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‣ Von Neumann’s minimax theorem (1928) shows that the 
best outcome that the row player can guarantee coincides 
with the best outcome the column player can guarantee. 
‣ All pairs of maximin strategies are Nash equilibria, which 

furthermore yield the same payoff. 
‣ The set of Nash equilibria is convex. 
‣ Nash equilibria of zero-sum games can be efficiently computed. 
‣ “Every two-person zero-sum game is determined […] it has 

precisely one individually rational payoff vector” (Aumann, 1987) 

‣ Yet, providing normative foundations for maximin play turns 
out to be surprisingly difficult.
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Why should one play maximin strategies 
in two-player zero-sum games?

⅓ ⅔
⅓ 2 0 3
⅔ 0 1 0

1 0 5
John von Neumann
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Related Work

‣ Epistemic approaches 
‣ Bayesian belief hierarchies, which capture players’ knowledge 

about each other (e.g., Aumann & Brandenburger, 1995;  
Aumann & Drèze, 2008) 

‣ Characterizations of the value 
‣ Typically not motivated on normative grounds; value is devoid of 

any strategic content (e.g., Vilkas, 1963; Tijs, 1981; Hart et al., 
1994; Norde & Voorneveld, 2004) 

‣ Characterizations of Nash equilibrium 
‣ Consistency axiom for variable number of players (Peleg & Tijs, 

1996, Norde et al., 1996)
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Robert Aumann
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Summary
‣ Our approach: Characterize maximin strategies via 

decision-theoretic axioms that require players to behave 
coherently across hypothetical games. 

‣ Our result: A rational and consistent consequentialist who 
ascribes the same properties to his opponent must play 
maximin strategies. 

‣ The result can be turned into a characterization of Nash 
equilibrium in unrestricted (non-zero-sum) games. 
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The Model
‣ : Infinite universal set of actions 

‣ : set of finite subsets of  

‣ : zero-sum game with action 
sets  

‣ : set of rational-valued strategies 
over  

‣ : solution concept mapping a game  
to a set of recommended strategies 

 for the row player 

‣

U
ℱ(U) U

M ∈ ℚA×B

A, B ∈ ℱ(U)
Δ(A)

A ∈ ℱ(U)
f M

f(M) ⊆ Δ(A)
maximin(M) = arg max

p∈Δ(A)
min

q∈Δ(B)
ptMq
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U = {a, b, c, …}
A = {a, b} ∈ ℱ(U)

p = (½,½) ∈ Δ(A)

M = (1 0
0 2)

maximin(M) = {(⅔,⅓)}
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Consequentialism

‣ Decision-theoretic precursors 
‣ Chernoff (1954)’s Postulate 6 (cloning of player’s actions) and  

Postulate 9 (cloning of nature’s states) 
‣ Column duplication (Milnor, 1954) 
‣ Deletion of repetitious states (Arrow and Hurwicz, 1972; Maskin, 1979) 

‣ Implies invariance w.r.t. permutations of actions 
‣ Chernoff (1954)’s Postulate 3 
‣ Symmetry (Milnor, 1954)
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Players do not distinguish between payoff-equivalent actions.
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Consequentialism

‣ Let , and  
such that there exist surjective functions 
  and 
  with 

 for all  

‣ Then, 
.

A, B ∈ ℱ(U),  ̂A ⊆ A, B̂ ⊆ B, M ∈ ℚA×B M̂ ∈ ℚ ̂A×B̂

α : A → ̂A
β : B → B̂

Mab = M̂α(a)β(b) (a, b) ∈ A × B.

f(M) = ⋃
̂p∈f(M̂)

{p ∈ Δ(A) : ∑
a∈α−1( ̂a)

p(a) = ̂p( ̂a) for all  ̂a ∈ ̂A}
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Players do not distinguish between payoff-equivalent actions.
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‣ Example:
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M = (
1 1 0
0 0 2
0 0 2) M̂ = (1 0

0 2)
f(M) = {(⅔, λ,⅓ − λ) : λ ∈ [0,⅓]} f(M̂) = {(⅔,⅓)}

‣ Let , and  
such that there exist surjective functions 
  and 
  with 

 for all  

‣ Then, 
.

A, B ∈ ℱ(U),  ̂A ⊆ A, B̂ ⊆ B, M ∈ ℚA×B M̂ ∈ ℚ ̂A×B̂

α : A → ̂A
β : B → B̂

Mab = M̂α(a)β(b) (a, b) ∈ A × B.

f(M) = ⋃
̂p∈f(M̂)

{p ∈ Δ(A) : ∑
a∈α−1( ̂a)

p(a) = ̂p( ̂a) for all  ̂a ∈ ̂A}
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Consistency
 
 

‣ Let , and  

‣ If  and , then 
 
                  

A, B ∈ ℱ(U) M̂, M̄ ∈ ℚA×B, λ ∈ [0,1] ∩ ℚ.

f(M̂) ∩ f(M̄) ≠ ∅ f(−M̂t) ∩ f(−M̄t) ≠ ∅

f(M̂) ∩ f(M̄) ⊆ f(λM̂ + (1 − λ)M̄).
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A strategy recommended for two different games will also be 
recommended if there is uncertainty which of the games will be played.
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Consistency

‣ Example:
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f(M̂) = f(M̄) = {(⅖,⅖,⅕)}
f(−M̂t) = f(−M̄t) = {(⅖,⅕,⅖)}

(⅖,⅖,⅕) ∈ f(½ M̂ + ½ M̄)

M̂ = (
4 0 0
0 4 2
0 0 4) M̄ = (

2 4 0
0 0 4
4 0 0) ½ M̂ + ½ M̄ = (

3 2 0
0 2 3
2 0 2)

‣ Let , and  

‣ If  and , then 
 
                  

A, B ∈ ℱ(U) M̂, M̄ ∈ ℚA×B, λ ∈ [0,1] ∩ ℚ.

f(M̂) ∩ f(M̄) ≠ ∅ f(−M̂t) ∩ f(−M̄t) ≠ ∅

f(M̂) ∩ f(M̄) ⊆ f(λM̂ + (1 − λ)M̄).
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Rationality

‣ Classic axiom from decision theory 
‣ Strong domination (Milnor, 1954) 
‣ Property (5) (Maskin, 1979) 
‣ weaker than Chernoff (1954)’s Postulate 2
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Strictly dominated actions are not recommended.
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Rationality

‣ Let  and . 

‣  

‣ Example:

A, B ∈ ℱ(U) M ∈ ℚA×B

f(M) ⊆ {p ∈ Δ(A) : ∀a ∈ A ∃ ̂a ∈ A ∀b ∈ B, Mab < M ̂ab ⇒ p(a) ≠ 1}
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Strictly dominated actions are not recommended.

M = (1 2
0 1) f(M) ⊆ {(λ,1 − λ) : λ ∈ (0,1]}
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The Result

‣ If  satisfies consequentialism, consistency, and rationality, 
then  for all . 

‣ Proof idea: 
‣ If one of the players does not play a maximin strategy, their 

strategies do not constitute a Nash equilibrium. 
‣ Use consequentialism and consistency to construct a game in 

which the player who has a profitable deviation plays a 
dominated action with probability 1. 

‣ This contradicts rationality.

f
f(M) ⊆ maximin(M) A, B ∈ ℱ(U), M ∈ ℚA×B
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Proof Sketch
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⅓ ⅔
⅔ 0 1 1
⅓ 1 0 1

⅓ ⅔
0 1 1

⅓ 0 1 1
⅓ 0 1 1
⅓ 1 0 1

conseq. consist.

⅓ ⅔
0 1 1

1 ⅓ ⅔ 1
conseq.

⅓ ⅓ ⅓
0 1 1 1 1

1 ⅓ ⅔ ⅔ ⅔ 1
consist.

conseq.

conseq.

Row player plays a  
dominated action ↯

⅓ ⅓ ⅓
1 0 1 1 1

1 ⅔ ⅓ ⅔ ⅔ 1

⅓ ⅔
0 1 1

⅓ 0 1 1
⅓ 1 0 1
⅓ 0 1 1

⅓ ⅔
0 1 1

⅓ 1 0 1
⅓ 0 1 1
⅓ 0 1 1

⅓ ⅔
0 1 1

⅓ ⅓ ⅔ 1
⅓ ⅓ ⅔ 1
⅓ ⅓ ⅔ 1

1
⅔ 1

1 ⁵⁄₉ ⅚

⅓ ⅓ ⅓
1 1 0 1 1

1 ⅔ ⅔ ⅓ ⅔ 1

⅓ ⅓ ⅓
0 1 1 1 1

1 ⅓ ⅔ ⅔ 1 ⅔

⅓ ⅓ ⅓
1 0 1 1 1

1 ⅔ ⅓ ⅔ 1 ⅔

⅓ ⅓ ⅓
1 1 0 1 1

1 ⅔ ⅔ ⅓ 1 ⅔



Justifying Optimal Play via Consistency Felix Brandt

Independence of Axioms

‣ All axioms are required for the characterization of . 
‣ The solution concept that returns all lotteries violates rationality. 

‣  (returns all randomizations over rows that contain a 
maximal entry of the game matrix) violates consistency. 

-        

‣  (all randomizations over rows with maximal average 
payoff) violates consequentialism. 

-    

maximin

maximax

M̂ = (5 1 0
4 4 0) M̄ = (1 5 0

4 4 0) ½ M̂ + ½ M̄ = (3 3 0
4 4 0)

average

M̂ = (0 2 2
3 0 0) M̄ = (0 2

3 0)
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Strong Consistency

‣  violates strong consistency:  
implies . 
‣ (Consistency additionally requires .) 

-        

‣ The characterization also holds in the domain of symmetric 
zero-sum games (via a simpler proof). 
‣ In this case, consistency and strong consistency coincide.

maximin f(M̂) ∩ f(M̄) ≠ ∅
f(M̂) ∩ f(M̄) ⊆ f(λM̂ + (1 − λ)M̄)

f(−M̂t) ∩ f(−M̄t) ≠ ∅

M̂ = (0 4
2 0) M̄ = (4 0

0 2) M = ½ M̂ + ½ M̄ = (2 2
1 1)
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Extensions

‣ Assuming that  is upper hemi-continuous allows to 
‣ extend the result to games with real-valued payoffs, 

‣ show that , 

‣ weaken consistency by fixing , and 
‣ weaken rationality by restricting it to 2x1 games. 

‣ When considering general (non-zero-sum) multi-player 
games and solution concepts that return strategy profiles, 
one obtains a characterization of Nash equilibrium. 
‣ However, recommendations are not independent anymore!

f

f(M) = maximin(M)
λ = ½
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John Nash


