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A voting rule is a Condorcet extension if it returns a candidate that beats every
other candidate in pairwise majority comparisons whenever one exists. Condorcet
extensions have faced criticism due to their susceptibility to variable-electorate
paradoxes, especially the reinforcement paradox (Young and Levenglick, 1978) and
the no-show paradox (Moulin, 1988b). In this paper, we investigate the susceptibility
of Condorcet extensions to these paradoxes for the case of exactly three candidates.
For the reinforcement paradox, we establish that it must occur for every Condorcet
extension when there are at least eight voters and demonstrate that certain refinements
of maximin—a voting rule originally proposed by Condorcet (1785)—are immune
to this paradox when there are at most seven voters. For the no-show paradox, we
prove that the only homogeneous Condorcet extensions immune to it are refinements
of maximin. We also provide axiomatic characterizations of maximin and two of
its refinements, Nanson’s rule and leximin, highlighting their suitability for three-
candidate elections.

1 Introduction

Deciding between two candidates based on the preferences of multiple voters is straightforward
and allows for simple and natural rules that satisfy virtually all desirable properties, such as
majority rule or weighted threshold rules. However, choosing from three or more candidates
is what leads to significant challenges and inevitable tradeoffs. Arrow’s impossibility and the
Gibbard-Satterthwaite theorem are the best known among many results highlighting these
difficulties (Arrow, 1951; Gibbard, 1973; Satterthwaite, 1975). These findings help to explain the
plethora of voting rules proposed for elections with three or more candidates. In this paper, we
address whether identifying a suitable rule becomes easier when focussing on the case of exactly
three candidates.

The primary reason why plurality rule—the most common voting rule—struggles with three
or more candidates is that it only takes into account the voters’ top choices and thereby, for
example, ignores what a voter who favors candidate a thinks about candidates b and c. Once
this information is taken into account, Condorcet (1785) argued that the best choice is the
candidate that the majority prefers, in the sense that every other candidate is judged to be
worse by some majority of voters. Nowadays, such a candidate is called a Condorcet winner.
Choosing a Condorcet winner is motivated by the observation that any other candidate can be
overthrown by a coordinated majority of voters who all prefer the same candidate to the selected
candidate. However, Condorcet recognized that a Condorcet winner need not exist since the
majority relation may be cyclic. This has given rise to extensive efforts designing Condorcet
extensions, voting rules that select the Condorcet winner whenever it exists and use some other
procedure to choose a candidate in the remaining cases. Dozens of Condorcet extensions have
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been cataloged (Fishburn, 1977; Laslier, 1997; Brandt et al., 2016a). Condorcet also proposed a
Condorcet extension of his own, clearly described for the case of three candidates:

“When the three [pairwise majority] views cannot exist together [because of a cycle],
the adopted view results from the two [pairwise majority views] that are most probable
[i.e., have the largest majority].” (Condorcet, 1785, p. 125)

How this idea should be extended to four or more candidates is only outlined in vague terms
and ultimately remains elusive. However, his proposal for three candidates is unambiguous and
coincides with what many modern Condorcet extensions do in this case, including maximin,
ranked pairs, beat path, split cycle, Kemeny’s rule, Dodgson’s rule, and Young’s rule.

While compelling, Condorcet’s principle to always return the Condorcet winner has also
met some resistance. The two main lines of attack concern settings with a variable set of
voters. In particular, Young and Levenglick (1978) showed that no Condorcet extension satisfies
reinforcement, a consistency condition demanding that if the same winner is returned for two
different electorates, it should also be returned for the union of these electorates. In a similar
spirit, Moulin (1988b) demonstrated that every Condorcet extension suffers from the no-show
paradox, where a voter might benefit by abstaining from an election to achieve a more desirable
outcome. The proofs of Young and Levenglick and Moulin are based on constructing collections
of preference profiles on which the paradoxes cannot be avoided. Moulin’s proof uses profiles
with at least four candidates and 25 voters. Later, a smaller proof requiring only 12 voters was
found, and no proof with fewer voters exists (Brandt et al., 2017). Young and Levenglick’s proof
for the reinforcement paradox uses at least three candidates and 13 voters.

In this paper, we show that refinements of maximin—the rule proposed by Condorcet—perform
particularly well with respect to these paradoxes when there are exactly three candidates.
Specifically, for up to seven voters, we exhibit a refinement of maximin that is immune to the
reinforcement paradox. During a June 2022 lecture at the Institut Henri Poincaré (“Mathématiques
et Démocratie” conference), Hervé Moulin asked what the smallest number of voters is for which
Young and Levenglick’s result holds. We use SAT solvers to answer this question, showing that
it holds even for eight voters. This bound is tight, and thus certain maximin refinements avoid
the reinforcement paradox as much as possible. Regarding the no-show paradox, it is known
that maximin with a fixed tie-breaking order avoids the paradox for three candidates (Moulin,
1988b). We prove that the only homogeneous Condorcet extensions immune to the no-show
paradox are refinements of maximin. Moreover, by adding continuity, we obtain an axiomatic
characterization of maximin. We also characterize two refinements of maximin (Nanson’s rule
and leximin) using natural monotonicity and invariance axioms.

The rest of the paper is structured as follows. In Section 2, we introduce our model and
standard axioms. In Section 3, we provide an overview of Condorcet extensions and their
inclusion relationships when only three candidates exist. In Section 4, we present several
impossibility results involving reinforcement, each using the minimum possible number of voters.
In Section 5, we show that maximin refinements are the only homogeneous Condorcet extensions
that circumvent the no-show paradox and provide characterizations of maximin, Nanson’s rule,
and leximin.

2 Preliminaries

Let A = {a, b, c} be the set of three candidates and let N∗ be the (possibly infinite) set of
potential voters. A non-empty and finite set N ⊆ N∗ is called an electorate. Given an electorate
N , a (preference) profile P = (≻i)i∈N over N is a collection of linear orders, with ≻i denoting
the preference of voter i ∈ N . For example, if a ≻i b ≻i c, then voter i prefers a the most,
followed by b, with c preferred least. We sometimes write abc as a shorthand for this linear order;
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≻1 ≻2 ≻3 ≻4 ≻5

a a b c c
b b c a a
c c a b b

(a) Preference profile.

a

c

b3

11

(b) Margin graph.

a

c

b

(c) Ordinal margin graph.

Figure 1: An example of a preference profile over N = {1, . . . , 5} and its margin graph and
ordinal margin graph. The ordinal margin graph encodes the information that ma,b >
mb,c = mc,a > 0.

in Figure 1(a) and in other figures we show linear orders as columns. We will write x ⪰i y if
x = y or x ≻i y.

Let P be a profile. For two candidates x, y ∈ A, we define the margin of x over y as

mx,y(P ) = |{i ∈ N : x ≻i y}| − |{i ∈ N : y ≻i x}|,

and we just write mx,y if P is clear from the context. Thus, if mx,y > 0, then a strict majority of
voters prefer x to y. Note that mx,y = −my,x and that mx,x = 0. We can display this information
in a margin graph, which is a weighted digraph on vertex set A where for each pair {x, y} of
vertices, we orient the edge as x → y in such a way that mx,y > 0 (so that x beats y in a pairwise
comparison) and give it weight mx,y. For pairs with mx,y = 0, we do not draw an edge. See
Figure 1(b) for an example of a margin graph. For our purposes, it is often not necessary to
know the precise weight of an edge, and in those cases, we can draw the ordinal margin graph,
where we preserve the direction of each edge and show which edges have strictly higher weights
than others (by drawing the higher-weight edge with more thickness) and which edges have equal
weight (by drawing the edges with the same thickness). Sometimes we use an empty arrowhead
for the thinnest edges. See Figure 1(c) for an example of an ordinal margin graph.

For any profile P over N , the margins (mx,y)x,y∈A all have the same parity (which is the same
as the parity of |N |). The well-known McGarvey theorem states that for every margin graph
with same-parity weights, there is a profile P that induces it (McGarvey, 1953; Debord, 1987).

A social choice function f maps each profile P (on any electorate N ⊆ N∗) to a non-empty
set f(P ) ⊆ A of winners. It is resolute if |f(P )| = 1 for all profiles P . A social choice function f1
refines another social choice function f2 if f1(P ) ⊆ f2(P ) for all profiles P .

Let us define four basic properties of a social choice function. The first two are standard
symmetry conditions.

• A social choice function f is anonymous if its output does not depend on the identity of
the voters. Formally, for all profiles P over N and all injections π : N → N∗, we have
f(P ) = f(π(P )) where π(P ) is the profile over π(N) where voter π(i) has preferences ≻i.

• A social choice function f is neutral if its output does not depend on the identities
of the candidates. Formally, for all profiles P and all bijections σ : A → A, we have
σ(f(P )) = f(σ(P )), where σ(P ) refers to the profile obtained from P by replacing each
voter i’s preference x ≻i y ≻i z with σ(x) ≻i σ(y) ≻i σ(z).

The next two properties involve the operation of copying a profile, which is always possible,
provided that the set of potential voters is infinite. Thus, we will only invoke these axioms when
N∗ = N. Let P be a profile over N with |N | = n. We say that a profile Q over electorate N ′ with
|N ′| = t · n is a t-fold copy of P if we can partition N ′ into t disjoint subelectorates N1, . . . , Nt,
each of size n, such that the restricted profile QNj is a copy of P for each j = 1, . . . , t, in the
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sense that there is a bijection ϕ : N → Nj such that each voter i ∈ N has the same preferences
as ϕ(i). We usually write “tP ” to denote a profile that is a t-fold copy of P .

• A social choice function f is homogeneous if doubling the profile does not affect the output.
Formally, f is homogeneous if for all profiles P and 2P such that 2P is a 2-fold copy of P ,
we have f(P ) = f(2P ).

• A social choice function f is continuous if for all profiles P and P ′, there is some n′ ∈ N
such that for all n ≥ n′ it holds that f(nP + P ′) ⊆ f(P ) whenever nP is an n-fold copy of
P defined on an electorate disjoint from P ′.

Young (1975) introduced the continuity axiom for anonymous social choice functions, with the
intuition that overwhelmingly large groups of voters should decide the outcome, while negligible,
arbitrarily small groups should only be able to break ties. It is also known as the “overwhelming
majorities axiom” (Myerson, 1995).

3 Condorcet Extensions

We say that a candidate x ∈ A is a Condorcet winner if mx,y > 0 for all y ∈ A\{x}, which means
that x beats every other candidate in a pairwise majority comparison. A Condorcet winner may
fail to exist (see Figure 1), but if it exists, it has to be unique. A social choice function f is a
Condorcet extension or Condorcet-consistent if f(P ) = {x} whenever x is a Condorcet winner.

Numerous Condorcet extensions have been defined, though for the case of three candidates,
many of these rules coincide. Of particular interest is the maximin rule, which selects the
candidates whose worst margin is highest:

fmaximin(P ) = argmax
x∈A

min
y∈A\{x}

mx,y.

Thus, the winners under this rule never lose too badly against another candidate. It is sometimes
also known as the minimax rule (since it minimizes the worst loss) or the Simpson-Kramer rule.

To define some other social choice functions, we need the concept of the Borda score of a
candidate, defined as βx =

∑
y∈Amx,y. This is the net out-degree of x in the margin graph. The

Borda rule selects the candidates with the highest Borda score. Note that a Condorcet winner x,
if one exists, has a strictly positive Borda score (because mx,y > 0 for all y ̸= x). In addition,
because mx,y = −my,x, we have

∑
x∈A βx = 0, so the average Borda score of a candidate is 0, and

thus a Condorcet winner always has an above-average Borda score. However, it need not have
the highest Borda score. Still, Borda scores can be used to define some interesting Condorcet
extensions:

• The Black (1948) rule is the rule that selects the Condorcet winner if one exists and
otherwise returns the candidates with the highest Borda score.

• The Nanson (1883) rule repeatedly deletes all candidates whose Borda score is not positive.
Borda scores are computed with respect to the remaining candidates A′ ⊆ A, and the
process continues until there is no candidate x with positive Borda score

∑
y∈A′ mx,y.

• The leximin rule selects candidates whose worst margin is highest, just like maximin.
However, when there are several such candidates, it breaks the tie in favor of those with
the higher second-worst margin, breaking any remaining ties using the third-worst margin,
and so on.1 This is a natural way to refine maximin, though it does not appear to have

1Formally, for x ∈ A, let mx = (mx
1 , . . . ,m

x
m) be a reordered vector of the majority margins (mx,y)y∈A with

mx
1 ≤ · · · ≤ mx

m. For x, y ∈ A we write mx ▷ my if and only if there is some r ≤ m such that mx
i = my

i for
all i < r and mx

r > my
r . For a given profile, leximin returns the set of all x such that there is no y ∈ A with

my ▷mx. We call ▷ the lexicographic ordering. It forms a linear order over Zm, so for leximin to return multiple
candidates, these must have the same ordered vector of majority margins.
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top cycle

UC McKelvey

UC GilliesBanks
UC Bordes

Black
Schwartz

Llull (Copeland0.5)
UC Fishburn

maximin
split cycle

ranked pairs
beat path
Kemeny
Dodgson
Young

Copeland

defensible set

Baldwin

Nansonstable voting strict Nanson

leximin

Figure 2: Hasse diagram of three-candidate Condorcet extensions where lower rules refine higher
ones, and rules at the same node are identical.

been studied in the academic literature.2 In the case of three candidates, the leximin rule
is equivalent to the maximin rule with ties broken in favor of candidates with higher Borda
score, a rule that was also discussed by Holliday and Pacuit (2023c, Appendix A). To see
this, note that if two candidates x and y have the same worst margin, then x has a higher
second-worst margin than y if and only if the sum of these two margins is higher for x than
for y.

There are many other commonly studied Condorcet extensions. For brevity, we will not include
definitions of all the rules we mention below since they can be found elsewhere (Duggan, 2013,
for variants of the uncovered set (UC); Holliday and Pacuit, 2021, for top cycle, Llull, Copeland,
Baldwin, strict Nanson, ranked pairs, beat path, split cycle; Caragiannis et al., 2016, for Dodgson
and Young; Holliday and Pacuit, 2023b, for stable voting; Holliday, 2024 or Section 5 below, for
the defensible set).

We will now study how all these Condorcet extensions relate to each other in the case of three
candidates. In particular, we will be interested in which rules are equivalent (i.e., select the same
output for all profiles) and which rules refine which other rules. Figure 2 shows a Hasse diagram
of the refinement relation of these Condorcet extensions. Rules that appear in the same node
of the diagram are equivalent. Note, in particular, the large cluster of equivalent Condorcet
extensions in the middle: maximin is equivalent to split cycle, ranked pairs, beat path, as well as

2There have been discussions of this rule on the election-methods mailing list (2010, 2011), and a preprint finds
that leximin is more frequently resolute than other maximin refinements in simulations (Darlington, 2016).
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top cycle {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, c} {a, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}

UC McKelvey {a, b, c} {a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}

UC Bordes
Banks {a, b, c} {a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, b, c} {a, b} {a, b, c} {a, b} {a, b, c} {a, b}

UC Gillies {a, b, c} {a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, b, c} {a, c} {a, b, c} {a, c} {a, b, c} {a, c}

defensible set {a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, c} {a, c} {a, c} {a, c} {a, c} {a} {a}

Llull
Schwartz

UC Fishburn
{a, b, c} {a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, b, c} {a} {a, b, c} {a} {a, b, c} {a}

Copeland {a, b, c} {a, b, c} {a, b, c} {a} {a, c} {a, c} {a, b, c} {a} {a, b, c} {a} {a, b, c} {a}

maximin
ranked pairs
beat path
split cycle

{a, b, c} {a, b, c} {a, c} {a, c} {a, c} {a, c} {a} {a} {a} {a} {a} {a}

strict Nanson {a, b, c} {a, b, c} {c} {a, c} {a, c} {a, c} {a} {a} {a} {a} {a} {a}

stable voting {a, b, c} {a, b, c} {a, c} {a} {a, c} {a} {a} {a} {a} {a} {a} {a}

Nanson {a, b, c} {a, b, c} {a} {a} {a, c} {a, c} {a} {a} {a} {a} {a} {a}

leximin {a, b, c} {a, b, c} {a} {a} {a, c} {a} {a} {a} {a} {a} {a} {a}

Table 1: The outputs of rules that only depend on the ordinal margin graph.

the rules of Kemeny, Dodgson, and Young.

Theorem 1. For three candidates, Figure 2 shows the Hasse diagram of the refinement relation
between select Condorcet extensions.

Proof. Except for Black’s and Baldwin’s rules (which we will consider separately), all of the
social choice functions included in the diagram depend only on the ordinal margin graph. This
means that if two profiles induce the same ordinal margin graph, then the output is the same
for the two profiles (Holliday, 2024). For most rules, this can be seen straightforwardly from
their definitions. In fact, many of the Condorcet extensions in the diagram only depend on
the orientation of the edges in the margin graph and not their relative weights. For Kemeny’s,
Dodgson’s, and Young’s rules, this follows because they are equivalent to maximin for three
candidates (Courtin et al., 2014, working paper version, Theorem 1; see also Heilmaier, 2020,
Theorem 3.2). For the Nanson and strict Nanson rules, this follows because, for three candidates,
the ordinal margin graph contains enough information to determine whether a candidate has
below-average Borda score.3 Note that all these rules are Condorcet extensions, and they are
neutral. Therefore, these rules can be fully specified by listing their outputs on the 12 possible
non-isomorphic ordinal margin graphs in which there is no Condorcet winner. We have produced
such a list in Table 1, which immediately establishes most of the relations displayed in Figure 2.

For Black’s rule, note that it will never select a candidate that only has incoming edges but no
outgoing edges (since such a candidate has negative Borda score). Inspecting Table 1, we see that,
when there is no Condorcet winner, Banks’ rule returns all candidates for which this is not the
case (among others); hence Black’s rule refines Banks (which in turn refines UC McKelvey and

3Nanson’s rule eliminates all candidates whose Borda score is at most 0 (or strictly below 0 for the strict Nanson
rule). For three candidates, a candidate’s Borda score is at most 0 if and only if it either does not have outgoing
edges or it has one outgoing edge that is lighter than its incoming edge. It is strictly below 0 if it either has no
outgoing edges and an incoming edge or it has one outgoing edge that is strictly lighter than its incoming edge.
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the top cycle). On the profile 3abc+ bca+ 4cab, Black’s rule selects {a} while UC Gillies selects
{b, c}; hence Black’s rule is not refined by and does not refine any other rule in the diagram
(which are all refinements of UC Gillies).

For Baldwin’s rule, we can go through the 12 ordinal margin graphs in Table 1 to determine
what it may output on each of them and thereby deduce that it refines the defensible set (and
consequentially also UC Gillies, UC McKelvey, and the top cycle).4 On the profile 4acb+ 5bac+
3cab+ 5cba, Baldwin selects {a} while Black’s rule, leximin, and strict Nanson (the leaves of the
diagram) all select {c}, so Baldwin is not refined by any other rule in the diagram. On the other
hand, on the profile 1abc+ 3bca+ 4cab, Baldwin’s rule selects {b, c} while Banks’ rule selects
{a, c}, so Baldwin does not refine rules other than the ones indicated in the diagram.

In the absence of majority ties (i.e., when only Graphs A, C, G, I, and K are considered), even
more rules coincide. The top cycle, all variants of the uncovered set, Schwartz, and Copeland are
equivalent because they return all candidates when the majority graph is a three-cycle. Moreover,
stable voting coincides with maximin, and Nanson’s rule coincides with leximin. When restricting
attention to the generic case where, on top of the absence of majority ties, no two margins are
equal (called uniquely weighted profiles by Holliday and Pacuit, 2023a), maximin is resolute and
hence coincides with all its refinements. In Table 1, only Graph G and Graph K are generic in
this sense, and we can see that the rules mentioned in the table collapse to a hierarchy of only
three Condorcet extensions: the top cycle, the defensible set, and maximin.

4 Reinforcement

In this section, we study the reinforcement axiom, which demands that candidates who win for
two disjoint electorates should be precisely the winners for the union of these electorates (Young,
1974, 1975). Suppose that P = (≻i)i∈N and P ′ = (≻i)i∈N ′ are preference profiles defined over
electorates N and N ′ that are disjoint: N ∩N ′ = ∅. We can, therefore, merge these profiles into
a single profile P + P ′ = (≻i)i∈N∪N ′ defined on the electorate N ∪N ′.

Definition 1 (Reinforcement). A social choice function f satisfies reinforcement if for all profiles
P and P ′ on disjoint electorates, we have f(P + P ′) = f(P ) ∩ f(P ′) whenever f(P ) ∩ f(P ′) ̸= ∅.

In other words, if there is a candidate a who wins in both P and P ′, then a also wins in the
combined profile P + P ′, and all other winners in P + P ′ must also win in both P and P ′.

Young and Levenglick (1978, Theorem 2) famously showed that reinforcement is in conflict
with Condorcet-consistency. Their result is only phrased in terms of weak Condorcet winners,
but they briefly mention a variant of this result that can be turned into a 13-voter impossibility
for Condorcet extensions (see, e.g., Moulin, 1988a, Theorem 9.2). We will show that the
incompatibility remains intact even when there are fewer than 13 voters.

4.1 Simple Proof for Nine Voters

We begin by giving a very simple proof of the incompatibility for 9 voters. It can be obtained by
essentially optimizing the existing proofs of Young and Levenglick (1978) and Moulin (1988a)
with respect to the number of required voters. This proof was found by Keyvan Kardel and also
appears in the handbook chapter by Zwicker (2016, Prop. 2.5).

A remarkable feature of this proof is that it only uses a weak form of reinforcement: A social
choice function satisfies subset-reinforcement if for all P1 and P2 defined on disjoint electorates,

4For Graphs A and B, the defensible set contains all candidates, so Baldwin refines it. For Graphs C, D, E, and
F, b is the Borda loser, and so is eliminated first, so Baldwin refines the defensible set {a, c}. For Graphs G
and H, the Borda loser is either b or c; if b is eliminated then c wins; if c is eliminated then a wins, refining the
defensible set {a, c}. For Graphs I and J, c is eliminated, followed by b, so a wins, refining the defensible set
{a, c}. For Graphs K and L, c is eliminated, followed by b, so a wins, refining the defensible set {a}.
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we have f(P1) ∩ f(P2) ⊆ f(P1 + P2). This property was also discussed by Young and Levenglick
(1978).

Theorem 2. Every Condorcet extension violates subset-reinforcement when |N∗| ≥ 9.

Proof. Let f be a Condorcet extension satisfying subset-reinforcement. Let N1 and N2 be two
disjoint electorates consisting of 6 and 3 voters, respectively. Without loss of generality, let
N1 = {1, 2, 3, 4, 5, 6} and N2 = {7, 8, 9}. Consider the following profile P1 with 6 voters, which is
a “double Condorcet cycle”:

≻1 ≻2 ≻3 ≻4 ≻5 ≻6

a a b b c c
b b c c a a
c c a a b b a

c

b2

22

Because f(P1) ̸= ∅, we may assume without loss of generality that a ∈ f(P1) (otherwise relabel
the candidates). Now consider the following profile P2 with 3 voters:

≻7 ≻8 ≻9

a a c
c c a
b b b a

c

b3

31

In this profile, a is the Condorcet winner, so f(P2) = {a} because f is a Condorcet extension.
Note that P1 and P2 are defined over disjoint electorates, and that a ∈ f(P1)∩ f(P2). Because f
satisfies subset-reinforcement, we have f(P1)∩ f(P2) ⊆ f(P1 +P2), and therefore a ∈ f(P1 +P2).
However, in the combined profile P1 + P2, c is the Condorcet winner:

≻1 ≻2 ≻3 ≻4 ≻5 ≻6 ≻7 ≻8 ≻9

a a b b c c a a c
b b c c a a c c a
c c a a b b b b b a

c

b5

11

Thus, since f is a Condorcet extension, we have f(P1 + P2) = {c}, a contradiction.

Theorem 2 also holds for “superset-reinforcement”, which requires that for all profiles P and
P ′, we have f(P ) ∩ f(P ′) ⊇ f(P + P ′) whenever f(P ) ∩ f(P ′) ̸= ∅. To see this, we can slightly
adapt the proof by noting that superset-reinforcement implies that f(P1 + P2) ⊆ {a}.

Note that the proof of Theorem 2 only invokes (subset-)reinforcement for pairs of profiles
where at least one of them has a Condorcet winner. This is a particularly compelling application
of reinforcement since it has the flavor of participation: if x is a winner in a profile and we add
some new voters to it who agree that x is the strongest candidate (in the sense that x is the
Condorcet winner with respect to the new voters), then x should still be a winner.

4.2 Proof using Anonymity

Are 9 voters necessary to obtain the incompatibility between reinforcement and being a Condorcet
extension? As it turns out, the result holds even for 8 voters.

Fact 1. Every Condorcet extension violates reinforcement when |N∗| ≥ 8.
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We discovered this fact using a SAT solver,5 and we have no human-readable proof for it. The
minimal unsatisfiable subsets of clauses (a measure of proof complexity) that we were able to
extract argue about hundreds or even thousands of profiles.

However, we can give a proof if we assume anonymity in addition. Anonymity is particularly
natural in a variable-electorate model and allows us to apply reinforcement without having to
ensure that electorates are disjoint.

Theorem 3. Every anonymous Condorcet extension violates reinforcement when |N∗| ≥ 8.

Proof. Let f be an anonymous Condorcet extension satisfying reinforcement. Let P1 be the
Condorcet cycle profile:

P1

a b c
b c a
c a b

Note that by anonymity, we do not need to assign each preference relation to a specific voter
i ∈ N∗. Because f(P1) ̸= ∅, we may assume without loss of generality that a ∈ f(P1).

Consider the following combination of two profiles:

P1

a b c
b c a
c a b

+

P2

a a c c
b c a a
c b b b

=

P7

a a a b c c c
b b c c a a a
c c b a b b b

Throughout the proof, the colored candidate marks the Condorcet winner of a profile, so P7

has Condorcet winner c. From reinforcement and f being Condorcet-consistent, we can infer
that a ̸∈ f(P2), since otherwise we have a ∈ f(P1) ∩ f(P2) and would therefore also have
a ∈ f(P7) = {c}, a contradiction.

Similarly, we can deduce from

P1

a b c
b c a
c a b

+

P3

a a b c
c c c a
b b a b

=

P8

a a a b b c c
b c c c c a a
c b b a a b b

that a ̸∈ f(P3).
Next, consider

P0

b
a
c

+

P2

a a c c
b c a a
c b b b

=

P4

a a b c c
b c a a a
c b c b b

from which we can deduce that b ̸∈ f(P2), since otherwise b ∈ f(P0) ∩ f(P2) and hence by
reinforcement b ∈ f(P4), contradicting that f is a Condorcet extension.

5SAT solving is a computational method that has been leveraged to obtain impossibility theorems in social
choice (see, e.g., Geist and Peters, 2017). We have also used it to find the proofs of Theorem 3 and Theorem 4.
To check Fact 1, our Boolean formula did not list all non-anonymous profiles for up to 8 voters since there
are 78 > 5 million of them. Instead, similarly to the approach of Brandl et al. (2021, Section 5.2), it was
sufficient to list all profiles that can be obtained via voter and candidate permutations from the profiles used
in the proof of Theorem 3. To encode reinforcement, add a variable vP1,P2 for each pair P1, P2 of profiles
indicating whether f(P1) ∩ f(P2) ̸= ∅; then for all x ∈ A add clauses (x ∈ f(P1) ∧ x ∈ f(P2)) → vP1,P2 and
(vP1,P2 ∧ x ∈ f(P1 ∪ P2)) → x ∈ f(Pi) for i = 1, 2, and (vP1,P2 ∧ x ∈ f(P1) ∧ x ∈ f(P2)) → x ∈ f(P1 ∪ P2).
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Similarly, from
P0

b
a
c

+

P3

a a b c
c c c a
b b a b

=

P6

a a b b c
c c a c a
b b c a b

we can deduce that b ̸∈ f(P3).
We have shown that a, b ̸∈ f(P2) and that a, b ̸∈ f(P3). It follows that

f(P2) = f(P3) = {c}.

Now, because

P2

a a c c
b c a a
c b b b

+

P3

a a b c
c c c a
b b a b

=

P9

a a a a b c c c
b c c c c a a a
c b b b a b b b

it follows from reinforcement that f(P9) = {c}.
However, because a ∈ f(P1) and because f is a Condorcet extension, we get from

P1

a b c
b c a
c a b

+

P5

a a a c c
c c c a a
b b b b b

=

P9

a a a a b c c c
b c c c c a a a
c b b b a b b b

that a ∈ f(P9) by reinforcement. This contradicts our prior conclusion that f(P9) = {c}.

4.3 Proof using Anonymity and Neutrality

When additionally requiring neutrality, the impossibility can be proven using only 5 voters.

Theorem 4. Every anonymous and neutral Condorcet extension violates reinforcement when
|N∗| ≥ 5.

Proof. Let f be an anonymous and neutral Condorcet extension satisfying reinforcement. We
will consider the following three profiles:

P1

c
a
b

P2

a b
b a
c c

P3

a b c
b c a
c a b

In profile P1, c is the Condorcet winner, and so f(P1) = {c} because f is a Condorcet extension.
Next, we consider P2. We can show that c /∈ f(P2) as follows: If c ∈ f(P2), then by reinforcement,
we would have c ∈ f(P1 + P2). However, in P1 + P2, a is the Condorcet winner (throughout this
proof, we rearrange voters using anonymity):

P1 + P2

a b c
b a a
c c b

10



Since f is a Condorcet extension, we have f(P1 + P2) = {a}, which contradicts c ∈ f(P1 + P2).
Thus, c /∈ f(P2). Now, by neutrality and anonymity, and noting that f(P2) must be non-empty,
we have f(P2) = {a, b}, as a and b are symmetric in P2. Finally, the profile P3 is a Condorcet
cycle. By anonymity and neutrality, f(P3) = {a, b, c}.

Now let’s examine P2 + P3:
P2 + P3

a a b b c
b b a c a
c c c a b

By reinforcement, we must have:

f(P2 + P3) = f(P2) ∩ f(P3) = {a, b}

However, in P2 + P3, a is the Condorcet winner. Thus f(P2 + P3) = {a}, a contradiction.

The reinforcement axiom was originally introduced by Young (1974, 1975) to give an axiomatic
characterization of the class of scoring rules. A scoring rule is a social choice function defined
by a scoring vector (s1, s2, s3) ∈ R3. Given a profile P , it then computes the score of each
candidate by letting each voter assign s1 points to their top-ranked candidate, s2 points to the
second-ranked candidate, and s3 points to their last-ranked candidate. Then the scoring rule
selects the candidates with the highest score. A scoring rule is strictly monotonic if s1 > s2 > s3
and it is weakly monotonic if s1 ≥ s2 ≥ s3 and s1 > s3. Borda’s rule is a scoring rule with s1 = 2,
s2 = 0, and s3 = −2, where we have chosen the scores so they agree with our earlier definition of
the Borda score of a candidate as βx =

∑
y∈Amx,y. Another classic scoring rule is the plurality

rule with s1 = 1 and s2 = s3 = 0, choosing as winners those candidates who are top-ranked
most frequently. Young (1975) showed that if the set of potential voters N∗ is infinite, then an
anonymous, neutral, and continuous social choice function satisfies reinforcement if and only if it
is a scoring rule. Dropping continuity from the axioms, Young (1975) characterized the class
of composite scoring rules where additional scoring rules are used to break ties (for example,
choosing the plurality winners with the highest Borda score).

Now, because every (composite) scoring rule satisfies anonymity, neutrality, and reinforcement,
Theorem 4 implies that every (composite) scoring rule fails Condorcet-consistency on some profile
with at most 5 voters.

This is a new proof of a classic result, first established by Condorcet (1785, pages clxxvij–
clxxviij, translated by McLean and Hewitt, 1994, pages 137–138) who constructed an 81-voter
profile (30abc+ acb+10cab+29bac+10bca+ cba) on which a is the Condorcet winner but every
strictly monotonic scoring rule uniquely elects b. Fishburn (1984) gives an example with 7 voters
(3abc+2bca+ bac+ cab) that has the same property. For weakly monotonic scoring rules, Moulin
(1988a, Theorem 9.1) gave a 17-voter example (6abc + 3cab + 4bac + 4bca) such that a is the
Condorcet winner and every weakly monotonic scoring rule uniquely elects b. Moulin suggested
that this example is minimal, but in fact an 11-voter example with the same property is minimal
(4abc+ 3bca+ 2bac+ 2cab, computed by Christian Stricker). Because in these examples, b is the
unique scoring winner in each case, we can deduce that no refinement of a (weakly) monotonic
scoring rule can be a Condorcet extension. Weber (2002, Theorem 5) gives a related example.

The examples discussed in the previous paragraph are all “universal counterexamples”, while
the proof of Theorem 4 is based on reasoning across several profiles. However, by an observation
of Florian Grundbacher, the profile P2 + P3 in that proof (2abc + bac + bca + cab) can also
function as a universal counterexample, showing that no scoring rule (including non-monotonic
or composite ones) can always uniquely select the Condorcet winner. This is because in this
profile, a is the Condorcet winner, but a and b are “rank-indistinguishable”: they both appear
twice in first rank, twice in second rank, and once in third rank. Hence, any scoring rule assigns
a and b exactly the same score, so that a can never have the uniquely highest score.
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Note that these universal counterexamples do not quite imply Theorem 4, because such an
implication would depend on the characterization of Young (1975) which requires an infinite set
of potential voters, while Theorem 4 only requires 5 voters.

4.4 Lower Bounds

In this section, we show that the numbers of voters in our incompatibility theorems for reinforce-
ment are minimal. To start, Theorem 4 contains a bound of 5 voters. This is the best possible
since Black’s rule, stable voting, and leximin are anonymous, neutral, and satisfy reinforcement
for up to 4 voters. Interestingly, all other Condorcet extensions discussed in Section 3 fail
reinforcement even for 4 voters.6

For our other bounds, we will define an artificial rule that satisfies reinforcement for up to 7
voters and subset-reinforcement for up to 8 voters, which shows that the bounds of Theorem 3
and Theorem 2 are the best possible. Given Theorem 4, this artificial rule necessarily fails
neutrality. It is a refinement of maximin that breaks ties according to an intricate scoring system
which we found by solving an integer linear program. This scoring system is non-neutral and
specifies for each linear order a number of points that it assigns to its top and its second choice.
In addition, for the linear order abc, the number of points differs depending on whether the
number of voters in the input profile is in {2, 4, 6, 8} (Case 1) or not (Case 2). Our rule then
returns the maximin winner that obtained the highest score.

Case 1

a 11
b 8
c 0

Case 2

a 18
b 13
c 0

a 10
c 7
b 0

b 18
a 11
c 0

b 7
c 0
a 0

c 13
a 5
b 0

c 8
b 0
a 0

Using a computer, one can verify that this Condorcet extension satisfies reinforcement up to
7 voters and subset-reinforcement up to 8 voters.7 It is also anonymous (but not neutral) and
satisfies participation as well as monotonicity, which states that improving a winner x in some
voters’ preference relation while keeping everything else intact should not remove x from the
choice set. It fails homogeneity, as one can find a profile with 8 voters in which a and c are the
weak Condorcet winners and c is selected due to the tie-breaking, but doubling the profile makes
a the unique winner because different scores are used for 16 voters.

5 Participation

Throughout this section, we assume that N∗ = N, so the set of potential voters is infinite. This
means that it is always possible to copy a profile, and thus, the homogeneity and continuity
axioms apply.

The participation axiom demands that voters are never better off by abstaining from an
election. For a preference profile P = (≻i)i∈N and voter j ∈ N , we write P−j = (≻i)i∈N\{j} for
the profile obtained from P by deleting j. For resolute rules, the definition of the participation
axiom is straightforward: voter j should weakly prefer the outcome when j is present to the
outcome when j is absent.

Definition 2 (Resolute participation, Moulin, 1988b). A resolute social choice function satisfies
resolute participation if for all profiles P and j ∈ N with f(P ) = {x} and f(P−j) = {y}, we have
x ⪰j y.

6Consider the profile acb+(abc+bca+cab), on which every anonymous and neutral Condorcet extension satisfying
reinforcement must select {a} (this can be seen from the indicated decomposition into two subprofiles). This
profile corresponds to Graph D in Table 1, which indicates that most rules select {a, c} on this profile; this is
also true for Baldwin. Copeland and Nanson fail reinforcement for the profile (abc+ bac) + (abc+ bca), where
they select {a, b} on the first subprofile, {b} on the second subprofile, but {a, b} on the whole profile.

7Code is available at https://gist.github.com/DominikPeters/eeea2456ee4a4cdf2c5aa302b24af7a6.
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Moulin (1988b) has shown that when there are at least four candidates, then every resolute
Condorcet extension violates resolute participation. This incompatibility holds for 12 or more
voters (Brandt et al., 2017). On the other hand, Moulin (1988b) proved that for three candidates,
maximin with a fixed tie-breaking order satisfies resolute participation.

For irresolute social choice functions, defining participation requires us to compare the sets of
candidates f(P ) and f(P−j) with respect to the preference relation ≻j . This can be done in various
ways. We will focus on the following well-studied variant that evaluates sets “optimistically”,
that is, by comparing the most-preferred candidates contained in each set. For a non-empty set
A′ ⊆ A of candidates, we write max≻i A

′ for the most-preferred candidate in A′ according to ≻i,
so that max≻i A

′ ⪰i x for all x ∈ A′.

Definition 3 (Optimist participation). A social choice function satisfies optimist participation if
for all profiles P and all j ∈ N , max≻j f(P ) ⪰j max≻j f(P−j).

For four or more candidates, Jimeno et al. (2009) showed that no Condorcet extension satisfies
optimist participation (see, also, Brandt et al., 2017, Thm. 6). For three candidates, maximin
satisfies optimist participation. To see this, let P be a profile and j ∈ N be a voter with preference
≻j . Let g be the resolute social choice function obtained from maximin by breaking ties using
≻j as tie-breaking order. Then g satisfies resolute participation (Moulin, 1988b). Thus,

max≻j f(P ) = g(P ) ⪰j g(P−j) = max≻j f(P−j),

so that maximin satisfies optimist participation.8

To compare our results with existing results, let us define two additional participation-related
conditions. A social choice function satisfies positive involvement (Pérez, 2001) if whenever a
voter joins a profile in which that voter’s top candidate wins, then this candidate still wins.
Formally, for all profiles P and all j ∈ N with x the top-ranked candidate of j, we have that if
x ∈ f(P−j) then x ∈ f(P ). Pérez (2001) also defined an analogous notion of negative involvement,
which demands that if an agent’s least-favorite candidate loses, then it still loses when the
agent joins the electorate. We define an alternative version of this condition, singleton negative
involvement, which says that if f(P−j) ̸= {x} and x is bottom ranked by j, then f(P ) ̸= {x}.9
For three candidates, it turns out that the conjunction of positive involvement and singleton
negative involvement is equivalent to optimist participation, which one can verify by case analysis
on all possible combinations of sets f(P−j) ⊆ A and f(P ) ⊆ A.

Proposition 1. A social choice function satisfies optimist participation if and only if it satisfies
positive involvement and singleton negative involvement.

Pérez (1995) noted that in order to satisfy positive involvement, a Condorcet extension must
refine what Holliday (2024) later called the defensible set. The defensible set of a profile P is

fdefensible(P ) = {x ∈ A : for all y ∈ A, there is z ∈ A with mz,y ≥ my,x}.

We include a proof for completeness, noting that it is similar to an argument that was already
used by Moulin (1988b, Claim (3)).10

8In fact, maximin satisfies a stronger notion of participation based on the Fishburn preference extension
(Gärdenfors, 1979). In particular, writing X = fmaximin(P ) and Y = fmaximin(P−j), it can be shown that
we always have X ≻j Y \X and X \ Y ≻j Y , by applying standard results about the Fishburn preference
extension (Erdamar and Sanver, 2009, Theorem 3.4; Brandt et al., 2022b, Section 3.3(ii)) and using the fact
that maximin satisfies resolute participation for all ways of breaking ties using a fixed tie-breaking ordering.

9While similar in spirit, singleton negative involvement and negative involvement are logically incomparable.
However, for resolute social choice functions, they are equivalent.

10The “converse” does not hold. Indeed, the strict Nanson rule and Baldwin’s rule refine the defensible set
(Theorem 1) but fail positive involvement even for three candidates: on the profile 2acb+ 2bac+ 2cba, both
rules select {a, b, c}; after adding a cab voter, we get the profile 2acb+2bac+ cab+2cba where both rules select
{a}, violating positive involvement.
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Lemma 1 (Holliday, 2024, Lemma 2(1); Pérez, 1995, Lemma 3). Let f be a Condorcet extension
that satisfies positive involvement. Then f is a refinement of fdefensible, the defensible set.

Proof. Let P be a profile. Let x /∈ fdefensible(P ), so that there exists y ∈ A with my,x > mz,y for
all z ∈ A. Recall that all margins of a profile must have the same parity, so my,x > mz,y implies
that we even have my,x > mz,y + 1 for all z ∈ A. We need to show that x /∈ f(P ). Assume for
a contradiction that x ∈ f(P ). Add my,x − 1 voters with rankings x ≻ y ≻ . . . to P to obtain
the profile P ∗. By positive involvement, x has to remain chosen by f after each addition of one
voter, and thus, x ∈ f(P ∗). However, y is the Condorcet winner in P ∗, because we have margins
m∗

y,x = 1 and m∗
y,z = −mz,y − 1 +my,x > 0. Thus, because f is a Condorcet extension, we have

x /∈ f(P ), a contradiction.

5.1 Participation Requires Refining Maximin

As noted above, maximin satisfies optimist participation for three candidates. We will now show
that maximin is, in fact, pre-eminent among Condorcet extensions having this property: all such
Condorcet extensions must be refinements of maximin under the mild additional assumption of
homogeneity.11

Theorem 5. Let f be a homogeneous Condorcet extension that satisfies optimist participation.
Then f is a refinement of maximin.

Our proof will use Lemma 1 to deduce that f must refine the defensible set. It will then use
the extra strength of optimist participation compared to positive involvement (in particular,
singleton negative involvement, see Proposition 1) to narrow down the space of candidates that
f can select to conclude that f must refine maximin.

Proof. On profiles that induce a Condorcet winner, f refines maximin because it is a Condorcet
extension. On profiles whose margin graph is a cycle with three equal non-negative margins,
maximin selects all three candidates, and so f trivially refines maximin. All other profiles induce
margin graphs that match, up to renaming the candidates, one of the four cases depicted in
Figure 3.12

The defensible set coincides with the maximin winners in Cases 1, 2, and 4. Because f
satisfies positive involvement (by Proposition 1), it refines the defensible set by Lemma 1, and
therefore f refines maximin in Cases 1, 2, and 4. (Figure 3 makes the argument of Lemma 1
explicit by explaining what voters to add to arrive at a Condorcet winner and a contradiction to
participation.)

It remains to consider Case 3, which concerns profiles P that, up to renaming candidates,
induce a cycle with 0 ≤ mc,a < mb,c ≤ ma,b. In P , the unique maximin winner is a. Thus, our
task is to show that f(P ) = {a}. We will show this by connecting this case to Case 1. Because
fdefensible(P ) = {a, c}, we get that b /∈ f(P ) from Lemma 1. Assume for a contradiction that
c ∈ f(P ). Let P ′ = 2P be a profile consisting of two copies of P . By homogeneity, we obtain
c ∈ f(P ′). Let j = (m′

a,b −m′
b,c)/2 + 1. Adding j voters to P ′ with preferences b ≻ c ≻ a yields

a profile P ∗ with margins

m∗
c,a = m′

c,a + j, m∗
a,b = m′

a,b − j, and m∗
b,c = m′

b,c + j.

11Our proof of Theorem 5 actually uses the weaker “inclusion homogeneity” (Holliday and Pacuit, 2023c, Definition
3.6) requiring only f(P ) ⊆ f(2P ). In fact, we only need that for every profile P , there exists at least one profile
2P that is a 2-fold copy of P and such that f(P ) ⊆ f(2P ). In the absence of anonymity, this is a weaker notion.
Indeed, there are some non-anonymous refinements of maximin that satisfy participation and this weakened
homogeneity, but not full homogeneity. An example is maximin with ties broken in favor of the most-preferred
candidate of the voter i ∈ N ⊆ N∗ = N with the smallest label. This satisfies homogeneity as long as the copy
2P has the same smallest-labelled voters as in P .

12Comparing to the graphs shown in Table 1, we see that Case 1 corresponds to Graphs K and L; Case 2
corresponds to Graphs E and F; Case 3 (left) corresponds to Graphs G and H; Case 3 (right) corresponds to
Graphs I and J; Case 4 corresponds to Graphs C and D.
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Case 4

a

c

b

Maximin: {a, c}

Case 1

a

c

b

Maximin: {a}

Case 3

a

c

b

Maximin: {a}

a

c

b

Maximin: {a}

Case 2

a

c

b

Maximin: {a, c}

a

c

b

Maximin: {a, c}

a

c

b

Condorcet winner: {b}

a

c

b

Condorcet winner: {a}

if c is selected, add cba voters,
obtaining Condorcet winner b,

but c must be selected.

if b is selected, add bac voters,
obtaining Condorcet winner a,

but b must be selected.

if c is selected, add bca voters
to obtain Case 2, and deduce

that a cannot be selected
in Case 2, contradiction.

Figure 3: A proof sketch of Theorem 5. In each panel, arrows from x to y indicate that x has a
non-negative majority margin against y: bold arrows represent the largest margins,
normal arrows smaller but strictly positive margins, and dashed arrows the smallest
margins, which may be zero. Between panels, the arrow from A to B explains why the
choice of a candidate in panel A would contradict the choices established in panel B.

Crucially, we have m′
c,a + 2 < m′

b,c and by choice of j we have m∗
c,a < m∗

a,b < m∗
b,c. Thus, P ∗

is a profile matching Case 1. Following our prior analysis, this implies f(P ∗) = {a}. This is a
contradiction to optimist participation because {a} is a worse outcome for voters with preferences
b ≻ c ≻ a than an outcome containing c as a winner. (Note this step uses just singleton negative
involvement.)

Theorem 5 can be reinterpreted for resolute social choice functions, as optimist and resolute
participation are equivalent for resolute social choice functions. Thus, we get the following
corollary for resolute Condorcet extensions.

Corollary 1. Let f be a homogeneous and resolute Condorcet extension that satisfies resolute
participation. Then f is a refinement of maximin.

Inspecting the rules shown in the Hasse diagram of Figure 2, we see that Theorem 5 immediately
implies that many rules fail optimist participation. However, there are some important rules that
do satisfy optimist participation (and also the strengthened version described in Footnote 8):
these are maximin itself (and the many other rules equivalent to it for three candidates), stable
voting, Nanson’s rule, and leximin. In addition, if we use a fixed tie-breaking order to make any
of these rules resolute, they satisfy (optimist/resolute) participation. On the other hand, the
strict Nanson rule fails optimist participation (and even positive involvement, see Footnote 10)
despite being an anonymous and neutral maximin refinement.
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Theorem 5 shows that every social choice function satisfying certain axioms must refine
maximin. A theorem with the same conclusion was recently obtained by Holliday and Pacuit
(2023c). They introduce the axioms of weak positive responsiveness, which requires that if
z ∈ f(P ) and if P ′ is obtained from P through some voter changing her preferences from
x ≻ y ≻ z to z ≻ x ≻ y, then f(P ′) = {z}, and the axiom of block preservation which requires
that if Q is a profile in which each of the 3! = 6 possible preferences occurs exactly once, then
f(P ) ⊆ f(P +Q).

Theorem 6 (Holliday and Pacuit, 2023c, Theorem 3.8 and Proposition 3.10). Let f be an
anonymous, neutral, and homogeneous Condorcet extension that satisfies positive involvement,
weak positive responsiveness, and block preservation. Then f is a refinement of maximin.

Note that our Theorem 5 does not require the axioms of anonymity, neutrality, weak positive
responsiveness, and block preservation but instead uses singleton negative involvement (see
Proposition 1).

In the following sections, we will characterize several rules as the unique maximin refinements
satisfying certain axioms. Each of these results can be combined with either the axioms of
Theorem 5 (or those of Theorem 6) to obtain axiomatic characterizations within the class of all
social choice functions.

5.2 Characterization of Leximin

Leximin refines maximin and is remarkably resolute because it only returns a tie when two
candidates are “locally indistinguishable” within the margin graph (see Footnote 1). This allows
it to satisfy a demanding monotonicity-style axiom called positive responsiveness. We say that a
profile P ′ is obtained from a profile P by improving x relative to y if the ranking of all candidates
stays fixed except that one or more voters who rank y immediately above x in P instead rank
x immediately above y in P ′. A social choice function f satisfies positive responsiveness (May,
1952; Barberà, 1977, Definition 7) if whenever x ∈ f(P ) and P ′ is obtained from P by improving
x ∈ f(P ) relative to y ∈ A, we have f(P ′) = {x}. We show that leximin is the unique maximin
refinement that satisfies this property among maximin refinements that are neutral and that are
pairwise. A social choice function f is pairwise if it only depends on the margin graph, i.e., for
all P and P ′ such that mx,y(P ) = mx,y(P

′) for all x, y ∈ A, we have f(P ) = f(P ′).

Lemma 2. Leximin is the only neutral and pairwise refinement of maximin that satisfies positive
responsiveness.

Proof. We first show that leximin satisfies all axioms. It is neutral and pairwise by definition.
To see that it satisfies positive responsiveness, note that if P ′ is obtained from P by moving up
x ∈ fleximin(P ) then the margins of x only improve, i.e., mx(P ′) ▷mx(P ), while for any z ̸= x the
margins can only become worse, i.e., mz(P ) ⊵ mz(P ′). (See Footnote 1 for the definition of the
relation ▷.) Let z ∈ A \ {x}. Then because x is selected by leximin, we have mx(P ) ⊵ mz(P ).
Thus, mx(P ′) ▷ mx(P ) ⊵ mz(P ) ⊵ mz(P ′). Hence z /∈ fleximin(P

′) and so fleximin(P
′) = {x} as

desired.
For uniqueness, let f be a maximin refinement satisfying neutrality, pairwiseness, and positive

responsiveness. By pairwiseness, note that f is also anonymous. We need to show that f = fleximin.
By pairwiseness, it suffices to consider each possible margin graph, find some profile P that
induces it, and show that f(P ) = fleximin(P ). So consider any margin graph. If maximin selects
a unique winner when given a profile inducing that margin graph, we are done since then all
maximin refinements select the same choice set. All other margin graphs correspond to Graphs
A to F in Table 1.

For Graph A (the Condorcet cycle with three edges each with positive weight t) take P =
t · (abc+ bca+ cab) and for Graph B (all pairs of candidates are majority tied) take the profile
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P consisting of one copy of each of the six preference orders. Anonymity and neutrality imply
f(P ) = {a, b, c} which equals fleximin(P ).

For Graphs C and D, we have a majority graph with 0 ≤ mc,a = mb,c < ma,b. Let P be a
profile inducing this graph (which exists by McGarvey’s theorem). Let t = 1

2(ma,b −mb,c) > 0.
We may assume that there are at least t many voters with preferences c ≻ a ≻ b in P (otherwise
we can add those voters to P and also add t voters with opposite preferences b ≻ a ≻ c which
leads to a profile inducing the same margin graph). Let P ′ be the profile obtained from P by
selecting t voters with preferences c ≻ a ≻ b and replace their preference by c ≻ b ≻ a. Then on
P ′, all majority margins are equal, i.e., 0 ≤ mc,a(P

′) = ma,b(P
′) = mb,c(P

′). This corresponds
to Graphs A or B, and thus f(P ′) = {a, b, c}. Note that P can be viewed as being obtained
from P ′ by improving a ∈ f(P ′) relative to b. Thus, by positive responsiveness, we obtain
f(P ) = {a} = fleximin(P ).

For Graph E, where the two edges both have weight 2t, consider the profile P = t · (acb+ cab)
inducing it. Note that b /∈ fmaximin(P ) and thus b /∈ f(P ). By anonymity and neutrality, we
obtain f(P ) = {a, c} = fleximin(P ).

For Graph F, we have ma,b > mc,b > mc,a = 0. Let t = 1
2(ma,b −mc,b) > 0 and let P be a

profile inducing Graph F with at least t voters having preference a ≻ b ≻ c. By changing t
of these votes to b ≻ a ≻ c, we reach a profile P ′ on which the new majority margins satisfy
ma,b(P

′) = mc,b(P
′), which is of type Graph E, and thus f(P ′) = {a, c}. Note that P can

be viewed as being obtained from P ′ by improving a ∈ f(P ′) relative to b. Thus, by positive
responsiveness, we obtain f(P ) = {a} = fleximin(P ), concluding the proof.

As we explained, combined with Theorem 5, we obtain an axiomatic characterization.

Corollary 2. Leximin is the only homogeneous, neutral, and pairwise Condorcet extension that
satisfies optimist participation and positive responsiveness.

5.3 Characterization of Nanson’s rule

Leximin is very decisive and only reports ties in very specific situations. However, one may argue
that leximin neglects to select some candidates that deserve to win. In particular, it may fail to
select a candidate even if it is “almost” a Condorcet winner in the sense that, in pairwise majority
comparisons, it is never beaten but does beat some other candidates. For example, in Graph F
of Table 1, candidate c meets this description but is not selected by leximin, which selects only
{a}. In contrast, Nanson’s rule selects {a, c}. Note that Graph F is the only case where leximin
and Nanson’s rules differ. Graphs D and E also have intermediate Condorcet winners ({a} and
{a, c}, respectively).

The concept of candidates that are almost Condorcet winners in this sense was first considered
by Buckley and Westen (1979) and Gehrlein (1983). They were later termed “intermediate
Condorcet winners” by Barberà and Bossert (2024). Formally, a candidate x is an intermediate
Condorcet winner if mx,y ≥ 0 for all y ∈ A, and at least one of these inequalities is strict. Barberà
and Bossert (2024) say that f is a strong Condorcet extension if f(P ) is equal to the set of
intermediate Condorcet winners whenever this set is non-empty. Note that whenever a candidate
is a Condorcet winner, it is also the unique intermediate Condorcet winner. In Graph F in
Table 1, a and c are intermediate Condorcet winners, and thus a strong Condorcet extension
must select both of them. Since leximin only selects a it is not a strong Condorcet extension
(the same is true for stable voting). However, Nanson’s rule is a strong Condorcet extension.13

Given our previous result about leximin, Nanson’s rule must violate positive responsiveness.
However, it does satisfy a slight weakening that is concerned with voters who rank two winning
candidates next to each other; if such a voter flips those candidates, then the tie should be broken

13For more than 3 candidates, Nanson’s rule is not a strong Condorcet extension. In the profile 2abcd+ 4adbc+
1bcda+ 1cdab+ 4cdba, a is the unique intermediate Condorcet winner but Nanson selects {c}.
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in favor of the strengthened candidate. Thus, a social choice function f satisfies tie-break positive
responsiveness if whenever x, y ∈ f(P ) and P ′ is obtained from P by improving x relative to y,
then f(P ′) = {x}. This is a weaker property than positive responsiveness.

Lemma 3. Nanson’s rule is the only neutral and pairwise refinement of maximin that satisfies
tie-break positive responsiveness and is a strong Condorcet extension.

Proof. We first show that Nanson’s rule satisfies these axioms. It refines maximin by Theorem 1
and is pairwise and neutral as Borda scores only depend on the majority margins and are
neutral. That Nanson’s rule is a strong Condorcet extension can be seen from Table 1. Tie-break
positive responsiveness is satisfied due to the following case distinction: Let P be a profile. If
|fNanson(P )| = 1, then tie-break positive responsiveness does not apply to P . If |fNanson(P )| = 2,
say fNanson(P ) = {a, c}, then a and c have positive Borda score in the first round and the
resulting majority comparison is a tie. When we improve, say, a relative to c, this increases the
Borda score of a and decreases the one of c (and keeps the Borda score of b the same). Thereafter,
a may be the unique candidate with positive Borda score in the first round, or a and c both
retain positive Borda score, but then a wins the majority comparison against c. Hence, in either
case, fNanson(P

′) = {a}, as required by tie-break positive responsiveness. If |fNanson(P )| = 3,
then the rule stopped without eliminating any candidates, which means that all candidates have
a Borda score of zero in P . Hence, improving some x relative to any y makes x the unique
candidate with strictly positive Borda score, and thus fNanson(P

′) = {x}, as required by tie-break
positive responsiveness.

For uniqueness, let f be neutral and pairwise maximin refinement that is a strong Condorcet
extension and that satisfies tie-break positive responsiveness. We go through all possible margin
graphs and show that f coincides with Nanson’s rule. Whenever maximin chooses only one
candidate, it is clear that all refinements return the same choice set. Considering Table 1, we see
that only Graphs A to F remain.

For Graphs A and B (Condorcet cycles with three equally and non-negatively weighted edges),
pairwiseness and neutrality imply that f(P ) = {a, b, c} = fNanson(P ) as in the proof of Lemma 2.
The argument for Graphs C and D is identical to the corresponding argument in the proof
of Lemma 2 because tie-break positive responsiveness suffices. For Graphs E and F, strong
Condorcet-consistency requires that f(P ) = {a, b} = fNanson(P ). This concludes the proof that
f is equal to Nanson’s rule.

As before, combined with Theorem 5, we obtain an axiomatic characterization.

Corollary 3. Nanson’s rule is the only homogeneous, neutral, and pairwise strong Condorcet
extension that satisfies optimist participation and tie-break positive responsiveness.

5.4 Characterization of Maximin

Lastly, we characterize maximin itself. We do so using the continuity axiom, which has been
used in other characterizations to rule out tie-breaking mechanisms (e.g., Young, 1975).14 One
can view leximin and Nanson as applying a certain tie-breaking mechanism to maximin, and
indeed these two rules fail continuity. In fact, all of maximin’s strict refinements fail continuity.
This is true for any number of candidates and may thus be of independent interest.

Lemma 4. Maximin is continuous. If f is continuous and a refinement of maximin, then f is
equal to maximin.

14To see why continuity rules out tie-breaking, suppose candidates a and b are tied, with the tie broken in favor of
a. When copying the profile n times, there will still be a tie, broken in favor of a (assuming homogeneity).
However, if we add a profile P ′ where b is a clear winner, then in nP + P ′, candidate b will be the strongest.
This is a failure of continuity: f(nP + P ′) = {b} ̸⊆ {a} = f(P ).

18



Proof. In this proof, a candidate x∗ ̸= x is said to be an opponent of x w.r.t. profile P if
mx,x∗(P ) ≤ mx,z(P ) for all z ≠ x. With this terminology, the definition of the maximin rule
becomes fmaximin(P ) = {x ∈ A : mx,x∗(P ) ≥ my,y∗(P ) for all y ∈ A}.

We first claim the following:

for any profiles P and P ′ and any candidate x, if x∗ is an opponent of x w.r.t. P
and among these minimizes mx,x∗(P ′), then for all large enough n, x∗ is also an
opponent of x w.r.t. nP + P ′.

(1)

To prove this, we have to show that mx,x∗(nP + P ′) ≤ mx,z(nP + P ′) for all z ̸= x. First, let z
not be an opponent of x. Then, mx,x∗(P ) < mx,z(P ), and hence for large enough n, we have

mx,x∗(nP + P ′) = nmx,x∗(P ) +mx,x∗(P ′) < nmx,z(P ) +mx,z(P
′) = mx,z(nP + P ′).

Otherwise, z is an opponent of x and hence mx,x∗(P ) = mx,z(P ). By choice of x∗, we obtain

mx,x∗(nP + P ′) = nmx,x∗(P ) +mx,x∗(P ′) ≤ nmx,z(P ) +mx,z(P
′) = mx,z(nP + P ′),

proving the claim.
To show that maximin satisfies continuity, let P and P ′ be two profiles and write W =

fmaximin(P ). For each z ∈ A, denote by z∗ an opponent of z w.r.t. P which among them
minimizes mz,z∗(P

′). If W = A, then trivially fmaximin(nP + P ′) ⊆ W and we are done.
Otherwise, let x ∈ W and y /∈ W , and so mx,x∗(P ) > my,y∗(P ). By choosing n large enough,
we also obtain that mx,x∗(nP + P ′) > my,y∗(nP + P ′). By (1), y is not chosen by maximin in
nP + P ′. Hence, for n large enough, we have fmaximin(nP + P ′) ⊆ W .

For the second claim, let f be a refinement of maximin that is continuous. Let P be a profile
and write W = fmaximin(P ); we need to show that f(P ) = W . If |W | = 1, this is true since f
refines maximin. Otherwise, write W = {x1, . . . , xk} with k ≥ 2. Without loss of generality, it
suffices to show that x1 ∈ f(P ).

Suppose first that mxi,z(P ) ≥ 0 for all xi ∈ W and all z ∈ A. Then for all xi, xj ∈ W , we have
mxi,xj (P ) ≥ 0 and mxj ,xi(P ) ≥ 0. Since mxi,xj (P ) = −mxj ,xi(P ), it follows that mxi,xj (P ) = 0.
Now let P ′ be a profile consisting of a single voter who ranks x1 on top. For every n ≥ 1, the
profile nP + P ′ has x1 as its Condorcet winner because it now strictly beats all other candidates.
Because f is a Condorcet extension (being a maximin refinement) and because it is continuous,
we have {x1} = f(nP + P ′) ⊆ f(P ) and therefore x1 ∈ f(P ), as desired.

Otherwise, mxk,y(P ) < 0 for some xk ∈ W and some y ̸= xk. For each i, let x∗i be an opponent
of xi w.r.t. P . Becaue mxk,y(P ) < 0, we have mxk,x

∗
k
(P ) < 0. Thus by definition of maximin, we

have mxi,x∗
i
(P ) < 0 for all xi ∈ W . Using McGarvey’s theorem, we now construct a profile P ′

with the following margin graph: for each xi ∈ W \{x1}, set mxi,x∗
i
(P ′) = −2 and mx∗

i ,xi(P
′) = 2;

all other majority margins are set to zero. To see that this is well-defined (and we do not assign
different weights to the same edge), note that if we had (xi, x

∗
i ) = (x∗j , xj) for some i and j, then

mxi,x∗
i
(P ) = mx∗

j ,xj (P ) = −mxj ,x∗
j
> 0, contradicting mxi,x∗

i
(P ) < 0. Now, for each xi ∈ W , the

margin mxi,x∗
i
(P ′) = −2 is the smallest margin appearing in P ′ and thus x∗i is an opponent xi

w.r.t. P which minimizes mxi,x∗
i
(P ′). Thus for large enough n, due to (1), we find that for every

xj ∈ W , the candidate x∗j is an opponent of x w.r.t. nP +P ′. Note that because maximin satisfies
continuity, we have fmaximin(nP + P ′) ⊆ fmaximin(P ) = W for large enough n. In addition, for
all xj ̸= x1, we have

mx1,x∗
1
(nP + P ′) = nmx1,x∗

1
(P ) + 0 = nmxj ,x∗

j
(P ) > nmxj ,x∗

j
(P )− 2 = mxj ,x∗

j
(nP + P ′),

and hence xj /∈ fmaximin(nP + P ′). Thus fmaximin(nP + P ′) = {x1}. Because f is a maximin
refinement and continuous, we obtain {x1} = f(nP + P ′) ⊆ f(P ) for n large enough, and
therefore x1 ∈ f(P ), as desired.
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Figure 4: Fraction of anonymous profiles in which SCFs return more than one winner, computed
using Ehrhart theory (see, e.g., Brandt et al., 2016b) and the Normaliz package (Bruns
et al., 2024).

Again, combined with Theorem 5, we obtain an axiomatic characterization.

Corollary 4. Maximin is the only homogeneous and continuous Condorcet extension that satisfies
optimist participation.

The axioms in Corollary 4 are independent: leximin satisfies all axioms except continuity,
Borda’s rule satisfies all axioms except Condorcet-consistency, and the top cycle satisfies all
axioms except optimist participation. Without homogeneity, we can construct an artificial rule
that is identical to maximin, except for the profile 3abc+3bca+2cab+1acb, where the rule returns
{a, c} instead of {a}. Clearly, homogeneity is violated (doubling this profile leads to outcome
{a}). All other properties are inherited from maximin. Checking that optimist participation is
satisfied can be done by case analysis.

6 Conclusion

We have investigated whether the search for a desirable Condorcet extension becomes easier when
focussing on the special case of three candidates. Our results highlight the maximin rule and two
of its refinements (Nanson’s rule and leximin) as being particularly robust to common criticisms
of Condorcet extensions. Indeed, we showed that they are axiomatically characterized by their
immunity to the no-show paradox, together with other desirable properties such as positive
responsiveness. These conclusions could motivate advocating for their adoption in real-world
elections.

Nanson (1883) gave a rather simple description of his rule for three candidates: each voter
assigns 2 points to his most preferred candidate and 1 point to his second most preferred
candidate; all candidates whose score exceeds the total number of voters face off in a runoff
election. Leximin is a simple refinement of Nanson where a tie in the runoff is broken using the
scores from the first round. In the generic case (which applies when the number of voters is
large), maximin, Nanson, and leximin all coincide.

Studies on the frequency of voting paradoxes complement our results by showing that maximin
(and its refinements) not only do well for small but also for large numbers of voters when
there are three candidates. Courtin et al. (2014) analyze the frequency of the reinforcement
paradox of various Condorcet extensions using Monte Carlo simulations and find that “although
all frequencies are small, they are smaller for [maximin].” Heilmaier (2020) proves that when
the number of voters goes to infinity, maximin only suffers from the reinforcement paradox for
0.37% of all pairs of anonymous profiles in which the winners coincide, which is lower than the
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corresponding numbers for Black’s rule and plurality with runoff. Plassmann and Tideman
(2014) analyze the frequency of voting paradoxes based on data generated using a spatial model,
which they argue most accurately describes real-world preference profiles for three candidates.
They conclude that “the Black rule and the Nanson rule encounter most paradoxes and ties less
frequently than the other rules do, especially in elections with few voters.” As we have discussed,
the leximin rule produces ties even less frequently than Nanson’s rule. We can quantify this
effect by computing the fraction of anonymous profiles on which different rules are non-resolute,
as a function of the number of voters. The results are shown in Figure 4 and show that leximin
even outperforms Black’s rule.15

In conclusion, we believe that maximin and its refinements are very attractive for three-
candidate elections and are compelling choices for adoption in real-world applications.16 Similar
conclusions were drawn by Nurmi (1989), Felsenthal and Nurmi (2018), and Lepelley and Smaoui
(2019). We emphasize that our arguments do not extend beyond three-candidate elections. When
there are four or more candidates, the no-show paradox cannot be avoided. In addition, there
are many different ways of extending the three-candidate maximin rule to handle additional
candidates, and not all of them are equally desirable. For example, for four or more candidates,
maximin may return candidates that are last-ranked by a majority of voters (see, e.g., Felsenthal,
2012; Brandt et al., 2022a), while other generalizations like split cycle avoid this problem.
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