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Voting
‣ Consider  voters who have strict preferences over candidates. 

‣ A voting rule maps these preferences to a non-empty subset of candidates. 
‣ Resolute voting rules always return a single candidate. 

‣ Two candidates 
‣ Simple and natural rules satisfy virtually all desirable properties. 

‣ More than two candidates  
‣ significant challenges and inevitable tradeoffs (e.g., Arrow, 1951; Gibbard, 1973; 

Satterthwaite, 1975; Young & Levenglick, 1978; Moulin; 1988) 
‣ plethora of voting rules 

‣ Does identifying a suitable rule become easier when focusing on the case of 
exactly three candidates?

n
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Condorcet Extensions
‣ A Condorcet winner is preferred to both other  

candidates by some majority of voters. 
‣ Any other candidate can be overthrown by a coordinated majority. 

‣ Condorcet extensions select a Condorcet winner  
whenever one exists. 
‣ Condorcet extensions have appealing strategic properties. 

‣ Black (1948): return Condorcet winner, otherwise Borda winners. 

‣ Maximin: return candidates whose minimal majority margin is maximal. 
‣ When the three [pairwise majority] views cannot exist together [because of a cycle], the adopted view results 

from the two [pairwise majority views] that are most probable [i.e., have the largest majority]. 
 

                  (Condorcet, 1785, p. 125) 

‣ Nanson (1883): repeatedly delete all candidates whose Borda score is not above average. 

‣ Leximin: break tie between maximin winners by maximizing second-lowest margins.
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Figure 2: Hasse diagram of three-candidate Condorcet extensions where lower rules refine higher
ones, and rules at the same node are identical.

been studied in the academic literature.2 In the case of three candidates, the leximin rule
is equivalent to the maximin rule with ties broken in favor of candidates with higher Borda
score, a rule that was also discussed by Holliday and Pacuit (2023c, Appendix A). To see
this, note that if two candidates x and y have the same worst margin, then x has a higher
second-worst margin than y if and only if the sum of these two margins is higher for x than
for y.

There are many other commonly studied Condorcet extensions. For brevity, we will not include
definitions of all the rules we mention below since they can be found elsewhere (Duggan, 2013,
for variants of the uncovered set (UC); Holliday and Pacuit, 2021, for top cycle, Llull, Copeland,
Baldwin, strict Nanson, ranked pairs, beat path, split cycle; Caragiannis et al., 2016, for Dodgson
and Young; Holliday and Pacuit, 2023b, for stable voting; Holliday, 2024 or Section 5 below, for
the defensible set).

We will now study how all these Condorcet extensions relate to each other in the case of three
candidates. In particular, we will be interested in which rules are equivalent (i.e., select the same
output for all profiles) and which rules refine which other rules. Figure 2 shows a Hasse diagram

2There have been discussions of this rule on the election-methods mailing list (2010, 2011), and a preprint finds
that leximin is more frequently resolute than other maximin refinements in simulations (Darlington, 2016).
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!. Scoring Rules and Condorcet Extensions

reinforcement when the number of potential voters is unbounded. The following
theorem shows that this incompatibility prevails even when dropping anonymity and
neutrality and having at least nine voters. The theorem is of central importance because
it establishes, two centuries after Borda and Condorcet, that the rationales between both
ideas are inherently irreconcilable.

Theorem 6.5 (Young and Levenglick, 1978) D = S→N,m ⊋ 3,n ⊋ 9

No Condorcet extension satisfies reinforcement.

Proof. We give an alternative, simpler proof than the one by Young and Levenglick
(1978), which requires n ⊋ 13. A computer analysis has shown that the statement even
holds for n ⊋ 8 (see ??).
Let f be a Condorcet extension satisfying reinforcement and consider the following
profile R, which induces a Condorcet cycle with weight 2 on each edge:

a

b

c

5 3

1

2 2 2
a b c

b c a

c a b a

b
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2

Since f(R) ω ↑, we may assume without loss of generality that a ↓ f(R) (otherwise
relabel the alternatives). Now consider the following profile R

↔, defined on a disjoint
set of voters, i.e., NR ↗NR↔ = ↑:

1 2
c a

a c

b b a

b

c

3

1

3

In this profile, a is the Condorcet winner, so f(R↔) = {a}. Since f satisfies reinforcement,
we have f(R ↘ R

↔) = f(R) ↗ f(R↔) = {a}. However, in the combined profile R ↘ R
↔, c is

the Condorcet winner:

2 2 3 2
a b c a

b c a c

c a b b a

b

c1

15

Thus, since f is Condorcet-consistent, f(R ↘ R
↔) = {c}, a contradiction.

When m > 3, place all additional alternatives below a,b, c in an arbitary—but
identical—order in profile R above. It remains to show that f(R) → {a,b, c}. Assume
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Reinforcement

‣ Condorcet extensions have faced criticism due to their vulnerability to 
variable-electorate paradoxes, namely 
‣ the reinforcement paradox (Young and Levenglick, 1978) and  
‣ the no-show paradox (Moulin, 1988). 

‣ Reinforcement (Young, 1974): Candidates who win in two disjoint 
electorates should be precisely the winners in the union of these electorates. 

‣ Theorem (Young and Levenglick, 1978):  
Every Condorcet extension violates reinforcement when .n ≥ 13

6
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Definition: Condorcet Consistent voting rule: one that selects the Condorcet
winner when there is one

Proposition: (Young [1978]) a Condorcet Consistent voting rule must violate
the Reinforcement axiom at some profile of preferences

note: the known proof of statement i) requires 13 voters or more
open question: what is the smallest number of voters for which the statement
holds?
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Reinforcement Results

‣ Theorem: Every Condorcet extension violates reinforcement iff . 
‣ computer-aided proof argues over hundreds of profiles 
‣ much simpler proofs when assuming anonymity or letting  

‣ artificial refinement of maximin satisfies reinforcement when ,  
anonymity, participation, and monotonicity 

‣ Theorem: Every anonymous and neutral Condorcet extension violates 
reinforcement iff . 
‣ Black’s rule and leximin satisfy reinforcement when .  

‣ Scoring rule with score vector (3,1,0) satisfies Condorcet-consistency when  (and 
reinforcement, participation, and monotonicity). 

- Only non-trivial scoring rule to always return the Condorcet winner (among other candidates) when .

n ≥ 8

n ≥ 9
n ≤ 7

n ≥ 5
n ≤ 4

n ≤ 4

n ≤ 6
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?? and ?? entail that no anonymous and neutral Condorcet extension satisfies reinforce-
ment when the number of potential voters is unbounded. The following theorem shows
that this incompatibility prevails even when dropping anonymity and neutrality and
having at least nine voters. The theorem is of central importance because it establishes,
two centuries after Borda and Condorcet, that the rationales between both ideas are
inherently irreconcilable.

Theorem 6.5 (?) D = S→N,m ⊋ 3,n ⊋ 9

No Condorcet extension satisfies reinforcement.

Proof. We give an alternative, simpler proof than the one by ?, which requires n ⊋ 13.
A computer analysis has shown that the statement even holds for n ⊋ 8 (see ??).
Let f be a Condorcet extension satisfying reinforcement and consider the following
profile R, which induces a Condorcet cycle with weight 2 on each edge:
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b c a

c a b a
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c
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Since f(R) ω ↑, we may assume without loss of generality that a ↓ f(R) (otherwise
relabel the alternatives). Now consider the following profile R

↔, defined on a disjoint
set of voters, i.e., NR ↗NR↔ = ↑:

1 2
c a

a c

b b a

b

c

3

1

3

In this profile, a is the Condorcet winner, so f(R↔) = {a}. Since f satisfies reinforcement,
we have f(R ↘ R

↔) = f(R) ↗ f(R↔) = {a}. However, in the combined profile R ↘ R
↔, c is

the Condorcet winner:

2 2 3 2
a b c a

b c a c

c a b b a

b

c1

15

Thus, since f is Condorcet-consistent, f(R ↘ R
↔) = {c}, a contradiction.

When m > 3, place all additional alternatives below a,b, c in an arbitary—but
identical—order in profile R above. It remains to show that f(R) → {a,b, c}. Assume
for contradiction that there is x ↓ f(R) \ {a,b, c}. Then, consider the 3-voter profile R

↔↔

where all voters have the preferences x ≃ a ≃ b ≃ c . . . . Clearly, f(R↔↔) = {x} because of
Condorcet-consistency. Reinforcement implies that f(R ↘ R

↔↔) = {x}, which contradicts
the fact that alternative a is a Condorcet winner in R ↘ R

↔↔. ⫅̸
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Participation
‣ Participation (Brams & Fishburn, 1983): Voters should never be better off by 

abstaining from an election. 

‣ Theorem (Moulin, 1988): For four candidates,  
every resolute Condorcet extension violates participation when . 
‣ Maximin with fixed tie-breaking order satisfies participation for three candidates. 
‣ Theorem (Brandt et al., 2017, Special Issue for Hervé Moulin’s 65th Birthday): For four 

candidates, every resolute Condorcet extension violates participation iff . 

‣ Theorem (Jimeno et al., 2009): For five candidates,  
every Condorcet extension violates optimist participation when . 
‣ Theorem (Brandt et al., 2017): For four candidates, no Condorcet extension satisfies 

optimist participation iff .

n ≥ 25

n ≥ 12

n ≥ 27

n ≥ 17
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Participation Results
‣ Theorem: Every homogeneous Condorcet extension that satisfies optimist 

participation is a refinement of maximin. 
‣ Corollary: Every resolute and homogeneous Condorcet extension that satisfies 

participation is a refinement of maximin. 

‣ Theorem: Maximin is the only homogeneous and continuous Condorcet 
extension that satisfies optimist participation. 

‣ Theorem: Nanson’s rule is the only homogeneous, neutral, and pairwise 
strong Condorcet extension that satisfies optimist participation and tie-break 
positive responsiveness. 

‣ Theorem: Leximin is the only homogeneous, neutral, and pairwise Condorcet 
extension that satisfies optimist participation and positive responsiveness.
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Figure 3: A proof sketch of Theorem 5. In each panel, arrows from x to y indicate that x has a
non-negative majority margin against y: bold arrows represent the largest margins,
normal arrows smaller but strictly positive margins, and dashed arrows the smallest
margins, which may be zero. Between panels, the arrow from A to B explains why the
choice of a candidate in panel A would contradict the choices established in panel B.

Crucially, we have m→
c,a + 2 < m→

b,c and by choice of j we have m↑
c,a < m↑

a,b < m↑
b,c. Thus, P ↑

is a profile matching Case 1. Following our prior analysis, this implies f(P ↑) = {a}. This is a
contradiction to optimist participation because {a} is a worse outcome for voters with preferences
b → c → a than an outcome containing c as a winner. (Note this step uses just singleton negative
involvement.)

Theorem 5 can be reinterpreted for resolute social choice functions, as optimist and resolute
participation are equivalent for resolute social choice functions. Thus, we get the following
corollary for resolute Condorcet extensions.

Corollary 1. Let f be a homogeneous and resolute Condorcet extension that satisfies resolute

participation. Then f is a refinement of maximin.

Inspecting the rules shown in the Hasse diagram of Figure 2, we see that Theorem 5 immediately
implies that many rules fail optimist participation. However, there are some important rules that
do satisfy optimist participation (and also the strengthened version described in Footnote 8):
these are maximin itself (and the many other rules equivalent to it for three candidates), stable
voting, Nanson’s rule, and leximin. In addition, if we use a fixed tie-breaking order to make any
of these rules resolute, they satisfy (optimist/resolute) participation. On the other hand, the
strict Nanson rule fails optimist participation (and even positive involvement, see Footnote 10)
despite being an anonymous and neutral maximin refinement.
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Conclusion

‣ Maximin and two of its refinements—Nanson’s rule and leximin—are 
particularly robust to common criticisms of Condorcet extensions.  
‣ characterized by their immunity to the no-show paradox 
‣ suitable for real-world elections with three candidates 
‣ Nurmi (1989), Felsenthal & Nurmi (2018), and Lepelley & Smaoui (2019)  

also argue in favor of maximin. 
‣ Studies on the frequency of voting paradoxes using computer simulations and Ehrhart 

theory show that maximin also does well for large numbers of voters and three 
candidates (Courtin et al., 2014; Plassmann and Tideman, 2014; Heilmaier, 2020)
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Figure 4: Fraction of anonymous profiles in which SCFs return more than one winner, computed
using Ehrhart theory (Wilson and Pritchard, 2007; Lepelley et al., 2008) and the
Normaliz package (Bruns et al., 2024).

Again, combined with Theorem 5, we obtain an axiomatic characterization.

Corollary 4. Maximin is the only homogeneous and continuous Condorcet extension that satisfies

optimist participation.

The axioms in Corollary 4 are independent: leximin satisfies all axioms except continuity,
Borda’s rule satisfies all axioms except Condorcet-consistency, and the top cycle satisfies all
axioms except optimist participation. Without homogeneity, we can construct an artificial rule
that is identical to maximin, except for the profile 3abc+3bca+2cab+1acb, where the rule returns
{a, c} instead of {a}. Clearly, homogeneity is violated (doubling this profile leads to outcome
{a}). All other properties are inherited from maximin. Checking that optimist participation is
satisfied can be done by case analysis.

6 Conclusion

We have investigated whether the search for a desirable Condorcet extension becomes easier when
focussing on the special case of three candidates. Our results highlight the maximin rule and two
of its refinements (Nanson’s rule and leximin) as being particularly robust to common criticisms
of Condorcet extensions. Indeed, we showed that they are axiomatically characterized by their
immunity to the no-show paradox, together with other desirable properties such as positive
responsiveness. These conclusions could motivate advocating for their adoption in real-world
elections with up to three candidates.

Nanson (1883) gave a rather simple description of his rule for three candidates: each voter
assigns 2 points to his most preferred candidate and 1 point to his second most preferred
candidate; all candidates whose score exceeds the total number of voters face o! in a runo!
election. Leximin is a simple refinement of Nanson where a tie in the runo! is broken using the
scores from the first round. In the generic case (which applies when the number of voters is
large), maximin, Nanson, and leximin all coincide.

Studies on the frequency of voting paradoxes complement our results by showing that maximin
(and its refinements) not only do well for small but also for large numbers of voters when
there are three candidates. Courtin et al. (2014) analyze the frequency of the reinforcement
paradox of various Condorcet extensions using Monte Carlo simulations and find that “although
all frequencies are small, they are smaller for [maximin].” Heilmaier (2020) proves that when
the number of voters goes to infinity, maximin only su!ers from the reinforcement paradox for
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