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We consider functions that map the preferences of a set of voters to a
collective choice and generalize localizedness—an invariance condition pro-
posed by Allan Gibbard—to weak preferences: any minimal change in a
voter’s preference relation can only result in different collective outcomes a
and b if the voter changed her preference between a and b. We provide new
characterizations of (strongly) localized and unanimous social choice functions
and social decision schemes. In particular, we prove that serial dictatorships
with lexicographic tie-breaking are the only unanimous and strongly localized
social choice functions for weak preferences. We also discuss the relationships
between localizedness, non-bossiness, and Maskin monotonicity.

1 Introduction

One of the central results in microeconomic theory is the Gibbard-Satterthwaite theorem
(Gibbard, 1973; Satterthwaite, 1975). While it is often interpreted as an impossibility
result, it essentially represents an axiomatic characterization of dictatorial social choice
functions (SCFs). Gibbard (1977) later extended this result to social choice functions
that allow for randomization, so-called social decision schemes (SDSs), by characterizing
random dictatorships, i.e., dictatorships where the dictator is selected at random. Random
dictatorships are much more desirable than dictatorships because impartiality with respect
to the agent can be guaranteed by selecting the dictator uniformly at random. Such
uniform random dictatorships feature prominently in subdomains of social choice that
are concerned with the allocation of private goods, e.g., the random serial dictatorship



(aka random priority) mechanism in assignment (see, e.g., Abdulkadiroglu and Sénmez,
1998; Che and Kojima, 2010).

The key axiom in Gibbard’s characterizations is strategyproofness, i.e., no voter can
manipulate the outcome in her favor by reporting insincere preferences. Gibbard showed
that an SDS is strategyproof if and only if it is localized and monotonic.! Under scrutiny,
the invariance condition that Gibbard called localizedness is the main ingredient for both
of his theorems. For strict preferences, a function is localized if a voter can only change
the outcome by swapping two alternatives a and b if the outcome changes from a to b or
vice versa. Notably, this axiom ignores the “direction” of individual preferences. Gibbard
shows that only a rather narrow set of functions is localized. Weak additional axioms
suffice to further restrict this class to (mixtures of) dictatorships. In this paper, we show
that for strict preferences, both theorems still hold if we replace strategyproofness with
localizedness and non-imposition (or Pareto optimality, respectively) with unanimity,
which requires that an alternative top-ranked by all voters is selected. In Section 4.1
(Section 5.1), we show that among localized rules, only (mixtures of) dictatorships
are unanimous. This does not come as a surprise. In fact, although never explicitly
mentioned, these insights are hidden in the proof techniques of existing characterizations
(Gibbard, 1977; Tanaka, 2003; Mishra, 2016). When, furthermore, requiring anonymity,
each voter gets to be the dictator with the same probability, leading to the uniform
random dictatorship theorem.

Another implication of our results is a linear algebra interpretation of Gibbard’s
random dictatorship theorem. Localizedness, unanimity, and anonymity are all “equality
constraints”. Thus, we can reformulate the question about which rules simultaneously
satisfy these axioms as a linear algebra problem where suitable rules correspond to vectors
that are solutions to the system of linear equations given by the axioms. For example,
since the uniform random dictatorship is the only SDS that satisfies strong localizedness,
unanimity, and anonymity, we know that the corresponding system of linear equations
has a unique solution and wvice versa. This insight might help to prove similar results in
other domains.

For weak preferences, the Gibbard-Satterthwaite theorem does not completely character-
ize dictatorships, because not all dictatorial SCFs are strategyproof (see, e.g., Example 2).
By considering strategyproofness for weak preferences, Gibbard and Satterthwaite im-
plicitly also define the concept of localizedness for weak preferences. Localized rules are
much less restrictive than in the domain of strict preferences. These SCFs can almost
arbitrarily change the outcome within an indifference class of a deviating voter. In a
sense, this goes against the idea that the outcome should only change due to local changes
in the individual preferences.

Following this line of thought, we propose strong localizedness as an invariance condition
for weak preferences that is stronger than localizedness, but builds upon the same
motivation. Both notions coincide for strict preferences. In Section 6, we give additional
motivation for strong localizedness via the concept of non-bossiness and discuss the
relation between Maskin monotonicity (Maskin, 1999) and our axioms. In particular,

!Gibbard referred to monotonicity as non-perverseness.



Prefs. Axioms Characterized Rules Source

strict  strategyproofness non-imposition? all dictatorships Gibbard (1973) and
weak strategyproofness non-imposition some dictatorships Satterthwaite (1975)
strict  localizedness unanimity all dictatorships

weak strong localizedness unanimity all serial dictatorships

strict SD-strategyproofness  Pareto optimality  all random dictatorships Gibbard (1977)
weak SD-strategyproofness  non-imposition some random dictatorships Gibbard (1978)
strict  localizedness Pareto optimality  all random dictatorships Tanaka (2003)
strict  localizedness unanimity all random dictatorships

Table 1: Overview of existing characterizations and our results (highlighted in gray). The
first half of the table is concerned with SCFs, the second one with SDSs. For
weak preferences, all strategyproof and non-imposing rules are dictatorships
and random dictatorships, respectively, but the converse directions do not hold.
Hence, only “some” dictatorships and random dictatorships are characterized.

we show that the conjunction of strong localizedness and monotonicity is equivalent
to a natural weakening of Maskin monotonicity due to Berga and Moreno (2009). In
Section 4.2, we prove that, for weak preferences, a social choice function is strongly
localized and unanimous if and only if it is a serial dictatorship with lexicographic
tie-breaking. Efforts to obtain characterizations of strategyproof social choice functions
(SCFs) for weak preferences have been unsuccessful, because strategyproofness is too
weak to significantly narrow down the set of SCFs (see, e.g., Barbera et al., 1998; Barbera,
2007; Lederer, 2024, Open Problem 5.3).

Our characterization of serial dictatorships shows that replacing strategyproofness
with strong localizedness enables a statement that is similar in spirit to the original
Gibbard-Satterthwaite theorem. Characterizing social decision schemes in a similar
fashion remains an intriguing open problem. We propose some ideas in Section 5.2. A
comparison of our results for SCFs and SDSs is given in Table 1.

2 Related Work

Barbera (2010) provides an in-depth survey of strategyproofness in social choice the-
ory. Without doubt, the most central result in this stream of research is the Gibbard-
Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975).

Proofs of the Gibbard-Satterthwaite theorem and the random dictatorship theorem.
Interestingly, the two original proofs of the theorem differ significantly. While Satterth-
waite gives a direct proof, Gibbard reduces the statement to Arrow’s impossibility (Arrow,

2An SDS g is non-imposing if for every a € A, there exists R € R™ such that g(R,a) = 1.



1951). Many other proofs have been given since then (e.g., Beja, 1993; Benoit, 2000; Sen,
2001; Reny, 2001; Cato, 2009; Svensson and Reffgen, 2014).

The random dictatorship theorem by Gibbard (1977) was also the starting point for a
thorough investigation of strategyproofness for social decision schemes. Multiple authors
gave direct proofs of the theorem (e.g., Duggan, 1996; Nandeibam, 1997; Tanaka, 2003;
Sen, 2011; Lederer, 2024), which Gibbard only stated as a corollary of his more general
characterization. We would like to highlight that Tanaka (2003) appears to be the first to
prove the characterization with localizedness instead of strategyproofness. Unfortunately,
his exposition is somewhat imprecise and confusing in this aspect, and the fact that
localizedness suffices is easy to miss.

Local variants of localizedness and strategyproofness. Localizedness is known under
many names (e.g., set-monotonicity (Borgers, 2015) and swap-monotonicity (Mishra,
2016)) and allows for various equivalent definitions. Gibbard (1977) defined it via upper
and lower contour sets. By contrast, we use only local constraints between two profiles
where one voter changes her individual preferences by moving one alternative up (or
down) by one position. Taking such an atomic point of view often helps to get hold
of global axioms such as localizedness or, more generally, strategyproofness. Carroll
(2012) investigates under which conditions (global) strategyproofness is implied by local
strategyproofness for a variety of models. Sato (2013a,b) and Kumar et al. (2021a,b)
study notions of strategyproofness where the set of admissible manipulations is restricted,
e.g., to pairwise swaps of two alternatives. Note that the definition of localizedness allows
for a simultaneous interpretation as a global axiom (via upper and lower contour sets)
and a local axiom (as in Definition 5).

Axioms related to localizedness. Muto and Sato (2017) consider a weakening of
localizedness called “bounded response” for SCFs and strict preferences. They show that
bounded response and unanimity do not imply dictatorships but provide a characterization
by strengthening unanimity and weakening bounded response. Our characterization
for this setting uses the stronger notion of localizedness but preserves unanimity. In
particular, strong localizedness stems from the same motivation as the concept of non-
bossiness in public goods (Satterthwaite and Sonnenschein, 1981; Saijo et al., 2007; Berga
and Moreno, 2009) — an intriguing connection which is discussed in detail in Section 6.

Subdomains and serial dictatorships. A natural way to escape impossibility theorems
is to restrict the domain of admissible preferences. For example, building on an idea by
Black (1948), Moulin (1980) characterizes anonymous and strategyproof SCFs on the
domain of single-peaked preferences. The assignment and matching domains constitute
two specific subdomains of social choice where possible assignments or matchings are
interpreted as alternatives. In these settings, voters’ preferences are usually restricted,
i.e., voters are indifferent among all assignments in which they receive the same object.
Consequently, a dictator has multiple top-ranked alternatives, and other voters further
reduce the set of outcomes one after another. Such serial dictatorships have received little



attention in the classical social choice literature (e.g., Aziz et al., 2018), but are among
the most prominent rules for private good settings. There are multiple characterizations
of serial dictatorships or variations that rely on strategyproofness, or more precisely,
mainly again on restrictions of localized functions in assignment (see, e.g., Svensson,
1999; Papai, 2000). However, as there are large indifference classes, additional invariance
conditions are needed.

Maskin monotonicity. A central concept in implementation theory (see e.g., Moore,
1992; Jackson, 2001) is Maskin monotonicity due to its close connection to Nash imple-
mentability (Maskin, 1999). For strict preferences, Maskin monotonicity is equivalent
to strategyproofness (Muller and Satterthwaite, 1977) which is in turn equivalent to
localizedness and monotonicity (Gibbard, 1977). For weak preferences, only constant
rules satisfy Maskin monotonicity (Saijo, 1987) while there are nontrivial strategyproof
SCFs. Consequently, weakenings of Maskin monotonicity have also been studied (see, e.g.,
Berga and Moreno, 2009; Kojima and Manea, 2010; Basteck, 2024). We are particularly
interested in the variant by Berga and Moreno (2009), which turns out to be equivalent
to the conjunction of strong localizedness and monotonicity.

3 Preliminaries

Let N = {1,...,n} be a set of n voters and A a set of m alternatives. The set of all
complete and transitive preference relations over A is denoted by R. The subset of R
that only contains antisymmetric relations is denoted by £. For two alternatives a,b € A,
a »; b if and only if ¢ —; b and not b 7=; a and a ~; b if and only if a 2Z; b and b =; a.
For B C A we write 7Z|p = {(a,b) € Z: a,b € B} for the preference relation 7 restricted
to the set of alternatives B. Furthermore, max(2) :={x € A: x Z y for all y € A} are
the maximal elements of 7 and [a]- = {b € A : b ~ a} corresponds to alternative a’s
equivalence class under 7.

A preference profile R = (71, ...,7Zn) € R™ consists of n individual preference relations.
Moreover, R_; = R\ {%Z;} and we write (R_;, Z}) for the preference profile in which 7; is

replaced with 2Z/. A lottery p is a probability distribution over the set of alternatives A.
It assigns each alternative x € A a probability p(x) > 0 such that ), p(z) = 1. The
set of all lotteries over A is denoted by A(A). A social choice function (SCF) f: R" — A
maps each profile R to one alternative f(R), whereas a social decision scheme (SDS)
g:R"™ — A(A) maps each profile to a probability distribution g(R) over the alternatives.
Thus, an SCF admits an interpretation as an SDS that always assigns probability 1 to one
alternative. Slightly abusing notation, we denote the sum of probabilities f and g assign
to the members of a set of alternatives A’ C A in profile R by f(R, A’) and g(R, A’),
respectively. Note that f(R,a) € {0,1}. The support supp(g(R)) of an outcome g(R) is
defined as the set of all alternatives a with g(R,a) > 0.

In the following, we define all axioms for weak preferences and SDSs and mention
special implications for strict preferences or SCFs explicitly.



Definition 1. An SDS g is unanimous if for all R € R", (,cy max(Z;) # 0 implies that
supp(g(R)) - ﬂieN max(ii).

Unanimity demands that whenever there are alternatives that are top-ranked by all
voters, only these alternatives receive positive probability. For strict preferences, this is
only possible when all voters have the same top choice.

Definition 2. In a profile R € R", an alternative a € A is Pareto optimal if there does
not exist another alternative b € A\ {a} with b 2Z; a for all i € N and b >; a for some
i € N. An alternative a € A is weakly Pareto optimal if there does not exist another
alternative b € A\ {a} with b >~; a for all i € N.

An SDS g satisfies (weak) Pareto optimality if for each profile, only (weakly) Pareto
optimal alternatives receive positive probability.

Note that on L™, Pareto optimality coincides with its weaker version.
It is straightforward to see that

Pareto optimality = unanimity = non-imposition

but the reverse implications do not hold.

Gibbard (1977) defined strategyproofness for SDSs by demanding that no voter can
increase her expected utility by misrepresenting her preferences for all utility functions
that are consistent with her ordinal preferences.

Definition 3. An SDS g is strategyproof if for all a € A,

S Y= S g(Rz)b) 1)

b: bzsa b: bzia
for all R € R", i € N, and Z}e R"™.

This strategyproofness notion is sometimes called (strong) SD-strategyproofness to
distinguish it from other variants of strategyproofness.

For SCFs, (1) reduces to f(R) i f(R—;,7Z}). Gibbard then showed that strategyproof
SDSs form precisely the intersection of all localized and monotonic SDSs.

Before introducing localizedness and monotonicity, we define minimal changes of a
preference relation. We say that a is adjacent and above b for = if a > b and no c¢ exists
with a > ¢ > b. Similarly, we say that a is adjacent and below b for 77 if b > a and no ¢

exists with b = ¢ = a.

Definition 4. Let =, '€ R. We say =/ is a minimal change of =~ if there is an alternative
a € A such that

* Zlafay = % la(ay and
e one of the following conditions holds:

— |[a]-| = 1, and b is adjacent and above a for 27 and ' = ZU{(a,z): z € [b]-}.



— |[a]-| = 1, and b is adjacent and below a for 27 and ' = ZU{(z,a): z € [b]-}.
— Ha]a >1land /' =7\ {(a,2): x € [a]i \ {a}}.
— Ha]a >1land 7' =7\ {(z,a): x € la]- \ {a}}.

A minimal change can select an alternative that forms an indifference class by itself and
put it into the indifference class above or below. Alternatively, it selects an alternative
from an indifference class containing more than one element and moves it to a new class
above or below. For strict preferences, a minimal change is defined as a pairwise swap of
adjacent alternatives to stay in L", i.e., (z,a) or (a,z) need to be additionally excluded
in =’ for the first two cases of Definition 4. Note that such a swap corresponds to two
minimal changes in R™ where the two involved alternatives are put into one indifference
class in a first step.

We are now ready to define localizedness and monotonicity.

Definition 5. An SDS g is localized if for all R € R", i € N, 7, € R such that 2/

is a minimal change of ’7; with alternative a, g(R, [b]-,) = g((R_s,Z;), [b]-,) for all
be A\{a} with Zi [{a0} = Zi l{ap}-

For strict preferences, localizedness implies that only the probability assigned to the two
swapped alternatives can change. Weak preferences offer more freedom as the outcome
can arbitrarily move probability not only between [a]-, and [a]-/, but also within other
indifference classes of voter 1. '

Localizedness corresponds to equality constraints between profiles and is therefore
easier to handle than strategyproofness from a technical point of view, as already shown
by Gibbard’s original proof (see Lemma 1 below).

Definition 6. An SDS g is monotonic if for all R € R", i € N, and 7Z,€ R such
that =/ is a minimal change of 7; in which alternative a is moved up, it holds that

~o1

9(R—i, Z),a) = g(R, a).

Monotonicity requires that the probability of an alternative cannot decrease when
it is strengthened in a voter’s preference relation. For SCFs, this means that a chosen
alternative is still chosen when a voter moves it upwards.

Next, we propose a refined notion of localizedness for weak preferences and SCFs. In
Section 5.2, we discuss possible generalizations for SDSs.

Definition 7. An SCF f is strongly localized if for all R € R", i € N, and ;€ R such
that =/ is a minimal change of =; with alternative a,

~J1

ol Ulaly i f(R) =a
f(R-i,Zi)  €{a, f(R)} it f(R) € ([a]z, Ulalxy) \ {a},
= f(R) otherwise.

Strong localizedness ensures that the outcome can only change from a or to a. In
particular, only minimal changes that involve the returned alternative in one of a’s



a,b a,b a,b a,b.c a,bc c a,b,c a
Localized c c,d c — — a,b — b,e
d
a,b a,b a,b a,b,c a,b,c c a,b,c a
Strongly
. c c,d c = — a,b — b,c
localized d

Figure 1: A comparison of localizedness and strong localizedness for four alternatives and
SCFs. We assume that alternative a is selected when the voter reports the first
preference relation. She then changes her preferences to the second preference
relation. The bold alternatives show possible outcomes from localized and
strongly localized SCFs.

indifference classes can influence the outcome. Note that for strict preferences, strong
localizedness coincides with localizedness (see also Proposition 1) and is therefore implied
by strategyproofness. Due to the second case in Definition 7, this relation does not hold
for weak preferences as strategyproofness allows for shifts of the outcome in [a]-, or [a]s
that do not involve a. '

Strong localizedness can also be seen as an ordinal consistency axiom: the probability
of an alternative cannot change when all pairwise comparisons to other alternatives
remain the same. This is reminiscent of the concept of non-bossiness for public goods
(Saijo et al., 2007; Berga and Moreno, 2009) which states that the outcome cannot change
from a to b if agent ¢ is indifferent between them under 7 (and 72}, respectively). In
fact, strong localizedness can be interpreted as a combination of localizedness and a
local version of non-bossiness (see Section 6). Berga and Moreno (2009) show relations
between (weak) non-bossiness, strategyproofness, and Maskin monotonicity when agents
have single-peaked or single-plateaued preferences over a continuum of alternatives. In
Section 6, we prove similar results for the entire domain of weak preferences.

The following example provides a comparison of the two notions of localizedness.

Example 1. Consider the four cases illustrated in Figure 1. If a is selected by the SCF,
alternatives marked in bold constitute possible outcomes of (strongly) localized SCFs
after the voter changed her preferences as indicated.

The first case demonstrates the case where the indifference class that contains a remains
unchanged after the minimal change of the voter’s preferences. As mentioned previously,
the outcome only remains within the indifference class [a]- for localized functions. Strong
localizedness, however, requires that alternative a remains the winner. In this particular
case, the outcome cannot change to b.

In the second and third cases, an unchosen alternative ¢ joins or leaves the indifference
class that contains the winning alternative a. Note that, in contrast to strategyproofness,
both strongly localized axioms are ignorant with respect to the direction of changes.
Therefore, the resulting constraints are the same, independently of ¢ moving up or down
in the voter’s preference relation. We observe that localized SCFs allow the outcome to



Maskin monotonicity

,”/’\1 $\\\\
weak Maskin monotz);licity > st\r\ategyproofness
strong localizedness & monotonicity -—————_————_—__* localizedness & monotonicity

Figure 2: Relationships between strategyproofness, localizedness, and monotonicity for
SCFs. Implications depicted by dashed arrows only hold for strict preferences.

change to alternative b while this is not possible for strongly localized SCFs since the
voter remains indifferent between a and b.

The fourth case shows that both notions have the same implications when moving the
returned alternative a.

Figure 2 illustrates the relations between strategyproofness and variants of localizedness
and monotonicity for SCFs (see also Section 6).
Finally, we formally define dictatorships and serial dictatorships.

Definition 8. An SDS g is a dictatorship if there exists a voter i € N such that
g(R) € max(7;) for every R € R".

Such a voter ¢ is called a dictator.

In a serial dictatorship, the voters are dictators one after another in a specified order .
The first dictator restricts the set of admissible alternatives from all alternatives A to
the set of her top choices. Then, in the order given by 7, the other dictators restrict
the set of admissible alternatives further by restricting it to their top choices among the
remaining admissible alternatives. If, in the end, more than one alternative remains, a
tie-breaking rule r is needed to determine the final outcome.

Definition 9. A tie-breaking rule r: 24\ {#} — A(A) with supp(r(A4’)) C A’ for all
A’ € 24\ {0} maps each set of alternatives A’ to a distribution over A’.

For SCFs, r has to put probability 1 on one alternative, i.e., r: 24\ {#} — A with
r(A) e A

Definition 10. Let m be a permutation of voters and r be a tie-breaking rule. The
SDS SD’ is the serial dictatorship with order 7 and tie-breaking rule r. We compute
SDT(R) = SD’.(R, A, 1) where the later is defined recursively as,

SD;(R?maX(zw(z)’B)al+1) if 4 <n,

SD(R,B,i) = .
r(B) otherwise.

Note that every serial dictatorship is a dictatorship, but the converse does not hold.



Example 2. Let n = 2, A = {a,b} and consider the SCF f, for which Voter 1 is a
dictator, i.e., f(R) € max(2Z;). When a ~1 b, let

F(R) = {a if b =2 a,

b otherwise.

By definition, f is a dictatorship. However, f is not strategyproof as Voter 2 can
beneficially manipulate from a to b in the profile where a ~; b and b >3 a by reporting
a ~9 b instead. The same profile also shows that f is no serial dictatorship.

4 Social Choice Functions

In this section, we characterize (serial) dictatorships as the only SCFs that are (strongly)
localized and unanimous.

For strict preferences, our characterization and the Gibbard-Satterthwaite theorem
imply that strategyproofness together with non-imposition is equivalent to localizedness
combined with unanimity. Note that strategyproofness is stronger than localizedness and
non-imposition is weaker than unanimity.

For weak preferences, Gibbard (1973) and Satterthwaite (1975) proved that all strat-
egyproof and non-imposing SCFs are dictatorships. However, the converse statement
does not hold (see, e.g., Example 2). Using a natural generalization of localizedness to
weak preferences results in a characterization of serial dictatorships with lexicographic
tie-breaking via strong localizedness and unanimity.

4.1 Strict Preferences

We start by revisiting Lemma 3 in Gibbard (1977) which states that whether or not
a voter can change the outcome from a to b is independent of swaps of other pairs of
alternatives by other voters. Gibbard called such rules pairwise isolated and proved the
statement for the more general class of SDSs. We state the lemma in this general form as
it is also utilized in Section 5. We include its proof for completeness. Figure 3 illustrates
the required profiles.

Lemma 1 (Gibbard, 1977). Given a profile R € L™, two voters i,j € N, two pairs of
alternatives {a, b}, {c,d} C A with {a,b} # {c,d}, and preference relations =i, =" € L
such that

e a >; b where a,b are adjacent in =,

o ===\ {(a.b)} U{(b,a)},

e c ~; d where c,d are adjacent in >~;, and

o =i =>i\{(c;d)} U{(d,c)}.

10



Then, for all localized SDSs g,

g((Rf{'L,]}a it ) >j)a (I) - g((Rf{Z,j}a >;7 >J)7 CL)
:g((R—{i,j}? i >‘;’)a a) - g((R—{Lj}: >';7 >';')7 a);

and

g((Rf{z,j}w i >’])7 b) - g((Rf{Z,j}w >’;7 >’J)7 b)

(3)
:g((R—{i,j}) i >_;)7 b) - g((R—{i,j}> >';7 >‘;’)a b)

Proof. Without loss of generality, assume a ¢ {c, d}, otherwise we can rename a,b and
consider >~ = >; \ {(b,a)} U{(a,b)}. When voter j swaps c and d, i.e. moves from >; to
=", we have

9((R_gijys =is=3)s @) = g((R_gi 3y, =i >_;‘)7a)a (4)
and

9(R_gijy, =1 =5),a) = g((R_gi jy, =5, 7)), @) (5)

since ¢ is localized. Subtracting (5) from (4) gives (2).
Furthermore, again by localizedness, the sum of probabilities on a and b does not

change when voter ¢ swaps a and b, i.e.,
9(R_gijy, =i =j)sa) + g((R_fijys =ir =5),b) (6)
:g((R—{i,j}v >';> >_j)7 a) + g((R—{i,j}w >';‘a >_j)7 b)a

and

g((R—{z,j}v =i >_;‘)a CL) + g((R—{z,j}a =i >_;)7 b)

(7)
:g((R—{i,j}v >'gv >_;‘)a (I) + g((R—{i,j}w >_;a >';')7 b)

Next, we subtract the right from the left hand side for both equations and equate them,
ie.,

g(<R7{i,j}a iy >‘])7 a) - g((Rf{l,j}v >is >’j)7 a)
+g((R—{i,j}a =i >’j)7 b) - g((R—{i,j}7 s >_J)7 b) (8)
:g((R—{i,j}a =i >';‘)’ a) - g((R—{i,j}v i >;)7 CL)
+g((R7{i,j}a i >3’)7 b) - g((Rf{i,j}v i >3’)7 b)
Finally, we subtract (2) from (8) and get (3).
O

For localized SCFs, repeatedly applying Lemma 1 implies that, if the outcome changes
from a to b when voter 7 swaps adjacent alternatives a and b in her preferences, the same
happens for every other profile in which voter ¢ has the same preferences and all other
voters have the same binary relations over a and b. This insight is essential for proving
the following theorem.

11
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Figure 3: Nlustration of the four preference profiles needed for Lemma 1. The lemma
implies that the change in outcome between the upper and lower pair of profiles
is the same.

Theorem 1. Let m > 3. An SCF f is localized and unanimous on L™ if and only if f is
dictatorial.

Proof. 1t is straightforward to see that all dictatorships are unanimous and localized. In
particular, localizedness is weaker than strategyproofness.

It remains to show that all localized and unanimous SCFs are dictatorships. Let
RO, ... R™ be a sequence of profiles such that in R°, all voters have the same top-
ranked alternative (without loss of generality a) and rank the same alternative (without
loss of generality b) second. Furthermore, R* = (RF. ! ~*"1 \{(a,b)} U {(b,a)}) for
ke {1,...,n}, i.e.,, when moving from RF=1 to R*, voter k swaps a and b. In R", b is
top-ranked by all voters.

By unanimity, f(R’) = a and f(R") = b. Thus, there exist i € {1,...,n} with
f(R™1) =a and f(R') = b. We show that voter i is the dictator.

To see this, first consider profiles R*~! and R! where, compared to R~ and R,
voter ¢ moves ¢ up to her second rank instead of swapping a and b and all other voters
rank a third alternative ¢ at their tops, but preferences are the same otherwise, i.e.,
=i lave = >:j|A\{c} for all j # 7 in R*~!, R?, and R~1 R'. By localizedness and Lemma 1,
F(RTY) = f(R™') = aand f(R') = f(R') =b.

Next, consider profiles B! and R’ where, compared to R~ and R’, an arbitrary
subset of voters N’ C N \ {i} swapped a and b. Again, f(R'™!), f(R) € {a,b} due to
localizedness as a and b are adjacent in all preferences of voters from N’. If f(R"~!) = b,
then voter ¢ could swap ¢ from second to first rank without changing the outcome.
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However, this would contradict unanimity as in the resulting profile, ¢ is top-ranked by
all voters. Thus, f(R~!) = a. Analogously, f(R') = b.

As N’ was chosen arbitrarily, the outcome in these profiles does not even depend on
how voters j # i rank a versus b. Together with Lemma 1, f(R) = max(>;) whenever
max(>;) € {a,b}.

As the final step, consider the same sequence of profiles R, ..., R" where b is replaced by
¢ and the outcome flips from a to ¢ at voter #/. By the same arguments, f(R) = max ()
whenever max(>~;/) € {a, c}. Consequently, ' = i as otherwise, profiles with max(>;) = a
and max(>;) = ¢ would lead to a contradiction. As ¢ was chosen arbitrarily, it follows
that f(R) = max(>;) whenever max(>;) € A, so voter ¢ is the dictator. O

4.2 Weak Preferences

This section is dedicated to proving that an SCF is strongly localized and unanimous if
and only if it is a serial dictatorship with lexicographic tie-breaking. We first show that
every SCF that is strongly localized is also localized, and subsequently that all strongly
localized and unanimous SCFs are dictatorships.

Proposition 1. Every strongly localized SCF on R"™ is also localized.

Proof. Let f be a strongly localized SCF and R € R™ an arbitrary profile. For arbitrary
i€ N, let Z! € R be a minimal change of 7; with alternative a (see Definition 4). For
arbitrary b € A\ {a}, Zi |{ap) =7Zi |{ap} Is equivalent to b & ([a]-, U [a]5/). By strong
localizedness, f(R) # b # f(R_;,Z;) if f(R) € ([a]z, U[a]=), and f(R) = f(R-, Z7),

otherwise. Thus, f satisfies localizedness. O

In the following theorem, we prove that strongly localized and unanimous SCFs are
dictatorships. This theorem is a variant of the Gibbard-Satterthwaite theorem using
localizedness and unanimity instead of strategyproofness and non-imposition.

Theorem 2. Let m > 3 and f be a strongly localized SCF on R™ that satisfies unanimity.
Then, f is a dictatorship.

Proof. Let f be a strongly localized SCF that satisfies unanimity. Without loss of
generality, let Voter 1 be the dictator on the subdomain L™ whose existence is guaranteed
by Theorem 1. For all k € {0,...,n}, let R} = L% x RF be the domain in which
the last k& voters have weak preferences and all others have strict preferences. Clearly,
LT"=R§CR}C---CRE=R"

Furthermore, if Voter 1 is a dictator on R; _;, then also on R} = R". To see
this, consider an arbitrary R = (>-;, R_1) € R]'_; where Voter 1 is a dictator by
assumption. Hence, f(R) = max(>1). Let Voter 1 now change to any weak order =}
with max(>1) € max(zZ]). By localizedness, f((ZZ1,R-1)) € max(21). Since R was
chosen arbitrarily, Voter 1 is a dictator in R™.

For 0 < k < n, we show by induction that Voter 1 is a dictator on R} if he is a dictator
on Ry_;. The statement for k = n then follows from above. By assumption, Voter 1 is a
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dictator on L™ = R (k = 0). Assuming that Voter 1 is a dictator on R}_; for 0 < k < n,
we now prove that Voter 1 is also a dictator on Rj.

Consider an arbitrary profile R € Rj. Note that Voter 1 has strict preferences as
k < n. Without loss of generality, max(>1) = a is Voter 1’s most preferred alternative.
Our goal is to show that Voter 1 remains dictator when voter £ = n — k + 1 moves from
strict to weak preferences. If f(R) = a, we are done, so assume f(R) # a. Let =, € L
such that =,C2y, i.e., the relation >, breaks ties in 7, arbitrarily.

First, assume [a]-, # A. Then, there exists an alternative b € A\ [a]-,. Let Voter 1
change her preferences to ~{:a =} b >} --- ] [a]-, \ {a}, where the alternatives from
la]-, \ {a} are ranked in an arbitrary strict order. Since f(R) # a, and f is localized,
F(-1, R1) # a. Hence, cither f((+}, 1)) € [al, \ {a} or £((=4, R_1)) ¢ [als,

For f ((>1, R_1)) ¢ [a]»,, assume that voter £ changes her preferences to ;. Then,
f((=1, =6 R_(1,0)) & la], since f is localized. But (=1, =¢, R_{1,¢) € R}_, and thus,
F(-), e, R_ {1, g})) = a by assumption, resulting in a contradiction.

For f((~1,R-1)) € [a]x, \ {a}, consider Voter 1 swapping a and b, i.e., ~]=>
\{(a,b)} U{(b, a)} Then, f((~],R-1)) = f((>],R-1)) € [a]-, \ {a} since f is localized.
In particular, b ¢ [a]-, is not the winner. Next, let voter £ change her preferences to >.
We have f((=1, =¢, B_(1,9)) € lalz, \ {a} since (=7, R_1)) € [als, \ {a}. But (={,

s R_p1,0) € R_; and thus, f((=], =¢, R_{1,)) = b by assumption, a contradiction. We
conclude that f(R) = a when [a]-, # A.

Otherwise, [a]-, = A and, without loss of generality, f(R) = b. As m > 3, there exists
an alternative ¢ # a,b. Let voter ¢ change her preferences to /Zj for which z > ¢ and
x ~y y for all z,y € A\ {c}. By strong localizedness, f(R_ g,NE) € {c, f(R)}. But if
f(R—_¢,Zy) = ¢, then voter ¢ could move to a strict ranking without changing the outcome
by localizedness. This would contradict our assumption and thus, f(R_¢,2Z}) = f(R).
We are now back in the first case, therefore f((R_¢,2Z})) = a and thus, f(R) = a. This
completes the induction showing that Voter 1 is a dictator on R".

O

Large parts of the proof of Theorem 2 require only localizedness. In fact, strong
localizedness is only needed in the last case where a non-dictator is indifferent between all
alternatives. This insight allows us to define a localized and unanimous SCF for m = 3
and n = 3, which is not a dictatorship.

Example 3. Let n = 3, A = {a,b,c}, and consider the SCF f defined as the serial

dictatorship with order (1,2, 3) and lexicographic tie-breaking unless Voter 3 is indifferent

between all three alternatives. In that case, the serial dictatorship order is (2,1, 3).
This SCF is not a dictatorship as the dictator depends on the preferences of Voter 3.
We show later that all serial dictatorships are strongly localized and unanimous.

Therefore, localizedness is potentially violated only when switching orders, i.e., when

Voter 3 changes her preferences from or to complete indifference. However, localizedness

does not impose any constraints when applying such a minimal change (see Definition 5).
Hence, f satisfies localizedness and unanimity without being a dictatorship.

We are now ready to prove the main theorem of this section.
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Theorem 3. Let m > 3. Then, f is a unanimous and strongly localized SCF on R™ if
and only if it is a serial dictatorship with lexicographic tie-breaking.

Proof. First, we show that all serial dictatorships with lexicographic tie-breaking SD_
satisfy strong localizedness and unanimity. For unanimity, note that in profiles R for
which ;e y max(2Z;) # 0, applying a serial dictatorship eliminates all alternatives not
in ;e y max(Z;). Consequently, tie-breaking chooses an alternative from [y max(2Z;)
and SD7 (R) € ;e y max(Z;)-

Next, we show that serial dictatorships satisfy strong localizedness. Remember that by
the recursive definition of serial dictatorships, agents (and in the end the lexicographic
tiebreaking) restrict the set of possible outcomes B until a single alternative is returned.
Consider an arbitrary R € R", ¢ € N, and 2Z;€ R such that 7} is a minimal change of 7=;
with alternative a. Let R’ := (R_;,Z}). This change has no influence on the elimination
of alternatives by voters ranked higher than voter i, therefore i selects from the same set
of alternatives B in both R and R’. We need to consider three cases.

First, if SD7(R) = a then strong localizedness requires that SDZ (R') € [a], U[a]yr. If
the minimal change moved a up, then SD7 (R) = SD_ (R’) since serial dictatorships are
monotonic. Otherwise, the minimal change of voter i moved a down. Since a € max(2Z;
|B), it follows that max(Z; |p) C [a], U [a]-; and therefore SD7 (R') € [a]-, U [a]-r.

Second, if SDZ (R) € ([alz, Ualx/) \ {a}, strong localizedness requires that SD7 (R') €
{a,SDz(R)}. If the minimal change moved a down then max(Z} |p) C max(Z; |B)
since a # SD-(R) and SD(R) € max(=; |g). Thus, SDZ(R) = SD.(R/). If the
minimal change moved a up then SD-(R) = SD7(R') if a ¢ B. If a € B, either
max(=} |g) = {a} and SDZ(R') = a or max(Z; |p) = max(=; |5) U {a}. In the
latter case, either SD- (R’') = a or a gets eliminated later in the process resulting in
SDZ(R) = SD; (R').

Finally, if SDZ(R) ¢ [al-, U [alx/, strong localizedness requires that SD7(R) =
SDZ(R'). This follows directly from the fact that max(Z; |g) = max(Z} |g). Thus, serial
dictatorships satisfy strong localizedness.

For the reverse direction, we find an order of the voters m and a linear order > on
the alternatives such that f = SD_. Let m > 3 be fixed. We prove the statement by
induction on the number of voters.

Let N = {1}. Unanimity implies that f(R) € max(2Z1) for all profiles R and thus,
Voter 1 is the dictator. It remains to show that a linear order > on A is used for
tie-breaking.

First, note that it is sufficient to define f on all subsets of (top-ranked) alternatives
T C A as alternatives ranked below the top indifference class of the voter do not matter
since f is unanimous. Second, for an arbitrary pair of top-ranked alternatives (a,b),
assume without loss of generality, f({a,b}) = a. Then, for every T C A with a,b € T,
f(T) # b as otherwise, Voter 1 could move all alternatives ¢ € T'\ {a, b} down one class
which would not affect the outcome due to strong localizedness, resulting in f({a,b}) = b,
a contradiction.

For each T' C A, alternative f(T") thus needs to also win when being top-ranked with
only one other alternative from 7. Choosing T' = A, we deduce that f(A) has to be
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chosen whenever f(A) € T. If f(A) ¢ T, the same argument applies for f(A\ f(A)).
Iterating this procedure, we get the linear order f(A) > f(A\ f(A)) > ..., which proves
the statement.

We now assume that when |[N| = n —1 > 1, the only SCF that satisfies all axioms
are serial dictatorships SD_, with an order over n — 1 voters 7’ and a lexicographic
tie-breaking order on the alternatives > when there are m > 3 alternatives.

Let N = {1,...,n}. Theorem 2 implies that f is a dictatorship when m > 3. Let voter
d € N be the dictator.

We proceed in two steps. First, we show that f is a serial dictatorship on a subdomain.
Then, we reduce the choices f makes on all profiles to the choices made in the subdomain.
As a result, we conclude that f is a serial dictatorship.

Let D C R™ be the subdomain in which the dictator d is indifferent between all
alternatives. We now consider f restricted to D and name this function f’; i.e., f'(R) =
f(R) if R € D, otherwise f’ is undefined. We note that f’ is strongly localized and
unanimous on this subdomain. If the former property is violated, a violation is passed
on to f on the entire domain, contradicting our assumption that f is strongly localized.
For unanimity, note that the dictator is indifferent between all alternatives and will
thus not influence the intersection of top-ranked alternatives and f’ inherits unanimity
from f. As a result, f’ is a strongly localized and unanimous SCF for n — 1 voters and
m > 3 alternatives. By induction hypothesis, it is a serial dictatorship with lexicographic
tie-breaking. Therefore, there exist orders over the voters ' and over the alternatives
> such that f' = SD;/. Let m be the order of voters where dictator d is ranked first,
and the remaining voters are ordered according to 7/. We have shown that f is a serial
dictatorship on D with the order m and lexicographic tie-breaking according to >.

Let R € R"™. We show that f(R) = SD_. We write ~g4 for the preference relation where
the dictator d expresses complete indifference between all alternatives. Also, remember
that d is the dictator, and therefore it holds that f(R) € max(Zq).

If R € D, we are done. Otherwise, we consider two cases. For the simpler case, assume
f(R) = f(~g4,R_g4). We note that f(~g, R_q) = SD; (~4, R_43) = SD2 (R) where the
last equality follows from f(R) € max(7Z4). Thus, f(R) = SD7 (R).

For the other case, assume f(R) # f(~g, R_q). Let B = A\ max(7Z4) be the set of
alternatives not top-ranked by the dictator d. In particular, f(R) ¢ B. We now let all
voters N \ {d} change their preferences one after another via minimal changes to the
profile where they all bottom rank all alternatives in B, and we call the resulting profile
R’. Each time a voter i pushes an alternative b € B down in her preference relation,
the winner can only change to b or remain the same due to strong localizedness. But
b € max(7Z4) by definition and a change to b would contradict the assumption that d is a
dictator. Therefore, f(R) = f(R/).

Now, let d change her preferences to ~g. Since f is strongly localized, f(~gq, R’ ;) €
{f(R)} U B. Moreover, note that all voters i € N \ {d} have f(R) >; b for all b € B. If
f(~aq,R_,;) € B, all voters can push f(R) to the top of their preferences but due to strong
localizedness, the outcome cannot change, leading to a contradiction with unanimity as
f(R) is uniquely top-ranked by all agents apart from d. Thus, f(R) = f(~a, R"_;).

Finally, f(~4,R ;) = SD7(~4,R" ;) = SD7(R') = SDZ(R). The second to last
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equality follows from SD7 (~4, R’ ;) € max(Zq) and the last equality holds due to the
fact that the outcome of SD_ does not depend on how voters other than the dictator
rank alternatives in B as they are excluded immediately by the dictator in the first step
of the serial dictatorship.

We have shown that f = SD- for all profiles, which concludes the proof. O

Remark 1. It is straightforward to see that serial dictatorships satisfy Pareto optimality
and are also strategyproof for weak preferences (in contrast to dictatorships). In light of
Theorem 3 and the original motivation for localizedness, serial dictatorships appear to
be the “correct” generalization of dictatorships to weak preferences.

5 Social Decision Schemes

Gibbard (1977, 1978) showed that for both strict and weak preferences, strategyproof
and weakly Pareto optimal SDSs are random dictatorships where each voter is chosen
as the dictator with a fixed probability.? Additionally requiring anonymity leads to a
characterization of uniform random dictatorships.

In Section 5.1, we show that the random dictatorship theorem still holds when weakening
strategyproofness to localizedness and (weak) Pareto optimality to unanimity.

In Section 5.2, we discuss possible generalizations of strong localizedness for SDSs and
illustrate that none of them allows for statements in the spirit of Theorem 3.

5.1 Strict preferences

Tanaka (2003) gave an alternative proof of the random dictatorship theorem for strict
preferences, which does not use monotonicity. We extend this generaliztion by showing
that Pareto optimality can be weakened to unanimity.

Lemma 2. FEvery localized and unanimous SDS g on L™ is Pareto optimal.

Proof. Assume for contradiction that the g is a localized and unanimous SDS that fails
Pareto optimality. Then, there exists a profile R € £™ and alternatives a,b € A such
that a >=; b for all i € N but g(R,b) > 0. We now let one voter after the other change
preferences by pushing a to the top of her preferences. Let R’ be the profile where
all voters moved a to the top. By localizedness, the probability of b does not change
whenever a voter moves a upwards since a >; b. Thus, 0 < g(R,b) = g(R’,b). However,
unanimity implies g(R’,a) = 1, a contradiction. Hence, g has to be Pareto optimal. []

Applying Lemma 2 and the theorem by Tanaka (2003), we obtain the following theorem,
which constitutes a generalization of Theorem 1 to SDSs.

Theorem 4. Let m > 3. An SDS g is localized and unanimous on L™ if and only if g is
a mizture of dictatorships.

3For strict preferences, random dictatorships are completely characterized by these properties, see
Figure 1.
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Alternatively, the statement can be proven directly as follows. Consider a pair of
alternatives a, b in some profile that are adjacent but not top-ranked by voter i. By
Lemma 1, we can reorder the preferences of all other voters to be equal to voter i’s
preferences except the relative ranking of @ and b. Since a and b are not top-ranked,
some other alternative c is top-ranked by all voters and selected with probability 1 by
unanimity. In particular, this argument shows that the resulting lottery can only change
when the top alternative of some voter changes. By a similar argument as in Theorem 1,
one can then show that each voter is a dictator with some constant probability on all
profiles.

As a consequence, the only mixture of dictatorships, where permuting the voters
identities does not change the outcome (a property known as anonymity), is the uniform
random dictatorship.

?

Corollary 1. Let m > 3. The uniform random dictatorship is the only SDS on L™ that
satisfies anonymity, unanimity, and localizedness.

5.2 Weak preferences

For weak preferences, localizedness and unanimity are insufficient to characterize mixtures
of dictatorships as in Theorem 4. This already follows from Example 3. Moreover, it is
unclear how to define strong localizedness for SDSs. One way to translate the idea behind
strong localizedness for SCFs (Definition 7) to probabilistic outcomes is the following.

Definition 11. An SDS g is strongly localized if for all R € R™, i € N, and 2} € R

such that -} is a minimal change of 77; with alternative a,

L. g((R-i,Z}),b) = g(R,b) for all b ¢ [a] -, U [a].

2. X be((aly, Ulal, )\ {a} l9((R-i,27),b) — g(R,b)| = [g((R-i, Z}), a) — g(R, a)

The first condition guarantees that the probability assigned to alternatives b with
i ‘{a7b} = 7| {a,py does not change. The second condition ensures that a minimal
change with a does not cause a “probability flow” between two alternatives b,c # a.
More precisely, alternatives whose probability increases need to receive this probability
mass from a. Analogously, alternatives whose probability decreases need to transfer this
probability mass exclusively to a. As a consequence of these two conditions, it is not
possible to have two alternatives b, ¢ # a where the probability of b increases while the
probability of ¢ decreases.

It is straightforward to see that a strongly localized SDS also satisfies localizedness.
Furthermore, this definition is consistent with Definition 7 for SCFs. In particular, if
g(R,a) =0, only the probability on alternative a might increase.

Unfortunately, Theorem 3 does not generalize to SDSs in the same way as the Gibbard-
Satterthwaite theorem generalizes to the random dictatorship theorem.

Theorem 5. Not every strongly localized and unanimous SDS on R™ is a mizture of
serial dictatorships with lexicographic tie-breaking.
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Proof. We give a counterexample with a single voter and m = 4 alternatives. Unanimity
implies that the voter is a dictator. Strong localizedness imposes constraints on how
probability can flow when the voter changes her top indifference class. Consider the
following SDS, where the outcome only depends on the top indifference class of the voter.

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

a ta+3c ta+3d Sb+ic Ib+3d e+ id
{a? b? C} {a’ b? d} {a7 C? d} {b7 C? d} {a7 b’ C7 d}

ta+ic la+3d fa+id le+3d ta+3d

If there is a single alternative in the voter’s top indifference class, this alternative
receives probability 1. This SDS satisfies unanimity because it always chooses a mixture
of top-ranked alternatives. It is also strongly localized, which can be seen by checking all
minimal changes that influence the voter’s top indifference class.

We now show that this SDS cannot be represented as a convex combination of linear
tie-breaking rules restricted to the voter’s top choices. All tie-breaking orders have to
rank a above b as a is always selected among {a,b}. We select $a + 3¢ among {a,b,c}.
Therefore, exactly half of all tie-breaking orders have a above c. At the same time, the
choice from {b, ¢} implies that exactly half of the time, b is ranked above c. If ¢ is ranked
above a it is also before b. Thus, the two possible orders for {a,b,c} are abc and cab,
each occurring with the same probability.

We select %a + %d among {a, b, ¢,d}. Therefore, half of the orders rank a and the other
half rank d in the first place. In all rankings with cab, alternative a cannot be ranked
first, and the ranking has to be dcab. In all other rankings (abc), we need to have abed
as %c + %d is returned for {c,d}. Thus, we found that the mixture of tie-breaking rules
has to be %abcd + %dcab.

This implies that %b + %d needs to be selected on the set {b, ¢, d} but our SDS returns
tc+ 2d. All in all, this specific SDS cannot be represented as a mixture of (serial)
dictatorships with lexicographic tie-breaking. O

Defining alternate versions of strong localizedness for SDSs and obtaining a similar
result as Theorem 3 are interesting directions for future research.

6 Connections to Non-Bossiness and Maskin monotonicity

In this section, we discuss connections to notions of non-bossiness and Maskin mono-
tonicity for SCFs.

6.1 Non-Bossiness

As already mentioned in Section 3, the additional requirements of strong localizedness
(compared to localizedness) can also be interpreted as a non-bossiness condition. The
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concept of non-bossiness was introduced by Satterthwaite and Sonnenschein (1981) and
has been mainly applied to private goods (e.g., in assignment) since then. In particular,
their definition is trivially satisfied when considering public goods, e.g., in voting where
all voters obtain the same outcome (see Satterthwaite and Sonnenschein, 1981, p. 590).

Saijo et al. (2007) proposed a version for public goods which states that the outcome
cannot change if voter ¢ who changed her preferences to 27/, remains indifferent between
the old and the new outcome according to her original preferences . Notably, this
notion clashes with unanimity for weak preferences. To see this, consider the case of two
alternatives {a,b} and a single voter who is indifferent. Without loss of generality, f
returns a. If the voter changes to b > a, then f still needs to return a by non-bossiness,
which violates unanimity.

Berga and Moreno (2009) consider a weakened notion of non-bossiness due to Ritz
(1985), which additionally requires that the voter is also indifferent under =/.> It turns
out that strong localizedness is equivalent to localizedness and a local version of weak
non-bossiness.

Definition 12. An SCF f satisfies local weak non-bossiness if for all R € R™, i € N, and
7€ R such that 27} is a minimal change of 7Z;, f(R) ~; f(R_;,7Z;) and f(R) ~} f(R_;, 7))
implies f(R) = f(R_i,))-

Proposition 2. Strong localizedness is equivalent to localizedness in conjunction with
local weak non-bossiness for SCFs on R™.

Proof. =: Assume that f is strongly localized. Proposition 1 already shows that
strong localizedness implies localizedness. Furthermore, assume that the prerequisites
of Definition 12 are given (minimal change with a). If f(R) = a, then [a]-, N[a]- = a
and thus, f(R_;,7=}) = a by strong localizedness and the fact that voter i is indifferent

’i?Nl

between a and f(R_;, ;) under both 2Z; and ;. If f(R) € ([a]x, Ulal=)\{a}, f(R—i, T}

—i? ~J1

) # a as voter ¢ cannot be indifferent between f(R) and a for both 7Z; and ;. Thus,

~l

f(R) = f(R_;,}) by strong localizedness. Otherwise, f(R) = f(R_;, %) holds directly

—1 ~vt —1 ~vt
by definition of strong localizedness. All in all, f is locally weakly non-bossy.
<: Assume that f is localized, locally weakly non-bossy, and the prerequisites of
Definition 7 are given. First, assume that f(R) € ([a]-, U [a]>/) \ {a}. By localizedness,
f(R-i, ;) € [a]z, Ulal=. If f(R-;,Z;) # a, voter i is indifferent between f(R) and

—1) ~ug —1y ~vg

f(R—;, %) under both ; and ;. By weak non-bossiness, f(R) = f(R_;, ;). The other
two cases from Definition 7 are directly implied by localizedness. All in all, f is strongly
localized. O

Note that the statement also holds for strict preferences, because local non-bossiness is
always satisfied in that case.

Weak non-bossiness is too strong to be implied by strong localizedness, as shown by
the following example.

“An SCF f satisfies non-bossiness if f(R) ~; f(R—:, ;) implies f(R) = f(R—:, 5).

®An SCF f satisfies weak non-bossiness if f(R) ~; f(R—;,%55) and f(R) ~; f(R—;,%5) implies f(R) =
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Example 4. Consider an instance with one voter, three alternatives {a, b, c}, and an
SCF defined as follows.

{a,b,c} {b,c} =a a>{bc} {a,c}>b b>{a,c} {a,b}>c c>{a,b}

a b c a b a c

a-b=c a=c>=b b=a=c b=c>=a c=a>b c>b>=a
b c b b c c

It can be checked that this SCF is strongly localized. However, weak non-bossiness is
violated due to the outcomes for the second and third profiles.

Still, every serial dictatorship with lexicographic tie-breaking satisfies weak non-
bossiness. If f(R) ~; f(R_;, ;) and f(R) ~, f(R—;,Z}), this means that all alternatives

—1) ~U1 —1) ~u

that voter i strictly prefers to f(R), f(R—;, ;) are excluded by higher-ranked voters
whereas f(R) and f(R_;,7}) are always among their top choices. As a consequence,
voter i herself excludes neither f(R) nor f(R_;,7Z}) from the set of admissible outcomes.

—i? ~7

Thus, f(R) = f(R_;, 7). Consequently, we obtain the following corollary of Theorem 3

—i? ~J

and Proposition 2.

Corollary 2. Let m > 3. Then, f is a unanimous, localized, and weakly non-bossy SCF
on R™ if and only if it is a serial dictatorship with lexicographic tie-breaking.

6.2 Maskin Monotonicity

We conclude the paper by discussing localizedness in light of Maskin monotonicity
(Maskin, 1999). Maskin monotonicity is a central concept in implementation theory. It
requires that, if we consider two preference profiles R, R and an alternative a such that
a 7~ b implies a ==/ b for all b € A, then a has to be the outcome in R’ if a is the outcome
in R. In this section, we discuss the connections between strong localizedness, Maskin
monotonicity, and related axioms.

Definition 13 (Maskin, 1999). An SCF f satisfies Maskin monotonicity if for all
R.ReR"andaec A if f(R)=aanda ;b= a2, bforallic N and all b € A, then

f(R) = a.

Maskin monotonicity is equivalent to strategyproofness for strict preferences (Muller
and Satterthwaite, 1977). When allowing for weak preferences, however, it can be seen that
strengthening an alternative by moving it upwards next to the winning alternative cannot
change the outcome. As a consequence, serial dictatorships violate Maskin monotonicity.
More generally, Saijo (1987) showed that only constant rules satisfy Maskin monotonicity
for weak preferences. Subsequently, weak versions of Maskin monotonicity have been
proposed for weak preferences. We consider weak Maskin monotonicity as proposed by
Berga and Moreno (2009), which augments Maskin monotonicity with an additional
condition demanding that alternatives that are strictly preferred remain strictly preferred.
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Definition 14. An SCF f satisfies weak Maskin monotonicity if for all R, " € R"
and a € A, if f(R) = a and for all i € N and all b € A with a Z; b = a ZZ} b and
a>; b= a>,b, then f(R') = a.

Serial dictatorships satisfy weak Maskin monotonicity. We establish this fact by showing
that weak Maskin monotonicity is equivalent to strong localizedness and monotonicity.
For strict preferences, this statement reduces to Maskin monotonicity being equivalent to
strategyproofness (Muller and Satterthwaite, 1977). Therefore, we only consider minimal
swaps with respect to weak preferences.

Theorem 6. An SCF f on R" satisfies strong localizedness and monotonicity if and
only if it satisfies weak Maskin monotonicity.

Proof. <=: Let f be an SCF that satisfies weak Maskin monotonicity.
We first show that f is monotonic. Consider an arbitrary R € R™, i € N, and
7ie R such that =} is a minimal change of 7Z; in which alternative a is moved up. Let

~J1

R' = (R_;,7}). We need to show that if f(R) = a, then f(R’) = a. This follows directly
from weak Maskin monotonicity as for allb€ A, aZ;b=aZ,banda = b=a >, b
since we made no change to the profile except strengthening a in voter i’s preference
relation. Therefore, f satisfies monotonicity.

We now show f satisfies strong localizedness. Consider an arbitrary R € R", i € N,
and 7€ R such that 7/ is a minimal change of 7Z; with alternative a. Let R’ .= (R_;, 72}).
We need to consider three cases.

First, if f(R) = a then strong localizedness requires that f(R') € [a]-, U[a]/. Assume
for contradiction that f(R') ¢ [a]-, U [a]-/. Then, for all i € N and for all b € A
f(R) Zi b= f(R) zi band f(R') >, b = f(R') =; b. Consequently, weak Maskin
monotonicity implies that f(R') = f(R) # a contradicting our assumption f(R) = a.

Next, if f(R) € ([a]x, U[a]=) \ {a} then strong localizedness requires that f(R') €
{a, f(R)}. If the minimal change moved a down in voter i’s preferences then for all i € N
and for all b € A, f(R) ZZ; b= f(R) z; b and f(R) »; b = f(R) =, b. Consequently,
weak Maskin monotonicity implies that f(R) = f(R’). Otherwise, a was moved up by
the minimal change. In this case, assume for contradiction f(R') & {a, f(R)}. Then,
for all i € N and for all b € A, f(R') Z) b= f(R') Zi band f(R) -, b= f(R') =; b.
Therefore, weak Maskin monotonicity implies that f(R’) = f(R) contradicting our
assumption f(R') & {a, f(R)}.

Finally, if f(R) ¢ [a]-, U [a]-r then strong localizedness requires that f(R) = f(R').
This follows directly from weak Maskin monotonicity since the minimal change of a did
not alter the relative preferences of f(R) with other alternatives. Thus, weak Maskin
monotonicity implies strong localizedness.

=: Let f be an SCF that satisfies monotonicity and strong localizedness. We show
that f satisfies weak Maskin monotonicity. Consider two profiles R, R’ € R™ such that
a=f(R)andforallbe AazZ;b=az;band a = b= a >, b. Weshow a = f(R).
To this end, we express the change from R to R’ as a sequence of minimal changes
R=Ry,...,Rg = R such that a = f(Ry) for all k € {0,1,..., K}. By assumption, this
can be achieved without reinforcing any alternative b against a in the process.
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We show by induction that the outcome does not change. By assumption, f(Ry) =
f(R)=a. Fork €{0,--- , K—1}, assume f(Ry) = a. We want to prove that f(Rx11) = a
where Rjy1 results from a minimal change of an alternative b # a for voter i in Ry.
If the relation between b and a does not change, strong localizedness directly implies
f(Rk+1) = a. Otherwise, b € [a] sk U [a], k+1 and b is moved down in the minimal change.

By strong localizedness, f(RF*1) € {b, f(R¥)}. If f(RF*!) = b, monotonicity would
imply f(RF) = b, a contradiction. Thus, f(RFT!) = f(R*) = a. All in all, f(R*) = a for
all k € {0,---, K} and in particular f(R') = a which proves weak Maskin monotonicity
of f. O

Theorem 3 and Theorem 6 can be combined to prove that serial dictatorships are
the only SCFs that satisfy weak Maskin monotonicity and unanimity. Furthermore,
since non-imposition and monotonicity imply unanimity, we can weaken unanimity to
non-imposition.

Corollary 3. Let m > 3. Then, serial dictatorships with lexicographic tie-breaking are
the only SCFs that satisfy weak Maskin monotonicity and non-imposition on R".

Acknowledgments

This material is based on work supported by the Deutsche Forschungsgemeinschaft under
grants BR 2312/11-2 and BR 2312/12-1. We thank Bhaskar Dutta, Patrick Lederer (who
proposed Definition 11), and William Thomson, as well as anonymous referees and the
participants of the 17th Meeting of the Society for Social Choice and Welfare, for helpful
feedback.

References

A. Abdulkadiroglu and T. Sénmez. Random serial dictatorship and the core from random
endowments in house allocation problems. Econometrica, 66(3):689-701, 1998.

K. J. Arrow. Social Choice and Individual Values. New Haven: Cowles Foundation, 1st
edition, 1951. 2nd edition 1963.

H. Aziz, F. Brandl, F. Brandt, and M. Brill. On the tradeoff between efficiency and
strategyproofness. Games and Economic Behavior, 110:1-18, 2018.

S. Barbera. Indifferences and domain restrictions. Analyse & Kritik, 29:146-162, 2007.

S. Barbera. Strategy-proof social choice. In K. J. Arrow, A. Sen, and K. Suzumura,
editors, Handbook of Social Choice and Welfare, volume 2, chapter 25, pages 731-832.
Elsevier, 2010.

S. Barbera, A. Bogomolnaia, and H. van der Stel. Strategy-proof probabilistic rules for
expected utility maximizers. Mathematical Social Sciences, 35(2):89-103, 1998.

23



C. Basteck. An axiomatization of the random priority rule. Technical report,
https://EconPapers.repec.org/RePEc:zbw:wzbmbh:290390, 2024.

A. Beja. Arrow and gibbard-satterthwaite revisited: Extended domains and shorter
proofs. Mathematical Social Sciences, 25(3):281-286, 1993.

J.-P. Benoit. The Gibbard-Satterthwaite theorem: a simple proof. Economics Letters, 69
(3):319-322, 2000.

D. Berga and B. Moreno. Strategic requirements with indifference: single-peaked versus
single-plateaued preferences. Social Choice and Welfare, 32:275-298, 2009.

D. Black. On the rationale of group decision-making. Journal of Political Economy, 56
(1):23-34, 1948.

T. Bérgers. An Introduction to the Theory of Mechanism Design. Oxford University
Press, 2015.

G. Carroll. When are local incentive constraints sufficient? FEconometrica, 80(2):661-686,
2012.

S. Cato. Another induction proof of the Gibbard—Satterthwaite theorem. Fconomics
Letters, 105(3):239-241, 2009.

Y.-K. Che and F. Kojima. Asymptotic equivalence of probabilistic serial and random
priority mechanisms. Econometrica, 78(5):1625-1672, 2010.

J. Duggan. A geometric proof of Gibbard’s random dictatorship theorem. FEconomic
Theory, 7(2):365-369, 1996.

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):
587601, 1973.

A. Gibbard. Manipulation of schemes that mix voting with chance. Econometrica, 45(3):
665-681, 1977.

A. Gibbard. Straightforwardness of game forms with lotteries as outcomes. Econometrica,
46(3):595-614, 1978.

M. O. Jackson. A crash course in implementation theory. Social Choice and Welfare, 18
(4):655-708, 2001.

F. Kojima and M. Manea. Axioms for Deferred Acceptance. Econometrica, 78(2):633-653,
2010.

U. Kumar, S. Roy, A. Sen, S. Yadav, and H. Zeng. Local global equivalence in voting
models: A characterization and applications. Theoretical Economics, 16(1195-1220),
2021a.

24



U. Kumar, S. Roy, A. Sen, S. Yadav, and H. Zeng. Local global equivalence for unanimous
social choice functions. 2021b. Working paper.

P. Lederer. Strategic Manipulation in Social Choice Theory. PhD thesis, Technische
Universitat Miinchen, 2024.

E. Maskin. Nash equilibrium and welfare optimality. Review of Economic Studies, 66
(26):23-38, 1999.

D. Mishra. Ordinal Bayesian incentive compatibility in restricted domains. Journal of
Economic Theory, 163:925-954, 2016.

J. Moore. Implementation, contracts, and renegotiations in environments with complete
information. In J.-J. Laffont, editor, Advances in Economic Theory, chapter 5, pages
182-282. Cambridge University Press, 1992.

H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437-455,
1980.

E. Muller and M. A. Satterthwaite. The equivalence of strong positive association and
strategy-proofness. Journal of Economic Theory, 14(2):412-418, 1977.

N. Muto and S. Sato. An impossibility under bounded response of social choice functions.
Games and Economic Behavior, 106:1-25, 2017.

S. Nandeibam. An alternative proof of Gibbard’s random dictatorship result. Social
Choice and Welfare, 15(4):509-519, 1997.

S. Papai. Strategyproof multiple assignment using quotas. Review of Economic Design,
5:91-105, 2000.

P. J. Reny. Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified approach.
Economics Letters, 70(1):99-105, 2001.

Z. Ritz. Restricted domains, arrow social welfare functions and noncorruptible and non-
manipulable social choice correspondences: The case of private and public alternatives.
Journal of Economic Theory, 35:1-18, 1985.

T. Saijo. On constant Maskin monotonic soical choice functions. Journal of Economic
Theory, 42:382-386, 1987.

T. Saijo, T. Sjostrom, and T. Yamato. Secure implementation. Theoretical Economics, 2
(3):203-229, 2007.

S. Sato. Strategy-proofness and the reluctance to make large lies: the case of weak orders.
Social Choice and Welfare, 40(2):479-494, 2013a.

S. Sato. A sufficient condition for the equivalence of strategy-proofness and non-
manipulability by preferences adjacent to the sincere one. Journal of Economic
Theory, 148:259-278, 2013b.

25



M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187-217, 1975.

M. A. Satterthwaite and H. Sonnenschein. Strategy-proof allocation mechanisms at
differentiable points. The Review of Economic Studies, 48(4):587-597, 1981.

A. Sen. Another direct proof of the Gibbard-Satterthwaite Theorem. Fconomics Letters,
70(3):381-385, 2001.

A. Sen. The Gibbard random dictatorship theorem: a generalization and a new proof.
SERIFEs, 2(4):515-527, 2011.

L.-G. Svensson. Strategy-proof allocation of indivisible goods. Social Choice and Welfare,
16(4):557-567, 1999.

L.-G. Svensson and A. Reffgen. The proof of the Gibbard-Satterthwaite theorem revisited.
Journal of Mathematical Economics, 55:11-14, 2014.

Y. Tanaka. An alternative proof of Gibbard’s random dictatorship theorem. Review of
FEconomic Design, 8:319-328, 2003.

26



	Introduction
	Related Work
	Preliminaries
	Social Choice Functions
	Strict Preferences
	Weak Preferences

	Social Decision Schemes
	Strict preferences
	Weak preferences

	Connections to Non-Bossiness and Maskin monotonicity
	Non-Bossiness
	Maskin Monotonicity


