majority relation ≿R. In par-
ticular, md(x, x,≿R) = 0, md(x, y,≿R) = 1 if x ≿R y,
and md(x, y,≿R) = ∞ if there is no path from x to y
in ≿R. We extend this notion also to lotteries by defin-
ing md(p, y,≿R) =

∑
x∈A p(x)md(x, y,≿R) and note that

md(p, y,≿R) = ∞ if there is x ∈ XR with p(x) > 0 and
md(x, y,≿R) = ∞.

Proposition 1. It holds for all majoritarian RSCFs f and
preference profiles R that

1) dist(f(R), R) ≤ 1 + 2maxx∈XR
md(f(R), x,≿R).

2) distm(f) ≥ 1 + 2maxx∈XR
md(f(R), x,≿R).

Proof Sketch. For Claim 1), we first note that there is nothing
to show if maxx∈XR

md(f(R), x,≿R) = ∞ and we hence
suppose that md(f(R), x,≿R) < ∞ for all x ∈ XR. We
then prove that sc(x, d) ≤ (1 + 2md(x, y,≿R))sc(y, d) for
all x, y ∈ XR and d ∈ D(R) by an induction on the majority
distance between x and y. This insight implies Claim 1)

as dist(f(R), R) = maxd∈D(R)

∑
x∈XR

f(R,x)sc(x,d)

miny∈XR
sc(y,d) . For

Claim 2), we show that there is for every ϵ > 0 a preference
profile Rϵ and a metric space d ∈ D(Rϵ) such that ≿Rϵ = ≿R

and sc(f(R),d)
miny∈XR

sc(y,d) ≥ 4− ϵ. Since f(Rϵ) = f(R) as f is ma-
joritarian, we infer that distm(f) = 4 by letting ϵ go to 0.

We note that related claims have been shown by Anshele-
vich et al. [2018] and Kempe [2020], but these results lack the
lower bound given in 2). Based on Proposition 1, we will next
compute the metric distortion of C1ML rules.

Theorem 1. It holds for all C1ML rules f that dist(f) ≤ 4

and that distm(f) ≥ 4 − ( 13 )
⌈m−3⌉

2 for all m ≥ 3. Thus,
dist(f) = 4 for every C1ML rule f .

Proof. To prove this theorem, we will show that dist(f) ≤ 4

and that distm(f) ≥ 4− ( 13 )
⌊m−3

2 ⌋ for every m ≥ 3.

Upper bound: Let f denote an C1ML rule, let R ∈ R∗

denote a profile, and define p = f(R). It follows from a
result by Dutta and Laslier [1999] that p(x) > 0 implies
md(x, y,≿R) ≤ 2 for all x, y ∈ XR. Based on this in-
sight, we will next show that md(p, z,≿R) ≤ 3

2 for all
z ∈ XR as Claim 1) of Proposition 1 then proves that
dist(p,R) ≤ 4. We thus fix an alternative z ∈ XR and
let q denote the lottery with q(z) = 1. Further, we define
X+ = {x ∈ XR : x ≻R z} and X− = {x ∈ XR : z ≻R x}.
By the definition of C1ML rules, it holds that p ≿R q, which
implies that

∑
x∈X+ p(x) ≥

∑
x∈X− p(x) as q(z) = 1. This

means that
∑

x∈X− p(x) ≤ 1
2 . Next, md(x, z,≿R) = 1 if

x ≿R z and md(x, z,≿R) = 2 if z ≻R x due to our previ-
ous observation. Therefore, we infer that md(p, z,≿R) ≤∑

x∈XR : x≿Rz p(x) + 2
∑

x∈XR : y≻Rx p(x) = 1 −∑
x∈X− p(x) + 2

∑
x∈X− p(x) ≤ 3

2 . Finally, Claim 1) of
Proposition 1 shows that dist(p,R) ≤ 4.
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Lower bound: For proving our lower bound, we recall that
C1ML rules only depend on the majority relation and that there
is a unique maximal lottery if the majority relation is strict
[Laffond et al., 1997]. Moreover, by McGarvey’s construction
(1953), there is for every complete relation ≿ on Xm a profile
R with ≿R = ≿. Due to Claim 2) of Proposition 1, we can
hence show the lower bound by constructing a complete and
anti-symmetric relation ≿∗ for every Xm with m ≥ 3 such
that md(p, x,≿∗) = 3

2 − 1
2 · ( 13 )

⌊m−3
2 ⌋, where p is the unique

C1 maximal lottery of a profile R with ≿R = ≿∗. We thus
suppose first that m ≥ 3 is odd and consider the following
relation ≿∗ on Xm: for all odd k < m and all j ≥ k + 2,
it holds that xk+1 ≻∗ xk, xk ≻∗ xj , and xj ≻∗ xk+1. It
can be checked that the unique C1 maximal lottery p for
this relation is defined by p(xk) = p(xk+1) = ( 13 )

k+1
2

for odd k < m and p(xm) = ( 13 )
m−1

2 . This means that∑
x∈Xo p(x) =

∑
x∈Xe p(xk) = 1

2 − 1
2p(xm) for the sets

Xo = {xk ∈ Xm : k ∈ {1, 3, . . . ,m − 2}} and Xe =
{xk ∈ Xm : k ∈ {2, 4, . . . ,m − 1}}. Next, will compute
md(p, xm,≿∗) and note for this that md(xk, xm,≿∗) = 1
and md(xk+1, xm,≿∗) = 2 for all odd k < m. Hence, we de-
rive that md(p, xm,≿∗) =

∑
x∈Xo p(x) + 2

∑
x∈Xe p(x) =

3
(
1
2 − 1

2p(xm)
)
= 3

2 −
1
2 · (

1
3 )

m−3
2 . Proposition 1 then shows

that distm(f) ≥ 4− ( 13 )
m−3

2 . Finally, to extend this result to
even m, we add a new alternative to ≿∗ that loses all majority
comparisons. Every C1ML will assign probability 0 to this
alternative and it does hence not affect our analysis.

A natural follow-up question of Theorem 1 is whether a
majoritarian RSCF can have a lower metric distortion than 4.
As we show next, this cannot be the case: the metric distortion
of every such rule converges to 4 as m increases.
Theorem 2. It holds for every majoritarian RSCF f that
distm(f) ≥ 4− 3

m if m ≥ 3 is odd and distm(f) ≥ 4− 3
m−1

if m ≥ 3 is even. Thus, dist(f ) ≥ 4.

Proof sketch. In this sketch, we assume that m ≥ 3 is odd as
the case of even m is similar. To prove the theorem in this case,
we will use Claim 2) of Proposition 1 and hence construct a
profile R such that maxx∈XR

md(p, x,≿R) ≥ 3
2 − 3

2m for
every lottery p. Next, McGarvey’s theorem (1953) allows us
again to focus on complete relations. The theorem then follows
by proving that maxx∈XR

md(p, x,≿) ≥ 3
2 − 3

2m for all
lotteries p and the “cyclic” relation ≿ given by xi ≻ xi+mk for
all i∈{1, . . . ,m}, k∈{1, . . . , m−1

2 } (where i+m k = i+ k
if i+ k ≤ m and i+m k = i+ k −m else).

Remark 1. The upper bound of Theorem 1 is tight as there
are C1ML rules f with dist(f) = 4. To see this, consider
a profile R with XR = {a, b, c} and a ≻R b, b ≻R c and
c ∼R a and the lottery p given by p(a) = p(c) = 1

2 . Since p is
C1 maximal in R and md(p, b,≿R) =

3
2 , Proposition 1 shows

that dist(f) = 4 for all C1ML rules f with f(R) = p. By
contrast, the lower bound in Theorem 1 is not tight: it can be
shown that every C1ML rule has a metric distortion of at least
4− 3γm, where γm denotes the minimal non-zero probability
that a C1ML rule assigns to an alternative in a profile with
m alternatives and an odd number of voters. However, the

values γm are not well-understood [Fisher and Ryan, 1995],
so we cannot use them to improve our lower bound.
Remark 2. Proposition 1 also identifies the majoritarian
RSCFs that minimize distm(f) for a fixed number of alter-
natives m: this RSCF f chooses for every profile R the lot-
tery p that minimizes maxx∈XR

md(p, x,≿M ). Based on a
computer-aided approach, we have shown that that this RSCF
satisfies distm(f) = 4− 3

m for all odd m ≤ 9, which proves
that the lower bound in Theorem 2 is tight in these cases.

4 Simulations
As our second contribution, we conduct extensive computer
experiments to gain insights into the average-case metric dis-
tortion of the RSCFs defined in Section 2.1. In the following,
we hence explain the set-up of these experiments (cf. Sec-
tions 4.1 and 4.2) and discuss their results (cf. Section 4.3).

4.1 Setup
For our experiments, we sample 1000 preference profiles
with n voters and m alternatives according to three distri-
butions over the voters’ preference for every pair (m,n) ∈
{5, 8, 11} × {1 + 4k : k ∈ {1, . . . , 25}}. For every prefer-
ence profile R, we then compute the lotteries f(R) selected
by the uniform random dictatorship, C2ML rules, C1ML
rules, and CWRR rules and the respective metric distortions
dist(f(R), R). We note that, since the numbers of voters n
is always odd in our experiments, there are unique C1 and
C2 maximal lotteries, so we do not have to worry about tie-
breaking issues for these RSCFs. We repeat our experiment for
three different probability distributions on the voters’ prefer-
ences to take the effect of these distributions into account and
finally plot in Figure 1 the average metric distortion over the
1000 profiles for all RSCFs, distributions, and combinations
of m and n. In particular, we consider the following three
distributions over the voters’ preferences, which are chosen to
cover large areas of the “map of elections” [Szufa et al., 2020;
Boehmer et al., 2021].
Impartial Culture (IC). In this model, each voter is as-
signed a preference relation independently and uniformly at
random. Hence, for each voter v ∈ Vn and preference relation
≻ ∈ R(Xm), the probability that ≻ is assigned to v is 1

m! .
t-Euclidean Model (tEM). In this model, we assign voters
and alternatives independently and uniformly at random to
points in the t-dimensional cube [−1, 1]t. The voters’ pref-
erence relation are then given by their distances to the al-
ternatives: a voter v prefers alternative x to alternative y if
|pv−px|2 < |pi−py|2 where pv , px, and py denote the points
of v, x, and y in the t-dimensional cube. In our experiments,
we use this model with for t = 3.
Mallow’s Model (ϕMM). Mallow’s model [Mallows, 1957]
is parameterized by a parameter ϕ ∈ [0, 1] and preference rela-
tion ≻, and introduces a bias towards a common preference re-
lation. In more detail, for every voter v and every preference re-
lation ≻′, the probability that voter v is assigned the preference

relation ≻′ is ϕ|≻\≻′|

Z (where Z =
∑

≻̂∈R(Xm) ϕ
|≻\≻̂| and

≻\≻′ = {(x, y) : x ≻ y∧ y ≻′ x}). We use Mallow’s model
for the parameters ϕ = 0.5 and ≻ = x1 ≻ x2 ≻ · · · ≻ xm.
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4.2 Computing the Metric Distortion
The main challenge for our experiments is to compute the
metric distortion dist(p,R) for a given profile R and lottery p.
To this end, we first note that it suffices to compute the term
dist(p,R, x) = maxd∈D(R)

sc(p,d)
sc(x,d) for every alternative x

because dist(p,R) = maxx∈XR
dist(p,R, x). Moreover, the

term sc(p,d)
sc(x,d) is invariant under scaling d, so we can assume

that sc(x, d) = 1. Hence, we only need to find for every
alternative x the metric dx that maximizes sc(p, dx) subject
to dx ∈ D(R) and sc(x, dx) = 1. While this can be done
by linear programs (LPs) that use the distances d(x, v) as
variables and encode that d ∈ D(R) and sc(x, d) = 1, this
straightforward approach is too slow for our experiments as
we need O((n + m)3) constraints to formalize the triangle
inequalities for metrics.

To derive a more efficient method to compute dist(p,R, x),
we will use the idea of biased metrics because Charikar and
Ramakrishnan [2022] show that the metric distortion of a
lottery p for a profile R can be computed by only consid-
ering these metrics. To define these metrics, we let ⪰v de-
note the relation given by x ⪰v y if and only if x ≻v y
or x = y for all x, y ∈ XR. Then, a metric d is biased
for a profile R if there is an alternative x∗ ∈ XR and a
function t : XR → R≥0 such that (i) t(x∗) = 0, (ii)
d(x∗, v) = 1

2 maxx,y∈XR : x⪰vy t(x) − t(y) for all v ∈ VR,
and (iii) d(x, v) = d(xi∗ , v) + miny∈XR : x⪰vy t(y) for all
v ∈ VR and all x ∈ XR \ {x∗}. Unfortunately, due to the
maximum and minimum in the definition of these metrics, we
cannot directly use them to compute dist(p,R). However, we
can use the idea of biased metrics to derive a linear program to
efficiently compute dist(p,R, xi∗). In more detail, the follow-
ing LP (called LP 1), which uses variables d(x, v) and t(x) for
all x ∈ XR and v ∈ VR, computes dist(p,R, x∗) for every
lottery p, profile R, and alternative x∗.

max
∑

x∈XR

p(x)
∑

v∈VR

d(x, v)

s.t. t(x∗) = 0

t(x) ≥ 0 ∀x∈XR

d(x∗,v) ≥ 1
2 (t(x)− t(y)) ∀v∈VR, x,y∈XR : x ⪰v y

d(x,v) ≤ d(x∗,v) + t(y) ∀v∈VR, x,y∈XR : x ⪰v y

d(x,v) + d(x∗,v) ≥ t(x) ∀v∈VR, x∈XR∑
v∈VR

d(x∗,v) = 1
(LP 1)

Proposition 2. Fix a lottery p, a profile R, and an alterna-
tive x∗. If the optimal objective value o∗LP of LP 1 is bounded,
then dist(p,R, x∗) = o∗LP and dist(p,R, x∗) = ∞ else.

Proof sketch. Let R denote a profile, p a lottery, and x∗ an
alternative. First, we will show that dist(p,R, x∗) ≥ oLP for
the objective value oLP of every feasible solution of LP 1. To
prove this, we derive from an arbitrary feasible solution of
LP 1 with objective value oLP a metric d ∈ D(R) such that
sc(p,d)
sc(x∗,d) ≥ oLP . This implies that dist(p,R, x∗) ≥ o∗LP if the
optimal value o∗LP of LP 1 is bounded and dist(p,R, x∗) = ∞
otherwise. Next, we will show that dist(p,R, x∗) ≤ o∗LP . For
this, we prove that there is a biased metric d ∈ D(R) that

maximizes sc(p,d)
sc(x∗,d) and then construct a feasible solution dLP

of LP 1 with objective value sc(p,d)
sc(x∗,d) based on d.

Given a profile R on n voters and m alternatives, LP 1 has
O(nm2) constraints and it is thus very fast to construct and
solve this LP. In particular, even for profiles with 101 voters
and 11 alternatives, we can compute the metric distortion of a
lottery in a few seconds based on LP 1.

4.3 Simulation Results
Finally, we present and discuss our simulation results: Figure 1
contains a plot for every distribution and all values of m ∈
{5, 8, 11} that shows the average metric distortion for all four
considered RSCFs and all n ∈ {1 + 4k : k ∈ {1, . . . , 25}}.
We first observe that, in all experiments, the average metric dis-
tortion over the sampled profiles is for all considered RSCFs
much smaller than their worst-case metric distortion, thus in-
dicating that such worst-case bounds are too pessimistic for
more realistic profiles. Secondly, the average metric distor-
tion of C1ML and C2ML rules is very similar, even though
the worst-case metric distortion is 3 for C2ML rules and 4 of
C1ML rules. This further demonstrates that worst-case bounds
give only limited insights into the average-case performance
of RSCFs, which emphasizes the value of our computer ex-
periments. Finally, we note that the CRWW rule has almost
always the best average metric distortion, but the C1ML and
C2ML rules are often only slightly worse.

Next, the average metric distortions of our RSCFs strongly
depend on the underlying distribution over the voters’ prefer-
ences as well as the numbers of voters n and alternatives m.
In particular, under the IC model, the average metric distortion
of the uniform random dictatorship decreases for all values
of m as n increases. We explain this phenomenon as follows:
as the number of voters increases, it becomes more and more
likely in the IC model that each alternative is top-ranked by
roughly the same number of voters and that all alternatives
are equally “good” in the drawn preference profile. In such
profiles, the uniform random dictatorship fRD assigns proba-
bility close to 1

m to all alternatives, which results in a metric
distortion close to 2. In the supplementary material, we even
prove that the expected metric distortion of fRD converges
to 2 in the IC model as n increases. By contrast, the average
metric distortion of C2ML rules and C1ML rules under the IC
model is largely constant in n but decreases as m increases.
The reason for this is that C1ML and C2ML rules often only
randomize over few alternatives (see [Brandl et al., 2022] for
this claim), even though alternatives are roughly equally good.
Then, it can be shown (see the supplementary material) that,
as the number of voters increases, the expected metric distor-
tion of C1ML and C2ML rules converges approximately to
2+ 1

m−1 in the IC model, which explains very well the values
observed in our experiments. Finally, for the CRWW rule,
similar observations as for the C1ML and C2ML rule applies,
but the effect is mitigated as we mix the C2ML rule with an
RSCF related to the uniform random dictatorship.

By contrast, for both the Euclidean model (for t = 3) and
Mallow’s model (for ϕ = 1

2 ), the average metric distortion
of the uniform random dictatorship is roughly constant in
the number of voters and by far the largest among the tested



Draft – December 8, 2023

5 29 53 77 101

2.1

2.2

2.3

m = 5, IC distribution
5 29 53 77 101

2.1

2.2

2.3

m = 8, IC distribution
5 29 53 77 101

2.1

2.2

2.3

m = 11, IC distribution

5 29 53 77 101
2

2.1

2.2

2.3

m = 5, 3EM distribution
5 29 53 77 101

2

2.1

2.2

2.3

m = 8, 3EM distribution
5 29 53 77 101

2

2.1

2.2

2.3

2.4

m = 11, 3EM distribution

5 29 53 77 101
1.8

2

2.2

2.4

m = 5, 1
2

MM distribution
5 29 53 77 101

1.8

2

2.2

2.4

m = 8, 1
2

MM distribution
5 29 53 77 101

1.8

2

2.2

2.4

m = 11, 1
2

MM distribution

Figure 1: Results of our computer experiments. For each number of alternatives m∈{5, 8, 11} and each distribution over the voters’ preferences
(IC, 3EM, 1

2
MM ), there is a plot that shows the average metric distortion (y-axis) of the uniform random dictatorship (blue), the C2ML rule

(red), the C1ML rule (grey), and the CCRW rule (green) subject to the number of voters n∈{1 + 4k : k∈{1, . . . , 25}} (x-axis).

RSCFs. The reason for this is that in these models, the supports
nxy(R) between alternatives are likely to be large and there are
thus often very strong or very weak alternatives in a sampled
preference profile. However, regardless of the numbers of
voters, fRD cannot identify such alternatives as it only queries
the voters’ top alternatives and has thus a rather high average
metric distortion. By contrast, the C1ML rule, the C2ML rule,
and the CRWW rule take the supports nxy(R) into account
and have therefore a significantly lower metric distortion for
the Euclidean model and Mallow’s model. For instance, if
there is an alternative x such that nxy(R) is significantly larger
than n

2 for all y ∈ XR \ {x}, the C1ML and C2ML rules will
elect x uniquely, which guarantees a low metric distortion.
Moreover, the fact that the average metric distortion of these
rules is under Mallow’s model even smaller than under the
Euclidean model indicates that the average metric distortion
of these RSCFs becomes better when the supports nxy(R)
increase since these values are under Mallow’s model (with
ϕ = 1

2 ) typically larger than in the Euclidean model (with
t = 3). Also, even if there are such strong alternatives, it
seems beneficial to put probabilities on other alternatives as
demonstrated by fact that CRWW rule still has the smallest
metric distortion. Finally, we note that in the Euclidean model
and in Mallow’s model, the average metric distortion of the
CRWW rule and both the C1ML and C2ML rules are very
similar, thus demonstrating that the latter are attractive RSCFs
in terms of metric distortion on real-world profiles.

5 Conclusion
In this paper, we study the metric distortion of randomized
social choice functions that are well-known in the literature,
namely the uniform random dictatorship, C2 maximal lottery
(C2ML) rules and C1 maximal lottery (C1ML) rules. In more
detail, we first show that every C1ML rule has a metric dis-
tortion of at most 4, and that the metric distortion of every
majoritarian RSCF (which only depend on the majority re-
lation) converges to 4 as m increases. Hence, C1ML rules
have the optimal metric distortion within the class of majori-
tarian RSCFs when the number of alternatives is unbounded.
Secondly, we conduct extensive computer experiments on the
metric distortion of all three aforementioned rules as well as
the RSCF suggested by Charikar et al. [2023] (which currenlty
is the best known RSCF in terms of metric distortion) to gain
insights into the average-case metric distortion of these rules.
These experiments reveal that while, the rule by Charikar et
al. [2023] also has the best average metric distortion, C1ML
rules and C2ML rules are only slightly worse. This gives
a strong argument for the usage of the latter rules as they
additionally satisfy numerous desirable properties.

Furthermore, our work offers several direction for future
work. In particular, we believe that it is interesting to conduct
similar computer experiments for further rules. Moreover, our
approach also allows to compute the metric distortion of an
RSCF on large profiles and it thus seems appealing to analyze
the metric distortion of RSCFs on real-world profiles.
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A Omitted Proofs
Here, we present the proofs omitted from the main body. We
start by showing Proposition 1.
Proposition 1. It holds for all majoritarian RSCFs f and
preference profiles R that
1) dist(f(R), R) ≤ 1 + 2maxx∈XR

md(f(R), x,≿R).
2) distm(f) ≥ 1 + 2maxx∈XR

md(f(R), x,≿R).

Proof. Let f denote a majoritarian RSCF, R an arbitrary pro-
file, and ≿R the corresponding majority relation. We will
show the two claims of this proposition independently.

Proof of 1): Our first goal is to show that dist(f(R), R) ≤
1 + 2maxx∈XR

md(f(R), x,≿R). To this end, we
first note that, if maxx∈XR

md(f(R), x,≿R) = ∞,
there is nothing to show as dist(f(R), R) ≤ 1 +
2maxx∈XR

md(f(R), x,≿R) = ∞ holds trivially in
this case. We hence assume that md(f(R), x,≿R) <
∞ for all x ∈ XR, and we will show that
sc(x, d) ≤ (1 + 2md(x, y,≿R))sc(y, d) for every met-
ric d ∈ D(R) and all alternatives x, y ∈ XR such
that md(x, y,≿R) ̸= ∞. Since f(R, x) > 0 implies
that maxy∈XR

md(x, y,≿R) < ∞, it then follows that∑
x∈XR

f(R,x)sc(x,d)

sc(y,d) ≤
∑

x∈A f(R,x)(1+2md(x,y,≿R))sc(y,d)

sc(y,d) =

1 + 2md(f(R), y,≿R) for all metrics d ∈ D(R), so
dist(f(R), R) ≤ 1 + 2maxx∈XR

md(f(R), x,≿R).
To prove that sc(x, d) ≤ (1 + 2md(x, y,≿R))sc(y, d) for

all alternatives x, y ∈ XR with md(x, y,≿R) ̸= ∞ and all
metrics d ∈ D(R), we proceed by induction on the majority
distance between x and y in ≿R. First, if md(x, y,≿R) = 0,
then it clearly holds that sc(x,d)

sc(y,d) = 1 as md(x, y,≿R) = 0

only holds if x = y. Next, we assume for the induction
hypothesis that there is some k ∈ N such that sc(x′, d) ≤
(1 + 2md(x′, y′,≿R))sc(y

′, d) for all metrics d ∈ D(R) and
alternatives x′, y′ ∈ XR with md(x′, y′,≿R) ≤ k. For the
induction step, we consider two alternatives x, y ∈ XR with
md(x, y,≿R) = k + 1 and an arbitrary metric d ∈ D(R).
Our goal is to show that sc(x, d) ≤ (1 + 2(k + 1))sc(y, d).
To this end, let z denote the successor of x on the short-
est path from x to y in ≿R, which means that x ≿R z and
md(z, y,≿R) = k. By the induction hypothesis, we can thus
conclude that sc(z, d) ≤ (1 + 2k)sc(y, d). Next, we partition
the voters v ∈ NR in two sets Nxz = {v ∈ NR : x ≻v z} and
Nzx = {v ∈ NR : z ≻v x}. Since d ∈ D(R), it follows for
all voters v ∈ Nxz that d(v, x) ≤ d(v, z). Moreover, using
the triangle inequality, we can show the following inequality
for the voters v ∈ Nzx, where v′ is a voter in Nxz .
d(v, x) ≤ d(v, y) + d(y, v′) + d(v′, x)

≤ d(v, y) + d(y, v′) + d(v′, z)

≤ d(v, y) + d(y, v′) + d(v′, y) + d(y, v) + d(v, z)

= 2d(v, y) + 2(j, v′) + d(v, z)

Finally, we observe that |Nxz| ≥ |Nzx| since x ≿R z, so
there is an injective function t from Nzx to Nxz . Putting
everything together, we infer the following inequality.∑

v∈NR

d(v, x) =
∑

v∈Nxz

d(v, x) +
∑

v∈Nzx

d(v, x)

≤
∑

v∈Nxz

d(v, z)

+
∑

v∈Nzx

2d(v, y) + 2d(t(v), y) + d(v, z)

≤
∑

v∈NR

d(v, z) + 2d(v, y)

= sc(z, d) + 2sc(y, d)

≤ (1 + 2(k + 1))sc(y, d)

The first inequality follows from our bounds on d(v, x) for
v ∈ Nxz and v ∈ Nzx, the second one simply reorganizes
the terms and uses that t is an injective function, and the last
inequality follows by the induction hypothesis. This inequality
proves the induction step, so it follows that sc(x, d) ≤ (1 +
2md(x, y,≿R))sc(y, d) for all alternatives x, y ∈ XR with
md(x, y,≿R) < ∞ and metrics d ∈ D(R). This completes
the proof of this lemma.

Proof of 2): As second point, we will show that
distm(f) ≥ 1 + 2maxx∈XR

md(f(R), x,≿R). To
this end, we use a case distinction with respect
to whether maxx∈XR

md(f(R), x,≿R) < ∞ or
maxx∈XR

md(f(R), x,≿R) = ∞.

Case 1: First, we suppose that md(f(R), x,≿R) < ∞
for every alternative x ∈ XR and show that distm(f) ≥
1+2maxx∈XR

md(f(R), x,≿R). For this, we fix an arbitrary
alternative x∗ ∈ XR; we will construct a family of profiles
Rϵ (where ϵ is a parameter in (0, 1)) such that ≿R = ≿Rϵ

for every ϵ ∈ (0, 1) and limϵ→0 dist(f(R
ϵ), Rϵ) =

1 + 2md(f(R), x∗,≿R). To this end, let Dk =
{x ∈ XR : md(x, x∗,≿R) = k} denote the set of alternatives
that has a majority distance of k to x∗. Moreover, we define
D0 = {x∗} and Dm = {y ∈ XR : md(y, x∗,≿R) = ∞}
denotes the set of alternatives that have no path to x∗ in ≿R.
We note that x ≻R y for all x ∈ Dj , y ∈ Dj′ such that
j + 2 ≤ j′ < m as otherwise, y would have a path to x∗ of
length j + 1 ≤ j′ by going to x. Furthermore, x ≻R y for
all x ∈ XR \Dm, y ∈ Dm as there is a path from x to x∗ in
≿R, but no such path exists for y. Based on this observation,
we construct the following profile Rϵ for ϵ ∈ (0, 1), where
Di ≻v Dj denotes that voter v prefers all alternatives in Di

to all alternatives in Dj :

1. There is a set of voters I1 such that |I1| = ⌈ 1
ϵ ⌉ and

D0 ≻v D2 ≻v D1 ≻v D4 ≻v D3 ≻v D6 ≻v D5 ≻v

· · · ≻v Dm for each v ∈ I1. The alternatives within each
set Di are ordered lexicographically.

2. There is a set of voters I2 such that |I2| = ⌈ 1
ϵ ⌉ and D1 ≻i

D0 ≻v D3 ≻v D2 ≻v D5 ≻v D4 ≻v · · · ≻v Dm for
each v ∈ I2. The alternatives within each set Di are
ordered inverse lexicographically.

3. For each pair of alternatives x, y such that x ≻R y and
x ∈ Dj , y ∈ Dj′ for |j − j′| ≤ 1, we add two voters
v, v′ with preferences x ≻v y ≻v z1 ≻v · · · ≻v zm−2

and zm−2 ≻v′ · · · ≻v′ z1 ≻v′ x ≻v′ y. The set of these
voters is called I3 and we note that |I3| ≤ m(m− 1).
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We first note that the profile Rϵ has indeed the same majority
relation as R: the voters in I1 and I2 together enforce that
a majority of voters prefers every alternative in Dj to every
alternative in Dj′ for all j ∈ N, j′ ∈ N ∪ {∞} with j +
2 ≤ j′ and cancel each other out with respect to the majority
comparison between every other pair of alternatives. Hence,
the voters in I3 set these majority comparisons in the same
way as in ≿R, so ≿R = ≿Rϵ .

Next, we define the following (partial) metric d that is con-
sistent with Rϵ:

d(v, x) =


2⌈k

2 ⌉ if v ∈ I1 and x ∈ Dk

1 + 2⌊k
2 ⌋ if v ∈ I2 and x ∈ Dk

m if v ∈ I3

It can be checked that d can be extended to a full metric
on NRϵ ∪XRϵ . For instance, we may assume that the voters
and alternatives are placed in a two-dimensional space such
that every alternative x ∈ Dk lies at (−k, 0) if k is even and
at (k + 1, 0) if k is odd. Moreover, the voters i ∈ I1 all lie
at (0, 0), the voters i ∈ I2 lie at (1, 0), and the voters i ∈ I3
lie at (0,m). Then, d corresponds to the | · |∞ norm, which is
known to be a metric.

Finally, we can compute the social cost of our alternatives
and the distortion of f . To this end, we note that sc(y, d) =
2⌈k

2 ⌉|I1|+ (1 + 2⌊k
2 ⌋)|I2|+m|I3| = (2k + 1)⌈ 1

ϵ ⌉+m|I3|
for every alternative y ∈ Dk and every k. In particular, this
means that sc(x∗, d) = ⌈ 1

ϵ ⌉+m|I3|. Moreover, it holds that
f(Rϵ) = f(R) since ≿R = ≿Rϵ and f is majoritarian. Next,
because md(f(R), x,≿R) < ∞ for all x ∈ XR, we can
compute for every ϵ ∈ (0, 1) that

distm(f) ≥ dist(f(Rϵ), Rϵ)

≥

∑
y∈XR

f(R, y)((1 + 2md(y, x,≿R))⌈ 1
ϵ ⌉+m|I3|

⌈ 1
ϵ ⌉+m|I3|

=
1 + 2md(f(R), x,≿R)⌈ 1

ϵ ⌉+m|I3|
⌈ 1
ϵ ⌉+m|I3|

.

It is easy to see that, when ϵ goes to 0, the right side
converges to 1 + 2md(f(R), x,≿R) as m|I3| is a constant.
Finally, since x is chosen arbitrarily, we thus infer that
distm ≥ 1 + 2maxx∈XR

md(f(R), x,≿R).
Case 2: As the second case, we assume that

maxx∈XR
md(f(R), x,≿R) = ∞ and we will show that

distm(f) = ∞, too. To this end, we let x denote an alter-
native such that md(f(R), x,≿R) = ∞ and we define the
sets B = {y ∈ A : md(y, x,≿R) < ∞} and C = {y ∈
A : md(y, x,≿R = ∞}. By the definition of the sets B and
C, it holds that y ≻R z for all y ∈ B and z ∈ C. We will next
use this observation to construct a profile R′ with ≿R = ≿R′

such that f has unbounded distortion in R′. To this end, we
use a variant of McGarvey’s construction McGarvey [1953]:
for all alternatives pairs of alternatives y, z ∈ B or y, z ∈ C
with y ≻R z, we add two voters who i) both prefer all alterna-
tives in B to all alternatives in C, ii) both prefer y to z, and iii)
order all remaining pairs of alternatives exactly inverse. It can
be checked that each pair of voters only ensures that y ≻R z

for its respective pair of alternatives y, z, and that x′ ≻R y′ for
all x′ ∈ B, y′ ∈ C. Hence, it is easy to check that ≿R = ≿′

R,
which implies that f(R′) = f(R) as f is majoritarian. Finally,
consider the metric d ∈ D(R′) given by d(v, x) = 0 and
d(v, y) = 1 for all v ∈ VR′ , x ∈ B, y ∈ C. It is easy to check
that every alternative y ∈ B has a social cost sc(y, d) = 0. By
contrast, sc(f(R′), d) = sc(f(R), d) > 0 as f(R, z) > 0 for
some alternative z ∈ C. Hence, dist(f(R′), R′) = ∞, which
proves this case.

Next, we turn to the proof of Theorem 2

Theorem 2. It holds for every majoritarian RSCF f that
distm(f) ≥ 4− 3

m if m ≥ 3 is odd and distm(f) ≥ 4− 3
m−1

if m ≥ 3 is even. Thus, dist(f ) ≥ 4.

Proof. To prove this result, we will rely on Claim 2) of Propo-
sition 1 and thus aim to construct a profile R such that every
lottery p has a large expected majority distance md(p, x,≿R)
for some alternative x. To this end, we note that is suffices to
construct a suitable complete relation ≿ on Xm as we can find
for every such relation a profile R with ≿R = ≿ [McGarvey,
1953].

We first focus on the case that m ≥ 3 is odd and consider in
this case the “cyclic” majority relation defined by xi ≻ xi+mk

for all i ∈ {1, . . . ,m} and k ∈ {1, . . . , m−1
2 }, where

i+mk = i+k if i+k ≤ m and i+mk = i+k−m if i+k > m.
Our goal is to show that maxx∈A md(p, x,≿) ≥ 3

2 − 3
2m as

Claim 2) in Proposition 1 then implies the theorem. We thus
assume for contradiction that there is a lottery p such that
maxx∈A md(p, x,≿) < 3

2 − 3
2m . Moreover, we define the

lotteries pk by pk(xi) = p(xi+mk) for all i, k ∈ {1, . . . ,m}
and first aim to show that maxx∈A md(pk, x,≿) < 3

2 − 3
2m ,

too. For this, we note that the symmetry of ≿ im-
plies that md(xi, xj ,≿) = md(xi+mk, xj+mk,≿) for
all i, j, k ∈ {1, . . . ,m}. Consequently, it holds that
md(pk, xi,≿) = md(p, xi+mk,≿) as pk(xj) = p(xj+mk)
and md(xj , xi,≿) = md(xj+mk, xi+mk,≿) for all
xj ∈ Xm. This implies that maxx∈A md(pk, x,≿) =
maxx∈A md(p, x,≿). Finally, we consider the lot-
tery p∗ defined by p∗(x) = 1

m

∑
k∈{1,...,m} p

k(x)

for all x ∈ Xm and observe that md(p∗, xi,≿) =
1
m

∑
k∈{1,...,m} md(pk, xi,≿) < 3

2 − 3
2m for all xi.

However, p∗(xi) = 1
m

∑
k∈{1,...,m} p

k(xi) =
1
m

∑
k∈{1,...,m} p(xi+mk) = 1

m for all xi. Since
md(x1, xj ,≿) = 1 for all j ∈ {2, . . . , m+1

2 } and
md(x1, xj ,≿) = 2 for all j ∈ {m+3

2 , . . . ,m}, we can thus
compute that md(p∗, x1,≿) = 1

m

∑
xi∈XR

md(xi, x1,≿) =
m−1
2m + 2(m−1)

2m = 3
2 − 3

2m . This contradicts that
md(p∗, xi,≿) < 3

2 − 3
2m for all xi, so the initial assumption

that there is a lottery p with maxx∈A md(p, x,≿) < 3
2 − 3

2m

is wrong. Hence, maxx∈A md(p, x,≿) ≥ 3
2 − 3

2m for every
lottery p and Proposition 1 shows the theorem for odd m ≥ 3.

Finally, to extend the result also to even m, we can add an
alternative x∗ that loses all majority comparisons. Based on
Claim 2) in Proposition 1, the metric distortion of a majori-
tarian RSCF is unbounded if it assigns positive probability to
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x∗. On the other side, we can apply the same analysis as for
the case that m is odd if p(x∗) = 0 and hence infer our lower
bound.

Finally, we will present the proof of Proposition 2.

Proposition 2. Fix a lottery p, a profile R, and an alterna-
tive x∗. If the optimal objective value o∗LP of LP 1 is bounded,
then dist(p,R, x∗) = o∗LP and dist(p,R, x∗) = ∞ else.

Proof. Let R denote an arbitrary profile, p a lottery, and x∗

denote an arbitrary alternative. We will prove the proposition
in two steps: we first show that that dist(p,R, x∗) ≥ oLP

for the objective value oLP of every feasible solution of LP 1
and then that dist(p,R, x∗) ≤ o∗LP where oLP∗ denotes the
optimal objective value of LP 1 if this value is bounded and
o∗LP = ∞. From the first insight, it follows immediately that
dist(p,R, x∗) = ∞ if LP 1 is unbounded as we can find for
every x ∈ R a feasible solution with higher objective value.
On the other hand, combining the first and the second insight
imply that dist(p,R, x∗) = o∗LP if the optimal objective value
of LP 1 is bounded.

Claim 1: dist(p,R, xi∗) ≥ oLP for the objective value
oLP of every feasible solution of LP 1.

Let dLP , tLP denote a feasible solution of LP 1 and let oLP

denote its objective value. To prove that dist(p,R, x∗) ≥
oLP , we will infer a metric d ∈ D(R) that satisfies
d(x, v) = dLP (x, v) for all x ∈ XR, v ∈ VR. Since∑

v∈VR
dLP (x

∗, v) = 1, we can then infer that

oLP =
∑

x∈XR

p(x)
∑
v∈VR

dLP (x, v) =
sc(p, d)

sc(x∗, d)

≤ max
d∈D(R)

sc(p, d)

sc(x∗, d)
= dist(p,R, x∗).

Towards proving this claim, we will first construct an-
other feasible solution d′LP , t′LP with corresponding objec-
tive value o′LP that satisfies that d′LP (x, v) ≥ d(x∗, v) for
all x ∈ XR, v ∈ VR and o′LP ≥ oLP . Now, if dLP sat-
isfies these conditions, we can simply set d′LP = dLP and
t′LP = tLP . We thus assume that there is an alternative x
and a voter v such that dLP (x, v) < dLP (x

∗, v). In this case,
we consider the solution d̄LP derived from dLP by setting
d̄LP (x, v) = dLP (x

∗, v). First, it is easy to verify that d̄LP

combined with the function t̄LP = tLP is still a feasible
solution. Indeed, the only upper bounds on d̄LP (x, v) are
of the form d̄LP (x, v) ≤ d̄LP (x

∗, v) + t(y), which are true
since d̄LP (x, v) = d̄LP (x

∗, v) and t(y) ≥ 0. Moreover, it is
straightforward that increasing the value of dLP (x, v) does
not decrease the objective value. Hence, ōLP ≥ oLP , and by
repeating this step, we will arrive at a feasible solution d′LP ,
t′LP such that d′LP (x, v) ≥ d′LP (x

∗, v) for all alternatives
x ∈ XR and voters v ∈ VR.

As second step, we will again construct a feasible solution
d′′LP , t′′LP of LP 1 such that o′′LP ≥ oLP and d′′LP (x, v) ≤
d′′LP (y, v) for all voters v ∈ VR and alternatives x, y ∈ XR

with x ≻v y. If d′LP satisfies this condition, we are im-
mediately done and we hence suppose that there is a voter
v and two distinct alternatives x, y such that x ≻j y and

d′LP (x, v) > d′LP (y, v). Note first that this is not possible if
y = x∗ because the fourth condition of LP 1 ensures in this
case that d′LP (x, v) ≤ d′LP (x

∗, v) + t′LP (x
∗) = d′LP (x

∗, v).
We hence assume from now on that y ̸= x∗. In this case, we
consider the solution d̄LP , t̄LP derived from d′LP , t′LP by set-
ting d̄LP (y, v) = d′LP (x, v). First, we note that this solution
is feasible as the only upper bounds on d̄LP (y, v) are given by
d̄LP (y, v) ≤ d̄LP (x

∗, v) + t̄(y) = d′LP (x
∗, v) + t′LP (z) for

z ∈ XR with z ⪰v y. Moreover, it holds that d̄LP (x, v) =
d′LP (x, v) ≤ d′LP (xi∗ , v) + t(z) for all z ∈ XR with x ⪰v z
since d′LP , t′LP is a feasible solution of LP 1. Finally, since
x ⪰v y, it therefore follows that d̄LP is a feasible solution,
too. Moreover, it is again straightforward that we did not
decrease the objective value because we only increased the
value of variables. Now, by repeating this step, it is easy to see
that we will eventually arrive at a feasible solution d′′LP and
t′′LP = tLP such that o′′LP ≥ o′LP and d′′LP (x, v) ≤ d′′(y, v)
for all v ∈ VR and x, y ∈ XR with x ≻v y. Moreover, d′′LP
still satisfies that d′′LP (x, v) ≥ d′′LP (x

∗, v) for all v ∈ VR and
xi ∈ XR as we only increase distances for alternatives other
than x∗.

Finally, based on the solution d′′LP , t′′LP , we will construct a
metric d that satisfies all our criteria. In particular, we define:

1. d(x, v) = d(v, x) = d′′LP (x, v) for all x ∈ XR and
v ∈ VR.

2. d(x, x) = 0 for all x ∈ XR and d(v, v) = 0 for all
v ∈ VR.

3. d(x, y) = minv∈VR
d′′LP (x, v) + d∗LP (y, v) for all dis-

tinct x, y ∈ XR.
4. d(v, w) = minx∈xR

d′′LP (x, v) + d′′LP (x,w) for all dis-
tinct v, w ∈ VR.

By its definition, it is straightforward that d is symmetric
and that d(z, z) = 0 for all z ∈ XR ∪ VR. Moreover, because
d′′LP is consistent with R, the same holds for d. Hence, we
only need to verify the triangle inequality, for which we start
by an auxiliary observation: we will show that d(x, v) ≤
d(x,w)+d(y, w)+d(y, v) for all x, y ∈ XR, v, w ∈ VR. By
the definition of d, this is equivalent to proving the same for
d′′LP . We thus observe that

d′′LP (x, v) ≤ d′′LP (x
∗, v) + t′′LP (x)

≤ d′′LP (x
∗, v) + d′′(x∗, w) + d′′(x,w)

≤ d′′LP (y, v) + d′′LP (y, w) + d′′LP (x,w).

The first and second inequality directly use the third and fifth
constraint of our LP. The last inequality uses that, by con-
struction of d′′LP , it holds that d′′LP (x

∗, v) ≤ d′′LP (y, v) and
d′′LP (x

∗, w) ≤ d′′LP (y, w).
Finally, we are ready to show that d satisfies the triangle in-

equality. To this end, consider three distinct elements x, y, z ∈
XR ∪ VR. We will show that d(x, z) ≤ d(x, y) + d(y, z) by
considering three cases:

• x, y, z ∈ XR: Let v, w ∈ VR denote the voters
that minimize d(x, v) + d(v, y) and d(y, w) + d(w, z),
respectively. By our auxiliary claim, it holds that
d(x, z) = minv′∈VR

d(x, v′) + d(v′, z) ≤ d(x, v) +
d(z, v) ≤ d(x, v) + d(z, w) + d(w, y) + d(y, v) =
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minv′∈VR
d(x, v′) + d(v′, y) + minv′∈VR

d(y, v′) +
d(v′, z) = d(x, y) + d(y, z). An analogous argument
works if x, y, z ∈ VR.

• x, y ∈ XR, z ∈ VR: Let v denote the voter that min-
imizes d(x, v) + d(v, y). By our auxiliary claim, it
holds that d(x, z) ≤ d(x, v) + d(v, y) + d(y, z) =
d(x, y) + d(y, z). The cases that y, z ∈ XR, x ∈ VR;
x, y ∈ VR, z ∈ XR; and y, z ∈ VR, x ∈ XR are sym-
metric.

• x, z ∈ XR, y ∈ VR: It holds that d(x, z) =
minv∈N d(x, v)+ d(v, y) ≤ d(x, y)+ d(y, v). The case
that x, z ∈ VR, y ∈ XR is symmetric.

This proves that d is indeed a metric that is consistent
with R. We can therefore conclude that dist(p,R, x∗) ≥
sc(p, d) sc(x

∗,d)
= o′′LP ≥ oLP holds for all feasible solutions

dLP , tLP with objective value oLP .

Claim 2: dist(p,R, xi∗) ≤ o∗LP where o∗LP is the optimal
objective value off LP 1.

We will next show that dist(p,R, xi∗) ≤ o∗LP . To this
end, we note that this is trivial if o∗LP = ∞, so we focus on
the case that the optimal objective value of LP 1 is bounded.
To this end, let d ∈ D(R) denote a metric that maximizes
sc(p,d)
sc(x∗,d) . We will next construct a biased metric d∗ ∈ D(R)

that satisfies sc(p,d∗)
sc(x∗,d∗) ≥ sc(p,d)

sc(x∗,d) . As second step, we will
then derive a feasible solution dLP , tLP of LP 1 with objective
value oLP = sc(p,d∗)

sc(x∗,d∗) . This clearly proves the claim.
Following the proof of Charikar and Ramakrishnan [2022],

we define the function t(x) for all XR by t(x) = d(x, x∗).
The biased metric d∗ is then defined by

d∗(x∗, v) =
1

2
max

x,y∈XR : x⪰vy
t(x)− t(y)

d∗(x, v) = d∗(x∗, v) + min
y∈XR : x⪰vy

t(y).

We first note that d∗ can be extended to a metric that is con-
sistent with R due to Proposition 5.1 of Charikar and Ramakr-
ishnan [2022]. Hence, it only remains to show that sc(p,d∗)

sc(x∗,d∗) ≥
sc(p,d)
sc(x∗,d) . To this end, we will show that sc(x∗, d∗) ≤ sc(x∗, d)

and sc(x, d∗)−sc(x∗, d∗) ≥ sc(x, d)−sc(x∗, d). This shows
sc(p,d∗)

sc(xi∗ ,d∗) ≥ sc(p,d)
sc(x∗,d) as demonstrated by the following in-

equality.

sc(p, d∗)

sc(x∗, d∗)
− 1 =

∑
x∈XR

p(x)(sc(x, d∗)− sc(x∗, d∗))

sc(x∗, d∗)

≥
∑

x∈XR
p(x)(sc(x, d)− sc(x∗, d)

sc(x∗, d))

=
sc(p, d)

sc(x∗, d)
− 1

We first show that sc(x∗, d∗) ≤ sc(x∗, d). To this
end, we observe (analogous to Charikar and Ramakrish-
nan [2022] in Proposition 5.2) that d(x, x∗) ≤ d(x, v) +
d(v, x∗) ≤ d(y, v) + d(v, x∗) ≤ d(y, x∗) + 2d(v, x∗) for

all voters v and alternatives x, y with x ⪰v y. Hence,
d(v, x∗) ≥ 1

2 maxx,y∈XR : x⪰vxy t(x) − t(y) = d∗(v, x∗).
Clearly, this implies that sc(x∗, d∗) ≤ sc(x∗, d), thus prov-
ing our claim. Secondly, we need to prove that sc(x, d∗) −
sc(x∗, d∗) ≥ sc(x, d) − sc(x∗, d) for all x ∈ XR. Since
the inequality clearly holds for x∗, we assume that x ̸=
x∗. Following again the ideas of Charikar and Ramakrish-
nan [2022], we observe that d(x, v) ≤ d(y, v) ≤ d(y, x∗) +
d(x∗, v) for all voters v and alternatives x, y with x ⪰v y.
Hence, d(x, v) − d(x∗, v) ≤ miny∈XR : x⪰vy d(y, x

∗) =
miny∈XR : x⪰vy t(y) = d∗(x, v) − d∗(x∗, v). We thus con-
clude that sc(x, d∗) − sc(x∗, d∗) ≥ sc(x, d) − sc(x∗, d).
Therefore, it follows indeed that sc(p,d∗)

sc(x∗,d∗) ≥
sc(p,d)
sc(x∗,d) .

We next proceed with a case distinction with respect to
whether sc(x∗, d∗) = 0 or sc(x∗, d∗) > 0. First, we consider
the case that sc(x∗, d∗) > 0. In this case, we aim to construct a
feasible solution dLP , tLP of LP 1 with objective value oLP =
sc(p,d∗)
sc(x∗,d∗) . Now, to derive this solution, we first note that every
biased metric d ∈ D(R) (together with its inducing function
t) satisfies the first four constraints of LP 1 by definition.
Moreover, d also satisfies the fifth constraint since d(x, v) +
d(x∗, v) = 2d(x∗, v) + miny∈Xr : x⪰y t(y) ≥ t(x) for all
x ∈ XR, v ∈ VR. The last inequality follows as 2(d∗, v) =
maxx,y∈XR : x⪰vy t(x) − t(y) ≥ t(x) − miny∈Xr : x⪰y t(y).
Furthermore, we note that, for every biased metric d ∈ D(R),
and ℓ ∈ R>0, the function tℓ defined by tℓ(x) = ℓt(x) induces
a biased metric dℓ ∈ D(R) with sc(x∗, dℓ) = ℓsc(x∗, d) and
sc(p, dℓ) = ℓsc(p, d). Because sc(x∗, d) ≥ 0, it is thus easy
to check that the biased metric dℓ together with its defining
function tℓ for ℓ = 1

sc(x∗,d) defined a feasible solution to LP

1 with oLP = sc(p,dℓ)
sc(x∗,dℓ)

= sc(p,d∗)
sc(x∗,d∗) . Hence, it is in this case

easy to check that dist(p,R, x∗) = sc(p,d∗)
sc(x∗,d∗) = oLP ≤ o∗LP ,

where o∗LP denotes the optimal objective value of LP 1.
For the second case, we suppose that sc(x∗, d∗) = 0. For

this case, we make a further case distinction with respect to
whether sc(p, d∗) = 0 or sc(p, d∗) > 0. First, suppose that
sc(p, d∗) = 0, which means that dist(p,R, x∗) = sc(p,d∗)

sc(x∗,d∗ =

1. To show that dist(p,R, x∗) ≤ o∗LP , it thus suffices to
construct a feasible solution of LP 1 with objective value 1.
To this end, consider the following solution: dLP (x, v) =

1
nR

for all x ∈ XR, v ∈ VR and tLP (x) = 0 for all x ∈ XR.
It is easy to check that this is indeed a feasible solution and
that

∑
x∈XR

p(x)
∑

v∈VR
d(x, v) =

∑
x∈XR

p(x) = 1, thus
verifying our claim.

As last case, we assume that sc(x∗, d∗) = 0 and
sc(p, d∗) > 0, which means that dist(p,R, x∗) = ∞. In
this case, we need to show that the optimal objective value
of LP 1 is unbounded. Towards this end, we note that, since
sc(x∗, d∗) = 0, d∗(x∗, v) = 0 for all voters v ∈ VR. Next,
we consider again the function tℓ(x) = ℓ · t(x) for all x ∈ XR,
ℓ ∈ R>0 and let dℓ denote the corresponding biased met-
ric. Finally, we define the solutions dℓLP , tℓLP to LP 1 by i)
dℓLP (x

∗, v) = 1
nR

for all v ∈ VR, ii) dℓLP (x, v) = dℓ(x, v)

for all x ∈ XR \ {x∗}, v ∈ VR, and iii) tℓLP = tℓ. It can
be checked that dℓLP , tℓLP is a feasible solution to LP 1: to
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this end, we recall that every biased metric satisfies the first
five constraints of our LP. Now, to infer dℓLP from dℓ, we only
increase the distance dℓLP (x

∗, v) to 1
nR

for all v ∈ NR. Since
there is no upper bound on dℓLP (x

∗, v), this does not violate
any of the first five constraints and ensures that the last one is
true. Finally, we note that there is an alternative y such that
p(y) > 0 and sc(y, d∗) > 0 as sc(p, d∗) > 0. Consequently,
the objective value of the solutions dℓLP , tℓLP is lower bounded
by ℓp(y)d(y, d∗). Letting ℓ go to infinity thus shows that the
objective value of LP 1 is not bounded in this case. Hence,
it holds in all cases that dist(p,R, x∗) ≤ o∗LP , where o∗LP
denotes the optimal objective value of LP 1 if it is bounded
and ∞ otherwise.

B Metric Distortion under the IC Model
As last part of this paper, we will formally prove the state-
ments about the expected metric distortion of the uniform
random dictatorship, C1ML rules, and C2ML rules made in
Section 4.3. In particular, we will show that, in the IC model,
the expected metric distortion of fRD converges to 2 as the
number of voters goes to infinity, and the expected metric
distortion of C1ML rules and C2ML rules will converge to
approximately 2+ 1

m−1 . To make these statements formal, we
denote by IC(m,n) the probability distribution over prefer-
ence profiles on n voters and m alternatives of the independent
culture model created. Then, we will prove the following state-
ment for the uniform random dictatorship.
Proposition 3. It holds for every m ≥ 3 that
limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2.

Unfortunately, we are not able to prove a fully analogous
statement for C1ML and C2ML rules. The problem in the
analysis of these rules is that we did not manage to bound
the probability that these rules select a lottery that random-
izes over all alternatives. To make this more formal, let
supp(f(R)) = {x ∈ XR : f(R, x) > 0} denote the set of
alternatives that are assigned positive probability by f in R.
While computer experiments (see [Brandl et al., 2022]) show
that the probability PR∼IC(m,n)[supp(f(R)) = XR] is very
small for C1ML and C2ML rules, we cannot bound it and
therefore cannot compute a tight lower bound for the expected
metric distortion of these rules. We thus give next a more
general result that depends on this probability.
Proposition 4. Let m ≥ 3. It holds for ev-
ery RSCF f with distm(f) < ∞ and z =
lim infn→∞ PR∼IC(m,n)[supp(f(R)) ̸= XR] that

1) lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2 + 1
m−1

2) lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥ 2 + z
m−1 .

In particular, we note that for C1ML rules and C2ML
rules, this means that the expected metric distortion will
approximately converge to 2 + 1

m−1 as the probability
PR∼IC(m,n)[supp(f(R)) ̸= XR] has experimentally been
shown to be very small for large n. Hence, this result ex-
plains our computer simulations under the IC model very well.
We note that, curiously, Proposition 4 also entails that the
expected metric distortion of every deterministic SCF with
bounded distortion converges to 2 + 1

m−1 under the IC model.

We next turn to the proofs of these two propositions. To this
end, we let n≻(R) = |{v ∈ VR : ≻v = ≻} denote the number
of voters that report the preference relation ≻ in the profile R.
Moreover, we will subsequently show three auxiliary lemmas:
first, we investigate the metric distortion of every lottery on
every profile where all preference relations are reported by
the same number of voters (cf. Lemmas 1 and 2). Clearly,
under the IC model, we can expect that the output profile is
very similar to such a profile is the number of voters is large.
We hence prove in Lemma 3 that we can bound the metric
distortion of such a profile R based on the metric distortion of
the chosen lottery for a large subprofile.

In more detail, in our first lemma, we will identify a metric
d ∈ D(R) that satisfies dist(p,R, x∗) = sc(p,d)

sc(x∗,d) for all pro-
files R in which all preference relations appear equally often,
all lotteries p, and all alternatives x∗ ∈ XR. Surprisingly, we
show that we can focus on a single type of metrics for this
maximization problem: it always suffices to consider the bi-
ased metric d ∈ D(R) given by the function t with t(x∗) = 0
and t(x) = 2 for all x ∈ XR \ {x∗}. We note that this gives
further evidence for the conjecture by Charikar and Ramakr-
ishnan [2022] that this type of metric is the worst-case for all
profiles.

Lemma 1. Assume m ≥ 3 and let R ∈ R∗
m denote a profile

such that n≻(R) = n≻′(R) > 0 for all preference relations
≻,≻′ ∈ R(XR). It holds for all lotteries p ∈ ∆(XR) and
alternatives x∗ ∈ XR that dist(p,R, x∗) = sc(p,d∗)

sc(x∗,d∗) , where
d∗ denotes the biased metric induced by the function t with
t(x∗) = 0 and t(x) = 2 for all x ∈ XR \ {x∗}

Proof. Let R denote a profile as specified by the lemma and
consider a lottery p and an alternative x∗. If p(x∗) = 1, then
sc(p,d)
sc(x∗,d) = 1 for every metric d ∈ D(R), so we assume that

p(x∗) < 1. In this case, let d̂ ∈ D(R) denote the biased metric
given by the function t̂ with t̂(x∗) = 0 and t̂(x) = ℓ for all
x ∈ XR \ {x∗}, where ℓ is chosen such that sc(x∗, d̂) = 1.
First, d̂ is indeed a valid metric in D(R) due to Proposition
5.1 of Charikar and Ramakrishnan [2022]. Next, we note that
sc(p,d̂)

sc(x∗,d̂)
= sc(p,d∗)

sc(x∗,d∗) for the metric d∗ stated in the lemma as

d̂ = αd∗ for some α ∈ R>0. Hence, we aim to show that
dist(p,R, x∗) = sc(p,d̂)

sc(x∗,d̂)
. For this, we will prove that that

dist(px, R, x∗) = sc(px,d̂)

sc(x∗,d̂)
for every alternative x ∈ XR and

lottery px with px(x) = 1. This implies the lemma because

sc(p, d̂)

sc(x∗, d̂)
≤ dist(p,R, x∗)

= max
d∈D(R)

sc(p, d)

sc(x∗, d)

≤
∑

x∈XR

p(x)dist(px, R, x∗)

=
∑

x∈XR

p(x)
sc(x, d̂)

sc(x∗, d̂)
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=
sc(p, d̂)

sc(x∗, d̂)
.

Now, we first note that the claim trivially follows follows
for the lottery px∗ as sc(px∗ ,d)

sc(x∗,d) = 1 for every metric d ∈ D(R).
We thus focus on an alternative x̂ ∈ XR \ {x∗} in the subse-
quent. To this end, we will show that d̂, t̂ correspond to an
optimal solution of LP 1 for dist(px̂, R, x∗) as Proposition 2
then implies that dist(px̂, R, x∗) = sc(px̂,d̂)

sc(x∗,d̂)
. We therefore

observe that it is easy to show that d̂, t̂ are a feasible solution
for this linear program, so we will subsequently only prove
that our solution is also optimal.

Step 1: Since we want to reason about the optimal solutions
of LP 1 (for dist(px̂, R, x∗)), we first prove that the optimal
objective value of this linear program is bounded. To this
end, let dLP , tLP denote a feasible solution to LP 1. We first
note that

∑
v∈VR

dLP (x
∗, v) = 1 and hence dLP (x

∗, v) ≤ 1
for all v ∈ VR. Moreover, since every preference relation
appears at least once in R, there is a voter v such that x̂ ≻v x∗

and we can conclude by the first and third constraints that
1 ≥ dLP (x

∗, v) ≥ 1
2 (tLP (x̂)−tLP (x

∗)) = 1
2 tLP (x̂). Hence,

it holds that tLP (x̂) ≤ 2. By the fourth constraint, we can
next conclude that that dLP (x̂, v) ≤ dLP (x

∗, v) + t(x̂) ≤
1 + 2 = 3 for all v ∈ VR. Finally, we can now com-
pute that the objective value of any solution is at most∑

x∈XR
px̂(x)

∑
v∈VR

d(x, v) =
∑

v∈VR
d(x̂, v) ≤ 3nR.

Since this holds for every feasible solution of LP 1, its op-
timal objective value is indeed bounded.

Step 2: Let d0LP , t0LP denote an optimal solution of LP
1 and let o0LP denote its objective value. Our next goal is
to construct an optimal solution d1LP , t1LP of LP 1 such that
t1LP (x) = t1LP (y) for all x, y ∈ XR \ {x∗, x̂}. For this, we
denote by Π the set of permutations π : XR → XR such that
π(x∗) = x∗ and π(x̂) = x̂. Moreover, given a permutation
π ∈ Π, we let Rπ denote the profile defined by x ≻π

v y
iff π(x) ≻v π(y) for all x, y ∈ XR and v ∈ VR. Finally,
we define dπ(x, v) = d0LP (π(x), v) and tπ(x) = t0LP (π(x))
for all x ∈ XR and v ∈ VR. Since Rπ, dπ, and tπ are all
derived from R, d0LP , and t0LP by renaming the alternatives
according to π, it can be checked that dπ and tπ constitute
a feasible solution of LP 1 for (px, R

π, x∗) with objective
value oπLP = o0LP . In particular, it is important here that
π(x̂) = x̂ and π(x∗) = x∗ as these ensure that tπ(x∗) = 0
and dπ(x̂, v) = d0LP (x̂, v) for all v ∈ VR. Next, since all
preference relations appear equally often in the profile R, the
profile Rπ equals R up to renaming the voters. Hence, there
is another bijection τ : VR → VRπ such that ≻v = ≻π

τ(v) for
all voters v ∈ VR. Based on this permutation, we define the
functions d̄π and t̄π by d̄π(x, v) = dπ(x, τ(v)) and t̄π(x) =
tπ(x) for all x ∈ XR and v ∈ VR. Since we essentially
only rename variables in this step, it follows that d̄π, t̄π are a
feasible solution to LP 1 for dist(px̂, R, x∗). Moreover, the
objective value of this solution is ōπLP = oπLP = o0LP .

Next, we define the solution d1LP , t1LP by d1LP (x, v) =
1

(m−2)!

∑
π∈Π d̄π(x, v) and t1LP (x) = 1

(m−2)!

∑
π∈Π t̄π(x)

for all x ∈ XR and v ∈ VR. Since d1LP , t1LP is a convex

combination of feasible solutions of LP 1, it is itself again fea-
sible. Furthermore, for every π ∈ Π, it holds that ōπLP = o0LP ,
so the objective value of our new solution is o1LP = o0LP . In
particular, this means that d1LP , t1LP is an optimal solution to
LP 1 (for dist(px̂, R, x∗)). Finally, we note that t1LP (x) =

1
(m−2)!

∑
π∈Π t̄π(x) = 1

m−2

∑
z∈XR\{x̂,x∗} t

0
LP (z) =

1
(m−2)!

∑
π∈Π t̄π(y) = t1LP (y) for all x, y ∈ XR \ {x∗, x̂}.

Thus, our new solution satisfies all our requirements.

Step 3: As third step, we will show that there is a biased
metric d̄ defined by a function t̄ with t̄(x) = t̄(y) for all
x, y ∈ XR \ {x̂, x∗} that constitutes an optimal solution
to LP 1. For this, let d1LP , t1LP denote the optimal solu-
tion constructed in the last step. First, we note that for all
x ∈ XR \ {x∗}, v ∈ VR with d1LP (x, v) < d1LP (x

∗, v) +
miny∈XR : x⪰vy t

1
LP (y), we can simply increase the value of

d1LP to d1LP (x
∗, v) + miny∈XR : x⪰vy t(y) without violating

any constraints. Moreover, increasing the value of d1LP (x, v)
does not reduce the objective value, so there is another opti-
mal solution d2LP , t2LP with d2LP (x

∗, v) = d1LP (x
∗, v) for

all v ∈ VR, t2LP (x) = t1LP (x) for all x ∈ XR, and
d2LP (x, v) = d2LP (x

∗, v) + miny∈XR : x⪰vy t
2
LP (y) for all

x ∈ XR \ {x∗}, v ∈ VR.
Next, we want to ensure that d2LP (x

∗, v) =
1
2 maxx,y∈XR : x⪰v

t2LP (x) − t2LP (y). To this end, we
assume that there is a voter v∗ such that d2LP (x

∗, v∗) >
1
2 maxx,y∈XR : x⪰v∗y t

2
LP (x)−t2LP (y). In this case, we define

δ = d2LP (x
∗, v∗) − 1

2 maxx,y∈XR : x⪰v∗y t
2
LP (x) − t2LP (y)

and observe that δ < 1 as d2LP (x
∗, v) < 1 for all voters

v ∈ VR. Next, consider the solution d̃, t̃ derived from
d2LP and t2LP by setting d̃(x, v∗) = d2LP (x, v

∗) − δ for
all x ∈ XR. We first note that d̃, t̃ still satisfies the
first four constraints. Moreover, it holds for all x ∈ XR

that d̃(x, v∗) = d̃(x∗, v∗) + miny∈XR : x⪰v∗y t̃(y), so
d̃(x, v∗)+ d̃(x∗, v∗) = 2d̃(x∗, v∗)+miny∈XR : x⪰v∗y t̃(y) ≥
t̃(x) because 2d̃(x∗, v∗) ≥ t(x) − miny∈XR : x⪰v∗y t̃(y).
Hence, our new solution only violates the normalization
condition of LP 1, and we can restore this by scaling all
variables by the value 1

1−δ , i.e., d̃′(x, v) = 1
1−δ d̃(x, v) and

t̃′(x) = 1
1−δ t̃(x) for all x ∈ XR and v ∈ VR while leaving

the remaining conditions intact. Finally, we compute the
objective value of our new solution d̃′, t̃′:∑
v∈VR

d̃′(x̂, v) =
1

1− δ

∑
v∈VR

d̃(x̂, v)

=
1

1− δ

∑
v∈v(R)

d2LP (x̂, v)−
δ

1− δ

=
1

1− δ

∑
v∈VR

d2LP (x
∗, v) + min

y∈XR : x̂⪰vy
t2LP (y)

− δ

1− δ

=
1

1− δ

∑
v∈VR

min
y∈XR : x̂⪰vy

t2LP (y)



Draft – December 8, 2023

+
1

1− δ
− δ

1− δ

≥
∑

v∈v(R)

d2LP (x
∗, v) + min

y∈XR : x̂⪰vy
t2LP (y)

= o2LP .

Here, the first two inequalities use the definitions of d̃′ and
d̃ respectively. Next, we apply that d2LP (x̂, v) = d2LP (x

∗, v)+
miny∈XR : x̂⪰vy t

2
LP (y) for all v ∈ VR. In the third step, we

then use that
∑

v∈VR
d2LP (x

∗, v) = 1. The remaining steps
are simple arithmetic changes. This inequality proves that our
new solution d̃′, t̃′ is an optimal solution to LP 1.

Finally, we can repeat this step until we arrive at an
optimal solution d3LP , t3LP such that i) d3LP (x

∗, v) =
1
2 maxx,y∈XR : x⪰vy t

3
LP (x) − t3LP (y) for all v ∈ VR, ii)

d3LP (x, v) = d3LP (x
∗, v) + miny∈XR : x⪰vy t(y) for all x ∈

XR, v ∈ VR, iii) t3LP (x) = t3LP (y) for all x, y ∈ XR, and iv)
t3LP (x

∗) = 0 and t3LP (x̂) ≥ 0. In particular, for the last points,
we note that we only scale the values t1LP by some constants
during our constructions, so we directly inherit this insight
from d1LP . Therefore, d3LP is the biased metric d̄ defined by
t̄(x) = t3LP (x) for all x ∈ XR.

Step 4: As last step, we will show that sc(x̂, d̂) ≥ sc(x̂, d̄)
for the metric d̄ constructed during the last step. This com-
pletes the proof of this lemma since it means that d̂, t̂ are
an optimal solution to LP 1. To this end, we recall that the
function t̂ that defines d̂ is specified by a single value ℓ ∈ R>0:
t̂(x∗) = 0 and t̂(x) = ℓ for all x ∈ XR \ {x∗}. Moreover, the
function t̄ that defines d̄ is specified by two values ℓ1 and ℓ2:
t̄(x∗) = 0, t̄(x̂) = ℓ1 and t̄(x) = ℓ2 for all x ∈ XR \ {x̂, x∗}.
If ℓ1 = ℓ2 > 0, we are done and we thus suppose that ℓ1 ̸= ℓ2.

Now, first suppose that ℓ1 ≤ ℓ. In this case, we first note
that sc(x∗, d̂) = sc(x∗, d̄) = 1 by construction, so we will
focus on sc(x̂, d̂) and sc(x̂, d̄). Therefore, we observe that

sc(x̂, d̂)− sc(x∗, d̂) =
∑
v∈VR

min
y∈XR : x⪰vy

t̂(y) =
nR

2
ℓ

because half of the voters prefer x to x∗ (which means that
miny∈XR : x⪰vy t̂(y) = 0) and the other half of the voters
prefers x∗ to x (which means that miny∈XR : x⪰vy t̂(y) = ℓ).
An analogous argument shows that sc(x̂, d̄) − sc(x∗, d̄) ≤
nR

2 ℓ1. Finally, combining our insights implies that sc(x̂, d̂)−
1 ≥ sc(x∗, d̂) ≥ sc(x̂, d̄), which shows that the lemma holds
in this case.

We thus suppose next that ℓ1 > ℓ. As first point, we note
in this case that ℓ2 < ℓ. Indeed, if ℓ1 > ℓ and ℓ2 ≥ ℓ, then
d̂(x∗, v) ≤ d̄(x∗, v) for all v ∈ VR, and the inequality is strict
for all voters that rank x∗ below x̂. In more detail, it holds
that d̂(x∗, v) = 0 ≤ d̄(x∗, v) for all voters v that top-rank
x∗ and d̂(x∗, v) = ℓ

2 ≤ min(ℓ1,ℓ2)
2 ≤ d̄(x∗, v) for all other

voters. Hence, sc(x∗, d̄) > sc(x∗, d̂) = 1, which contradicts
that sc(x∗, d̄) = 1. So, we derive indeed that ℓ2 < ℓ.

We thus suppose that that ℓ2 < ℓ < ℓ1 and assume for
contradiction that sc(x̂, d̂) < (x̂, d̄). Since sc(x∗, d̂) =

sc(x∗, d̄) = 1, this assumption implies that sc(x̂, d̂) −
sc(x∗, d̂) < sc(x̂, d̄) − sc(x∗, d̄). We will thus compute
the values of these differences and therefore recall that
sc(x̂, d̂)−sc(x∗, d̂) = nR

2 ℓ. Moreover, d̄(x̂, v) = d̄(x∗, v) for
all voters v ∈ VR with x̂ ≻v x∗, d̄(x̂, v) = d̄(x∗, v)+ℓ1 for all
voters v ∈ VR that bottom-rank x̂, and d̄(x̂, v) = d̄(x∗, v)+ℓ2
for all remaining voters as these prefer x̂ to some other alter-
native x ̸= x∗. Since nR

2 voters prefer x̂ to x∗, nR

m voters
bottom-rank x̂ in R, there are nR(

1
2 − 1

n ) voters in the last
case. Consequently,

sc(x̂, d̄)− sc(x∗, d̄) =
nR

m
ℓ1 + (

nR

2
− nR

m
)ℓ2.

Because sc(x̂, d̂) − sc(x∗, d̂) < sc(x̂, d̄) − sc(x∗, d̄), we
conclude that

nR

2
ℓ <

nR

m
ℓ1 + (

nR

2
− nR

m
)ℓ2

⇐⇒ (
nR

2
− nR

m
)(ℓ− ℓ2) <

nR

m
(ℓ1 − ℓ)

⇐⇒ m− 2

2
(ℓ− ℓ2) < ℓ1 − ℓ. (1)

To derive a contradiction, we next want to use that
sc(x∗, d̂) = sc(x∗, d̄). We hence observe that

1 = sc(x∗, d̂) = nR · m− 1

m
· ℓ
2

as the nR

m voters who top-rank x∗ satisfy d̂(x∗, v) =

maxx,y∈XR : x⪰vy t̂(x) − t̂(y) = 0 and all other voters have
d(x∗, v) = ℓ

2 .
Furthermore, to compute sc(x∗, d̄), we will determine

(lower bounds on) d̄(x∗, v) for every voter v ∈ VR. To verify
the subsequent values, it suffices to identify the pair of alterna-
tives x, y ∈ XR with x ⪰v y that maximizes 1

2 (t̄(x)− t̄(y))

due to the definition of d̄(x∗, v).
• d̄(x∗, v) ≥ 0 for all voters v top-rank x∗. There are nR

m
such voters.

• d̄(x∗, v) = ℓ1
2 for all voters v that bottom-rank x∗. There

are nR

m such voters.

• d̄(x∗, v) = ℓ1
2 for all voters v that neither top-rank nor

bottom-rank x∗ and that prefer x̂ to x∗. We note that
there are nR

m−2
m voters that neither top-rank nor bottom-

rank x∗ and exactly half of them prefer x̂ to x∗. Hence,
there are nR(m−2)

2m such voters.

• d̄(x∗, v) ≥ ℓ2
2 for all voters v that neither top-rank nor

bottom-rank x∗ and that prefer x∗ to x̂. The central ob-
servation for this is that these voters prefer an alternative
x with t̄(x) = ℓ2 to x∗. Analogous to the last case, there
are nR(m−2)

2m such voters.

Finally, we can now lower bound sc(x∗, d̄):

sc(x∗, d̄) =
∑
v∈VR

d̄(x∗, v)

≥ nR

2

(
1

m
0 +

1

m
ℓ1 +

m− 2

2m
ℓ1 +

m− 2

2m
ℓ2

)
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=
nR

2m

(
m

2
ℓ1 +

m− 2

2
ℓ2

)
On the other side, we have sc(x∗, d̄) = sc(x∗, d̂) = 1.

Since sc(x∗, d̂) = nR(m−1)
2m ℓ, we derive that

nR(m− 1)

2m
ℓ ≥ nR

2m

(
m

2
ℓ1 +

m− 2

2
ℓ2

)
⇐⇒ m− 2

2
(ℓ− ℓ2) ≥

m

2
(ℓ1 − ℓ)

⇐⇒ m− 2

m
(ℓ− ℓ2) ≥ ℓ1 − ℓ. (2)

Finally, we get from Equations 1 and 2 that m−2
2 (ℓ− ℓ2) <

ℓ1 − ℓ ≤ m−2
m (ℓ− ℓ2). This is a contradiction as m ≥ 3, so

the initial assumption that sc(x̂,d̂)

sc(x∗,d̂)
< sc(x̂,d̄)

sc(x∗,d̄
must have been

wrong. We have now exhausted all cases and thus conclude
that (x̂, d̂) ≥ sc(x̂, d̄), which finally proves the lemma.

Due to Lemma 1, we can now compute the metric distortion
of every lottery on a profile R with n≻(R) = n≻′(R) for all
≻,≻′ ∈ R(XR).

Lemma 2. Assume m ≥ 3 and let R ∈ R∗
m denote a profile

such that n≻(R) = n≻′(R) > 0 for all preference relations
≻,≻′ ∈ R(XR). It holds for every lottery p ∈ ∆(XR) that
dist(p,R) = 2 + 1

m−1 − m
m−1 minx∈XR

p(x).

Proof. Let R denote a profile such that n≻(R) = n≻′(R) > 0
for all preference relations ≻,≻′ ∈ R(XR) and consider an
arbitrary lottery p. We will next compute dist(p,R, x∗) for
every alternative x∗ ∈ XR. To this end, we use that, by
Lemma 1, dist(p,R, x∗) = sc(p,d)

sc(x∗,d) for the biased metric
d defined by the function t with t(x∗) = 0 and t(x) = 2

for all x ∈ XR \ {x∗}. Next, we observe that sc(p,d)
sc(x∗,d) =∑

x∈XR
p(x) sc(x,d)

sc(x∗,d) . We will thus compute the social cost of
every alternative.

For x∗, we first note that d(x∗, v) = 0 for all voters that
top-rank x∗ and d(x∗, v) = 1 for all other voters. Hence, it
is easy to infer that sc(x∗, d) = nR(m−1)

m . By contrast, to
compute the social cost of an alternative x ∈ XR \ {x}, we
need a more elaborate analysis of the distances d(x, v):

• d(x, v) = 2 for all voters who top-rank x∗. There are nR

m
such voters.

• d(x, v) = 1 for all voters who bottom-rank x∗. There are
nR

m such voters.

• d(x, v) = 1 for all voters who do neither top-rank nor
bottom-rank x∗ and prefer x to x∗. There are nR(m−2)

m
voters who do neither top-rank nor bottom-rank x∗ and
precisely half of them prefer x to x∗. Thus, there are
nR(m−2)

2m such voters.

• d(x, v) = 3 for all voters who do neither top-rank nor
bottom-rank x∗ and prefer x∗ to x. There are again
nR(m−2)

2m such voters.

We can hence compute that

sc(x, d) =
∑
v∈VR

d(x, v)

= nR

(
2

m
+

1

m
+

m− 2

2m
+

3(m− 2)

2m

)
=

nR

m
(2m− 1).

It hence follows that sc(x∗,d)
sc(x∗,d) = 1 and sc(x,d)

sc(x∗,d) =
2m−1
m−1 =

2+ 1
m−1 . Moreover, we can now compute that sc(p,d)

sc(x∗,d) = (1−
p(x∗))(2+ 1

m−1 )+p(x∗) = 2+ 1
m− m

m−1p(x
∗). Clearly, this

function is decreasing in p(x∗), so we derive that dist(p,R) =
2 + 1

m−1 − m
m−1 minx∈XR

p(x).

We note that, by Lemma 2, the optimal lottery p for a
profile R with n≻(R) = n≻′(R) > 0 for all ≻,≻′ ∈ R(XR),
assigns probability p(x) = 1

m to all x ∈ XR. In particular,
this lottery achieves a metric distortion of 2 for R. By contrast,
every lottery that assigns 0 to some alternative has a metric
distortion of 2 + 1

m−1 in R.
To be able to use Lemma 2 in the analysis of the expected

metric distortion of RSCFs, we observe that each preference
relation will appear roughly equally often with high proba-
bility in a preference profile drawn from the IC distribution
if the number of voters n is sufficiently large. However, we
cannot expect to get precisely a profile where every preference
relation appears equally often, and we thus give next a lemma
that allows to bound the metric distortion of a lottery p in a
profile R based on a large subprofile of R.
Lemma 3. Let R be a profile and let p ∈ ∆(XR) denote
a lottery. Moreover, let R′ denote a profile derived from R
by choosing a subset of the voters VR′ ⊊ VR and setting
≻′

v = ≻v for all v ∈ VR′ , and define α = 1 − |VR′ |
|VR| . If

dist(p,R) < ∞ and dist(p,R′) < ∞, then dist(p,R) ≤
dist(p,R′) + α(dist(p,R) + 1).

Proof. Let R and R′ denote two profiles as defined by the
lemma and let α = 1− |VR′ |

|VR| . Moreover, consider an arbitrary
lottery p, let d denote the metric d ∈ D(R) that maximizes
sc
( p, d)minx∈XR

sc(x, d), and let x∗ denote an alternative
with sc(x∗, d) = minx∈XR

sc(x, d). Finally, we define the set
V̄R = VR\VR′ and note that αnR = |V̄R|. Our main goal is to
bound

∑
v∈V̄R

d(x, v) for every alternative x ∈ XR. To this
end, we first note that d(x, v) ≤ d(x, x∗) + d(x∗, v) for every
voter v ∈ VR. Moreover, d(x, x∗) ≤ d(x, v) + d(v, x∗) for
every voter v ∈ VR, so d(x, x∗) ≤ 1

nR
(sc(x, d) + sc(x∗, d)).

Combining these insights means that∑
v∈V̄R

d(v, x) ≤ |V̄R|d(x, x∗) +
∑
v∈V̄R

d(x∗, v)

≤ α(sc(x, d) + sc(x∗, d)) +
∑
v∈V̄R

d(x∗, v).

Hence, we can now compute that

dist(p,R) =
∑

x∈XR

p(x)
sc(x, d)

sc(x∗, d)
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=
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v) +

∑
v∈V̄R

d(x, v)

sc(x∗, d)

≤
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v) +

∑
v∈V̄R

d(x∗, v)

sc(x∗, d)

+
∑

x∈XR

p(x)
α(sc(x, d) + sc(x∗, d))

sc(x∗, d)

=
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v) +

∑
v∈V̄R

d(x∗, v)∑
v∈V ′

R
d(x∗, v) +

∑
v∈V̄R

d(x∗, v)

+ α(
sc(p, d)

sc(x∗, d)
+ 1)

≤
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v)∑
v∈V ′

R
d(x∗, v)

+ α(dist(p,R) + 1)

≤ dist(p,R′) + α(dist(p,R) + 1).

The first two equalities merely employ definitions. The
next step uses our previously deduced upper bound for∑

v∈V̄R
d(x, v). The forth step follows as sc(x∗,d)

sc(x∗,d) = 1

and
∑

x∈XR
p(x)sc(x, d) = sc(p, d). Finally, we use that

a
b ≥ a+x

b+x for all a, b, x ∈ R≥0. The last step uses
that d is also a valid metric for R′, so dist(p,R′) ≥∑

x∈XR
p(x)

∑
v∈V

R′ d(x,v)∑
v∈V ′

R
d(x∗,v) . This completes the proof of this

lemma.

Based on our previous lemmas, we can finally compute the
expected metric distortion of the uniform random dictatorship.
Proposition 3. It holds for every m ≥ 3 that
limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2.

Proof. Fix some number of voters and alternatives m and n
such that n is significantly larger than m! (i.e., such that all
subsequent terms are well-defined). We will give lower and up-
per bounds on ER∼IC(m,n)[dist(fRD(R), R)] that both con-
verge to 2 as n goes to infinity. This then also implies that
limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2. To this end,
we denote by R from now on a random variable that is dis-
tributed according to IC(m,n) and set α = 1

3
√
n

. We fur-
thermore define by Tα the set of profiles on n voters and m
alternatives such that n≻(R) > (1−α) n

m! for all ≻ ∈ R(XR)
and note that, by the law of total probability, it holds that

E[dist(fRD(R), R)|]
= P[R ̸∈ Tα] · E[dist(fRD(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα] · E[dist(fRD(R), R)|R ∈ Tα].

Upper bound: For our upper bound, we note
that E[dist(fRD(R), R)|R ̸∈ Tα] ≤ 3 and
E[dist(fRD(R), R)|R ∈ Tα] ≤ 3 as dist(fRD(R), R) ≤ 3
for all profiles R. Moreover, we note for a fixed preference
relation ≻1 that

P[R ̸∈ Tα] = P[∃≻ ∈ R(XR) : n≻(R) ≤ (1− α)
n

m!
]

≤ m!P[n≻1
(R) ≤ (1− α)

n

m!
]

≤ m!e−
α2

2 · n
m!

= m!e−
3√n
2m! .

Here, the first inequality is simply the union bound and the
second one a standard Chernoff bound.

In light of our discussion so far, it follows

that E[dist(fRD(R), R)] ≤ 3m!e−
3√n
2m! + (1 −

m!e−
3√n
2m! )E[dist(fRD(R), R)|R ∈ Tα]. We hence aim

to bound E[dist(fRD(R), R)|R ∈ Tα]. For this, we observe
that fRD(R, x) > (1 − α) 1

m for all x ∈ XR and R ∈ Tα.
Next, let R′ denote the subprofile of R such that each
preference relation appears ⌈(1 − α) n

m!⌉ times; such a
subprofile exists as R ∈ Tα. By Lemma 2, we hence have that
dist(fRD(R), R′) ≤ 2+ 1

m−1 −
m

m−1 · (1−α) 1
m = 2+ α

m−1 .
By Lemma 3 and the fact that dist(fRD(R), R) ≤ 3 for all
profiles R, we furthermore conclude for all R ∈ Tα that

dist(fRD(R), R) ≤ dist(fRD(R), R′)

+
n− |VR′ |

n
(1 + dist(fRD(R), R))

≤ 2 +
α

m− 1
+ 4

n−m!⌈(1− α) n
m!⌉

n

≤ 2 +
α

m− 1
+ 4α

= 2 +
1
3
√
n
(4 +

1

m− 1
).

We can now finally compute now that E[dist(f(R), R)]:

E[dist(fRD(R), R)|]

≤ 3m!e−
3√n
2m! + (1−m!e−

3√n
2m! )E[dist(fRD(R), R)|R ∈ Tα]

≤ 3m!e−
3√n
2m! + (1−m!e−

3√n
2m! )(2 +

1
3
√
n
(4 +

1

m− 1
)).

Finally, it is easy to check that this bound indeed converges
to 2 as n goes to infinity.

Lower bound: For the lower bound, we first note that
dist(p,R) ≥ 1 for every lottery p and every profile R. It
hence follows that E[dist(fRD(R), R)] ≥ P[R ∈ Tα] ·
E[dist(fRD(R), R)|R ∈ Tα]. Moreover, it holds that P[R ∈
Tα] = 1− P[R ̸∈ Tα] ≤ 1−m!e−

3√n
2m! due to the previously

discussed Chernoff bound.
Hence, we next aim to find a good lower bound on

E[dist(fRD(R), R)|R ∈ Tα]. To this end, fix a profile R ∈
Tα and an alternative x∗ and consider the biased metric d ∈
D(R) induced by the function t with t(x∗) = 0 and t(x) = 2
for all x ∈ XR \ {x∗}. By the definition of dist(fRD(R), R),
it follows that dist(fRD(R), R) ≥ sc(fRD(R),d)

sc(x∗,d) . We will next
investigate sc(fRD(R), d) and sc(x∗, d) in more detail. To
this end, we note that fRD(R, x) ≥ (1− α) 1

m for every x ∈
XR and that there is a subprofile R′ of R such that every ballot
appears exactly ⌈(1− α) 1

m⌉ in this profile because R ∈ Tα.
Moreover, it holds that

∑
v∈VR′ d(x

∗, v) = nR′ (m−1)
m and

that
∑

v∈VR′ d(x, v) =
nR′ (2m−1)

m (this follows analogously
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to the proof of Lemma 2). Consequently, we can compute that

sc(fRD(R), d) =
∑

x∈XR

fRD(R, x)sc(x, d)

≥ (1− α)
1

m

∑
x∈XR

∑
v∈VR′

d(v, x)

≥ (1− α)
( 1

m
· nR′(m− 1)

m

+
m− 1

m
· nR′(2m− 1)

m

)
= (1− α)

2nR′(m− 1)

m

≥ (1− α)2
2n(m− 1)

m
.

Next, we will give an upper bound on sc(x∗, d). To this
end, we first recall that

∑
v∈VR′ d(x

∗, v) = nR′ (m−1)
m . More-

over, d(x∗, v) ≤ 1 for all v ∈ VR. Thus,
∑

v∈VR
d(x∗, v) ≤

nR′ (m−1)
m + (n − nR′) ≤ (1 − α)nm−1

m + αn. We hence
derive that

sc(fRD(R), d)

sc(x∗, d)
≥

2(1− α)2nm−1
m

(1− α)nm−1
m + αn

= 2
(1− α)2

1− α+ α m
m−1

= 2
1− 1

3
√
n

1 + m
m−1

1
3
√
n−1

Finally, we can now give a lower bound for
E[dist(fRD(R), R)]:

E[dist(fRD(R), R)]

≥ P[R ∈ Tα]E[dist(fRD(R), R)|R ∈ Tα]

≥ (1−m!e−
3√n
2m! ) · 2

1− 1
3
√
n

1 + m
m−1

1
3
√
n−1

.

Finally, it is easy to see that the right hand side
converges to 2 when n goes to infinity. Hence,
combining our upper and lower bounds proves that
limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2.

Finally, we prove Proposition 4 in a very similar way than
Proposition 3.

Proposition 4. Let m ≥ 3. It holds for ev-
ery RSCF f with distm(f) < ∞ and z =
lim infn→∞ PR∼IC(m,n)[supp(f(R)) ̸= XR] that

1) lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2 + 1
m−1

2) lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥ 2 + z
m−1 .

Proof. Fix some number of voters n and alternatives m and
consider an arbitrary RSCF f with distm(f) < ∞. Just as
for Proposition 3, we will give lower and upper bounds on
ER∼IC(m,n)[dist(f(R), R)] that converge to 2 + z

m−1 and

2 + 1
m−1 respectively, thus proving the proposition. To fa-

cilitate the proof, we let R denote a random variable which
is distributed according to IC(m,n), and set α = 1

3
√
n

and
y = distm(f). Moreover, we define Tα as the set of profiles
R′ such that n≻(R

′) > α n
m! for all ≻ ∈ R(Xm), and S as

the set of profiles R′ with supp(f(R′)) ̸= Xm.

Upper bound: For our upper bound, we again use the law
of total probability to infer that

E[dist(f(R), R)|]
= P[R ̸∈ Tα] · E[dist(f(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα] · E[dist(f(R), R)|R ∈ Tα].

Now, analogously to the proof of Proposition 3, we can
bound this probability by

E[dist(f(R), R)|]

≤ ym!e−
3√n
2m! + (1−m!e−

3√n
2m! )E[dist(f(R), R)|R ∈ Tα].

We hence aim to bound E[dist(f(R), R)|R ∈ Tα] next.
Towards this end, we note that, every profile R ∈ Tα has a
suprofile R′ such that n≻(R

′) = ⌈(1− α) n
m!⌉ for every ≻ ∈

R(Xm). Now, by Lemma 2, it follows that dist(f(R), R′) ≤
2 + 1

m−1 . Applying Lemma 3 then shows that

dist(f(R), R)) ≤ 2 +
1

m− 1
+ (1−

|VR′|

n
)(y + 1)

≤ 2 +
1

m− 1
+ α(y + 1).

Hence, we can now conclude that

E[dist(f(R), R)|]

≤ ym!e−
3√n
2m! + (1−m!e−

3√n
2m! )(2 +

1

m− 1
+ α(y + 1)).

Taking the limit shows then that
lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2 + 1

m−1 .

Lower bound: For the lower bound, we note that

E[dist(f(R), R)]

≥ P[R ∈ Tα \ S] · E[dist(f(R), R)|R ∈ Tα \ S]
+ P[R ∈ Tα ∩ S] · E[dist(f(R), R)|R ∈ Tα ∩ S].

Next, it is simple to see that P[R ∈ Tα ∩ S] ≥ 1− P[R ̸∈
Tα] − P[R ̸∈ S] = R[R ∈ S] − P[R ̸∈ Tα]. Moreover, it

holds that P[R ̸∈ Tα] ≤ m!e−
3√n
2m! , so we have that

P[R ∈ Tα ∩ S] ≥ P[R ∈ S]−m!e−
3√n
2m! .

Subsequently, we will derive lower bounds on our expec-
tations and first analyze E[dist(f(R), R)|R ∈ Tα ∩ S]. To
this end, we first fix a profile R ∈ Tα ∩ S and investigate
dist(f(R), R). Moreover, let x∗ denote an alternative with
f(R, x∗) = 0 (which exists as R ∈ S) and consider the biased
metric d ∈ D(R) given by the function t with t(x∗) = 0 and
t(x) = 2 for all x ∈ XR \ {x∗}. We observe again that R has
a subprofile R′ such that n≻(R

′) = ⌈(1 − α) n
m!⌉ (because

R ∈ Tα). Similar to the proof of Lemma 1, it is easy to show
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for all x ∈ XR \ {x∗} that
∑

v∈VR′ d(x, v) =
nR′ (2m−1)

m and

that
∑

v∈VR′ d(x
∗, v) = nR′ (m−1)

m . Since f(R, x∗) = 0, we
can compute that

sc(f(R), R) =
∑

x∈XR

f(R, x)
∑
v∈VR

d(v, x)

≥
∑

x∈XR

f(R, x)
∑

v∈VR′

d(v, x)

=
nR′(2m− 1)

m

≥ (1− α)n
2m− 1

m
.

By contrast, we can infer that sc(x∗, R) ≤ nR′ (m−1)
m +

(n− nR′) ≤ (1− α)nm−1
m + αn. In particular, we note for

this inequality that nR′ = m!⌈(1 − α) n
m !⌉ ≥ (1 − α)n and

that d(v, x∗) ≤ 1 for all v ∈ VR. We can now derive that

sc(f(R), R)

sc(x∗, d)
≥

(1− α)n 2m−1
m

(1− α)nm−1
m + αn

=
2m−1
m−1

1 + αm
(1−α)(m−1)

= (2 +
1

m− 1
) · 1

1 + m
m−1 · 1

3
√
n−1

.

Finally, we can now conclude that dist(f(R), R) ≥
sc(f(R),R)
sc(x∗,d) ≥ (2 + 1

m−1 ) ·
1

1+ m
m−1 ·

1
3√n−1

for all R ∈ Tα ∩ S.

As a consequence, E[dist(f(R), R)|R ∈ Tα ∩ S] ≥ (2 +
1

m−1 ) ·
1

1+ m
m−1 ·

1
3√n−1

, too.

Next, we will bound E[dist(f(R), R)|R ∈ Tα \S]. To this
end, let R ∈ Tα \ S, let x∗ ∈ XR denote an alternative that
minimizes f(R, x∗), and let d denote the same biased metric
as before. Since R ∈ Tα, there is a subprofile R′ that contains
every ballot precisely n≻(R

′) = ⌈(1 − α) n
m!⌉ times. Since

f(R, x∗) ≤ 1
m , we can compute that

sc(f(R), d) ≥
∑

v∈VR′

∑
x∈XR

f(R, x)d(x, v)

= (1− f(R, x∗))
nR′(2m− 1)

m

+ f(R, x∗)
nR′(m− 1)

m

≥ 2nR′
m− 1

m

≥ 2(1− α)n
m− 1

m
.

Moreover, by our previous analysis, sc(x∗, d) ≤ (1 −
α)nm−1

m + αn. Hence, we derive that

dist(f(R), R) ≥ sc(f(R), d)

sc(x∗, d)

≥
2(1− α)nm−1

m

(1− α)m−1
m n+ αn

≥ 2
1

1 + m
m−1 · α

1−α

≥ 2
1

1 + m
m−1 · 1

3
√
n−1

.

Since this holds for every R ∈ Tα, we infer that
E[dist(f(R), R)|R ∈ Tα \ S] ≥ 2 1

1+ 1
3√n−1

. Finally, we

can now put everything together:

E[dist(f(R), R)]

≥ P[R ∈ Tα \ S] · E[dist(f(R), R)|R ∈ Tα \ S]
+ P[R ∈ Tα ∩ S] · E[dist(f(R), R)|R ∈ Tα ∩ S]

≥ P[R ∈ Tα \ S] · 2 · 1

1 + m
m−1 · 1

3
√
n−1

+ P[R ∈ Tα ∩ S] · (2 + 1

m− 1
) · 1

1 + m
m−1 · 1

3
√
n

= P[R ∈ Tα] · 2 · 1

1 + m
m−1 · 1

3
√
n−1

+ P[R ∈ Tα ∩ S] · 1

m− 1
· 1

1 + m
m−1 · 1

3
√
n−1

≥ 1

1 + m
m−1 · 1

3
√
n−1

· 2 · (1−m!e−
3√n
2m! )

+
1

1 + m
m−1 · 1

3
√
n−1

· (P[R ∈ S]−m!e−
3√n
2m! ) · 1

m− 1
.

Now, it is easy to verify that

lim
n→∞

1

1 + m
m−1 · 1

3
√
n−1

= 1 and

lim
n→∞

m!e−
3√n
2m! · (2 + 1

m− 1
) · 1

1 + m
m−1 · 1

3
√
n

= 0.

It hence follows that lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥
2 + z

m−1 .
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