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Zusammenfassung

In dieser Masterarbeit geht es um Konsistenzbedingungen in der Wahltheorie. Wir führen
verallgemeinerte Versionen der Rationalisierbarkeit ein und stellen damit neue Charakter-
isierungen von verschiedenen Konsistenzbedingungen wie zum Beispiel α und γ auf. Dabei
liegt der Schwerpunkt auf Expansionskonsistenz. Diese Resultate können wir verwenden,
um klassische Resultate zu beweisen. Zudem de�nieren wir eigene Konsistenzbedingun-
gen, welche wir dann analysieren. Im Fall von γ+ können wir sogar eine Charakterisierung
liefern und einen Bezug zu einer bereits existierenden Bedingung herstellen. Anschlieÿend
wenden wir die Hauptresultate auf die Sozialwahltheorie an und analysieren verschiedene
Funktionen, die unsere De�nitionen erfüllen. Neben einer Charakterisierung von SC
untersuchen wir zudem ein probabilistisches Setting, in dem wir aus konvexen Mengen
wählen.
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1 Introduction and Related Work

1.1 Rankings and Choice

Choices are a vital part of our lives. Every day, we face an enormous number of decisions,
some of which are very important. To make these decisions reliably, we humans use
the concept of rankings. We consider ratings before we choose a restaurant. We have
university rankings, which many students consider before applying to one. On the other
side of the job market, large companies also prefer to hire graduates of these top-ranking
universities. We rate and rank everything, from cars, apps and sports teams to stock.
Whenever we make choices, these rankings play an important role. Of course, our choices
do not only depend on what we wish for, but also on what is feasible. Not everyone that is
a Tesla enthusiast can a�ord to buy one, since they are quite expensive. When we choose
with respect to a ranking, we will always pick the highest ranking option which is feasible
for us. While this way of decision-making and choosing for individuals is very useful, it is
very hard to derive a ranking for a group or even a society. Nobel laureate Arrow (1951)
showed, that combining individual rankings into a group-ranking comes with a severe
trade-o�, which violates reasonable notions of e�ciency and independence. This forces
us, as humankind, to overthink and analyze ranking-based choice. Which properties of it
are vital, which can we live without?

1.2 Weakenings and the Importance of Expansion Consistency

One possibility to relax the standard model of choice theory is to weaken the notion of
rankings. In a mathematical setting, rankings are de�ned as transitive relations. Hence,
a reasonable approach is to weaken the notion of transitivity. Schwartz (1976) and Sen
(1971)1 analyzed relations, which, instead of being transitive, were only acyclic or quasi-
transitive. Sadly, this still leads to weaker impossibilities for collective choice. Hence
our search needs to continue. Another discovery by Sen (1969, 1977) and Bordes (1976)
was that ranking-based choice consists of two parts. One is a contraction consistency
condition named α. It states that if one would choose something in a large feasible set,
then one should also choose it in all smaller feasible sets. The other one is the expansion
consistency condition β+. It states that under certain conditions, everything chosen in
some small set should be chosen in a larger set too.

This idea of using α and expansion consistency conditions turned out to be very useful.
Many relation-based choice concepts can be split up. It was identi�ed that the contraction
consistency condition α is the main culprit for many impossibilities involving relation-
based choice. Hence, when relation-based choice is too restrictive of a concept, we can
drop α and focus on expansion consistent choice.

To our knowledge, expansion consistency conditions are not as well understood as their
contraction-counterparts. Our main goal in this thesis hence is to gain a better under-
standing of expansion consistency. After all, various forms of expansion consistency are
possible in collective choice without severe trade-o�s. We can only bene�t from a better
understanding of how consistent our choice can be in a group setting.

1While Sen is also a Nobel laureate, he was awarded the prize for his contributions to welfare economics.
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1.3 Structure of the Thesis

The thesis is structured as follows:
In Section 2, we formally de�ne choice functions and consistency conditions. Afterwards,
we introduce our new notions of upwards rationalizability and local revealed preference
in Section 3. In Section 4, we use our new notions to present three characterizations of
expansion consistency conditions. Applying these, we obtain proofs for classical charac-
terizations involving α. Instead of only dealing with existing consistency conditions, we
propose a new expansion consistency condition and characterize it using PIP-transitivity
and upwards rationalizability in Section 5. We then compare our new condition to an
expansion consistency condition of Schwartz. A dual path is explored in Section 6, where
we use our new notion of downwards rationalizability to characterize α. Further, we
characterize transitive downwards rationalizability using a new relation. Many technical
conditions can be found and analyzed in Section 7, concluding the part of this thesis
which deals with classical choice theory. In Section 8, we formally introduce social choice
functions. Three of these, which due to their de�nition are very reminiscent of upwards
rationalizability, are then analyzed in Section 9. For the Split Cycle, we present a char-
acterization using γ in Section 10. In a probabilistic choice setting, Section 11 examines
whether we can generalize our characterization of γ when dealing with convex and com-
pact feasible sets. At the end of the thesis in Section 12, the most important results
are summarized. Further, since new questions arose, some open problems are formulated
there.
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2 Preliminaries

We introduce some well-known notions and results of choice theory.

2.1 Choice Functions and Degrees of Rationalizability

When an individual has to make decisions, their choice not only depends on what they
desire the most, but also on what is feasible for them. For example, Carl wants to buy a
car out of the following o�ers. He has to buy one, since he needs it to get to work.

Model Horse Power Price . . .
Audi R8 540 HP 145,000e
BMW X5 400 HP 65,000e
Citroen C4 131 HP 24,000e
Dacia Duster 257 HP 12,000e

We say that the o�ers are the alternatives Carl chooses from. For simplicity, we will
abbreviate them using a, b, c, d for the names of their brands. The universe of all alter-
natives is denoted by U = {a, b, c, d}. In a perfect world, Carl has no restrictions, so all
alternatives are feasible. He can buy whatever car he likes the most, say the Audi. This
we denote by C(U) = {a}. If Carl instead has a budget restriction of 80, 000e, then
not all alternatives are feasible any more. The set of alternatives from which he can now
choose is A = {b, c, d}. Say Carl in this case wants the BMW or the Dacia. He cannot
decide which one he likes more, but he certainly prefers both to the Citroen. Then we
write C(A) = {b, d}. This does not mean that Carl buys both cars. He rather has to
make a decision. In reality, any tiebreaking can be used. Carl could for example �ip a coin
or let a friend decide for him. Carl's restrictions do not only have to concern his budget.
If he needs the car to transport large objects frequently, then the loading volume is not
allowed to be too small. In di�erent scenarios, hence di�erent subsets of U are considered
as feasible sets. In each of these cases and out of each �nite, non-empty subset, Carl can
choose his favorite alternatives. This we can now formalize.

De�nition 1 (Choice Function). Let U be non-empty and countable. A choice function
C maps each non-empty, �nite A ⊆ U to a non-empty subset of A. Non-empty, �nite
subsets of U will be called feasible sets. The set of all feasible sets is denoted by F(U) :=
{A ⊆ U | A is a feasible set}.

Sometimes, we can assume that the choosing entity is able to rank the alternatives. Say,
for example, that Carl has the following ranking:

1 Audi R8

2 BMW X5, Dacia Duster

3 Citroen C4

Then his choices become very easy to summarize. If given a feasible set A, he will always
choose the alternatives in A, which have the highest position with respect to the ranking.
This is in line with the choices we have already discussed, for example C(U) = {a}.
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Choice based on a ranking is not only logical and structured, but also gives us a large
amount of insight into how the alternatives can be compared to each other. Ideally, we
would wish for such ranking-based choice as often as possible. Sadly, sometimes it already
is impossible to match the choices of individuals with any ranking. Furthermore, even if
individuals are able to rank the alternatives, society as a whole very often is not able to
do so. To understand these phenomena better, we start by formalizing rankings. There
are two main properties: First, two alternatives x, y are always comparable to each other.
They either tie, or one is strictly better than the other. This is called completeness of the
ranking. If x has a higher position than y in the ranking, then we say that x is strictly
preferred to y. If x has a position that is higher or equal to that of y, we say that x is
at least as good as y. Second, rankings are transitive. This means that if the BMW is at
least as good as the Dacia, and the Dacia is at least as good as the Citroen, then also the
BMW is at least as good as the Citroen. In fact, these two properties characterize what
we intuitively call rankings. As we have already observed, each ranking is complete and
transitive. On the other hand, whenever we have a complete and transitive collection of
comparisons on U , these together form a ranking. Formally, we describe rankings using
relations.

De�nition 2 (Relations, Transitivity, Completeness). Let R ⊆ U ×U . We then say that
R is a relation on U . Instead of (x, y) ∈ R, we write xR y and say that x is at least as
good as y. The strict part of the relation R will be denoted by P . This means we de�ne
(x, y) ∈ P if and only if xR y and not y Rx and say that x is strictly preferred to y. We
write xP y instead of (x, y) ∈ P . Similarly, we write x I y if and only if xR y and y Rx.
In this case, we say that the relation is indi�erent between x and y
We say that R is transitive, if for all x, y, z ∈ U we have that xR y and y R z implies
xR z. We say that R is complete (on U), if for all x, y ∈ U we have xR y or y Rx.

For our car example, Carl expressed that the BMW and the Dacia have the same rank.
This means that the BMW is at least as good as the Dacia, and the Dacia is at least
as good as the BMW. In short, we can write this as b I d. We also see that Carl ranks
the Audi higher than the Citroen. This means that the Audi is at least as good as the
Citroen, but not the other way round. In short, we write aP c. If we go through all pairs
of alternatives, we can construct R completely.
Now we have to de�ne what it means to have the highest rank within a feasible set A.
Observe that the top listed alternatives are at least as good as any other alternative in A.
Also, every alternative y ∈ A that is not ranked highest in A has to be below some other
x ∈ A, which is hence strictly preferred to y. We see that the top ranked alternatives,
and only they, are maximal.

De�nition 3 (Maximality). Let R be a complete relation on U . Let A ⊆ U be a feasible
set. We say that an element is maximal in A with respect to the relation R, if it is not
strictly dominated by any other element in A. The set of maximal elements is denoted by

max
R

A :={x ∈ A| ∀y ∈ A : ¬(y P x)} (1)

={x ∈ A| ∀y ∈ A : xR y} (2)

where we obtain (2) by using completeness of R.
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We can now formally describe ranking-based choice functions.

De�nition 4 (Transitive Rationalizability). Let C be a choice function. We say that C
is transitively rationalizable, if there is a transitive, complete relation R on U such that
for all feasible sets A

C(A) = max
R

A

In this case we say that C is transitively rationalized by R.

Note that De�nition 3 does not require the relation to be transitive, which is important
for our purposes. Transitivity of choice can easily be violated. In fact, Nobel laureate
Arrow (1951) unveiled severe implications for social choice. When looking at decisions of
groups, transitive rationalizability is clashing with other reasonable notions of e�ciency,
independence and fairness. In the cases where we cannot do without the latter notions,
we as a group have to accept that a collective ranking is impossible. But how rational can
choice as a group still be? One attempt is to weaken the notion of transitivity. Instead
of demanding that our collective relation R is transitive, we could demand that only its
strict part P is transitive. Transitivity of R implies transitivity of P , but not vice versa.

De�nition 5 (Quasi-Transitivity). Let R be a relation on U . Let its strict part be
denoted by P . We say that R is quasi-transitive if and only if for all x, y, z ∈ U : xP y
and y P z implies xP z.

De�nition 6 (Quasi-Transitive Rationalizability). Let C be a choice function. We say
that C is quasi-transitively rationalizable, if there is a quasi-transitive, complete relation
R on U such that for all feasible sets A

C(A) = max
R

A

In this case we say that C is quasi-transitively rationalized by R.

This de�nition allows us to speak of rationalizability of choice without the need of tran-
sitivity. Still, Gibbard (1969) discovered that the notion of quasi-transitivity allows for
similar, worrying impossibilities. We hence once more attempt a weakening of the notion,
this time to an absolutely minimal one. We remember that we always have to make some
decision, which means that our choice set must not be empty. If we want our choice to be
according to some relation R, then its strict part P hence must not contain cycles. Else,
if asked to choose from the cycle we cannot �nd any maximal elements. On the other
hand, if P contains no cycles, then in all feasible sets the set of maximal elements will be
non-empty.

De�nition 7 (Acyclicity). Let R be a relation on U . We say that R is acyclic, if and
only if for all x1, . . . , xk ∈ U : x1 P x2, . . . , xk−1 P xk implies x1Rxk.

Yet again we do not manage to escape dire consequences. Brown (1975), Banks (1995)
and others proved impossibilities even for acyclicity instead of transitivity. We cannot
weaken the notion further. It seems like for now, we are at a dead end road and need a
di�erent approach.
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2.2 Consistency Conditions

To see whether Carl's choice is logical, we were focusing on relations. Instead, we could
also analyze whether his choices are predictable: Say we know his choices on a few feasible
sets. Can we now correctly predict his choices on other feasible sets? With this question
we enter the realm of consistency.

2.2.1 Contraction

We recall the feasible set A = {b, c, d}, where Carl would choose C(A) = {b, d}. Sadly,
the Dacia is sold before Carl makes a decision, hence the feasible set shrinks to B = {b, c}.
How will he choose now? Based on the fact that Carl would choose the BMW in A, it
seems plausible that he will also choose it in B. We formalize this thought process with
the following de�nition.

De�nition 8 (α, Cherno�, 1954). Let C be a choice function. We say that C satis�es α,
if and only if for all feasible sets B ⊆ A:

C(A) ∩B ⊆ C(B)

Since we demand that some of the elements chosen in A are also chosen in the subset B,
α is called a contraction consistency condition. In the literature there exist more of these,
but for our purposes α su�ces due to its strength.

2.2.2 Expansion

Let us suppose that for the feasible set A = {a, b}, Carl chooses the Audi. He does the
same when the feasible set is B = {a, c}. Now we want to know which elements Carl
chooses in the feasible set A∪B = {a, b, c}. Since he chose the Audi in both A and B, it
seems plausible that he also chooses it in the union of these two sets. We formalize this
reasoning.

De�nition 9 (γ, Sen, 1971). Let C be a choice function. We say that C satis�es γ, if
and only if for all feasible sets A,B:

C(A) ∩ C(B) ⊆ C(A ∪B)

Since we focus on elements chosen in some sets and assume that they will also be chosen
in a certain superset, γ is an expansion consistency condition.
Just like in the case of contraction, we can look at feasible sets B ⊆ A for expansion
consistent behavior.
Let us again look at the example A = {b, c, d}, B = {b, c}, but this time we premise two
things: First, Carl chooses the BMW in B. Second, we also premise that in A, Carl will
not choose the Dacia. Then we see that all elements chosen in A are contained in B. In
other words, the best cars in A can already be found in B. By expanding our feasible set
from B to A, we only added an �uninteresting� car. Hence, we expect Carl to choose the
BMW in A too. Again, we formalize our reasoning.
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De�nition 10 (Aizerman, Schwartz, 19762). Let C be a choice function. We say that C
satis�es Aizerman if and only if the following holds: Let A,B be feasible sets, such that
B ⊆ A. If C(A) ⊆ B, then C(B) ⊆ C(A).

Just like γ, Aizerman is an expansion consistency condition.
One last time, we look at the example A = {b, c, d}, B = {b, c}. We again premise that
Carl would choose the BMW on the feasible set B. On the other hand, this time we only
premise that in A he chooses some car from B, without knowing whether the Dacia is
chosen or not. Then, we know that some element chosen in A is contained in B. In other
words, the subset B already contains some car, which is deemed to be the best choice in
the larger set A. One might argue that B in this sense is a set with strong alternatives.
Since the BMW is chosen in B, we might expect Carl to choose the BMW in A too.

De�nition 11 (β+, Bordes, 1976). Let C be a choice function. We say that C satis�es
β+, if and only if for all feasible sets A,B with B ⊆ A:

C(A) ∩B 6= ∅ ⇒ C(B) ⊆ C(A)

While α and γ seem to intuitively make sense, our reasoning for Aizerman and β+ became
more and more far fetched. How can we get a better grasp of these conditions?

2.3 The Link Between Consistency and Rationalizability

So far, we failed to escape the so-called Arrovian impossibilities of collective choice.
Our �rst approach was to introduce di�erent degrees of rationalizability. We then
tried to replace rationalizability with consistency conditions, but these quickly became
hard to grasp. Our way out of this dilemma is a beautiful discovery: Consistency and
rationalizability are deeply intertwined. It will turn out that the following, well-known
results can be obtained through the theory we develop.

Let C be a choice function. Then the following equivalences hold:

(i) C satis�es α and γ i� C is rationalizable (Sen, 1971)

(ii) C satis�es α, γ and Aizerman i� C is rationalized by a quasi-transitive relation
(Schwartz, 1976)

(iii) C satis�es α, and β+ i� C is rationalized by a transitive relation (Bordes, 1976)

The �rst above result states that demanding choice to be based on some acyclic relation
is equivalent to demanding that choice is consistent with respect to α and γ. The link
between consistency and rationalizability goes even deeper: As the second result shows,
Aizerman can be combined with α and γ for a higher degree of rationalizability. By adding
β+, we further restrict the relations. In fact, we arrive at transitive rationalizability.
Since one can show that β+ implies both Aizerman and γ, we do not need to mention the
latter conditions in the third result.
Remark 1. It is well known and easy to check that β+ implies γ and Aizerman. Fur-
thermore, γ and Aizerman are logically independent but together do not imply β+. We
prove one of the claims, which we will use in a later proof.

2Aizerman is the �expansion-part� of Postulate 5∗ introduced by Cherno� (1954).
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Lemma 1 (β+ implies γ). Let C be a choice function which satis�es β+. Then C satis�es
γ.

Proof. Let A,B be feasible sets, x ∈ C(A) ∩ C(B). By non-emptiness we know that
C(A∪B)∩A 6= ∅ or C(A∪B)∩B 6= ∅. In either case, by β+ it follows that x ∈ C(A∪B)

Given a rationalizable choice function C, how do we construct a rationalizing relation?
The key idea is that C reveals the underlying preferences through its choices.

De�nition 12 (Revealed Preference, Houthakker, 19503). Let C be a choice function. We
write xRC y, if and only if there is some feasible set A containing y such that x ∈ C(A).
RC is called the revealed preference relation.

In the case of rationalizability, it is already known that the revealed preference relation
is a natural contender.

Proposition 1 (Sen, 1971). Let C be a choice function. Then it is rationalizable if and
only if it is rationalized by its revealed preference relation.

Now we have a connection between rationalizability and consistency conditions, but this
link on its own still does not circumvent the Arrovian impossibilities. Sen (1977) discov-
ered that the main culprit for the impossibilities is α. This discovery secures our escape
from the impossibilities of collective choice: We can drop α and focus on expansion con-
sistency only! The main objective of this thesis is thus set. Our goal is to gain a better
understanding of expansion consistency without the need of assuming α.

transitive rationalizability ⇐⇒ α ∧ β+

�� $$
quasi-tran. rationalizability ⇐⇒ α ∧ γ

��

∧ Aizerman

(acyclic) rationalizability ⇐⇒ α ∧ γ

OO

3Samuelson (1938) introduced the notion of revealed preference in the �eld of economics. It was then
translated to the setting of choice theory by Houthakker (1950).
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3 Upwards Rationalizability, Local Revealed Prefer-

ence

In this section, we introduce the main, new notions of this thesis. They generalize the
existing concepts of rationalizability and revealed preference.

3.1 De�nition of Upwards Rationalizability

De�nition 13 (Upwards Rationalizability). Let C be a choice function. We say that
C is upwards rationalizable (UR), if there is a family of relations (RA)A such that the
following conditions hold :

(i) for all feasible sets A, RA ⊆ A× A is acyclic and complete

(ii) for all feasible sets A:

C(A) = max
RA

A

(iii) for all feasible sets A,B, such that B ⊆ A:

RB ⊆ RA

In this case, we say that C is upwards rationalized by (RA)A.

Remark 2. Upwards rationalizability is a generalization of rationalizability. If R ⊆ U×U
rationalizes C, one can set RA := R ∩ (A× A).

The above de�nition states that the relations RA inherit upwards. Often, if one starts by
de�ning the strict parts PA, it is easier to check that the strict parts inherit downwards,
rather than also formulating RA and then showing that the latter inherit upwards. We
show rigorously that these two approaches are equivalent.

Lemma 2. Let (RA)A be a family of complete relations with strict parts (PA)A. Then for
all A,B feasible with B ⊆ A it holds that RB ⊆ RA if and only if xPA y ⇒ xPB y for all
x, y ∈ B.

Proof. Let RB ⊆ RA. Let x, y ∈ B. If ¬(xPB y), then by completeness y RB x. It follows
that y RA x. Hence ¬(xPA y). By contraposition, we obtain the wanted implication.
Now, let xPA y ⇒ xPB y for all x, y ∈ B hold true. Then let xRB y. We again use
contraposition and conclude ¬(y PB x) ⇒ ¬(y PA x) ⇒ xRA y. Since x, y ∈ B were
arbitrary, we obtain RB ⊆ RA.

The above Lemma 2 implies, that in De�nition 13 (iii) can be replaced by the following
condition.

(iii′) PA ∩ (B ×B) ⊆ PB
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3.2 An Application of Upwards Rationalizability

The just introduced notion might seem to be of abstract nature at �rst, but it stems
from an idea that has been prevalent in social choice theory for a long time. Some well
known, classical rules satisfy our de�nition of upwards rationalizability. For example,
Good (1971), Smith (1973) and Bordes (1979) studied the Top Cycle rule, while Fishburn
(1977) and Miller (1977) analyzed the Uncovered Set rule. Further, there are also modern
social choice functions satisfying our de�nition, such as the Split Cycle rule proposed by
Holliday and Pacuit (2020). All three rules are de�ned using relations RA for each feasible
set A and for all three rules, RA inherits upwards. Remarkably, all three rules satisfy γ.
A rigorous introduction to social choice theory and an analysis of the three mentioned
rules will follow in Section 8 and Section 9, after we present our main choice theoretical
results.
To already get a better intuition for our de�nitions, we informally and quickly present
the Uncovered Set rule (UC ). We observe a round robin tournament, where the teams
compete against each other in duels. The results are represented by arrows from winner
to loser. We obtain a graph on A = {a, b, c, d}.

a b

cd

The idea of the Uncovered Set is to choose the winners of the tournament as follows:
Some x is strictly better than some y (short xPA y) if and only if it defeats y and all
teams in A that y wins against. In our example tournament, we have b PA c, which we
denote using a thick edge.

a b

cd

Since there are no further strict preferences, we have UC (A) = {a, b, d}. Point (iii) of
De�nition 13, or rather point (iii′), holds true: On all feasible subsets B ⊆ A containing
b and c, we still have b PB c. 4

a b

cd

a b

c

b

cd

b

c

4Brandt and Fischer (2008) observed this property and called it �covering in subsets�.
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We also already see that upwards rationalizability is less restrictive than rationalizability:
Even thought b is dominated by a on the set B = {a, b, c}, it still can be chosen in A,
since the strict edge aPB b is allowed to become a weak edge a IA b.

3.3 Local Revealed Preference

In our previous example, the so-called covering relation was used to de�ne UC . In general,
it seems much harder to tell whether a choice function satis�es upwards rationalizability,
since we �rst need to construct a family of relations. Let a choice function C be given,
for which we want to know whether it is UR. Assume for a second, that it was upwards
rationalized by some family (RA)A. If we had xPA y, then by Lemma 2 we would have
xPB y for all feasible sets B ⊆ A containing x and y. This means that y cannot be chosen
on any of these subsets B. Omitting the assumption, we can formulate the strict part
PA
C of some relation as follows: Some x dominates some y with respect to the feasible set
A strictly, if there is no feasible subset containing x in which y is chosen. When using
contraposition, we obtain the relation as in the following De�nition 14: Some x is at least
as good as some y, if there is a subset B ⊆ A which contains both and in which x is
chosen.

De�nition 14 (Local Revealed Preference). Let C be a choice function, let A be a
feasible set with x, y ∈ A. We write xRA

C y if and only if there is some feasible set B ⊆ A
containing y such that x ∈ C(B). We call RA

C the local revealed preference relation on A.

The main di�erence to De�nition 12 is that we locally restrict our witness B to be a
subset of A, while the revealed preference relation allows for arbitrary witnesses. We
directly start with a lemma, which shows that the local revealed preference is a quite
good guess. Further, we formally check that the contraposition has been done correctly.
This is necessary on an intuitive level, since our original guess was using strict dominance,
while our de�nition is using weak dominance.

Lemma 3. For any choice function C, (RA
C)A satis�es condition (i) and (iii) of De�ni-

tion 13. Furthermore, following equivalence holds: xPA
C y ⇐⇒ ∀B ⊆ A, x, y ∈ B : y /∈

C(B). In words, y is strictly dominated by some x in A if and only if there is no subset
of A which contains both elements and in which y is chosen.

Proof. Completeness: Let ¬(xRA
C y). Then by de�nition x /∈ C({x, y}). By non-

emptiness of choice sets, y ∈ C({x, y}). Hence y RA
C x.

Equivalence: Let xPA
C y. Then especially ¬(y RA

C x). By de�nition, there hence is no
B ⊆ A, such that x, y ∈ B and y ∈ C(B). Now, let x, y be given, such that the right
hand side holds. Then, by de�nition ¬(y RA

C x). By completeness, xRA
C y and hence

xPA
C y.

Acyclicity: Let A be a feasible set, x1, . . . , xk ∈ A such that xi P
A
C xi+1 for all 0 < i < k.

We know that B := {xi|1 ≤ i ≤ k} ⊆ A. For each y 6= x1, there is some element x ∈ B
with xPA

C y. Applying the just proven equivalence to B ⊆ A, it follows that y /∈ C(B).
By non-emptiness we conclude {x1} = C(B). Hence B is a witness for x1R

A
C xk.

De�nition 13 (iii): Let A,B be feasible sets such that B ⊆ A and let x, y ∈ B, such that
xRB

C y. Now let D ⊆ B be the witness containing y with x ∈ C(D). Then of course
y ∈ D ⊆ A and still x ∈ C(D). This by de�nition implies xRA

C y. Hence R
B
C ⊆ RA

C .
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Example 1. Let U = {a, b, c}. Let C be de�ned on all non-singleton subsets as follows:

A C(A)
{a, b, c} {a, b}
{a, b} {a}
{b, c} {b}
{a, c} {a}

On B := {a, b}, we have aPB
C b. On the other hand, we have bRC a, since b is chosen on

A := {a, b, c}. Hence we have b ∈ maxRC
B, but b /∈ maxRB

C
B. Despite aPB

C b, we still

have b IAC a and thus b ∈ maxRA
C
A.

In summary, local revealed preference truly depends on the feasible set we examine. It is
worth mentioning that RA

C ⊆ RU
C = RC . Hence, the local revealed preference in general

can only allow for less maximal elements in a feasible set A than its global, classical
version. 4
A quick observation is that under α, our restricted notion of revealed preference coincides
with the classical one.

Lemma 4. Let C satisfy α. Then RA
C = RC ∩ (A×A) for all feasible sets A. (Especially,

this implies maxRA
C
A = maxRC

A for all feasible sets A.)

Proof. By de�nition we have RA
C ⊆ RC ∩ (A × A). Now let aRC b with a, b ∈ A. Then

there is some witness D ∈ F(U) with a ∈ C(D), b ∈ D. By α, we have a ∈ C({a, b}).
Since {a, b} ⊆ A, we have xRA

C y.

3.4 Local Revealed Preference and the γ-Hull

In this short subsection, we show that the concept of local revealed preference is relevant
for expansion consistency, whether C satis�es γ or not. While the presented property is
remarkable, it does not belong to our main results.

De�nition 15 (Coarsenings, Re�nements). Let C,D be choice functions on U . We say
that D is a coarsening of C, if C(A) ⊆ D(A) for all feasible sets A.
LetM be a set of choice functions, let C ∈M. If every D ∈M is a coarsening of C, we
say that C is the �nest choice function inM.

It is clear that if such a �nest choice function exists, it must be unique.
We now proceed as follows: First, we use an abstract de�nition to show the existence of
a �nest coarsening of C satisfying γ. Then, we show that it always chooses the maximal
elements with respect to the local revealed preference relations.

De�nition 16 (The γ-Hull). Let C be a choice function. Set

M := {D | D is a choice function, satis�es γ and C(A) ⊆ D(A) ∀A ∈ F (U)}

as the set of all choice functions which satisfy γ and are coarsenings of C. It is non-empty,
since the identity TRIV (A) = A is always such a function. Then, for all feasible sets A,
de�ne the γ-hull of C as

H(C)(A) :=
⋂

D∈M

D(A)
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Lemma 5. Let C be a choice function. Then H := H(C) is a well-de�ned choice function.
Further, it is the �nest coarsening of C satisfying γ.

Proof. For all feasible A we know that A ⊇ H(A) ⊇ C(A) 6= ∅. Hence H is a well-
de�ned choice function. Let A,B be feasible sets and x ∈ H(A) ∩ H(B). Then for
arbitrary D ∈M, we know that x ∈ D(A)∩D(B). Since D satis�es γ, we conclude that
x ∈ D(A ∪ B). Since D was arbitrary, we conclude x ∈ H(A ∪ B), hence H satis�es γ.
Now, let C ′ be a coarsening of C satisfying γ. By de�nition ofM we know that C ′ ∈M.
Hence for all feasible sets A we observe that H(A) =

⋂
D∈M

D(A) ⊆ C ′(A).

Lemma 6. Let C be a choice function. Then H(A) = maxRA
C
A for all feasible sets A.

Proof. We abbreviate G(A) := maxRA
C
A. Our goal is to show H = G.

We �rst show that the set inclusion from left to right holds. To do so we prove that G
satis�es γ and is a coarsening of C. Let x ∈ G(A) ∩ G(B) for some feasible sets A,B.
Now assume x /∈ G(A∪B). Then, by de�nition there has to be some y ∈ A∪B such that
y PA∪B

C x. Without loss of generality say y ∈ A. Then also y PA
C x and hence x /∈ G(A), a

contradiction. Thus G satis�es γ. Let now x ∈ C(A) for some feasible set A, let y ∈ A.
Then, there is some B ⊆ A such that y ∈ B and x ∈ C(B), namely B := A. Hence
xRA

C y. Since y was arbitrary, x is maximal and hence x ∈ G(A). By Lemma 5, the
inclusion H ⊆ G holds.
We now show the other set inclusion. Let x ∈ G(A). Then, x is maximal. For all y ∈ A
we conclude that there exists some feasible set By such that y ∈ By ⊆ A and x ∈ C(By).
For any D ∈M we conclude x ∈ C(By) ⊆ D(By) and hence x ∈ D(

⋃
y∈ABy) = D(A) by

γ. By de�nition of H it follows that x ∈ H(A).

Proposition 2. Let C be a choice function. Then G(A) := maxRA
C
A is the unique �nest

coarsening of C which satis�es γ.

Proof. Combining Lemma 5 and Lemma 6, we obtain the desired statement.
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4 Three Characterizations

In this section, we present and prove three new characterizations, which form the basis of
this thesis. They unveil that the concept of expansion consistency is deeply interwoven
with the concept of relation based choice, even without involving contraction consistency.

4.1 Characterizing γ

Our �rst main result shows two things. On one hand, it is no surprise that rules like
the Uncovered Set satisfy γ. On the other hand, and a bit more surprisingly, all choice
functions satisfying γ can be represented with a family of relations as in De�nition 13.

Theorem 1. Let C be a choice function. Then the following are equivalent.

(i) C satis�es γ

(ii) C is upwards rationalizable

Proof of Theorem 1. For �(ii) ⇒ (i)�, let (RA)A upwards rationalize C. Let x ∈ C(A) ∩
C(B). Then, assume x /∈ C(A ∪B) = maxRA∪B A ∪B. There has to be some y ∈ A ∪B,
such that y PA∪B x. Without loss of generality say y ∈ A. Then, by A ⊆ A ∪ B it
follows that y PA x. Hence x is not maximal in A. By assumption we now conclude
x /∈ maxRA A = C(A), a contradiction.
For �(i)⇒ (ii)�, we will use our natural candidate, the family of local revealed preference
relations. Let A be a feasible set. By Lemma 3 we only need to show that C(A) =
maxRA

C
A. For the inclusion from left to right, we use contraposition. Let x not maximal.

Then there is y ∈ A, such that y PA
C x. Assume that x ∈ C(A). But then there is some

B such that x ∈ C(B) and y ∈ B, namely B := A. Hence xRA
C y, a contradiction. We

conclude x /∈ C(A). For the inclusion from right to left, let x be maximal in A. Now,
let y ∈ A be given. By maximality of x and completeness of the relation, we know that
xRA

C y. Hence there is some By ⊆ A, such that x is chosen in it and y is contained in it.
Since y was arbitrary and C satis�es γ, we know that

x ∈ C(By) ∀y ∈ A =⇒ x ∈ C(∪y∈ABy) = C(A)

Since we de�ned γ only for the union of two sets, formally one needs to use induction for
the last implication. It is straight forward and omitted in this proof.

In fact, we have additionally proven the following result. It validates the natural role of
(RA

C)A for upwards rationalizability.

Proposition 3. Let C be a choice function. Then it is upwards rationalizable if and only
if it is upwards rationalized by its family of local revealed preference relations.

We observe a similarity between Theorem 1 and a result of Sen (1971), which was already
mentioned in Section 2.3. By dropping α, we move from rationalizability to upwards
rationalizability. In fact, we can obtain the classical result by applying ours. Since the
former involves α, we need one additional observation.

Lemma 7. Every rationalizable choice function satis�es α.
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Proof. Let R rationalize C, let x ∈ C(A)∩B. Then ∀y ∈ B : xR y. Hence x ∈ C(B).

Technically speaking, Lemma 7 could also be obtained as a corollary of Theorem 6. The
latter characterizes α using a new notion named downwards rationalizability, analogously
de�ned to upwards rationalizability. We now have everything we need to formally state
the classical result and prove it.

Corollary 1 (Sen, 1971). Let C be a choice function. Then the following are equivalent.

(i) C satis�es α and γ

(ii) C is rationalizable

Proof of Corollary 1. Let C be rationalizable. By Theorem 1 and Lemma 7 it satis�es
α and γ. Let C satisfy α and γ. Then by Theorem 1, Proposition 3 and Lemma 4 RC

rationalizes C.

Another similarity to existing results is the key role of the revealed preference. We note
that there is one di�erence when dropping α: While for rationalizability the relation is
unique, for upwards rationalizability there can be multiple families satisfying De�nition 13.

Example 2 (The family is in general not unique). Let U = {a, b, c} and let C be de�ned
on the non-singleton sets as follows:

A C(A)
{a, b, c} {a}
{a, b} {a}
{b, c} {b}
{a, c} {a}

Then, C satis�es γ and hence is upwards rationalizable. On singleton sets A, RA is
trivially de�ned. Further we have aP {a,b} b, aP {a,c} c and b P {b,c} c. On U however, there
are multiple possibilities to de�ne the relation:

a b

c

a b

c

For the two depicted possibilities, we can either have b PU c, or b IU c. In both cases,
(RA)A upwards rationalizes C. 4

This ambiguity might seem unsatisfactory, especially since uniqueness of the rationalizing
relation is given when additionally assuming α. Luckily, the problem can be quickly
addressed by demanding inclusion minimality of all relations. Such a unique �nest family
always exists and consists of the local revealed preference relations. In the example above,
the left version of RU is equal to RU

C .
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De�nition 17 (Finest Family). Let V be a set of families of relations. Let
(RA)A∈F(U), (R̃

A)A∈F(U) ∈ V . We say that (RA)A is �ner than (R̃A)A, if R
A ⊆ R̃A for all

A ∈ F(U). We say that (RA)A is the �nest family in V if and only if (RA)A is �ner than
any other (R̃A)A ∈ V .

Remark 3. If it exists, such a family is unique.

Proposition 4. Let C satisfy γ. Then (RA
C)A is the (unique) �nest family of relations

upwards rationalizing C.

Proof. Let C be upwards rationalized by (RA)A. Let A be a feasible set, x, y ∈ A s.th.
¬(xRA y). Then by completeness y PA x. By Lemma 2 we have y PB x for all subsets
B of A containing x, y. Hence x /∈ C(B) for all such B. It follows that y PA

C x and thus
¬(xRA

C y).

Originally, we arrived at acyclicity by weakening the notion of transitivity. This was an
attempt at escaping Arrow's impossibility. Since we escape it by dropping α, we can now
demand that all relations are quasi-transitive or even transitive. Will this change a�ect
the resulting choice functions?
Fascinatingly, being more restrictive with respect to the relations translates to demanding
more strict expansion consistency conditions. Let us start with quasi-transitivity.

4.2 Characterizing γ and Aizerman

De�nition 18 (Quasi-Transitive Upwards Rationalizability). Let C be a choice function.
We say that C is quasi-transitively UR, if there is a family of quasi-transitive relations
(RA)A which upwards rationalizes C. When we speak of a family of quasi-transitive
relations (RA)A, we mean that for all A, the relation RA is quasi-transitive.

This de�nition is more strict than De�nition 13. For example, we will see in Section
9 that the Split Cycle rule is UR, but not quasi-transitively UR. On �rst sight, such
a restriction only seems to be of abstract nature. Is there any reason why it should be
considered at all? We remember from Section 2.3, that in the classical case, the restriction
to quasi-transitivity yields the Aizerman condition. It seems that moving from acyclicity
to quasi-transitivity does not change the degree of contraction consistency, but rather
the degree of expansion consistency. The following result matches our intuition: We can
obtain similar results when dropping α.

Theorem 2. Let C be a choice function. Then the following are equivalent.

(i) C satis�es γ and Aizerman

(ii) C is upwards rationalized by a family of quasi-transitive relations

Proof of Theorem 2. For the �rst implication, let C be a choice function satisfying γ and
Aizerman. By Theorem 1 and Proposition 3, we already know that the local revealed
preference relations upwards rationalize C. In addition, we now show that they are also
quasi-transitive. Let A be a feasible set and x, y, z ∈ A such that xPA

C y and y PA
C z.

We now need to show that xPA
C z. For this, let an arbitrary B ⊆ A be given, such that
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x, z ∈ B. Note that if y ∈ B, then yPB
C z and hence z /∈ C(B). Else, set Ay := B∪{y}. By

x, y ∈ Ay and Lemma 3 we have y /∈ C(Ay), which implies C(Ay) ⊆ B ⊆ Ay. Aizerman
implies C(B) ⊆ C(Ay). Since Ay ⊆ A and y, z ∈ Ay, we have z /∈ C(Ay) by Lemma 3.
Hence we can conclude z /∈ C(B). By Lemma 3 we obtain xPA

C z.

For the other implication, let (RA)A be a family of quasi-transitive preference relations
which upwards rationalizes C. We already know that C satis�es γ by Theorem 1. For
Aizerman, let A,B be feasible sets such that C(A) ⊆ B ⊆ A. We now need to show
C(B) ⊆ C(A). Let some z ∈ B \ C(A) be given. Our goal is to show z /∈ C(B).
There must be some x1 ∈ A, such that x1 P

A z. If x1 ∈ B, then by Lemma 2 x1 P
B z

and hence z /∈ C(B). Else, by C(A) ⊆ B, it must be that x1 /∈ C(A). Hence there
must be x2 ∈ A with x2 P

A x1. By quasi-transitivity of RA we deduce that x2 P
A z.

Using induction, quasi-transitivity of RA and �niteness of A, there must be some xl ∈ B
with xl P

A z. More formally, set x0 := z. For any k ∈ N0 and any linearly ordered set
{x0, x1, . . . , xk} ⊆ A with xi P

A xj ⇐⇒ i > j and xk /∈ C(A), there is some xk+1 ∈ A
with xk+1 P

A xi for all i ≤ k. This is because xk cannot be maximal in A, hence there
must be some xk+1 ∈ A with xk+1 P

A xk. Then we only need to apply quasi-transitivity.
As long as xk+1 /∈ B, we know that xk+1 /∈ C(A). Hence we can reapply the above
statement, but with {x0, . . . , xk+1}. Iterating this process and using �niteness of A, we
obtain that there must be some l ∈ N with xl ∈ B and xl P

A x0. Using Lemma 2 again,
we obtain xl P

B z. Hence z /∈ C(B).

We have seen in the proof that if C is quasi-transitively upwards rationalizable, then all
local revealed preference relations are quasi-transitive too.

Proposition 5. Let C be a choice function. Then it is upwards rationalized by a family
of quasi-transitive relations if and only if it is upwards rationalized by (RA

C)A and all local
revealed preference relations are quasi-transitive.

Again, we can use our new result to obtain the classical one.

Corollary 2 (Schwartz, 1976). Let C be a choice function. Then the following are equiv-
alent.

(i) C satis�es α, γ and Aizerman

(ii) C is rationalized by a quasi-transitive relation

Proof of Corollary 2. Let C be quasi-transitively rationalizable. By Theorem 2 and
Lemma 7 it satis�es α, γ and Aizerman. Let C satisfy α, γ and Aizerman. Then by
Theorem 2, Lemma 4 and Proposition 5 we have that RC is quasi-transitive and C is
rationalized by RC .

We note that not all families which upwards rationalize C have to consist of quasi-
transitive relations.

Example 3 (Not all families are quasi-transitive). We again de�ne C on the non-singleton
sets as follows:
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A C(A)
{a, b, c} {a}
{a, b} {a}
{b, c} {b}
{a, c} {a}

Then, C satis�es γ and Aizerman. Hence it is quasi-transitively UR. On singleton sets A,
RA is trivially de�ned. Further we have aP {a,b} b, aP {a,c} c and b P {b,c} c. On U however,
both following de�nitions of RU are possible:

a b

c

a b

c

The left one coincides with RU
C and is quasi-transitive. The right one is not. In both

cases, C is upwards rationalized by (RA)A. 4

4.3 Characterizing β+

Now that we have examined acyclicity and quasi-transitivity, a natural next step is to
look into transitivity.

De�nition 19 (Transitive Upwards Rationalizability). Let C be a choice function. We
say that C is transitively UR, if there is a family of transitive relations (RA)A which
upwards rationalizes C. When we speak of a family of transitive relations (RA)A, we
mean that for all A, the relation RA is transitive.

Demanding transitivity is more restrictive than De�nition 18. For example we will see in
Section 9 that the Uncovered Set rule is quasi-transitively UR, but not transitively UR.
Once more we remind ourselves of the classical results. There, moving from quasi-
transitivity to transitivity yields β+, which is stronger than both γ and Aizerman together.
It seems that contraction consistency is not a�ected by moving from quasi-transitivity to
transitivity. Instead, we again obtain a higher degree of expansion consistency. The
following result again matches our intuition.

Theorem 3. Let C be a choice function. Then the following are equivalent.

(i) C satis�es β+

(ii) C is upwards rationalized by a family of transitive relations

Proof of Theorem 3. First, let C satisfy β+. By Lemma 1, Proposition 3 and Theorem 1,
we know that C is upwards rationalized by its family of local revealed preference relations.
Let A be a feasible set. We now show that RA

C is transitive. Let x, y, z be given such that
there are feasible sets B,D ⊆ A with x ∈ C(B), y ∈ C(D), y ∈ B, z ∈ D. We now need
to show that there is some feasible E ⊆ A such that E contains z and x is chosen in it.
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Set E := B ∪ D. Observe that by β+ and B ⊆ E, if C(E) ∩ B 6= ∅, then x ∈ C(E).
Assume now for contradiction that C(E) ∩ B = ∅. By non-emptiness of C(E), we have
C(E) ∩ D 6= ∅. Now, by β+ it follows that y ∈ C(D) ⊆ C(E). Hence the intersection
cannot have been empty in the �rst place, a wanted contradiction.
For the other direction, let (RA)A upwards rationalize C such that all relations are tran-
sitive. Now, let A,B be feasible sets such that B ⊆ A and �x y ∈ C(A) ∩ B 6= ∅. Let
x ∈ C(B). Then by completeness of RB and maximality of x in B we obtain xRB y. By
upwards rationalizability xRA y. By maximality of y in A we obtain y RA z for all z ∈ A.
By transitivity we now obtain xRA z for all z ∈ A. Hence x is maximal in A and it follows
that x ∈ C(A).

We have seen in the proof that if C is transitively upwards rationalizable, then the local
revealed preference relations have to be transitive too.

Proposition 6. Let C be a choice function. Then it is upwards rationalized by a family of
transitive relations if and only if it is upwards rationalized by (RA

C)A and all local revealed
preference relations are transitive5.

One more time, we can present a proof for a classical result.

Corollary 3 (Bordes, 1976). Let C be a choice function. Then the following are equiva-
lent.

(i) C satis�es α and β+

(ii) C is rationalized by a transitive relation

Proof of Corollary 3. Let C be transitively rationalizable. By Theorem 3 and Lemma 7
it satis�es α and β+. Let C satisfy α and β+. Then by Theorem 3, Lemma 4 and
Proposition 6 we have that RC is transitive and C is rationalized by RC .

We note that just because C satis�es β+ and is upwards rationalized by (RA)A, it does
not have to be that all RA are transitive. This can be seen in Example 3. There, the
quasi-transitive version of RU in fact is transitive.

5Interestingly, Bordes (1976) already observed that if C satis�es β+, the revealed preference relation
is transitive. We then only would need to apply that if C satis�es β+, then the choice function restricted
to F(A) also satis�es β+.
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5 PIP-Transitivity

In this section, we present another main result of this thesis. We propose a new expansion
consistency condition, which we call γ+. We then use it to characterize PIP-transitive
upwards rationalizability. Further, we compare it to a condition of Schwartz and give
alternative formulations.

5.1 The Main Result

So far, we have dealt with three forms of rationalizability. In addition to (acyclic) rational-
izability, we have touched on characterizations of quasi-transitive and transitive rationaliz-
ability. Between quasi-transitivity and transitivity, Schwartz (1976) further characterized
a notion named PIP-transitivity. In some cases, this notion can better represent human
behavior. Schwartz (1986) states that while transitivity is equivalent to representation by
a utility function u, PIP-transitivity is equivalent to representation by a utility function
u and a non-negative discriminatory function δ. The idea is that we only perceive some
a to be strictly better than some b, if the increase in utility is noticeable for us, which is
modelled by u(a) > u(b) + δ(b).

De�nition 20 (PIP-Transitivity). Let R be a relation on U . We say that R is PIP-
transitive if and only if for all (not necessarily distinct) x, y, z, w ∈ U the following holds.
If xP y, y I z and z P w, then xP w.

Graphically, we can represent the condition as follows:

x y

zw

Here, the snake line encodes indi�erence, while the strict arrows encode strict preference.
The strict double arrow from x to w means, that xP w has to follow from the other
arrows in the graph. The missing arrows, for example between x and z, mean that we do
not need to further specify the relation. We quickly verify that PIP-transitivity implies
quasi-transitivity. Let xP y, y P z. Then obviously y I y and we obtain:

x y

yz

Further, transitivity implies PIP-transitivity. Let R be transitive with xP y, y I z and
z P w. We assume for contradiction wRx. Then by transitivity wRz, which is directly
contradicting z P w.
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Example 4 (Quasi-transitivity of R does not imply PIP-transitivity). Let U =
{x, y, z, w}. Further, let the relation R be given by the following graph.

x y

zw

The blue-colored edge violates PIP-transitivity. Still, the relation is quasi-transitive.

To characterize the just introduced notion, Schwartz used an expansion consistency con-
dition, which he named W4. It has the same form as the conditions discussed in Section
7.2.

De�nition 21 (W4, Schwartz, 1976). Let C be a choice function. We say that C satis�es
W4 if and only if the following statement holds true:

Let B ⊆ A be feasible sets.
If C(A) ∩B 6= ∅, B 6= A and C(A \B) 6⊆ C(A)

then C(B) ⊆ C(A)

How can we relate W4 to the already discussed expansion consistency conditions?
Schwartz showed that W4 lies between Aizerman and β+.

Proposition 7 (Schwartz, 1976). β+ implies W4 implies Aizerman. The implications in
the other direction do not hold.

Since γ does not imply Aizerman, we directly see that γ does not imply W4. Conversely,
W4 does not imply γ.

Example 5 (W4 does not imply γ). Let U = {x, y, z}. We de�ne C using the following
table.

A C(A) condition
U U \ {x} �
A A x /∈ A
A x x ∈ A, A 6= U

Since x ∈ C({x, y})∩C({x, z}), but x /∈ C(U), γ is violated. To see that W4 is satis�ed,
let A,B be feasible sets such that B ⊆ A. If B = A, then W4 is trivially satis�ed. If
|B| = 1, then C(A) ∩ B 6= ∅ already implies that C(B) ⊆ C(A). Hence, the last case we
need to look at is |B| = 2, A = U . Let C(A \ B) 6⊆ C(A). Then x /∈ B. By de�nition of
C, hence C(B) = B ⊆ A \ {x} = C(A). This construction works for all |U | ≥ 3.
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Graphically, we can represent the relation between the consistency conditions as follows:

β+

}} %%
γ W4

��
Aizerman

Now that we have a slightly better understanding of the condition, we examine Schwartz'
characterization.

Theorem 4 (Schwartz, 1976). Let C be a choice function. Then the following are equiv-
alent.

(i) C satis�es α, γ and W4

(ii) C is rationalized by a PIP-transitive relation

Again we pause for a moment to put everything into context.

transitive rationalizability ⇐⇒ α ∧ β+

�� $$
PIP-tran. rationalizability ⇐⇒ α ∧ γ

��

∧ W4

��
quasi-tran. rationalizability ⇐⇒ α ∧ γ

OO

∧ Aizerman

Curiously, the result of Schwartz cannot be reproduced directly when dropping α. While
one can show that PIP-transitive upwards rationalizability does imply W4 and γ, the
converse direction is not so clear. We are stuck and need a better understanding of
PIP-transitivity. We hence propose a new expansion consistency condition6.

De�nition 22 (γ+). Let C be a choice function. We say that C satis�es γ+ if and only
if the following holds:
Let A,B be feasible sets. Then C(A) ⊆ C(A ∪B) or C(B) ⊆ C(A ∪B).

Remark 4. γ+ implies γ, since C(A) ∩ C(B) is a subset of both C(A) and C(B).

We will now see that γ+ plays a vital role for the concept of PIP-transitivity.

Theorem 5. Let C be a choice function. Then the following are equivalent.

(i) C satis�es γ+

6γ+ shares its name with a condition de�ned by Salant and Rubinstein (2008), but is weaker than the
latter and does not have much in common with it. If not stated di�erently, by γ+ we will always refer to
De�nition 22.
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(ii) C is upwards rationalized by a family of PIP-transitive relations

Proof. First, let C satisfy γ+. We already know that γ is satis�ed, hence C is upwards
rationalized by (RA

C)A. Let A be a feasible set. We now show that the local revealed
preference relation RA

C is PIP-transitive. Let xPA
C y, y I

A
C z and z P

A
C w.

x y

zw

We now need to show that xPA
C w. Assume for contradiction wR

A
C x. Then there exists

some witness Ww,x ⊆ A containing x with w ∈ C(Ww,x). Further, since y IAC z, there is
some witnessWy,z ⊆ A containing z with y ∈ C(Wy,z). Now we set A′ = Ww,x, B

′ = Wy,z.
By γ+ we have that either w ∈ C(A′) ⊆ C(A′ ∪ B′) or y ∈ C(B′) ⊆ C(A′ ∪ B′). On
the other hand we also have that x, z ∈ A′ ∪ B′ ⊆ A. This contradicts either xPA

C y or
z PA

C w.
For the other direction, let (RA)A upwards rationalize C and let all relations be PIP-
transitive. Now, let A,B be feasible sets. Assume for contradiction, that neither C(A),
nor C(B) is a subset of C(A ∪ B). Then, there are a ∈ C(A) \ C(A ∪ B) and b ∈
C(B) \ C(A ∪ B). Hence there is some x ∈ A ∪ B with xPA∪B a and some y ∈ A ∪ B
with y PA∪B b. Since a ∈ C(A), it must be that x ∈ B. By b ∈ C(B) we have that
bRB x. By upwards rationalizability, we more importantly have bRA∪B x. There now are
two possibilities. First, it could be that b PA∪B x. By applying quasi-transitivity, we then
obtain the following graph for RA∪B.

y b

xa

Else, we have b IA∪B x. We then obtain the following graph for RA∪B, on which we apply
PIP-transitivity.

y b

xa

Since b ∈ C(B), it must be that y ∈ A. By a ∈ C(A), we have that aRA y. By upwards
rationalizability, we more importantly have aRA∪B y, a wanted contradiction to y PA∪B a
in both cases!
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Again we have shown more than we announced.

Proposition 8. Let C be a choice function. Then it is upwards rationalized by a family
of PIP-transitive relations if and only if it is upwards rationalized by (RA

C)A and all local
revealed preference relations are PIP-transitive.

With the same argumentation as the previous times, we hence obtain the following corol-
lary.

Corollary 4. Let C be a choice function. Then the following are equivalent.

(i) C satis�es α and γ+

(ii) C is rationalized by a PIP-transitive relation

Proof. Apply Lemma 4.

transitive UR ⇐⇒ β+

����
PIP-tran. UR ⇐⇒ γ+

�� $$
quasi-tran. UR ⇐⇒ γ ∧ Aizerman

5.2 Further Comments

Our next goal is to show that W4 and γ are not equivalent to PIP-transitive upwards
rationalizability. Further, we provide an alternative formulation of W4 in the style of γ+.
To reach our �rst goal, we start by providing an alternative formulation of γ+.

De�nition 23 (W4+). Let C be a choice function. We say that C satis�es W4+ if and
only if the following holds:

Let B ⊆ A be feasible sets.
If C(A) ∩B 6= ∅, B 6= A and ∃D, A \B ⊆ D ⊆ A : C(D) 6⊆ C(A)

then C(B) ⊆ C(A)

We now show that W4+ and γ+ are equivalent. We hence will know that γ+ implies
Schwartz' W4.

Lemma 8. Let C be a choice function. Then the following are equivalent:

(i) C satis�es γ+

(ii) C satis�es W4+
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Proof. �(i) =⇒ (ii)�: Let γ+ be satis�ed. Let B ⊂ A, D ⊆ A be given such that
C(A)∩B 6= ∅, A\B ⊆ D and C(D) 6⊆ C(A). Set Ã := B, B̃ := D. Then, Ã∪B̃ = A. Since
C(B̃) 6⊆ C(Ã ∪ B̃), we can apply γ+. It follows that C(B) = C(Ã) ⊆ C(Ã ∪ B̃) = C(A).

�(ii) =⇒ (i)�: Let W4+ be satis�ed. Now let Ã, B̃ be two distinct feasible sets. Assume
for contradiction that C(Ã) 6⊆ C(Ã ∪ B̃) and C(B̃) 6⊆ C(Ã ∪ B̃). By non-emptiness, we
can without loss of generality assume B̃ ∩ C(Ã ∪ B̃) 6= ∅. Set A := Ã ∪ B̃. B := B̃,
D := Ã. Then we have that C(A) ∩ B 6= ∅, A \ B ⊆ D ⊆ A. and C(D) 6⊆ C(A).
Hence we can apply W4+, and obtain that C(B̃) = C(B) ⊆ C(A) = C(Ã∪ B̃), a wanted
contradiction.

We compare W4 and W4+.

W4:
Let B ⊆ A be feasible sets.

If C(A) ∩B 6= ∅, B 6= A and C(A \B) 6⊆ C(A)
then C(B) ⊆ C(A)

W4+:
Let B ⊆ A be feasible sets.

If C(A) ∩B 6= ∅, B 6= A and ∃D, A \B ⊆ D ⊆ A : C(D) 6⊆ C(A)
then C(B) ⊆ C(A)

First, we state the obvious.

Lemma 9. W4+ implies W4. Hence γ+ implies W4.

Proof. Let C satisfy W4+. Now we show that W4 is satis�ed. Let B ⊆ A be feasible
sets, such that C(A)∩B 6= ∅, B 6= A and C(A \B) 6⊆ C(A). Then ∃D, A \B ⊆ D ⊆ A :
C(D) 6⊆ C(A), namely D := A \B. Hence we can apply W4+ and obtain C(B) ⊆ C(A).
By Lemma 8, γ+ also implies W4.

Our goal now is to �gure out, whether W4 and γ are also equivalent to PIP-transitive
upwards rationalizability. This would reproduce Theorem 4. Earlier on, we were stuck,
but now we know exactly how to look for counterexamples: If we want to show that γ
and W4 do not imply W4+, our construction needs a witness D which is a strict superset
of A \B.
Example 6 (γ and W4 do not imply W4+). Let U = {a, b, c, d}. We de�ne a choice
function C as follows.

a, b, c, d
a, b, c a, c, d b, c, d a, b, d

a, b a, c b, c a, d b, d c, d

In the above table, all non-singleton feasible sets are listed without the set brackets. The
underlined elements are the ones which are chosen. For example, we have C(U) = {a, c}.
First we want to check that W4 is satis�ed. To do so, we go through all pairs of B ⊂ A.
Now we need to show that one of two statements must hold true. One option is that the
consequent must be true, which means C(B) ⊆ C(A). The other possibility is that the
antecedent is false, which is especially the case if C(A \B) ⊆ C(A). To do so, we �rst �x
A and then color in all B ⊂ A. We start with A = U .
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a,b,c,d

a, b, c a, c, d b, c, d a, b, d
a, b a, c b, c a, d b, d c, d

For A = {a, b, c}, A = {a, c, d} and A = {b, c, d}, the task is easy and hence summed up
in one table.

a, b, c, d
a,b,c a,c,d b,c,d a, b, d
a, b a, c b, c a, d b, d c, d

For A = {a, b, d}, we again color everything in.

a, b, c, d
a, b, c a, c, d b, c, d a, b, d

a, b a, c b, c a, d b, d c, d

For |A| = 2 we have |B| = 1. The statement now becomes trivial since B = C(B) by
non-emptiness. If C(A) ∩B 6= ∅, then C(B) = B ⊆ C(A).
Now that we have shown that W4 is satis�ed, we quickly show that γ is satis�ed too.
To do so we observe that a, c are chosen in every possible subset respectively. Hence if
x ∈ {a, c}, and x ∈ C(A) ∩ C(B), then we also have x ∈ C(A ∪ B). Also, note that
d is chosen in exactly one non-singleton set. Hence if d ∈ C(A) ∩ C(B), then we have
d ∈ C(A ∪ B), since A ∪ B is now equal to A or B. b is chosen only in {b, c, d}, {b, d}
and {b}, which are linearly ordered using the subset relation. This implies that if we have
c ∈ C(A) ∩ C(B), then A ∪B is equal to A or B and trivially γ is satis�ed.
To show thatW4+ is violated (and hence γ+ and PIP-transitive upwards rationalizability
are too violated), we color in A, B and D for which the implication does not hold true.

a,b,c,d

a, b, c a, c, d b, c, d a, b, d
a, b a, c b, c a, d b, d c, d

Note that, as discussed before, D needs to be a true superset of A \B. 4

Now we know that γ+ is stronger than γ and W4 together.

PIP-tran. UR ⇐⇒ γ+ ⇐⇒ W4+ 6⇐⇒ γ ∧W4

We can now visualize the relations between the most important expansion consistency
conditions discussed in this thesis:

β+

����
γ+

�� %%
γ W4

��
Aizerman
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Further, we note that Theorem 4 is sharp in the sense that the characterization does not
hold true if any of the axioms are omitted. There are examples on 3 alternatives for
which W4 and γ are satis�ed, but not α. (Obviously, expansion consistency does not
imply contraction consistency.) For α and γ, we already know that they are equivalent to
rationalizability. This is a strictly weaker notion than PIP-transitive rationalizability, as
we can see using Example 4. Hence α and γ cannot imply W4. For α and W4, we need
to show that they do not imply γ.

Example 7 (α and W4 do not imply γ). Let C be de�ned by the following table, where
the chosen elements are the underlined ones.

a, b, c, d
a, b, c a, c, d b, c, d a, b, d

a, b a, c b, c a, d b, d c, d

First we show that α is satis�ed. We see that a, b, c are chosen whenever possible. Hence,
when x ∈ {a, b, c}, x ∈ C(A), x ∈ B ⊆ A, then also x ∈ C(B). Only d is left, where we
can easily check that if d ∈ C(A), d ∈ B ⊆ A, then d ∈ C(B). For clarity we highlight
all non-singleton sets, in which d is chosen.

a, b, c, d
a, b, c a, c, d b, c, d a, b, d

a, b a, c b, c a, d b, d c, d

After showing that α is ful�lled, we now argue that W4 is satis�ed. We argue as follows:
Let A ∈ F(U), such that |C(A)| + 1 ≥ |A|. Then for all B ⊆ A, we either have
C(B) ⊆ C(A) or C(A \ B) ⊆ C(A). To prove this claim, we have to look at two cases.
If A = C(A), then trivially we obtain C(B) ⊆ B ⊆ A ⊆ C(A). Else C(A) = A \ {x}. If
C(B) 6⊆ C(A), then x ∈ B. Hence C(A \B) ⊆ A \B ⊆ A \ {x} = C(A).
Further, γ is violated.

a, b, c, d
a, b, c a, c, d b, c, d a, b, d

a, b a, c b, c a, d b, d c, d

4

We conclude this section by giving an alternative, slightly more intuitive formulation of
W4. The idea stems from the color-coding of Example 6.

De�nition 24 (W4∗). Let C be a choice function. We say that C satis�es W4∗, if the
following holds:
Let A,B be disjoint feasible sets. (This means that A∩B = ∅.) Then C(A) ⊆ C(A∪B)
or C(B) ⊆ C(A ∪B).

Proposition 9. Let C be a choice function. Then the following are equivalent:

(i) C satis�es W4

(ii) C satis�es W4∗
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Proof. First, let C satisfy W4. Let A∗, B∗ be disjoint feasible sets, such that C(A∗) 6⊆
C(A∗∪B∗). We can applyW4 using A := A∗∪B∗ and B := B∗, since then by disjointness
A \B = A∗. This implies C(B∗) = C(B) ⊆ C(A) = C(A∗ ∪B∗).
Now, let C satisfy W4∗. Let two feasible sets B ⊂ A be given, such that C(A) ∩ B 6= ∅
and C(A\B) 6⊆ C(A). We can apply W4∗ using A∗ := A\B and B∗ := B. By de�nition,
they are disjoint and their union is A. Since by assumption C(A∗) 6⊆ C(A∗ ∪ B∗), it has
to be that C(B∗) ⊆ C(A∗ ∪B∗). This is equivalent to C(B) ⊆ C(A).

With this formulation, we can quickly see why W4 is weaker than γ+: It only considers
disjoint feasible sets A,B, while the latter considers all pairs of feasible sets. Further we
notice that γ is only a non-trivial condition for feasible sets A,B, which are not disjoint.
Hence we also see why W4 and γ are independent of each other.

Everything in this section considered, the author would argue that γ+ is a viable alterna-
tive to W4. First, it plays a more stringent role in the theory of upwards rationalizability.
Second, one might argue that the restriction to disjoint feasible sets is unnecessary in the
sense that allowing all sets seems more natural. Of course, there might be some bias of
the author towards the condition he created, hence the reader is invited to form their own
opinion.
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6 α and Downwards Rationalizability

In this section, we present the last group of main results of this thesis. Instead of de-
manding that RA inherits upwards, we instead demand that it inherits downwards. Intu-
itively, we expect to move from expansion consistency to contraction consistency. Indeed,
we can use our notion of downwards rationalizability to characterize α. Furthermore, we
strengthen our intuition that quasi-transitivity and transitivity are not dependent on con-
traction consistency. First, quasi-transitive downwards rationalizability is also equivalent
to α. Second, we characterize transitive downwards rationalizability with new conditions
which leave the realm of contraction consistency. These conditions are based on a relation
which we call the competing relation.

6.1 Characterizing α

De�nition 25 (Downwards Rationalizability). Let C be a choice function. We say that
C is downwards rationalizable (DR), if there is a family of relations (RA)A such that the
following conditions hold:

(i) For all feasible sets A, RA ⊆ A× A is acyclic and complete

(ii) For all feasible sets A

C(A) = max
RA

A

(iii) For all feasible sets A,B, such that B ⊆ A:

RA ∩ (B ×B) ⊆ RB

In this case, we say that C is downwards rationalized by (RA)A.

Remark 5. Downwards rationalizability is obviously a generalization of rationalizability.
For R rationalizing C, we can set RA := R|A×A.
Further, condition (iii) can be replaced by the following condition:

(iii′) PB ⊆ PA

With this de�nition, we obtain somewhat similar results to the case of expansion con-
sistency. Downwards rationalizability is equivalent to α, but also equivalent to quasi-
transitive downwards rationalizability.

Theorem 6. Let C be a choice function. Then the following are equivalent.

(i) C satis�es α

(ii) C is downwards rationalizable

(iii) C is downwards rationalized by a family of quasi-transitive relations
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Proof of Theorem 6. The direction from (iii) to (ii) to (i) is straight forward. For the
last implication, we show the claim by induction over |U | = m. Our induction hypothesis
consists of three properties. For all choice functions C on a �nite U satisfying α, there
exists a family of relations (RA)∅6=A⊆U with the following properties:

(a)
C(A) = max

RA
A for all feasible A

(b) For all feasible B ⊆ A it holds that

RA ∩ (B ×B) ⊆ RB

(c) RA is complete and quasi-transitive for all A

Let us start with m = 1, say U = {x}. Then by non-emptiness C(U) = U . We set xRU x
and obtain a (family of) transitive relation(s), which ful�lls properties (a) to (c).
Now, let |U | = m + 1. By non-emptiness, we can �x any x ∈ C(U). Set U ′ := U \ {x}.
By induction assumption, there is a family of relations (RA)∅6=A⊆U ′ satisfying properties
(a) to (c) on all subsets of U ′. From now on we denote subsets of U ′ as A,B. For such
sets we de�ne A+ := A ∪ {x}. Now, for any feasible A we de�ne RA+

as follows:

� y RA+
z ⇐⇒ y RA z for all y, z ∈ A

� xRA+
y for all y ∈ A+

� y RA+
x ⇐⇒ y ∈ C(A+) for all y ∈ A

We need to show that all three properties are ful�lled for all subsets of U .
Let us start with (a). Observe that by α, x ∈ C(A+). This matches with xRA+

y for
all y ∈ A. Now, let y ∈ A. If y ∈ C(A+), then by α we conclude that y ∈ C(A). By
induction hypothesis, it must be that y RA z for all z ∈ A. Hence y RA+

z for all such
z. Furthermore, by de�nition we have y RA+

x. Hence y is maximal in A+. Otherwise
y /∈ C(A+). It follows that xRA+

y but ¬(y RA+
x), or in other words xPA+

y.
Now we move on to (b). Let two feasible sets B ⊆ A be given. (b) holds for (B,A)
by induction hypothesis. Hence it now remains to look at (B,A+) and (B+, A+). Let
y, z ∈ B with y RA+

z. Then by de�nition y RA z. By induction hypothesis again we have
y RB z. Thus we have shown the claim for (B,A+). In addition, by de�nition we obtain
y RB+

z. For x, we trivially obtain xRB+
y for all y ∈ B+. Hence, the only case which

remains is y RA+
x for some y ∈ B. But then by de�nition y ∈ C(A+) and hence by α it

follows that y ∈ C(B+). Again by de�nition, we obtain y RB+
x.

Last, we check (c). Let A be a feasible set. RA is complete and quasi-transitive by
induction hypothesis. First, we check completeness of RA+

. xRA+
y for all y ∈ A+. Let

y, z ∈ A, such that ¬(y RA+
z). Then by de�nition ¬(y RA z). We use completeness of RA

and obtain z RA y. This by de�nition implies z RA+
y. For quasi-transitivity, we only need

to go through two cases since x by (a) can never be dominated strictly. Let y, z, w ∈ A.
If xPA+

y and y PA+
z, by (a) we obtain z /∈ C(A+) and hence by de�nition ¬(z RA+

x),
or in other words xPA+

z. If on the other hand y PA+
z and z PA+

w, by de�nition we
obtain y PA z, z PAw. By induction hypothesis, we obtain y PAw. Again by de�nition,
we obtain y PA+

w.



6.1 Characterizing α 31

Applying Theorem 6, we directly obtain Lemma 7.
While Theorem 6 does state that downwards rationalizability and quasi-transitive down-
wards rationalizability are equivalent, we need to be careful. Not every family of relations
downwards rationalizing C has to be quasi-transitive, as we can see in the following ex-
ample.

Example 8 (Not every downwards rationalizing relation is quasi-transitive). Let U =
{a, b, c}. We de�ne C by setting C(A) := A for all feasible sets, except for C(U) := {a}.
For all A ∈ F(U), A 6= U , we set RA := A× A. We de�ne RU as follows:

a b

c

It is easy to check that (RA)A downwards rationalizes U . Further, RU is not quasi-
transitive. Instead, we could use R̄U :

a b

c

With this replacement, we now have a family of quasi-transitive relations which downwards
rationalizes U . 4

Example 9 (Downwards rationalizability does not imply transitive downwards rational-
izability). There is a choice function C which satis�es α but is not downwards rationalized
by any family of transitive relations.
Let U = {a, b, c, d}. De�ne C as follows:

A C(A)
{a, b, c, d} {c}
{a, b, c} {a, c}
{a, b, d} {b}
{d} {d}
B B ∩ {a, b, c}

where the last row means that for all not previously listed feasible sets B, C(B) =
B ∩ {a, b, c}. It is easy to verify that C satis�es α. We assume for contradiction, that
there is some family of transitive relations (RA)A downwards rationalizing C. Now, we
look at A = {a, b, c} and B = {a, b, d}. It is clear that a IA c. If further it were that c IA b
or a IA b, then by transitivity both would hold and b would be maximal, a contradiction.
Hence we have aPA b. Then it follows directly that aPU b, hence aRB b. Since b is chosen
in B, by assumption we have bRB d. By transitivity we have aRB d. By maximality of a
we have a ∈ C(B), a contradiction. 4
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6.2 Uniqueness for Downwards Rationalizability

For α, things are less structured than for γ. While (RA
C)A is the unique �nest family

which can upwards rationalize C, uniqueness is not given for downwards rationalizability,
no matter whether we demand a �nest or coarsest family. We start with a lemma, which
will be used a few times in this section.

Lemma 10. Let C be upwards or downwards rationalized by some family of relations
(RA)A. Let x, y ∈ A ∈ F(U). If xPA y, then xRB y for all B ∈ F(U) with x, y ∈ B.

Proof. First, let (RA) upwards rationalize C, let xPA y for some feasible sets A,B and
x, y ∈ A ∩ B. Then, it has to be that xP {x,y} y by Lemma 2. Especially, xR{x,y} y =⇒
xRB y.
Now, let (RA) downwards rationalize C, let xPA y for some feasible sets A,B and x, y ∈
A∩B. Then, we can analogously show that xPA∪B y. Especially, xRA∪B y =⇒ xRB y.

Example 10 (No unique coarsest relation). Consider U = {a, b, c}, C(U) = {a}. For all
B ⊂ U , we set C(B) := B. Then C satis�es α. It is then clear that for all such B we
have RB = B × B. We look at the following relation RU , where weak edges are denoted
by wavy lines and strict edges are pointing towards the dominated alternative.

a b

c

We see that there is no strictly coarser relation on U which yields the same choice set,
since then either b or c has to be undominated. Also it is easy to verify that (RA)∅6=A⊆U
downwards rationalizes C. We also look at another relation R̄U , given by the following
graph:

a b

c

Again, any strictly coarser relation has b or c as additional maximal element. Also, it is
easy to verify that (R̄A)∅6=A⊆U downwards rationalizes C (with R̄B = B ×B for all strict
subsets of U).
So both relations are inclusion maximal and downwards rationalize C, but they are not
identical. 4

Example 11 (No unique �nest relation). A unique �nest relation downwards rationalizing
C does not always have to exist.
Let U = {a, b, c, d}. De�ne C as follows:
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A C(A)
{a, b, c, d} {a, b}
{a, c, d} {a, c}
{b, c, d} {b, d}
B B

where the last row means that for all not previously listed feasible sets B, C(B) = B.
One quickly veri�es that C satis�es α. Again, it is clear that for all B of the last row we
need RB := B×B =: R̄B. For the �rst family of relations (RA)A, we look at the following
graphs:

a b

c d

a

c d

b

c d

We observe for RU and R{a,c,d} that each strictly �ner, complete relation has one less
maximal element. In the case of RU , either a or b will be dominated. In the case of
R{a,c,d}, either a or c will be dominated. Now we look at A = {b, c, d}. Note that by
c P {a,c,d} d we have to set cRA d. Furthermore, if we make the edge b IA d strict, we lose
one of the maximal elements b or d. Hence, there is no strictly �ner relation than RA

such that the family still downwards rationalizes C. All in all, (RA)∅6=A⊆U is an inclusion
minimal family downwards rationalizing C.
For the second family of relations R̄A, we mirror our previous construction:

a b

c d

a

c d

b

c d
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Analogously we observe for R̄U and R̄{b,c,d}, that each strictly �ner, complete relation has
one less maximal element. In the case of R̄U , again either a or b will be dominated. In the
case of R̄{b,c,d}, either b or d will be dominated. Now we look at A = {a, c, d}. Note that
by d R̄U c, we have to set d R̄A c. The only other way to make this edge strict is to have
d P̄A c, losing a maximal element. Furthermore, if we make the edge a ĪA c strict, we also
lose one of the maximal elements a or c. Hence, when �xing all other relations as done,
there is no strictly �ner relation than R̄A such that the family downwards rationalizes C.
All in all, (R̄A)∅6=A⊆U is another inclusion minimal family downwards rationalizing C. 4

6.3 Transitive Downwards Rationalizability

6.3.1 The Main Result

To characterize transitive downwards rationalizability, we introduce a new relation on U .
We remember that the revealed preference argues that some x is at least as good as
some y, if there is any set containing y in which x is chosen. Sometimes, this makes
alternatives tie even though one seems to be intuitively stronger than the other. For
example, we examine the choice function C, which is de�ned by C(A) = A for all feasible
sets A, except for the following cases.

A C(A)
{a, b, c, d} {a}
{a, b, c} {a}
{a, b, d} {a}

The revealed preference states that b is at least as good as a, since the former is chosen
in {a, b}. On the other hand, one could argue that a is in some sense strictly better than
b, since in many sets a is chosen, while b is not. Furthermore, in all sets in which b is
chosen, a is also chosen. Our argumentation results in the following relation.

De�nition 26 (Competing Relation). Let C be a choice function. We de�ne its competing
relation % on U as follows: x % y if and only if y ∈ C(A) =⇒ x ∈ C(A) for all feasible
sets A ⊇ {x, y}.

In our above example we have a � b, which matches our intuition. On �rst sight, our
relation appears to have some theoretical drawbacks when compared to the revealed pref-
erence. For non-empty choice, the revealed preference relation is not only complete, but
also acyclic. In general, neither must hold true for the competing relation.

Example 12. Let |U | ≥ 3. Then the competing relation can be incomplete. Let C be
de�ned by C(A) = A for all feasible sets A, except for the following two cases.

A C(A)
{a, b, c} {a}
{a, b} {b}

Clearly, a and b cannot be compared. Note that the relation is acyclic. 4

Acyclicity is a bit more complicated.
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Example 13. Let U = {a, b, c, x}. Then the competing relation can be cyclic. Let C be
de�ned by C(A) = A for all feasible sets A, except for the following cases.

A C(A)
{a, b, x} {a, x}
{b, c, x} {b, x}
{a, c, x} {c, x}

U {x}

Let % denote the competing relation of C. Then it is clear that a � b � c � a, a cycle.
On the other hand, we also have x � a, b, c, hence the relation is complete. 4

Instead of viewing these two observations as a disadvantage of the competing relation,
we could also argue that acyclicity and completeness of % mean that C satis�es a high
degree of consistency.
As we saw in Example 9, α still allows that a is chosen while b is not in some set ({a, b, c})
and b is chosen while a is not in some other set ({a, b, d}). This violation of completeness
results in transitive downwards rationalizability being impossible. With the addition of
acyclicity and the help of two lemmas, we can present a characterization.

Lemma 11. If C is downwards rationalized by a family of transitive relations, then % is
acyclic.

Proof. Let (RA) be a family of transitive relations downwards rationalizing C. Assume
for contradiction there are x1, . . . , xk with x1 � · · · � xk � xk+1 := x1. Let i ≤ k. There
must be a feasible set Ai with xi+1 ∈ Ai\C(Ai) and xi ∈ C(Ai). It follows that xi P

Aixi+1,
else by transitivity xi+1 would be chosen in Ai. Now, set A := ∪i≤kAi, which is a feasible
set. By downwards rationalizability, it has to be that xi P

A xi+1 for all i ≤ k. Hence
x1 P

A . . . PA xk P
A x1, a wanted contradiction to RA being acyclic (transitive).

Lemma 12. Let R be an acyclic and complete relation on a countable set U . Then there
is a transitive and complete relation R′ ⊆ R on U .

Proof. As always, we denote the strict part of R by P and the symmetric part by I. First,
set k := |{(x, y)|x, y ∈ U, xIy, x 6= y}|/2. We deal with the case k <∞ using induction.
For k = 0, it is clear that R itself is antisymmetric and complete. For transitivity, let xR y,
y R z. If the three are not pairwise distinct, then trivially xR z. Else, by antisymmetry
it must be that xP y, y P z. By acyclicity it must hence be that xR z.
Now let k > 0. If R itself is transitive, we are done. Else, there must be pairwise distinct
x1, . . . , xk ∈ U with xk P x1, but xiRxi+1 for all i ≤ k, where we denote xk+1 := x1. Since
R is acyclic, there has to be i < k with xi I xi+1. Assume now for contradiction, that for
each such i the relation R \ {(xi, xi+1)} is no longer acyclic. This would mean that there
is a strict path xi P . . . P xi+1. For all other i we directly have xi P xi+1. Hence there is
a cycle x1 P . . . P xk P x1, a wanted contradiction to acyclicity of R. Now let i be given,
such that xi I xi+1 and R

∗ := R \ {(xi, xi+1)} is acyclic. Then R∗ is still complete and we
can use induction to obtain a relation R′ ⊆ R∗ ⊆ R, which is transitive and complete.
For k = ∞, it must be that |U | = ∞. We enumerate the elements of U = {x1, x2, . . . }.
Then, we can inductively build relations R(k) ⊆ R, such that R(k) is complete and tran-
sitive on {x1, . . . , xk} using the complete and acyclic input R(k−1) ∪ {(x, y) ∈ R |x =
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xk ∨ y = xk}. Then, the lim inf of these relations is a transitive, complete relation on
U .

Theorem 7. Let C be a choice function. The following are equivalent.

(i) C is downwards rationalized by a family of transitive relations.

(ii) C satis�es α and its competing relation is complete and acyclic.

Proof. First, we look at (i) =⇒ (ii). Lemma 11 ensures that the competing relation
is acyclic. α is clearly satis�ed. Assume for contradiction, that completeness is violated
for x, y on the sets A,B. Then, by transitivity it has to be that xPA y and y PB x, a
contradiction to Lemma 10.
For the other direction, let (ii) be true. We want to show that there exists a family of
relations (RA)A∈F(U) with the following properties:

(i)
C(A) = max

RA
A for all feasible A

(ii) For all feasible B ⊆ A it holds that

RA ∩ (B ×B) ⊆ RB

(iii) RA is complete and transitive for all A

To do so, let % denote the competing relation, which has to be acyclic and complete by
assumption. Using Lemma 12, we obtain a transitive and complete subrelation %∗. For
each feasible A and x, y ∈ A we de�ne:

xRA y ⇐⇒ x %∗ y ∨ x ∈ C(A)

For (i), let A ∈ F(U). If x ∈ C(A), then xRA y for all y ∈ A. If x ∈ A \ C(A), then
observe that by completeness of % for all y ∈ C(A): y � x, which implies y PA x.
For (ii), let x, y ∈ B ⊆ A with xRA y. If x ∈ C(A), by α we have x ∈ C(B), hence
xRB y. Else x %∗ y, hence also xRB y.
For (iii), let xRA y and y RA z for some feasible set A with x, y, z ∈ A. If x ∈ C(A), then
trivially xRA z. Else, it must be that x %∗ y. This implies x % y and hence y /∈ C(A).
From this we deduce y %∗ z. Using transitivity of %∗, we have x %∗ z, and hence xRA z,
which proves transitivity. Since %∗ is complete on U , RA is complete on A.

6.3.2 Further Comments

Example 13 and Example 9 already show that even when α is satis�ed, completeness and
acyclicity of the competing relation do not imply each other. For the above characteriza-
tion to be sharp, we only need to show that acyclicity and completeness of the competing
relation do not imply α.

Example 14 (Completeness and acyclicity do not imply α). Let U = {a, b, c}. We set
C(A) := A for all feasible sets, except for C({a, b}) := {a}. Then the competing relation
of C is complete and acyclic. Nonetheless, α is not satis�ed. 4
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Neither completeness nor acyclicity are contraction consistency conditions. Are they
related to expansion consistency? While completeness is implied by transitive upwards
rationalizability, the latter does not imply acyclicity of the competing relation.

Proposition 10. Let C be a choice function. If C is upwards rationalized by a transitive
family of relations, then its competing relation is complete.

Proof. Let (RA)A be a family of transitive relations upwards rationalizing C. To check
completeness of the competing relation, let x, y ∈ A be given, such that x ∈ C(A),
y ∈ A \ C(A). Let B be any other feasible set with y ∈ C(B), x ∈ B. By transitivity
and completeness of RA, it has to be that xPA y (else y ∈ C(A)). By Lemma 10 we have
xRB y. By transitivity of RB and maximality of y in B, we obtain xRB z for all z ∈ B,
hence x ∈ C(B).

Example 15 (Transitive upwards rationalizability does not imply acyclicity of the com-
peting relation). Let U = {a, b, c, d}. We de�ne C(A) = A for all feasible sets A, except
for the following ones.

A C(A) condition
a, b, d a, d �
b, c, d b, d �
c, a, d c, d �
a, b a �
b, c b �
a, c c �
A d d ∈ A, |A| = 2

C satis�es β+. Further, the competing relation has a cycle a � b � c � a. 4

Now, we have presented all main results of this thesis. From this point on, we embark
on a sidequest to explore choice theoretical questions, as well as study applications of our
theory.

6.3.3 Resoluteness2 and Transitive Downwards Rationalizability

This subsection does not bear any new results. Instead, it shows where our attempts cross
the path of already existing results. Namely, completeness of the competing relation is
equivalent to a condition called weak WARP, which was used by Ehlers and Sprumont
(2008). Together with two other consistency conditions and a weak form of resoluteness,
it characterizes the Top Cycle rule (TC ), which is known to satisfy β+ and which we
introduce in Section 9. Noticeably, transitive downwards rationalizability implies all of
their axioms, except for resoluteness2. We attempt to gain a better understanding of our
new notion by applying their result and arriving at full rationalizability. Sadly, this is
not due to transitivity, but rather due to α and resoluteness, as a result of Moulin (1985)
suggests.

De�nition 27 (WWARP, Jamison and Lau, 1973). If x, y ∈ U and there is A ∈ F(U),
such that x ∈ C(A) and y ∈ A \ C(A), there is no B ∈ F(U) such that y ∈ C(B) and
x ∈ B \ C(B).
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De�nition 28 (GCE, Weak α). Let C be a choice function. We say that C satis�es
GCE (or say that C is a generalized Condorcet extension) if and only if the following
holds: If x ∈ A, and for all y ∈ A \ {x} we have that C({x, y}) = {x}, then C(A) = {x}.

We say that C satis�es weak α if and only if the following holds: For all A ∈ F(U),
|A| ≥ 2, we have that C(A) ⊆

⋃
x∈AC(A \ {x}).

De�nition 29 (Resoluteness2). Let |A| = 2. Then |C(A)| = 1

Theorem 8 (Ehlers and Sprumont, 2008). Let C be a choice function. Then the following
are equivalent.

(i) C satis�es WWARP, GCE, weak α and resoluteness2

(ii) There is some RN ∈ F(U) with |N | odd, such that C(A) = TC (A,RN) for all
A ∈ F(U)

Interestingly, transitive downwards rationalizability implies WWARP, GCE and weak
α. Hence, all choice functions resolute on two alternatives and satisfying transitive down-
wards rationalizability are Top Cycle rules. Hence, they also satisfy β+ and are transitively
rationalizable.

Proposition 11. Let C satisfy transitive downwards rationalizability. Then C satis�es
WWARP, GCE and weak α.

Proof. By Theorem 7, the competing relation of C is complete. This is by de�nition
equivalent to C satisfying WWARP.
For GCE, let x ∈ A and C({x, y}) = {x} for all y ∈ A \ {x}. Assume for contradiction
that C(A) 6= {x}. Let y 6= x, y ∈ C(A). Then by α y ∈ C({x, y}), a contradiction.
For weak α, let A ∈ F(U), |A| ≥ 2. Let x, y ∈ A with x 6= y. Then we can apply α
with Bx := A \ {x} and By := A \ {y}. We obtain that C(A) \ {x} ⊆ C(A \ {x}) and
C(A) \ {y} ⊆ C(A \ {y}). Hence we know that C(A) ⊆ C(A \ {x}) ∪ C(A \ {y}) ⊆⋃

z∈AC(A \ {z}).

Moulin has already proven a similar statement without the need of transitivity.

Theorem 9 (Moulin, 1985). Let C be a resolute choice function, which means |C(A)| = 1
for all feasible A. Then, the following are equivalent.

� C satis�es α

� C satis�es α and γ

� C satis�es α and β+

It is easy to show that α and resoluteness2 imply resoluteness. Hence, we did not gain
any knowledge about transitive downwards rationalizability. Still, the author hopes that
this subsection grants the reader some insight into already existing work.
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7 Search for New Consistency Conditions

In this section, we engage with the concept of creating expansion consistency conditions.
Even though the author does not consider the following results to be as important as
the previous ones, the process of reaching them made Section 5 possible. In fact, γ+

was originally created as an attempt to answer the following question II. Further, the
approach to formulate a condition clearly stronger than γ was only chosen after the
following approaches of creating conditions clearly stronger than Aizerman.

7.1 Three Questions

The classical results can be summed up in a diagram:

transitive rationalizability ⇐⇒ α ∧ β+

�� $$
quasi-tran. rationalizability ⇐⇒ α ∧ γ

��

∧ Aizerman

(acyclic) rationalizability ⇐⇒ α ∧ γ

OO

We now ask ourselves three questions:

I Can we replace β+ by γ and some expansion consistency condition X in the �rst
row? Such X is not allowed to imply γ. Ideally, it should also be stronger than
Aizerman.

II Can we �nd a single expansion consistency condition Y which can replace γ and
Aizerman in the second row?

III Can we �nd a formulation of γ which is more similar to the formulations of other
known expansion consistency conditions?

While attempting to answer them, we will de�ne a few new expansion consistency con-
ditions. Note that quasi-transitive rationalizability is equivalent to α and a notion called
stability, which was introduced by Brandt et al. (2018). Hence, one technical way to
answer question II is to merge the two conditions named α̂⊆ (also known as Aizerman)
and γ̂⊆ to a single condition.

7.2 A Large Class of Expansion Consistency Conditions

To the best of the author's knowledge, the term expansion consistency condition is not
well-de�ned. Our understanding is that they are implications of the form �If something
happens on certain subsets of A, then certain elements need to be within C(A).� Usually,
expansion consistency conditions are all implied by β+, just like contraction consistency
conditions are implied by α.
When we look at di�erent expansion consistency conditions used by Schwartz (1976), such
as β+ and Aizerman, we see that many of them can be written in the following way:
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Let B ⊆ A be feasible sets.
If

then C(B) ⊆ C(A)

If B is in some sense a reasonable subset of A, then everything chosen in B is also chosen
in A. That is a bit abstract, so let us compare Aizerman, our imagined X and β+.

Aizerman X β+

Let B ⊆ A be feasible sets.
If C(A) ⊆ B If ∗ If C(A) ∩B 6= ∅

then C(B) ⊆ C(A)

Under Aizerman, B is only deemed a reasonable subset, if it contains all elements which
are chosen in A.
Under β+, B is already deemed a reasonable subset, if it contains any element which is
chosen in A.
Our goal for X is to �nd a �tting notion of reasonability in between those two. It is easy
to verify that if C(A) ⊆ B implies ∗, then X implies Aizerman. Analogously, if ∗ implies
C(A) ∩B 6= ∅, then β+ implies X.

7.3 The Expansion Consistency Condition χ

The following property originated as an attempt to answer question I. It was found using
the idea illustrated in Section 7.2. Sadly, we will see that χ is too strong in the sense
that it implies γ. Nonetheless, its formulation is quite compact and it can function as a
replacement for β+ whenever α can be assumed.

De�nition 30 (Property χ). Let C be a choice function. We say that C satis�es χ if
and only if the following holds:

Let B ⊆ A be feasible sets.
If |C(A) ∩B| ≥ |C(A) \B|

then C(B) ⊆ C(A)

B is reasonable under χ, if it contains at least half the elements of C(A). By non-emptiness
of choice, containing all elements of C(A) implies containing at least half of C(A) implies
containing any element of C(A). By Section 7.2 we could now directly conclude that β+

implies χ implies Aizerman. We will demonstrate both proofs for χ. In the future, we
will omit similar proofs.

Lemma 13. Let C satisy χ. Then C satis�es Aizerman.

Proof. Let B ⊆ A be given, such that C(A) ⊆ B. Then |C(A) \ B| = 0. Since the
inequality in De�nition 30 now must hold, we can apply χ and obtain C(B) ⊆ C(A).

Lemma 14. Let C satisfy β+. Then C satis�es χ.

Proof. Let C satisfy β+. Let B ⊆ A be feasible sets, such that |C(A) ∩B| ≥ |C(A) \B|.
Then, by non-emptiness of C(A), it must be that C(A) ∩ B 6= ∅. Else, we would have
|C(A)| = |C(A) ∩ B| + |C(A) \ B| = 0 + 0. Hence we can apply β+ and obtain C(B) ⊆
C(A).
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Example 16 (χ does not imply β+). Let |U | = 4. We de�ne C as follows:

A C(A)
{a, b, c, d} {a, b, d}
{c, d} {c}
{c} {c}
{d} {d}
A A \ {c, d}

where the last column is meant for all A ⊆ U which were not listed in the table before.
Note that C is a well-de�ned choice function, since for all sets the choice is non-empty.
C violates β+, which we can see by setting A := {a, b, c, d}, B := {c, d}. Then B ⊆ A,
C(A) ∩ B = {d} 6= ∅, but C(B) 6⊆ C(A). To show that C satis�es χ, let B ⊆ A be
arbitrary feasible sets. If A = B, the set inclusion C(B) ⊆ C(A) holds trivially. If
|B| = 1, say B = {x}, then non-emptiness of C and |C(A) ∩B| ≥ |C(A) \B| imply that
x ∈ C(A), hence C(B) = B ⊆ C(A). Now let |B| ≥ 2, |A| > |B|. First, if B = {c, d},
then non-emptiness of choice and |C(A) ∩ B| ≥ |C(A) \ B| imply that we must choose
c or d in A. Hence A = {a, b, c, d}. But the inequality �1 ≥ 2� does not hold, hence χ
cannot be violated. At last, let B be one of the not explicitly listed sets, |B| ≥ 2. Then
C(B) = B \ {c, d}. We see that since |A| ≥ 3, the inclusion A \ {c, d} ⊆ C(A) holds true.
Hence C(B) ⊆ C(A). 4

The following result implies that χ is not an answer to question I, since it implies γ. After
�nding γ+, the author realized that χ is even strong enough to imply γ+.

Lemma 15. Let C satisfy χ. Then C satis�es γ+.

Proof. Let A,B be feasible sets. Then we use A′ := A∪B and B′ := A. If |C(A′)∩B′| ≥
|C(A′) \ B′|, then we can apply χ with A′ and B′ and obtain C(A) ⊆ C(A ∪ B). Else,
|C(A′) ∩B′| < |C(A′) \B′|. Altogether we obtain

|C(A′) \B| ≤ |C(A′) ∩B′| < |C(A′) \B′| ≤ |C(A′) ∩B|

In more detail, C(A′) \B ⊆ C(A′)∩B′, since every element that is not in B has to be in
A = B′. Also, C(A′) \ B′ ⊆ C(A′) ∩ B, since every element that is not in A has to be in
B. Hence we can apply χ to A′ and B. We obtain C(B) ⊆ C(A ∪B)

We obtain the following diagram:

β+

��
χ

��
γ+

�� %%
γ Aizerman
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Theorem 10. Let C satisfy α and χ. Then C satis�es β+.

Proof. We now know that C satis�es α, γ, and Aizerman. By Corollary 2, C is rationalized
by a quasi-transitive, complete preference relation R. We now show that it must be
transitive. Let x, y, z be given, such that xR y, y R z. Then x ∈ C({x, y}). Assume z P x
for contradiction. Set A := {x, y, z}. Set B := {x, y}. If y ∈ C(A), then |C(A)∩B| = 1 ≥
|C(A)\B|. By χ we obtain x ∈ C(A), a contradiction. Else, it must be that C(A) = {z}.
Set B′ := {y, z} Since |C(A) ∩ B′| = 1 ≥ 0 = |C(A) \ B|, we apply χ and conclude that
y ∈ C(A), a contradiction.

So in fact, we can replace β+ by the cardinality-based χ when assuming α.

transitive rationalizability ⇐⇒ α ∧ χ

��
PIP-tran. rationalizability ⇐⇒ α ∧ γ+

�� $$
quasi-tran. rationalizability ⇐⇒ α ∧ γ

��

∧ Aizerman

(acyclic) rationalizability ⇐⇒ α ∧ γ

OO

Corollary 5. There are choice functions which satisfy γ+, but not χ.

Proof. This follows from Theorem 10 and Theorem 5, since PIP-transitive rationalizability
is a strictly weaker notion than transitive rationalizability.

7.4 Parameterized χ

Since χ with α already implies β+, we attempt to answer question II by weakening χ
slightly. This attempt also fails, but gives rise to a hierarchy of conditions which shows
how Aizerman, χ and β+ are related using a parameter. The main idea is that some
B ⊆ A is considered reasonable if and only if it contains at least a fraction p of the
elements of C(A).

De�nition 31 (Parameterized χ). For p ∈ [0, 1] we say that a choice function C satis�es
χ(p), if the following holds:

Let B ⊆ A be feasible sets.
If |C(A) ∩B| ≥ p|C(A)|

then C(B) ⊆ C(A)

We say that C satis�es χ(↓p), if C satis�es χ(q) for all q ∈ (p, 1]. This is equivalent to
making the above inequality in the antecedent strict.

Remark 6. One can check that for p, q ∈ [0, 1] with p < q, χ(p) implies χ(↓p) implies χ(q).
Due to non-emptiness, it is easy to see that the only C satisfying χ(0) is the trivial choice
function with C(A) = A for all feasible sets.

We �rst show that we parameterize between β+ and Aizerman, with χ being in the middle.
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Lemma 16. The following equivalences hold:

� χ(1) ⇐⇒ Aizerman

� χ( 1
2
) ⇐⇒ χ

� χ(↓0) ⇐⇒ β+

Proof. For Aizerman, we observe that (|C(A) ∩B| ≥ |C(A)|) ⇐⇒ (C(A) ⊆ B).
For χ, we observe that (|C(A) ∩ B| ≥ 1

2
|C(A)|) ⇐⇒ (|C(A) ∩ B| ≥ 1

2
(|C(A) ∩ B| +

|C(A) \B|)) ⇐⇒ (|C(A) ∩B| ≥ |C(A) \B|).
For β+, we observe that (∃ε > 0 : |C(A) ∩B| ≥ ε|C(A)|) ⇐⇒ C(A) ∩B 6= ∅.

From Lemma 16, Corollary 3 and Theorem 10 we can directly conclude the following
statement.

Lemma 17. Let C be a choice function. Then for all 0 < p ≤ 1
2
the following are

equivalent.

(i) C satis�es α and χ(p)

(ii) C is transitively rationalizable

Now we show that the χ(p) truly form a hierarchy.

Lemma 18. For all p < q, χ(q) does not imply χ(p) (for large enough U).

Proof. Let k, n ∈ N be given such that p < k
n
< q. Then we set U := {x1, . . . , xn, y} with

|U | = n + 1. We de�ne a choice function C using the following table, where we denote
D := {x1, . . . , xk, y}

A C(A) condition
U U \ {y} �
D D �
A A \D for all U 6= A 6⊆ D
A A \ {y} for all {y} 6= A ⊂ D
{y} {y} �

We now show that C ful�lls χ(q) but not χ(p). For a violation of χ(p), set A := U , B := D.
We see that |C(A) ∩ B| = k, |C(A)| = n. By assumption k > pn, but at the same time
y ∈ C(B) \ C(A).
Now we focus on χ(q). First, let A = U . For all B 6= D, we have C(B) ⊆ C(A). Using
|C(A) ∩ D| = k, |C(A)| = n and k < nq we see that there is no violation of χ(q). For
A = D, we trivially obtain C(B) ⊆ B ⊆ A = C(A) for any B we need to consider.
For A 6⊆ D, A 6= U , let |C(A) ∩ B| ≥ q|C(A)| > 0 for B ⊆ A. Observe that then B
cannot be a subset of D or D itself. Hence C(B) = B \D ⊆ A \D = C(A). Finally, let
{y} 6= A ⊂ D. For all B ⊆ A satisfying the antecedent of De�nition 31, we have that
C(B) = B \ {y} ⊆ A \ {y} = C(A).

χ(↓p) is strictly weaker than χ(p) if and only if p is rational.
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Lemma 19. Let p ∈ [0, 1] be rational. Then, for large enough U , χ(↓p) does not imply
χ(p). If p ∈ [0, 1] is irrational, χ(↓p) and χ(p) are equivalent.

Proof. First let p be irrational. Let C satisfy χ(↓p). Let feasible sets B,A with B ⊆ A and
|C(A)∩B| ≥ p|C(A)| be given. Since the left hand side is a natural number and the right
hand side is not, we have that |C(A) ∩ B| > p|C(A)|. By χ(↓p), we have C(B) ⊆ C(A).
p = 0 has been dealt with, since not only TRIV satis�es β+. Let p = k

n
with k > 0,

U := {x1, . . . , xn, y} such that |U | = n + 1. We again de�ne the choice function C using
the following table, where we denote D := {x1, . . . , xk, y}

A C(A) condition
U U \ {y} �
D D �
A A \D for all other A 6⊆ D
A A \ {y} for all {y} 6= A ⊂ D
{y} {y} �

We now show that C ful�lls χ(↓p), but not χ(p). For a violation of χ(p), set A := U , B := D.
We see that |C(A) ∩ B| = k, |C(A)| = n. By assumption k ≥ pn, but at the same time
y ∈ C(B) \ C(A).
Now we focus on χ(q). First, let A = U . For all B 6= D, we have C(B) ⊆ C(A). Using
|C(A)∩D| = k, |C(A)| = n and k = np < nq for all q > p, we see that there is no violation
of χ(↓p) for the pair (U,D). For A = D, we trivially obtain C(B) ⊆ B ⊆ A = C(A) for
any B we need to consider. For A 6⊆ D, A 6= U , let |C(A)∩B| > p|C(A)| > 0 for B ⊆ A.
Observe that then B cannot be a subset of D or D itself. Hence C(B) = B \D ⊆ A\D =
C(A). Finally, let A ⊂ D. For all B ⊆ A satisfying the antecedent of De�nition 31, we
have that C(B) = B \ {y} ⊆ A \ {y} = C(A).

Can we �nd a p for which χ(p) (or χ(↓p)) is an answer to question II? χ itself is already

too strong. We additionally show that any weakening of χ( 1
2
) is too weak. To do so, we

only need to consider the strongest weakening of χ, which is χ(↓ 1
2
).

Example 17. α and χ(↓ 1
2
) do not imply (quasi-transitive) rationalizability.

Let U = {a, b, c}. We set C(A) = A for all feasible sets, except for C(U) = {b, c}.
α is clearly satis�ed. Furthermore, C is not rationalizable: Due to trivial choice on the sets
of size 2, it would have to be that x I y for all x, y ∈ U . But this contradicts a /∈ C(U).

For checking that χ(↓ 1
2
) is satis�ed, let A,B be feasible with B ⊆ A. If A 6= U , then

C(A) = A and hence trivially C(B) ⊆ C(A). Let A = U . If |C(A) ∩ B| > 1
2
|C(A)| = 1,

then again trivially C(B) ⊆ C(A). 4
On the other hand, χ was also too strong for question I, so again our only chance is to
weaken it. We now show that χ(↓ 1

2
) is too weak to imply β+ with α and γ together.

Example 18 (α, γ and χ(↓ 1
2
) do not imply transitive rationalizability). Let U = {a, b, c}.

We de�ne the choice function C on all non-singleton sets via the following table:

A C(A)
{a, b, c} {b, c}
{a, b} {a, b}
{a, c} {c}
{b, c} {b, c}
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One can easily check that C is rationalized by R, where a I b, b I c, c P a. Since R is
quasi-transitive but not transitive, C satis�es α and γ, but not β+. Now, we only need
to check that for all p > 1

2
, χ(p) is satis�ed. Let B ⊆ A be feasible sets. For |A| ≤ 2,

if B ∩ C(A) 6= ∅, then B = C(A) or B = A. Hence trivially C(B) ⊆ C(A). Let
A = U . |C(A) ∩ B| ≥ p|C(A)| = 2p > 1. Hence {a, b, c} ⊇ B ⊇ C(A) = {b, c}. Again
C(B) ⊆ C(A) 4

7.5 Technically Correct

In this subsection, we present very technical answers to the three questions proposed.
They show that answering the questions is di�cult, but not impossible on a fundamental
level. Even though the answers meet all our formal requirements, we still consider the
questions to be open when demanding intuitively appealing conditions.
We �rst present an answer for question I.

De�nition 32 (Arti�cial I). Let C be a choice function. We say that C satis�es Arti�cial
I, if the following holds:

Let B ⊆ A be feasible sets.
If C(A) ∩B 6= ∅ and C restricted to F(A) satis�es γ

then C(B) ⊆ C(A)

Example 19 (Arti�cial I does not imply γ). Let U = {a, b, c}. We de�ne C(A) = A for
all feasible sets A, except for C(U) = {b, c}. Then, γ is violated, since a /∈ C(U). Further,
Arti�cial I is satis�ed: Let B ⊆ A be two feasible sets. If A 6= U , we have C(A) = A and
hence trivially C(B) ⊆ A = C(A). For A = U , we see that C restricted to subsets of U is
C itself. Since C does not satisfy γ, the antecedent is not true and hence the implication
correct.

Lemma 20. Arti�cial I answers question I. This means that α, γ and Arti�cial I are
equivalent to transitive rationalizability, while Arti�cial I is an expansion consistency con-
dition and does not imply γ.

Proof. By de�nition, Arti�cial I is an expansion consistency condition (even though ar-
guably not intuitive). Further, we have already seen that it does not imply γ. We now
can conclude the proof by showing that Arti�cial I and γ are equivalent to β+. If β+ is
satis�ed, we have that C(B) ⊆ C(A) for all B ⊆ A with C(A) ∩ B 6= ∅. Hence Arti�cial
I is satis�ed by de�nition. Further, we already know that β+ implies γ. For the other
implication, assume that C satis�es γ and Arti�cial I. Now let A,B be feasible sets with
B ⊆ A and C(A)∩B 6= ∅. Since C satis�es γ, we know that C restricted to subsets of any
feasible set satis�es γ too. Hence, we can apply Arti�cial I and obtain C(B) ⊆ C(A).

Now, we present an answer for question III.

De�nition 33 (Arti�cial III). Let C be a choice function. We say that C satis�es
Arti�cial III, if the following holds:

Let B ⊆ A be feasible sets.
If there are feasible sets D,E with D ∪ E = A and B ⊆ C(D) ∩ C(E)

then C(B) ⊆ C(A)
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Lemma 21. Arti�cial III answers question III. This means that it is an expansion con-
sistency condition as discussed in Section 7.2 and equivalent to γ.

Proof. We only need to show the equivalence. First, let C satisfy γ. Let B ⊆ A and D,E
be given as in De�nition 33. By γ it has to be that C(D) ∩ C(E) ⊆ C(A). We hence
obtain C(B) ⊆ B ⊆ C(D) ∩ C(E) ⊆ C(A).
For the other direction, let C satisfy Arti�cial III. Let Ã, B̃ be feasible sets. We set
D := Ã, E := B̃ and A := Ã ∪ B̃. Now let b ∈ C(Ã) ∩ C(B̃). We set B := {b}.
By applying Arti�cial III, we obtain that C(B) ⊆ C(A). Since {b} = B = C(B) and
b ∈ C(Ã) ∩ C(B̃) was arbitrary, we have that C(Ã) ∩ C(B̃) ⊆ C(Ã ∪ B̃).

We could now de�ne �Arti�cial II� by combining the antecedents of Aizerman and Arti�cial
III using a logical OR symbol. This would by construction be equivalent to Aizerman
and γ, hence answer question II.

7.6 Consistency of Transitivity

We characterize transitive upwards rationalizability using a new consistency condition.
Note that we leave the realm of contraction and expansion consistency conditions, hence
we do not provide an answer to question I.
We already know that if γ is satis�ed, then C is upwards rationalized by (RA

C)A. Hence
all we need to do is to ensure that RA

C is transitive for all A.

De�nition 34 (τ). Let C be a choice function. We say that C satis�es τ , if for all
A,B ∈ F(U) the following holds: If A ∩ C(B) 6= ∅, then for all x ∈ C(A), y ∈ B, there
is some D ⊆ A ∪B with y ∈ D and x ∈ C(D).

Lemma 22. Let C be a choice function. Then the following are equivalent.

(i) C satis�es τ

(ii) RA
C is transitive for all A ∈ F(U)

(iii) The γ-hull H(C) satis�es β+

Proof. By Lemma 6 we have H(C)(A) = maxRA
C
A. Hence, by Theorem 3, (ii) implies

(iii).
To show that (iii) implies (ii), we show RA

H(C) = RA
C for all feasible A. Then we only need

to apply Theorem 3 and Proposition 6. By de�nition we have C ⊆ H(C), which implies
the inclusion �⊇� using the same witness B ⊆ A. For the other inclusion, let xRA

H(C) y.

Then there is some B ⊆ A, such that y ∈ B and x ∈ H(C)(B). By Lemma 6 we know
that xRB

C y. By upwards inheritance of RA
C we have xRA

C y.
Next, we show that (i) implies (ii). Let C satisfy τ . Let A be a feasible set, such that
xRA

C y, y R
A
C z. Let B,D ⊆ A be the witnesses for that. This means x ∈ C(B), y ∈ B,

y ∈ C(D), z ∈ D. Then we can apply τ using B,D. Hence there is some E ⊆ B∪D ⊆ A,
such that z ∈ E, x ∈ C(E). By de�nition we obtain xRA

C z.
Conversely, let (ii) hold true, let A,B given as in De�nition 34. Let z ∈ C(B)∩A. Then
we have xRA∪B z, z RA∪B y. Since RA∪B

C is transitive, we have xRA∪B y. Hence (i) holds
true.
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Hence we have a condition that relates to question I.

Proposition 12. Let C be a choice function. Then the following are equivalent.

(i) C satis�es γ and τ

(ii) C is upwards rationalized by a family of transitive relations

Proof. Let (i) hold true. Then C is equal to the γ-hull of C. Further, the latter satis�es
β+ by Lemma 22. Hence (ii) holds true by Theorem 3.
Now let (ii) hold true. Then C satis�es β+ by Theorem 3. Especially, it is equal to its
γ-hull, which thus also satis�es β+. By Lemma 22, C satis�es τ . Further, it also satis�es
γ.

We can try to form τ into an expansion consistency condition by demanding that D is
equal to A ∪ B, instead of D being an arbitrary subset. This is equivalent to a known
condition proposed by Salant and Rubinstein (2008), which they call γ+. (It has nothing
to do with the γ+ which we de�ne in Section 5.) In the context of non-empty choice
theory, their version of γ+ is equivalent to β+, hence too strong for our purposes.
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8 A Formal Introduction to Social Choice

This section formally introduces majoritarian and pairwise social choice functions.

De�nition 35 (Preference Pro�les). Let N = {1, . . . , n}, U be countable. A preference
pro�le RN on U represents the voters' preferences over all alternatives in U . More formally,
let L(U) be the set of all linear orderings on U . Then a preference pro�le is a mapping

RN : N → L(U)

Set R(n, U) as the set of all preference pro�les over U for N = {1, . . . , n}. Then, set

R(U) :=
⋃
n∈N

R(n, U)

as the set of all preference pro�les over U for any �nite number of voters.
Let RN ∈ R(U). When we duplicate all voters and their preferences, we denote the
resulting preference pro�le as 2RN ∈ R(U). More formally, let L = {1, . . . , 2n}. Then
2RN := RL, where RL(n+ i) = RL(i) = RN(i) for all i ≤ n.

We can interpret preference pro�les in two ways. We can either take them at face value
and assume them to be the voters' true preferences, or we can view them as submitted
ballots, which might di�er from their true preferences for strategical reasons. While the
second interpretation is both insightful and interesting, for this thesis we shall not deal
with it. In the following sections, we think of the preference pro�les as true preferences
and try to choose reasonable winners based on that assumption.

Intuitively, we assume voting and choosing to be something simple. But if we think about
it, what really is the best choice for an entire group? The social choice should depend on
the feasible set and the preferences of the individuals. This we can formalize.

De�nition 36 (Social Choice Function). A social choice function on U is a mapping

S : F(U)×R(U)→ F(U)

such that S(A,RN) ⊆ A for all RN ∈ R(U), A ∈ F(U). If RN is clear from the context,
we will sometimes abbreviate S(A) = S(A,RN).

This de�nition still allows for unreasonable functions. For example, we could always order
the alternatives lexicographically and then choose the �rst one as winner, independent of
the voters' preferences. We hence introduce a few axioms.

De�nition 37 (Neutrality). Let S be a social choice function. We say that S is neutral, if
swapping the alternatives in the preference relation of each individual leads to swapping
the alternatives chosen by society. More formally, let RN ∈ R(U). Let π : U → U
be a bijection. By π(RN) we denote the preference pro�le where the alternatives are
renamed under π. By π(A) ⊆ U we denote the image of A ⊆ U . Then it has to be that
S(π(A), π(RN)) = π(S(A,RN)).
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Just like for choice functions, we allow there to be more than one winner. This is in-
evitable, if we want to follow certain standards of fairness. For example, we look at
N = {1, 2}, A = {a, b} and the following preference pro�le RN :

1 1
a b
b a

which depicts that 1 voter prefers a to b and 1 voter prefers b to a. If we want our choice
to be neutral and anonymous (which can be de�ned analogously to neutrality), we cannot
choose a single winner.
A widely used approach to choose winners is based on the concept of pairwise duels. For
each pair of alternatives (x, y), we count how many people prefer x to y minus how many
people prefer y to x. Based on these numbers we decide who wins. For example, let us
look at the following anonymized preference pro�le.

3 1 1
a c b
b a c
c b a

In this pro�le, 4 people prefer a to b, while 1 person prefers b to a.

3 1 1
a c b
b a c
c b a

The margin of this majority comparison is hence equal to 3. We can write this down
compactly.

a b
3

Doing this for all pairs of alternatives yields the following weighted graph.

a b

c

3

1
3

Based on the graph, it seems reasonable to declare a as the winner. We now formalize
this approach and introduce terminology.
Formally, we represent the graph by its weighted adjacency matrix.

M =

 0 3 1
−3 0 3
−1 −3 0





50 8 A FORMAL INTRODUCTION TO SOCIAL CHOICE

De�nition 38 (Majority Margin, Cycles). Let RN ∈ R(U) be a preference pro�le. Let
�i= RN(i) denote voter i's preference relation. Then we set mR(x, y) = |{i ∈ N |x �i

y}| − |{i ∈ N | y �i x}| as the majority margin of x over y. The (skew-symmetric) matrix
of all majority margins will be denoted by MR := (mR(x, y))x,y∈U .
If RN is clear from the context, we can write x � y instead of mR(x, y) > 0 and x % y
instead of mR(x, y) ≥ 0. We say that (x1, . . . , xk) form a cycle, if xi � xi+1 for all i ≤ k,
where we set xk+1 := x1.

We see that each majority margin matrix induces a weighted, directed graph on U . The
following result states that the converse direction only is possible with a restriction.

Theorem 11 (Debord, 1987). Let (U,M) de�ne a weighted, directed graph on U , where
M ∈ ZU×U is a skew-symmetric matrix. Then the following are equivalent.

� There is RN ∈ R(U) with M = MR

� all Mxy with x 6= y ∈ U have the same parity

De�nition 39 (Pairwise7 and Majoritarian8 Social Choice Functions). Let S be a social
choice function. We say that S is pairwise, if S is neutral and only depends on the majority
margins of the feasible alternatives. More formally, this means that S(A,RN) = S(A,R′L)
for all feasible A and all RN , R

′
L ∈ R(U) with mR(x, y) = mR′(x, y) for all x, y ∈ A. If S

is neutral and only depends on the sign of the majority margins, then we say that S is
majoritarian. More formally, this means that S(A,RN) = S(A,R′L) for allRN , R

′
L ∈ R(U)

such that mR(x, y) > 0 if and only if mR′(x, y) > 0 for all x, y ∈ A.
WhenM := MR = MR′ , the choice set of pairwise social choice functions does not depend
on the underlying preference pro�le. Hence, we will sometimes use abuse of notation and
write S(A,M) when the skew-symmetric matrixM meets all requirements of Theorem 11.

Now that we have formally de�ned social choice functions, we only need to adapt our
de�nition of consistency before we can start analyzing them.

De�nition 40 (Conditions for Social Choice Functions). Let ∗ be any condition which
makes sense for choice functions, let S be a social choice function. We say that S satis�es
∗ if and only if S( · , RN) satis�es ∗ for all RN ∈ R.

7See Young (1974) and Zwicker (1991)
8For example see Laslier (1997)
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9 A Formal Analysis of 3 Social Choice Functions

We �nally get back to where we started. We recall that our motivation for diving into
the depths of choice theory was based on understanding and designing good voting rules.
Now, we will use our newly gained knowledge to analyze social choice functions which
satisfy various expansion consistency conditions. The examples we will go over are the
Top Cycle rule, Uncovered Set rule and Split Cycle rule.
In the literature, sometimes instead of directly de�ning RA (Top Cycle), only the strict
part PA will be de�ned (Uncovered Set, Split Cycle). We rigorously show that both
approaches are equivalent.

Lemma 23. Let T be an asymmetric, acyclic relation on A. Then we obtain a complete,
acyclic relation R on A by de�ning xR y ⇐⇒ ¬(y T x). Furthermore, T = P , where P
denotes the strict part of R.

Proof. We �rst show completeness. Let ¬(xR y). By de�nition of R this is equivalent to
y T x. By asymmetry of T it follows that ¬(xT y), hence y Rx. To be formally correct,
let P denote the strict part of R. In other words xP y if and only if xR y and not y Rx.
We now need to show that P is equal to T and hence acyclic. Let xP y. This especially
implies ¬(y Rx), which by de�nition is equivalent to xT y. Let xT y. This, by de�nition
of R, is equivalent to ¬(y Rx). Furthermore, by asymmetry ¬(y T x). By de�nition of R
this implies xR y. Again by de�nition of P , this implies xP y.

Now, we can �nally de�ne our social choice functions.

9.1 Top Cycle Rule

De�nition 41 (Top Cycle as Social Choice Function). Let RN ∈ R(U) be given, let
A ⊆ U be a feasible set. We write xRA y if x = y, or if ∃y0, . . . , yk ∈ A : yi % yi+1 for all
i = 0, . . . , k − 1. Here, we denoted y0 = x and yk = y. We then de�ne

TC (A,RN) := max
RA

A

Remark 7. The Top Cycle is by de�nition majoritarian. There are several ways to de�ne
the Top Cycle when the majority relation contains ties. The one above is also known as
the Smith set (see Smith, 1973), which is not to be confused with the Schwartz set (see
Schwartz, 1970). However, when the majority relation is strict, there is no ambiguity and
all de�nitions coincide.

Proposition 13. TC satis�es β+ (and hence also γ and Aizerman).

Proof. First, �x an arbitrary RN . We now show that (RA)A as de�ned above upwards
rationalizes TC ( · , RN) and all relations are transitive. We then are done by Theorem 3.
Let A ∈ F(U).
Transitivity (and hence acyclicity) of RA: Let xRA y, y RA z for some pairwise distinct
x, y, z ∈ A. Then there are y1, . . . , yk, z1, . . . , zl ∈ A such that x % y1 % · · · % yk−1 % y %
z1 % · · · % zl−1 % z. Hence xRA z.
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Completeness of RA: It is clear that x IA x. Let y 6= x with ¬(y RA x). Then it has to be
that x � y. Hence xRA y.

Choosing the maximal elements: By de�nition.

Upwards inheritance of RB: Let B ⊆ A be feasible sets such that xRB y. Then there
exist the required y1, . . . , yk ∈ B ⊆ A and hence xRA y.

9.2 Uncovered Set Rule

De�nition 42 (Uncovered Set as Social Choice Function). Let RN ∈ R(U) be given.
Then we de�ne the strict part of the covering relation on A ∈ F(U) as follows for x 6= y.

xCA y :⇐⇒ x � y and

∀z ∈ A : y � z =⇒ x � z and

∀z ∈ A : y % z =⇒ x % z

For asymmetry, let xCA y. Then it has to be that x � y. Since My,y = 0, we have
¬(y CA x). For acyclicity, we show that CA is transitive. Let xCA y, y CA z. Due to
y CA z, it has to be that y � z. Hence x � z. Let w ∈ A, such that z � w. Then y � w,
hence x � w. If z % w, we can use the same argumentation. Hence xCA z.

We then de�ne RA as in Lemma 23. Finally, set

UC (A,RN) := max
RA

A

Remark 8. The Uncovered Set is by de�nition majoritarian. There are several ways to
de�ne the Uncovered Set when the majority relation contains ties. The one above was
used by McKelvey (1986) and is hence known as the McKelvey Uncovered Set. For an
analysis of several versions (including deep, Gilles, Bordes and McKelvey), see Duggan
(2013). However, when the majority relation is antisymmetric, there is no ambiguity and
all de�nitions coincide.

Proposition 14. UC satis�es γ and Aizerman, but not β+.

Proof. First, �x an arbitrary RN ∈ R(U). We now show that UC ( · , RN) is upwards
rationalized by (RA) as de�ned above.

Acyclicity and completeness of RA: By de�nition.

Choosing the maximal elements: By de�nition.

Upwards inheritance of RB: By de�nition CA satis�es downwards inheritance, which is
equivalent (see Lemma 2).

Quasi-transitivity of RA: Already shown in the de�nition.

We now show that RA
C = RA for all feasible sets A. From Proposition 4 we know that

RA
UC ⊆ RA. If, on the other hand, xRA y, then x % y or there is some z ∈ A such that

x ∈ UC ({x, y, z}) =⇒ xRA
UC y. If x % y, then x ∈ UC ({x, y}), hence xRA

UC y.

To show that RA
UC is not always transitive, we look at the following graph:
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a b

cd

Since b � a, we have that bRA a. Since c � d but ¬(b � d), we have that cRA b.

a b

cd

a b

cd

If RA was transitive, we would have cRA a. This is not the case, since aCA c.

a b

cd

9.3 Split Cycle Rule

De�nition 43 (Split Cycle as Social Choice Function). Let RN ∈ R(U) be given. We
de�ne the strict part of the splitting relation as follows.

xSA y :⇐⇒ x � y ∧ mR(x, y) is not minimal in any cycle.

The latter means that for all cycles (y = y0, . . . , x = yk) in A, there is some i < k such
that mR(yi, yi+1) < mR(x, y).

For asymmetry, let xSA y. Then especially x � y, hence ¬(y SA x). For acyclicity, assume
there is some cycle x0 S

A x1 S
A . . . SA xk S

A x0. Then, especially x0 � x1 � · · · � xk � x0.
But then one of the majority margins has to be minimal in this cycle, hence one of the
edges cannot have been splitting, a wanted contradiction. We can now apply Lemma 23
and set

SC(A,RN) := max
RA

A

Remark 9. By de�nition, SC is pairwise.

Notably, the splitting relation RA does not have to coincide with the local revealed pref-
erence relation. We give an example of size 4 with A = {a, b, c, d}.
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Example 20 (Splitting relation can be larger than the local revealed preference relation).

a b

cd

3

1

1

3

5

3

Here, the edge a � b is not splitting. Still we have aPA
SC b, since b is not chosen in any

subset of A which contains a. We visualize the splitting relation on the left hand side and
the local revealed preference relation on the right hand side:

a b

cd

3

1

1

3

5

3

a b

cd

3

1

1

3

5

3

4

Proposition 15. The Split Cycle satis�es γ, but not Aizerman (and hence not β+).

Proof. Acyclicity and completeness of RA: By de�nition.
Choosing the maximal elements: By de�nition.
Upwards inheritance of RA: Let B ⊆ A, such that xRB y. Then, either x � y or there is
some cycle (x, y1, . . . , yk = y) in B, such that mR(y, x) ≤ mR(yi, yi+1) for all i < k. Since
RN is not dependent on the feasible set and (x, y1, . . . , yk = y) is a cycle in A, we have
that xRA y.
To show that SC does not satisfy Aizerman, we check that the local revealed preference
relation is not always quasi-transitive.

a b

cd

3

3

1

1

1

1

We see that d splits a and a splits b. Hence it has to be that dPA
SC a and aPA

SC b.
Nonetheless, we see that b ∈ SC({b, d}), hence bRA

SC d.

9.4 A General Observation

Now that we formally analyzed the three functions, we ask ourselves a more general
question. How can we construct reasonable, pairwise social choice functions which satisfy
γ? Our result is that we can obtain all such functions by choosing strict majority wins
in an acyclic, downwards inheriting manner.
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We demand that if the feasible set consists of only two alternatives, the winner of the duel
should not lose the choice. In the context of voting, picture an election where the people
decide between two alternatives. If one alternative wins the majority vote, it might be
the optimal choice for the group as a whole. Maybe, the majority victory was not decisive
enough and both alternatives tie. But what should not happen is that only the majority
defeated alternative wins the election.

De�nition 44 (Faithful Social Choice Functions). We say that a social choice function
S is faithful, if the following holds: Let RN be given and x, y ∈ U with x � y. Then
{y} 6= S({x, y}, RN).

Faithfulness is a simple and broadly accepted notion. It can also be seen as a non-
probabilistic variant of a de�nition by Fishburn and Gehrlein (1977). In their setting,
they allow for probability distributions over the preferences, as well as the outcomes.
What both de�nitions have in common is that the function should be faithful to the
favored alternative. As a sanity check, by de�nition TC ,UC , SC all are faithful. We see
that all strict edges of their relations are also majority edges. This has to be the case for
all such functions, as we will see now.

Proposition 16. Let S be a pairwise9 social choice function satisfying γ. Let RN ∈ R(U)
and let (RA)A be any family upwards rationalizing S( · , RN). Then the following are
equivalent:

(i) If xPA y for any x, y ∈ U , A ∈ F(A), then x � y

(ii) S is faithful

Proof. First, let S be faithful. Let xPA y. Then it has to be that xP {x,y} y, hence
{x} = S({x, y}, RN). Since S is faithful, it cannot be that y � x. Since S is pairwise, it
further cannot be that x ∼ y. Hence x � y.
Now, let S not be faithful. Then there have to be x 6= y, such that {x} = S({x, y},M),
but y � x. It has to be that xP {x,y} y, hence (i) is violated for A = {x, y}.

Summarized, faithfulness is a weak, but desirable property. To construct faithful social
choice functions satisfying γ, it su�ces to focus on choosing acyclic subsets of the majority
wins, such that they inherit downwards.

9For the result, it su�ces that S always chooses the majority winner on two alternatives. Else, we
only obtain that x % y.
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10 A Characterization of the Split Cycle Rule

Holliday and Pacuit (2020) have characterized the Split Cycle using 6 axioms. Remark-
ably, their setting too deals with variable relations. By virtue of one of their axioms,
we obtain upwards inheriting relations. Hence, we modify their axioms and involve γ to
present a characterization with the same proof idea.

Theorem 12. The Split Cycle is the �nest social choice function S satisfying all of the
following properties:

A1 Pairwiseness

A2 Doubling homogeneity: x /∈ S(A,RN) =⇒ x /∈ S(A, 2RN)

A3 γ

A4 Crucial defeat for pairwise social choice functions: If x /∈ S(A,M), then there is
some majority edge y � x in A such that if we strictly lower the majority margin of
any other edges (or set them to zero) , then x /∈ S(B,M∗) for the changed majority
margin matrix M∗ and all feasible subsets B ⊆ A where y, x ∈ B.10

Proof. One can easily verify that SC satis�es axioms A1 to A3. For A4, �x any majority
margin matrix M , let A feasible, and let x ∈ A \ SC(A,M). This means, that there is
some y ∈ A with y SA x with respect to M . By de�nition of the splitting relation, the
margin m(y, x) is not minimal in any cycle containing the edge y � x with respect to M .
Hence, after lowering or nulling any other edges resulting in the majority margin M∗, it
will still not be minimal in any cycle containing itself and we obtain y SA x with respect
to M∗. Hence, it especially holds that x /∈ SC(A,M∗). Further, since the strict part of
the splitting relation inherits downwards, it has to be that x /∈ SC(B,M∗) for all feasible
B ⊆ A containing y.
Now let S be a social choice function satisfying axioms A1 to A4. Assume that there
is some majority margin matrix M , some feasible set A and some x ∈ A such that
x ∈ SC(A,M) but x /∈ S(A,M). By doubling homogeneity, we have x /∈ S(A, 2M). Let
y � x be the crucial defeat with respect to 2M , which needs to exist by A4. By assumption
it has to be that ¬(y SA x). Hence there must be some cycle (y, x, x2, . . . , xk) in A where
the edge y � x has minimal weight with respect to 2M . Set B := {y, x, x2, . . . , xk} ⊆ A.
Now, we modify the graph induced by 2M to arrive at some M∗ as follows: We lower all
edges of the cycle (y, x, x2 . . . xk, y) until they have weight m(y, x). All other edges are
nulli�ed. M∗ is still a majority graph, since all edges have even weight. Since y � x is a
crucial defeat with respect to 2M , it has to be that x /∈ S(B,M∗). By pairwiseness and
symmetry of the alternatives, it must now be that z /∈ S(B,M∗) for all z ∈ B. This is a
wanted contradiction to non-emptiness of S.

To get a better feeling for the axioms used in this characterization, we compare our version
to a setting more similar to the original characterization.

10We can formulate a non-pairwise version of A4, similar to B5. This is omitted, since the resulting
axiom is more technical while arguably adding no value to the result.
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De�nition 45 (VCCR). Let U be non-empty and countable. A variable-election collective
choice rule (VCCR) maps each combination of feasible set and preference pro�le to a
complete relation on the feasible set. Further, it is only dependent on the individual
rankings restricted to the feasible set. More formally, let A be feasible. By R∗(A) we
denote the set of all complete relations on A. Set R∗ := ∪AR∗(A). V : F(U)×R(U)→ R∗

is called a VCCR, if V (A,RN) ∈ R∗(A) for all A ∈ F(U), RN ∈ R(U).11 Further, we
demand that V (A,RN) = V (A,R′N) whenever RN restricted to A is equal to R′N restricted
to A.12

Note that by the above de�nition, cyclic relations (and hence possibly empty choice sets)
are not forbidden.

De�nition 46 (Availability). Let V be a VCCR. Then it satis�es availability if and only
if maxV (A,RN )A 6= ∅ for all A and RN .

We omit analogous de�nitions of neutrality and anonymity for VCCRs.

Theorem 13 (Holliday and Pacuit, 2020). The Split Cycle is the �nest VCCR satisfying
all of the following properties:

B1 Anonymity and Neutrality

B2 Monotonicity2: If x defeats y with respect to ({x, y}, RN) and R′N is equal to RN ,
except for one voter who only ranks x one spot higher than before, then x still defeats
y with respect to ({x, y}, R′N).

B3 Doubling homogeneity: x defeats y with respect to (A,RN) =⇒ x defeats y with
respect to (A, 2RN)

B4 Neutral Reversal: If RL is obtained from RN by adding two voters with reversed
preference relations, then V (A,RN) = V (A,RL) for all feasible A.

B5 Coherent IIA: If x defeats y with respect to (A,RN) and R∗N is any preference pro�le
such that R∗N |{x,y} = RN |{x,y} and the majority margin matrix MR∗N

is obtained by
nulling or weakening (zero or more) edges other than the one between x and y, then
x defeats y with respect to (B,R∗N) for all feasible B ⊆ A.

B6 Availability

As discussed before, B6 is covered by non-emptiness of social choice functions. Further,
with B5 together it implies that V (A,RN) always has to be acyclic.
B2 is needed to give the collective choice a �direction�. B2 in conjunction with B1
guarantees, that the majority winner is always chosen in sets of cardinality two. A4
guarantees the same, since the crucial defeat has to be a strict majority defeat.
A2 is analogously de�ned to B3. Both are only needed, so that we are allowed to delete

11In the original paper, the asymmetric, strict part is used instead of the complete, weak part of the
relation for semantic reasons. Formally, both de�nitions are equivalent.

12In the original paper, VCCRs are de�ned for inputs of the form RN ∈ R(A) for any feasible set A,
not only A = U . Our version is equivalent and closer to our previous de�nitions, since we additionally
specify the feasible set A.
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all edges within a cycle.
Coherent IIA is intertwined with many di�erent properties. B5 in conjunction with
anonymity implies, that V for �xed N is only dependent on the majority margin matrix.
By adding neutral reversal, it follows that when an alternative is not chosen for some RN ,
then it is also not chosen for any RL with the same majority margin matrix and |L| ≥ |N |.
Technically speaking, this combined with neutrality only implies one half of pairwiseness.
To imply pairwiseness, we would need B3 to be an if and only if statement. Further,
coherent IIA together with the de�nition of VCCRs implies upwards rationalizability:
In B5 we can insert R∗N := RN and use that we are allowed to lower zero majority
margins. Hence, we obtain that the strict part of the relation has to inherit downwards.
This observation motivates our version of the characterization and leads to A3. Finally,
coherent IIA and monotonicity2 imply a technical, non-pairwise version of crucial defeat,
in which we specify the preference pro�les instead of only working with matrices.
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11 Generalization to Probabilistic Choice Functions

Our goal in this section is to reproduce our characterization of γ for the case where choice
is made not only over alternatives, but also includes probability distributions over them.
Naturally, one can identify an alternative a with the probability distribution p, for which
p(a) = 1. We use the de�nitions of Brandl and Brandt (2020).

11.1 The Probabilistic Setting of Brandl and Brandt (2020)

11.1.1 Probabilistic Choice Functions

De�nition 47 (Feasible Sets, Probability Distributions). For this section, we demand
that U is �nite and non-empty. By ∆U , or in short ∆, we denote the set of all probability
distributions over U , which is the set of all p ∈ RU

≥0 with
∑

u∈U p(u) = 1. F(U) denotes
the set of all non-empty, closed (with respect to any norm, say the Euclidean) and convex
subsets of ∆. These are called feasible sets.

De�nition 48 (Probabilistic Choice Functions). A map C : F(U) → F(U) is called a
(probabilistic) choice function, if it satis�es the following properties:

� C maps each feasible set X to a feasible subset of X

� C is (upper-hemi) continuous

� C([p, q]) ∈ {{p}, {q}, [p, q]} for all p, q ∈ ∆

where [p, q] := conv({p, q})

Semantically speaking, one is o�ered to choose the best probability distributions among
a closed, convex and non-empty subset. We assume that there can be ties, but that the
chosen set is always convex (and non-empty).

De�nition 49 (Probabilistic α). Let C be a choice function. We say that C satis�es α,
if for all feasible X, Y with X ∩ Y 6= ∅

C(X) ∩ Y ⊆ C(X ∩ Y )

De�nition 50 (Probabilistic γ). Let C be a choice function. We say that C satis�es γ,
if for all feasible X, Y

C(X) ∩ C(Y ) ⊆ C(conv(X ∪ Y ))

11.1.2 Rationalizable Choice

De�nition 51 (Continuity, Convexity). Let R ⊆ ∆ × ∆ be a complete relation. By P
we denote its strict part: pP q : ⇐⇒ ¬(q R p). By I we denote its symmetric part. For
p ∈ ∆, we denote its lower contour set by L(p) := {q ∈ ∆| pP q}. Similarly, U(p) := {q ∈
∆| q P p} and I(p) := {q ∈ ∆| p I q}. We say that R satis�es continuity, if for all p ∈ ∆:

U(p), L(p) are open
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We say that R satis�es convexity, if for all p ∈ ∆:

U(p), L(p), U(p) ∪ I(p), L(p) ∪ I(p) are convex

Also, for feasible sets X de�ne

max
R

X := {p ∈ X| pR y for all y ∈ X}

We say that a choice function C is rationalized by a complete relation R, if C(X) =
maxRX for all feasible sets X.

Remark 10. There are relations R, for which maxRX can be the empty set. However,
this cannot be the case if R is continuous and convex (Sonnenschein, 1971). If a relation
R is convex, then I(p) will always be convex, since I(p) = (L(p) ∪ I(p)) ∩ (U(p) ∪ I(p)).
There are even better reasons as why to demand these axioms, as one can see in the next
result.

Proposition 17 (Brandl and Brandt, 2020). A probabilistic choice function is rational-
izable by a complete, continuous and convex relation R if and only if it satis�es α and
γ.

11.2 Probabilistic Upwards Rationalizability

De�nition 52 (Probabilistic Upwards Rationalizability). Let C be a choice function. We
say that C is upwards rationalizable, if there is a family of relations (RX)X such that the
following conditions hold :

(i) for all feasible sets X, RX ⊆ X ×X is complete

(ii) for all feasible sets X:

C(X) = max
RX

X

(iii) for all feasible sets X, Y , such that Y ⊆ X:

RY ⊆ RX

(iv) Let X, Y feasible and x ∈ X ∩ Y . If x is dominated in conv(X ∪ Y ) by some z
regarding Rconv(X∪Y ), then there has to be some y in X ∪ Y which dominates x.

In this case we say that C is upwards rationalized by (RX)X .

Remark 11. The �rst three properties are analogous to the classical case, only dropping
acyclicity. This is necessary, as Steinhaus and Trybula (1959) showed that preferences
over lotteries can be complete, convex, continuous and cyclic at the same time. More
precisely, they showed that preferences over lotteries can be cyclic, even when the prefer-
ences over degenerate lotteries are transitive. Also note that the family of relations now
is uncountable, while in previous sections it was �nite or countable.
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De�nition 53 (Probabilistic Local Revealed Preference). For each feasible set X, x, y ∈
X, we write xRX

C y if and only if there is a feasible subset Y ⊆ X such that x ∈ C(Y )
and y ∈ Y .

Theorem 14. Let C be a probabilistic choice function. Then it satis�es γ if and only if
it is upwards rationalizable.

Proof. Let C satisfy γ. For this implication, we will use the shorthand RX := RX
C . We

need to verify that all four properties of De�nition 52 are satis�ed. Let us start with
completeness. Let X be a feasible set, x, y ∈ X such that ¬(xRXy). Then y /∈ C([x, y])
By De�nition 48, it has to be that {x} = C({x, y}), hence xRCy. Next, we show that
(ii) holds true. Let x ∈ C(X). Then, for each y ∈ X, we can choose X as the witness:
X is feasible, y ∈ X and by assumption x ∈ C(X). We conclude xRXy for all y, and
hence x is maximal in X. On the other hand, let x ∈ X be maximal regarding RX . Fix
any sequence of (yi)i in X with the property that conv({x, y1, . . . , yk}) → X. Then, by
De�nition 53 and maximality of x, for each i there is a feasible set with yi ∈ Yi ⊆ X,
such that x ∈ C(Yi). Obviously conv({x, y1, . . . , yk}) ⊆ conv(∪i≤kYi) → X. Also, by
induction and γ it follows that x ∈ C(conv(∪i≤kYi)) for all k. By upper-hemi continuity
of C we have that x ∈ C(X). Upwards inheritance is straight forward. Let Y ⊆ X
be feasible sets, let xRY y. There is some witness Z ⊆ Y , for which of course Z ⊆ X.
Hence by De�nition 53 xRX y. For (iv), let x ∈ X ∩ Y , y ∈ Z = conv(X ∪ Y ) with
yPZx. Assume for contradiction, that for all y ∈ X ∪ Y xRZ y. Now, �x any sequence
(yi)i in X ∪ Y such that conv({x, y1, . . . , yk})→ Z. By assumption we have that xRZ yi
for all i ∈ N. Hence, for each i there is a feasible set with yi ∈ Yi ⊆ Z such that
x ∈ C(Yi). Using induction and γ, this implies x ∈ C(conv(∪i≤kYi)) for all k. Furthermore
conv({x, y1, . . . , yk}) ⊆ conv(∪i≤kYi) → Z Hence by continuity x ∈ C(Z), which is a
contradiction to y PZ x.
For the other implication, let (RX)X now denote any family of relations which upwards
rationalizes C as in De�nition 52. Let X, Y be feasible sets, x ∈ C(X) ∩ C(Y ). This
directly implies that xRX y for all y ∈ X and xRY y for all y ∈ Y . In both cases we can
use property (iii) of De�nition 52 and obtain that xRconv(X∪Y ) y for all y ∈ X ∪ Y . Now,
assume for contradiction that z PZ x for some z ∈ Z = conv(X ∪ Y ). By (iv), there has
to be a y ∈ X ∪ Y with y PZ x. This is impossible, hence x is maximal regarding RZ ,
which implies x ∈ C(Z).

Remark 12. It is open whether we can completely match Proposition 17. The local
revealed preference relations are not always continuous or convex, but there could exist
another family of relations which is. For a violation of convexity, consider an expected
utility-maximizer with u(a) > u(b) > u(c). On all subsets of ∆, we choose with respect
to utility maximization, while on ∆ we choose [a, 1

2
(b+ c)].

While it seems like we cannot guarantee continuity of the local revealed preference rela-
tions, we can guarantee the following.

Lemma 24. Let C satisfy γ. Then for all feasible X, p ∈ X, U(p) is open with respect
to RX

C .

Proof. Let C satisfy γ, let X be a feasible set and x ∈ X. For this proof, again we
abbreviate RX := RX

C . Assume that U(x) is not open. Then, there is some y ∈ X with
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y PX x and a sequence (yi)i in X such that yi → y and xRX yi for all i. But then for all i
there are feasible subsets Yi 3 yi such that x ∈ C(Yi). We set Xn := conv(∪i≤nYi). Then
by induction and γ it follows that x ∈ C(Xn) for all n. Further, since Xn ⊆ Xn+1 and
all are closed and convex, we have Xn → Z := ∪n∈NXn. Z is closed and convex, hence
a feasible set. By continuity we have that x ∈ C(Z). On the other hand also y ∈ Z, a
contradiction to y PX x and Z ⊆ X.
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12 Conclusion and Further Research

We arrive at the end of this thesis. Here, we summarize our results, as well as state open
problems, which can be tackled in the future.

12.1 Conclusion

Arrovian impossibilities showed that for collective choice, rationalizability con�icts with
reasonable notions of independence, fairness and e�ciency. To retain the latter, we must
violate rationalizability and especially α, leaving only expansion consistency conditions
possible. For designing good collective choice functions, it is hence of importance to
understand conditions such as γ, Aizerman and β+.
We introduce the new notion of upwards rationalizability, which is based on well-known
solution concepts such as TC and UC . Using it, we characterize the three previously men-
tioned expansion consistency conditions. These characterizations are then used to present
proofs of classical characterizations. Further, we present a new expansion consistency con-
dition named γ+ and characterize it, as well as compare it to a condition introduced by
Schwartz (1976). The latter is slightly weaker by restricting itself to disjoint feasible sets.
We then de�ne the notion of downwards rationalizability and use it to characterize α. Af-
ter these main results, we de�ne further expansion consistency conditions, analyze three
social choice functions and examine probabilistic choice theory.

transitive UR ⇐⇒ β+

��
PIP-tran. UR ⇐⇒ γ+

�� $$
quasi-tran. UR ⇐⇒ γ

��

∧ Aizerman

(acyclic) UR ⇐⇒ γ

OO

Figure 1: Our main characterizations of expansion consistency conditions.

transitive rationalizability ⇐⇒ α ∧ β+

�� $$
quasi-tran. rationalizability ⇐⇒ α ∧ γ

��

∧ Aizerman

(acyclic) rationalizability ⇐⇒ α ∧ γ

OO

Figure 2: Three classical characterizations, which we prove using our own results.
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12.2 Further Research

While the most important questions have been answered, new and interesting open prob-
lems have emerged.
Between transitivity and PIP-transitivity, there exists another notion named PIP+IPP-
transitivity. We recall from Section 5, that PIP-transitive rationalizability is equivalent
to representation by a utility function u and a non-negative discriminatory function δ.
Additionally, PIP+IPP-transitive rationalizability demands that δ can be chosen as a
constant. Schwartz (1976) characterized it using α and a consistency condition which he
namedW3. The goal now is to characterize PIP+IPP-transitive upwards rationalizability
using expansion consistency conditions. W3 of course is a candidate for this task, but
neither of the two implications were possible for the author. It seems like a new expansion
consistency condition, stronger than γ+, is needed.
For the characterization of the Split Cycle presented in Section 10, all axioms but �crucial
defeat� are undisputed and used throughout the literature of social choice theory. On
the other hand, �crucial defeat� itself is closely linked to upwards rationalizability and
hence might be unintuitive to some readers. Is there a way to replace this axiom by more
intuitive ones?
The reader might have noticed that our de�nition of probabilistic choice functions in Sec-
tion 11 contains some technical assumptions. Such axioms usually only exist because they
are needed somewhere in the proofs. Hence it would be appealing to weaken them if pos-
sible. In De�nition 48, the �line axiom� is de�ned as follows: C([x, y]) ∈ {{x}, {y}, [x, y]}
for all x, y ∈ ∆. We propose a weakening: C([x, y])∩ {x, y} 6= ∅ for all x, y ∈ ∆. Can the
existing results of Brandl and Brandt (2020) be reproduced with this weakening? Further,
it is unclear whether there always exists a family of continuous and convex relations when
probabilistic γ is satis�ed. One more unanswered question is whether other character-
izations can be reproduced in the probabilistic setting. In �rst naive attempts, �nding
proofs for characterizing γ and Aizerman, as well as β+, seemed to be complicated. It
might not be possible at all.
We characterized transitive downwards rationalizability using completeness and acyclicity
of the competing relation in Section 6. While completeness is equivalent to WWARP,
acyclicity of the competing relation seems to be of abstract nature. Can we characterize
acyclicity of the competing relation using more intuitive properties?
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