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ABSTRACT

Polarization is a major concern for a well-functioning society. Often,

mass polarization of a society is caused by a polarizing political

representation, even though it could be easily prevented on this

level. This is an effect inherent to the current theory on commit-

tee selection from the view of computational social choice. We

enhance the standard model of committee selection by defining

two quantitative values that measure how much a given committee

interlaces voters. Maximizing these values aims at avoiding polar-

izing committees. While the corresponding maximization problem

is NP-complete in general, we obtain an efficient algorithm for pro-

files in the voter-candidate interval domain. Moreover, we analyze

the compatibility of our goals with other objectives of excellent,

diverse, and proportional representation. We identify trade-offs

between approximation guarantees and describe algorithms that

achieve simultaneous constant-factor approximations.
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1 INTRODUCTION

In recent years, the emergent phenomenon of polarization has

been a major concern, discussed not just by social scientists, but by

society at large, and accompanied by extensive media coverage [19,

26]. Polarization is commonly defined as the division of a group

into clusters of completely different opinions or ideologies. It is a

major concern for the modern society, which has to work towards

a consensus when resolving global challenges, such as fighting

poverty, climate change, or pandemics (see [27] and the references

therein).

Importantly, polarization can occur as a phenomenon concerning

a whole society or only at the level of political representation, e.g.,

when considering the distribution of opinions among the delegates

in a parliament. The former is often referred to asmass polarization,

while the latter is known as elite polarization [see, e.g., 1].

The academic opinion broadly agrees that the phenomenon of

elite polarization is on the rise. For example, when depicting the

members of the US Congress in terms of their ideology on a scale

ranging from the most liberal to the most conservative, one can

observe a significant shift when comparing the 87th Congress in

the 1960s and the 111th Congress around 2010, see Figure 2.1 in the

book by Fiorina [18]. However, whether polarization concerns the

opinions of a society as a whole is in huge debate. Fiorina et al. [19]

argue that there is no conclusive evidence for mass polarization,

even when considering highly sensitive topics such as abortion. For

instance, they provide evidence that the elite polarization among

delegates is already much higher than the polarization among party

identifiers [19, Table 2.1]. By contrast, they ascribe an important

role in creating an inaccurate picture of mass polarization to the me-

dia [19]. In fact, the media can have a huge effect on the perception

of and conclusions drawn from elite polarization [26].

This view is opposed by Abramowitz and Saunders [1] when

analyzing data from the American National Election Studies. They

provide extensive evidence that mass polarization has increased

signficiantly since the 1970s. Moreover, their results suggest mass

polarization based on geography (i.e., different ideologies across

US states) or religious beliefs.

Against this background, we aim to offer a novel perspective

on the intertwined phenomena of mass polarization at the broad

level of a society as a whole and elite polarization at the level of the

society’s political, parliamentary representation. We highlight how

an election can lead to a parliament that is far more polarized than

the society it represents, and we propose quantitative measures that

evaluate a set of representatives according to how well it interlaces

the electorate. We believe that our ideas can be developed to prevent

societies with broadly moderate opinions being represented by

unnecessarily polarized parliaments.

We approach polarized democratic representation through the

lens of social choice theory. In this line of research, parliamentary

elections have been conceptualized as so-called multiwinner voting

rules. Their formal study, especially in an approval-based setting,

in which voters’ ballots specify a set of approved candidates, has

received extensive attention in recent years [17, 25].

Example 1.1. As a motivating example, consider the voting sce-

nario illustrated in Figure 1. There are four voters, indicated by the

gray circles, as well as six candidates. Each candidate is represented

by an ellipse that encompasses the voters approving the candidate.

For instance, candidate 𝑏1 is approved by voters 𝑣1 and 𝑣2, whereas

candidates 𝑐1 and 𝑐3 are both approved by the same set of voters,

namely 𝑣1 and 𝑣3. In practice, this is likely to happen when 𝑐1 and

𝑐3 represent very similar ideologies.

Assume that we want to select a committee consisting of 4 candi-

dates. Two reasonable choices would be to select𝑊 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}

or𝑊
′
= {𝑐1, 𝑐2, 𝑏1, 𝑏2}. Both selections lead to committees in which

each voter approves exactly two selected candidates. Moreover, mul-

tiwinner voting rules typically considered in the literature, such as

Thiele rules and their sequential variants [32], Phragmén’s rule [31],

or the more recently introduced method of equal shares [30], do not

distinguish between these two choices. There is, however, a differ-

ence. While𝑊 divides the electorate into two perfectly separated
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Figure 1: A preference profile with four voters 𝑣1, . . . , 𝑣4 is

depicted as hypergraph, where the voters are nodes and the

candidates 𝑏𝑖 , 𝑐 𝑗 are hyperedges connecting the voters ap-

proving them. In this profile, typical multiwinner voting

rules do not distinguish between selecting {𝑐1, 𝑐2, 𝑐3, 𝑐4} and

{𝑐1, 𝑐2, 𝑏1, 𝑏2}.

subsets of voters,𝑊
′
connects all voters. From the perspective of

polarization,𝑊 looks polarizing while𝑊
′
bridges all voters. Thus,

we need novel voting rules that can tease out this distinction. In

our paper, we aim to provide a principled approach that favors

committees resembling𝑊
′
.
1

⊲

We define two simple objectives that aim to interlace voters by

means of committees. First, we consider maximizing the number

of pairs of voters approving a common candidate (the Pairs objec-

tive). While this leads to the selection of𝑊
′
in Example 1.1, it can

still cause clusters of voters disconnected in terms of their repre-

sentation (cf. Example 3.1). The reason is that Pairs only counts

direct, but not indirect links. Hence, as a second objective we count

the number of pairs of voters that are connected by a sequence of

candidates (the Cons objective).

While both objectives immediately give rise to voting rules—

select a committee that maximizes Pairs or Cons—we primarily

view them as measures of polarization. Whenever they are high,

polarization in the selected committee is low. Thus, we investigate

the feasibility of maximizing our objectives, both on their own and

in combination with the goals of diversity and proportionality.

We first consider the computational problem of maximizing

Pairs or Cons in isolation (Section 4). Unfortunately, for unre-

stricted preferences this problem is NP-hard. However, we obtain
a polynomial-time algorithm for the structured domain of voter-

candidate interval (VCI) preferences [20], where voters and can-

didates are represented by intervals on the real line and a voter

approves a candidate if and only if their intervals intersect. Such

preferences are reasonable in parliamentary elections where can-

didates can often be ordered on a left-right spectrum and voters

approve candidates that are close to them on this spectrum.

In Section 5, we investigate whether one can select interlac-

ing committees while achieving other desiderata. We first con-

sider excellence, as measured by the approval voting (AV) score, i.e.,

1

Of course, while we try to highlight the phenomenon at hand with a simple example,

it is easy to extend this to elections with large sets of voters or candidates, e.g., each

voter in the example might represent a quarter of a large electorate.

the total number of approvals received by committee members.

There is a straightforward way to obtain what is essentially an

𝛼-approximation of the Pairs objective together with an (1 − 𝛼)-

approximation of the AV score: one can simply use an 𝛼-fraction

of the committee for the former and an (1 − 𝛼)-fraction for the

latter. Unfortunately, it turns out that this is as good as it gets: We

prove that if a voting rule provides an 𝛼-approximation of the Pairs

objective and a 𝛽-approximation of the AV score, then necessarily

𝛼 +𝛽 ≤ 1. Next, we look at diversity, as captured by the Chamberlin–

Courant (CC) score, which is the number of voters who approve

at least one candidate in the committee. The CC score is closely

related to the Pairs objective: both measure the coverage of voters

and pairs of voters, respectively. Hence, it is quite surprising that

the trade-off we get here matches the one for Pairs and AV. Further,

we study the compatibility with proportionality, as captured by the

extended justified representation axiom (EJR). Again, we show the

same tight trade-off: If a voting rule provides an 𝛼-approximation

of the Pairs and 𝛽-approximate EJR, then 𝛼 + 𝛽 ≤ 1.

It is more challenging to combine the Cons objective with AV,

CC, EJR or even Pairs. This is due to an interesting qualitative

difference between Pairs and Cons. While a constant fraction of

the best candidates achieves a constant approximation of Pairs,

for Cons this is not the case. Hence, we obtain worse trade-offs:

If a voting rule provides an 𝛼
2
-approximation of Cons and a 𝛽-

approximation of AV, CC, EJR, or Pairs, then 𝛼 + 𝛽 ≤ 1. Note

that since 𝛼 < 1, it holds that 𝛼
2
< 𝛼 . Hence, for instance, 𝛼

2
=

1

3
and 𝛽 = 1

2
is already impossible. Moreover, for Cons and AV

specifically, the trade-off that we obtain is even more subtle, which

suggests that finding a matching lower bound might be challenging.

Nevertheless, we make first steps towards this goal, by showing that

under suitable domain restrictions there always exists a committee

that achieves a
1

4
-approximation of Cons and a

1

2
-approximation

of AV, CC, EJR, or Pairs, which matches our upper bound.

2 RELATEDWORK

In the existing literature, multiwinner voting rules usually aim

to guarantee the selection of the best candidates based on their

individual quality [3, 13], representation of diverse opinions [7, 14],

or proportional treatment of different groups of interests [28, 30–

32]. An overview of the most common approval-based multiwinner

voting rules is given in the book by Lackner and Skowron [25]. To

the best of our knowledge, no rules were proposed so far with the

explicit goal of reducing polarization or connecting voters.

A line of research in multiwinner voting looks at the possibility

of combining various objectives as well as their inherent trade-offs,

similar to our study in Section 5. Lackner and Skowron [24] provide

worst-case bounds on how several established rules approximateAV

and CC scores. For ordinal preferences, Kocot et al. [22] analyze the

complexity of finding committees giving an optimal combination

of approximations of two objectives. Moreover, a series of works

look at achievable AV and CC guarantees when we require that a

committee satisfies a certain proportionality axiom [6, 12, 16].

A number of authors study the relationship between an electoral

system (or, more narrowly, a voting rule) and the way the candidates

choose to strategically place themselves on the political spectrum

[5, 9, 23, 29]. Such an analysis can indicate whether a rule prevents,



or reinforces, polarization. Our approach differs in that we analyze

the direct effect of a voting rule on the polarization caused by a

chosen committee, while the aforementioned works analyze how

preferences evolve based on a given rule.

Delemazure et al. [10] pursue a goal that can be seen as opposite

to ours: selecting a most polarizing committee of size 2; they focus

on ordinal preferences. In a similar vein, Colley et al. [8] proposed

measures of how divisive, or polarizing, a single candidate is.

3 MODEL

We start by introducing key notation and proposing two ways of

measuring how well a committee interconnects the voters. For a

positive integer 𝑘 ∈ N, define (︀𝑘⌋︀ ∶= {1, . . . , 𝑘}.

3.1 Approval-Based Multiwinner Voting

We consider the standard setting of approval-based multiwinner

voting [25]. Given a set of 𝑚 candidates 𝐶 , an election instance

ℰ = (𝑉 ,𝐴,𝑘) consists of a set of 𝑛 voters 𝑉 , an approval profile

𝐴 = (𝐴𝑣)𝑣∈𝑉 with 𝐴𝑣 ⊆ 𝐶 for all 𝑣 ∈ 𝑉 , and a target committee

size 𝑘 ∈ (︀𝑚⌋︀. Intuitively, a voter 𝑣 ∈ 𝑉 approves precisely the

candidates in 𝐴𝑣 . Throughout the paper, we view a profile 𝐴 as a

hypergraph with vertex set 𝑉 , and, for each 𝑐 ∈ 𝐶 , a hyperedge

𝑉𝑐 = {𝑣 ∈ 𝑉 ∶𝑐 ∈ 𝐴𝑣}. Throughout the remainder of this section, we

consider an election instance ℰ = (𝑉 ,𝐴,𝑘) over a candidate set 𝐶 .

Besides the general setting, we also consider structured domains

of spatial one-dimensional preferences. An election belongs to the

voter-candidate interval domain if each voter and candidate can be

represented as an interval on the real line and a voter approves a

candidate if and only if their respective intervals intersect. Formally,

following Godziszewski et al. [20], we say that an election (𝑉 ,𝐴,𝑘)

belongs to the voter-candidate interval (VCI) domain if there exist a

collection of positions {𝑥𝑐}𝑐∈𝐶 ∪ {𝑥𝑣}𝑣∈𝑉 ⊆ R and a collection of

nonnegative radii {𝑟𝑐}𝑐∈𝐶 ∪ {𝑟𝑣}𝑣∈𝑉 ⊆ R+ ∪ {0} such that for all

𝑣 ∈ 𝑉 , 𝑐 ∈ 𝐶 it holds that 𝑐 ∈ 𝐴𝑣 if and only if ⋃︀𝑥𝑐 − 𝑥𝑣 ⋃︀ ≤ 𝑟𝑐 + 𝑟𝑣 .

The VCI domain is the most general domain of one-dimensional

approval preferences considered in the literature. In particular, it

generalizes the voter interval (VI) and candidate interval (CI) do-

mains, defined as follows [15]. An election belongs to the voter in-

terval (VI) domain if there is an ordering of the voters 𝑣1, . . . , 𝑣𝑛 such

that each candidate is approved by some interval of this ordering,

i.e., for each 𝑐 ∈ 𝐶 there exist 𝑖, 𝑗 ∈ (︀𝑛⌋︀ such that 𝑉𝑐 = {𝑣𝑖 , . . . , 𝑣 𝑗}.

Similarly, an election belongs to the candidate interval (CI) domain

if there is an ordering of the candidates 𝑐1, . . . , 𝑐𝑚 such that each

voter’s approval set forms an interval of this ordering, i.e., for each

𝑣 ∈ 𝑉 there exist 𝑖, 𝑗 ∈ (︀𝑚⌋︀ such that 𝐴𝑣 = {𝑐𝑖 , . . . , 𝑐 𝑗}. It is easy to

see that the VI domain and the CI domain are contained in the VCI

domain.
2

A feasible committee for an instance (𝑉 ,𝐴,𝑘) is a subset𝑊 ⊆

𝐶 with ⋃︀𝑊 ⋃︀ = 𝑘 . A (multiwinner) voting rule 𝑓 takes as input an

instance (𝑉 ,𝐴,𝑘) and outputs a feasible committee 𝑓 (𝑉 ,𝐴,𝑘).

2

For instance, given an election ℰ = (𝑉 ,𝐴,𝑘) in VI, as witnessed by voter ordering

𝑣1, . . . , 𝑣𝑛 , we can set 𝑥𝑣𝑖 = 𝑖 and 𝑟𝑣𝑖 = 0 for each 𝑖 ∈ (︀𝑛⌋︀. To position the candidates,

for each 𝑐 ∈ 𝐶 we compute 𝑐
− = min{𝑖 ∶ 𝑐 ∈ 𝐴𝑣𝑖

} and 𝑐+ = max{𝑖 ∶ 𝑐 ∈ 𝐴𝑣𝑖
} and

set 𝑥𝑐 = (𝑐− + 𝑐+)⇑2, 𝑟𝑐 = (𝑐+ − 𝑐−)⇑2. Clearly, these positions and radii certify

that ℰ belongs to the VCI domain. For CI, the construction is analogous.

3.2 Classic Committee Selection

A popular classification of multiwinner voting rules is in terms

of the main objective in electing the committee, with three most

commonly studied objectives being excellence, diversity, and pro-

portionality [17].

Both excellence and diversity are defined quantitively: each of

these objectives is associated with a function that assigns a numer-

ical score to each feasible committee, with higher score associated

with better performance. Formally, given an instance ℰ = (𝑉 ,𝐴,𝑘)

and a feasible committee𝑊 , we define

AV(𝑊,ℰ) ∶= ∑
𝑣∈𝑉

⋃︀𝐴𝑣 ∩𝑊 ⋃︀,

CC(𝑊,ℰ) ∶= ⋃︀{𝑣 ∈ 𝑉 ∶ 𝐴𝑣 ∩𝑊 ≠ ∅}⋃︀.

For both objectives (as well as the two novel objectives defined

in Section 3.3) we omit ℰ from the notation when it is clear from

the context. The quantities AV and CC are referred to as, resp.,

the approval score and the Chamberlin–Courant score of committee

𝑊 in election ℰ . Intuitively, AV counts the number of approvals

received by the members of𝑊 and is viewed as a measure of ex-

cellence, while CC counts the number of voters represented by𝑊 ,

i.e., voters who approve at least one member of𝑊 , and is viewed

as a measure of diversity. The voting rule that outputs a committee

maximizing AV (resp., CC) is known as the approval voting rule

(resp., the Chamberlin–Courant rule).

Consider any function 𝑆 that assigns scores to feasible com-

mittees (e.g., 𝑆 = AV or 𝑆 = CC). Given 𝛼 ∈ (︀0, 1⌋︀, we say that a

committee𝑊
∗
satisfies 𝛼-𝑆 for an election ℰ = (𝑉 ,𝐴,𝑘) if it holds

that

𝑆(𝑊
∗
,ℰ) ≥ 𝛼 ⋅ max

𝑊 ⊆𝐶,
⋃︀𝑊 ⋃︀=𝑘

𝑆(𝑊,ℰ).

Moreover, we say that a voting rule 𝑓 satisfies 𝛼-𝑆 if, for every

election ℰ , it holds that 𝑓 (ℰ) satisfies 𝛼-𝑆 for ℰ . For instance, the

Chamberlin–Courant rule satisfies 1-CC.

In contrast, proportionality is typically captured by representa-

tion axioms. A prominent axiom of this type is extended justified

representation (EJR) [2]; intuitively, it states that sufficiently large

groups of voters with similar preferences should be appropriately

represented in the selected committee. We will now define what it

means for a committee to satisfy approximate EJR.

Given an election (𝑉 ,𝐴,𝑘) over 𝐶 and 𝛼 ∈ (0, 1⌋︀, a committee

𝑊 ⊆ 𝐶 is said to satisfy 𝛼-EJR if for every ℓ ∈ (︀𝑘⌋︀ and every subset

𝑆 ⊆ 𝑉 such that 𝛼 ⋅ ⋃︀𝑆 ⋃︀ ≥ ℓ
𝑘
⋅ ⋃︀𝑉 ⋃︀ and ⋃︀⋂𝑖∈𝑆 𝐴𝑖 ⋃︀ ≥ ℓ , there exists at

least one voter 𝑖 ∈ 𝑆 such that ⋃︀𝑊 ∩𝐴𝑖 ⋃︀ ≥ ℓ . We say that a rule 𝑓

satisfies 𝛼-EJR, if for every election ℰ it holds that 𝑓 (ℰ) satisfies

𝛼-EJR. Setting 𝛼 to 1 gives the standard EJR axiom.

3.3 Interlacing Committee Selection

We now define two new objectives, which assess committees based

on how well they interlace voters.

Our first objective is the number of pairs of voters that jointly

approve a selected candidate. Given an election ℰ = (𝑉 ,𝐴,𝑘), let

𝑉
(2)

∶= {{𝑢, 𝑣} ⊆ 𝑉 ∶𝑢 ≠ 𝑣} be the set of all voter pairs. We set

Pairs(𝑊,ℰ) ∶= ⋃︀{{𝑢, 𝑣} ∈ 𝑉
(2)
∶𝐴𝑢 ∩𝐴𝑣 ∩𝑊 ≠ ∅}⋃︀.
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Figure 2: Illustration of Example 3.1.

Note that for every instance ℰ = (𝑉 ,𝐴,𝑘) one can define an associ-

ated pair instance ℰ
(2)
= (𝑉

(2)
,𝐴
(2)
, 𝑘), where 𝐴

(2)
{𝑢,𝑣} = 𝐴𝑢 ∩𝐴𝑣

for every {𝑢, 𝑣} ∈ 𝑉
(2)

. For each instance ℰ and committee𝑊 ⊆ 𝐶

we have Pairs(𝑊,ℰ) = CC(𝑊,ℰ
(2)

).

While the Pairs objective only considers direct links between

voters, our second objective takes into account indirect connections

as well. Given an instance ℰ = (𝐴,𝑉 ,𝑘) and a subset of candidates

𝑊 ⊆ 𝐶 , we say that two voters 𝑢, 𝑣 ∈ 𝑉 are connected by𝑊 (and

write 𝑢 ∼𝑊 𝑣) if there is a sequence of voters 𝑢 = 𝑣0, 𝑣1, . . . , 𝑣𝑠 = 𝑣

with 𝐴𝑣𝑖−1 ∩𝐴𝑣𝑖 ∩𝑊 ≠ ∅ for every 𝑖 ∈ (︀𝑠⌋︀. To evaluate a committee

𝑊 , we count pairs of voters connected by𝑊 . Formally,

Cons(𝑊,ℰ) ∶= ⨄︀{{𝑢, 𝑣} ∈ 𝑉
(2)
∶𝑢 ∼𝑊 𝑣}⨄︀ .

Since both Pairs and Cons assign scores to committees, we also

consider their approximate versions, as captured by 𝛼-Pairs and

𝛼-Cons.

Our interest in Cons is motivated by the following example.

Example 3.1. Consider a profile with six voters 𝑣1, . . . , 𝑣6, six

cycle candidates 𝑐1, . . . , 𝑐6, and two diagonal candidates 𝑑1 and 𝑑2,

whose hypergraph is depicted in Figure 2. Each cycle candidate is

approved by two consecutive voters: for 𝑖 = 1 . . . , 5 candidate 𝑐𝑖 is

approved by 𝑣𝑖 and 𝑣𝑖+1, while 𝑐6 is approved by 𝑣1 and 𝑣6. Also,

𝑑1 is approved by 𝑣2 and 𝑣6 and 𝑑2 by 𝑣3 and 𝑣5. Let 𝑘 = 6.

Consider two committees:𝑊 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} contains all

cycle candidates, whereas in𝑊
′
= {𝑐1, 𝑐3, 𝑐4, 𝑐6, 𝑑1, 𝑑6} two cycle

candidates are exchanged for the diagonal candidates (𝑊
′
is shown

in red in Figure 2). Common voting rules, including the approval

rule and the Chamberlin–Courant rule, do not distinguish between

𝑊 and𝑊
′
, as each voter approves exactly two candidates in either

committee. Moreover, the rule thatmaximizes Pairs is also unable to

distinguish them, as both𝑊 and𝑊
′
cover exactly 6 pairs of voters.

However, intuitively,𝑊
′
seems more polarizing: under𝑊

′
, there

are two disconnected groups of voters, each supporting (though

not fully) their own set of candidates.

In contrast, a rule that maximizes Cons is sensitive to the differ-

ences between the two committees. Under𝑊 , all 15 pairs of voters

are connected, while𝑊
′
only achieves 6 connections. ⊲

4 COMPUTATION OF THE NEW OBJECTIVES

In this section, we show that maximizing Pairs and Cons is NP-

hard in general, but tractable on well-structured domains. All proofs

missing from this section can be found in Appendix A of the sup-

plementary material.

4.1 General Preferences

Both hardness proofs in this section are based on the NP-complete

problem Exact Cover by 3-Sets (X3C) [21]. An instance of X3C is

a pair (𝑅,𝒮), where 𝑅 is a ground set of size 3𝜌 and 𝒮 is a collection

of 3-element subsets of 𝑅; it is a Yes-instance if and only if there

exists a subset 𝒮
′
⊆ 𝒮 with ⋃︀𝒮

′
⋃︀ = 𝜌 that covers 𝑅.

We start by considering the decision problem associated with

maximizing the Pairs objective.

Theorem 4.1. It is NP-complete to decide whether, given an elec-

tion ℰ = (𝑉 ,𝐴,𝑘) and a threshold 𝑞 ∈ N, there exists a committee𝑊

of size at most 𝑘 such that Pairs(𝑊,ℰ) ≥ 𝑞.

Proof. Membership in NP is immediate: for a given committee,

its size and the number of pairs of voters approving a common

candidate can be checked in polynomial time.

To show NP-hardness, we present a reduction from X3C. Given

an instance (𝑅,𝒮) of X3C with ⋃︀𝑅⋃︀ = 3𝜌 , we construct an instance

of our problem as follows. We create one candidate for each set in

𝒮 and two voters for each element of the ground set, i.e., we set

𝐶 = {𝑐𝑆 ∶𝑆 ∈ 𝒮} and 𝑉 = {𝑣𝑟 , 𝑣
′
𝑟 ∶ 𝑟 ∈ 𝑅}. For each 𝑆 ∈ 𝒮 , candidate

𝑐𝑆 is approved by voters {𝑣𝑟 , 𝑣
′
𝑟 ∶ 𝑟 ∈ 𝑆}. We set the target committee

size 𝑘 to 𝜌 and the threshold 𝑞 to 15𝜌 . We will show that we can

cover 𝑞 pairs of voters if and only if the source instance is a Yes-

instance of X3C.

Suppose first there exists a feasible committee𝑊 that covers 𝑞

pairs of voters. Each 𝑐 ∈𝑊 is approved by exactly 6 voters, so it can

cover at most (
6

2
) = 15 pairs of voters. Moreover, the candidates’

support sets are either disjoint or overlap in at least two voters. As

𝑞 = 15𝑘 , this means that candidates in𝑊 have pairwise disjoint

support sets. Since ⋃︀𝑊 ⋃︀ = 𝑘 , it follows that {𝑆 ∈ 𝒮 ∶ 𝑐𝑆 ∈𝑊 } forms

a cover of 𝑅, i.e., our instance of X3C is a Yes-instance.

Conversely, assume that there exists a subset 𝒮
′
⊆ 𝒮 of size 𝑘

that covers 𝑅. Consider the committee𝑊 = {𝑐𝑆 ∶𝑆 ∈ 𝒮
′
}. Then,

⋃︀𝑊 ⋃︀ = ⋃︀𝒮
′
⋃︀ = 𝜌 = 𝑘 . Moreover, since, all of the sets in 𝒮

′
are pairwise

disjoint, the support sets of the candidates in𝑊 are pairwise disjoint

and contains exactly 6 voters each. Hence, there are 𝑘 ⋅(
6

2
) = 15𝜌 = 𝑞

pairs of voters who approve a common candidate. □

A similar hardness result holds for Cons. The proof idea is to

introduce an auxiliary voter that is the focal point in connecting

all voters.

Theorem 4.2. It is NP-complete to decide whether, given an elec-

tion ℰ = (𝑉 ,𝐴,𝑘) and a threshold 𝑞 ∈ N, there exists a committee𝑊

of size 𝑘 such that Cons(𝑊,ℰ) ≥ 𝑞. The hardness result holds even if

𝑞 = (
𝑛
2
), i.e., if the goal is to connect all 𝑛 voters.

4.2 One-dimensional Preferences

In Section 4.1, we have shown that the computational problems

associated with selecting interlacing committees are NP-hard. In
contrast, we will now show that these problems can be solved in

polynomial time on the VCI domain.

We start by observing that, for the objectives we consider, a VCI

instance can be transformed into a CI instance without changing

the value of these objectives. To this end, we define a notion of

dominance among candidates and prove that, in the absence of

dominated candidates, every VCI instance is a CI instance.



4.2.1 Relationship between VCI and CI. Given an election ℰ =

(𝑉 ,𝐴,𝑘) over a candidate set 𝐶 , we say that candidate 𝑐
′
∈ 𝐶 is

dominated by a candidate 𝑐 ∈ 𝐶 if every voter approving 𝑐
′
also

approves 𝑐 , and some voter approves 𝑐 but not 𝑐
′
, i.e.,𝑉𝑐′ is a proper

subset of 𝑉𝑐 .

Our next result shows that if an election in the VCI domain

contains no dominated candidates, it belongs to the (much simpler

to analyze) CI domain. This result is very useful for our purposes:

Indeed, removal of dominated candidates from awinning committee

does not affect the Pairs and Cons objectives, so we can simply

remove all dominated candidates from the input instance. It is also

of independent interest, as it points out a surprising relationship

between the two domains.

Proposition 4.3. Let ℰ be an instance in the VCI domain. If ℰ

contains no dominated candidates, then it belongs to the CI domain.

In what follows, we state our results for the VCI domain, but

assume that the input election belongs to the CI domain, and we

are explicitly given the respective candidate order. It will also be

convenient to assume that this order is 𝑐1, . . . , 𝑐𝑚 . This requires two

preprocessing steps: first, we eliminate all dominated candidates

(which, by Proposition 4.3, results in a CI election), and second,

we compute an ordering of the candidates witnessing that our

instance belongs to the CI domain. Both steps can be implemented

in polynomial time (for the second step, see, e.g., [15]).

4.2.2 Efficient Algorithms. We are ready to present polynomial-

time algorithms for Pairs and Cons. Since Pairs is identical to CC

on the associated pair instance, we can compute Pairs by leveraging

an existing algorithm for CC in the CI domain [4, 15].

Proposition 4.4. In the VCI domain, a committee that maximizes

Pairs can be computed in polynomial time.

In the VCI domain, we can also compute a committee that maxi-

mizes Cons in polynomial time; however, the argument is signifi-

cantly more complicated. Again, we assume that the input profile

belongs to the CI domain, as witnessed by the candidate ordering

𝑐1, . . . , 𝑐𝑚 . A natural idea, then, is to use dynamic programming to

compute, for each 𝑏 ∈ (︀𝑘⌋︀ and 𝑖 ∈ (︀𝑚⌋︀, an optimal subcommittee

of size 𝑏 with rightmost candidate 𝑐𝑖 . For 𝑏 = 1, the computation

is straightforward, and for 𝑏 = 𝑘 , one of the resulting𝑚 commit-

tees globally maximizes Cons. However, computing the value of

adding 𝑐𝑖 to a committee of size 𝑏 − 1 that has 𝑐 𝑗 as its rightmost

candidate is a challenging task: this is because the number of connec-

tions that 𝑐𝑖 adds depends on the size of the connected component

associated with 𝑐 𝑗 . To handle this, we add a third dimension to the

dynamic program: the number of voters 𝑥 ∈ (︀𝑛⌋︀ in the connected

component of the last selected candidate. The resulting dynamic

program has𝒪(𝑚𝑛𝑘) cells, and each cell can be filled in polynomial

time given the values of the already-filled out cells.

Theorem 4.5. In the VCI domain, a committee that maximizes

Cons can be computed in polynomial time.

5 COMBINING OBJECTIVES

While interlacing objectives can be viewed in isolation, in many

cases, standard objectives of excellence, diversity, or proportionality

continue to be important for the election of a committee. In this
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Figure 3: Illustration of the profile constructed in the proof

of Proposition 5.3. Block voters are on the left, central voters

in the middle, and arm voters on the right. Block candidates

are each approved by 𝑥 block voters whereas arm candidates

are each approved by all central voters and one arm voter.

section, we investigate to what extent we can select committees that

simultaneously perform well with respect to both interlacing and

standard objectives. Missing proofs can be found in Appendix B.

5.1 Pairs Objective

First, we consider combining the Pairs objective with individual

excellence of the chosen candidates, as measured by AV. For every

𝛼 ∈ (︀0, 1⌋︀ and every election ℰ = (𝑉 ,𝐴,𝑘), there is a simple way to

obtain a simultaneous [︂𝛼𝑘⌉︂⇑𝑘-approximation of Pairs and ⟨︀(1 −

𝛼)𝑘⧹︀⇑𝑘-approximation of AV. Indeed, we can split the 𝑘 positions

on the committee into two parts of size 𝑘1 = [︂𝛼𝑘⌉︂ and 𝑘2⟨︀(1 −

𝛼)𝑘⧹︀, respectively, and then select 𝑘1 candidates so as to maximize

Pairs and 𝑘2 candidates so as to maximize AV (if some candidate is

selected both times, we replace their second copy by an arbitrary

unselected candidate). Since the marginal gain for Pairs and AV

objectives from each additional candidate is non-increasing, this

procedure obtains the desired guarantees. Note that Lackner and

Skowron [24] propose a similar method for combining AV and CC.

Proposition 5.1. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies [︂𝛼𝑘⌉︂⇑𝑘-Pairs and ⟨︀(1 − 𝛼)𝑘⧹︀⇑𝑘-AV.

We can use the same technique to combine Pairs with the goal

of diverse representation, as measured by CC.

Proposition 5.2. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies [︂𝛼𝑘⌉︂⇑𝑘-Pairs and ⟨︀(1 − 𝛼)𝑘⧹︀⇑𝑘-CC.

It turns out that, for both combinations, this is the best we can

hope for.

Proposition 5.3. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀ if a voting rule satisfies

𝛼-Pairs and 𝛽-AV, then 𝛼 + 𝛽 ≤ 1.

Proof. Assume for the sake of contradiction that some voting

rule satisfies 𝛼-Pairs and 𝛽-AVwith 𝛼 +𝛽 = 1+𝜀 for some 𝜀 > 0. For

a given constant 𝑥 ∈ N, consider the election ℰ = (𝑉 ,𝐴,𝑘), defined

as follows (see Figure 3 for an illustration). The set 𝑉 consists of

𝑥
4
block voters (𝑣

𝑏
𝑖,𝑗)𝑖∈(︀𝑥⌋︀, 𝑗∈(︀𝑥3⌋︀ and 𝑥

2
central voters (𝑣

𝑞
𝑖 )𝑖∈(︀𝑥2⌋︀.

Also, the set 𝐶 contains 𝑥
3
block candidates (𝑐

𝑏
𝑖 )𝑖∈(︀𝑥3⌋︀, and 𝑥

3
+ 1

central candidates (𝑐
𝑞
𝑖 )𝑖∈(︀𝑥3+1⌋︀. For every 𝑖 ∈ (︀𝑥⌋︀ and 𝑗 ∈ (︀𝑥

3
⌋︀, the

block voter 𝑣
𝑏
𝑖,𝑗 only approves the block candidate 𝑐

𝑏
𝑗 , but all central

voters approve all central candidates, i.e., for every 𝑖 ∈ (︀𝑥
2
⌋︀ and



𝑗 ∈ (︀𝑥
3
+ 1⌋︀, voter 𝑣

𝑞
𝑖 approves candidate 𝑐

𝑞
𝑗 . The target committee

size is set to 𝑘 = 𝑥
3
+ 1.

By symmetry, without loss of generality, this means that for some

𝛾 ∈ {0, 1⇑𝑥
3
, 2⇑𝑥

3
, . . . , 1}we select a committee𝑊𝛾 ⊆ 𝐶 with central

candidates 𝑐
𝑞
1
, 𝑐
𝑞
2
, . . . , 𝑐

𝑞

𝛾𝑥3+1 and block candidates 𝑐
𝑏
1
, 𝑐
𝑏
2
, . . . , 𝑐

𝑏
(1−𝛾)𝑥3 .

Observe that every selected block candidate is approved by 𝑥 vot-

ers and covers 𝑥(𝑥 − 1)⇑2 pairs of voters. In turn, every selected

central candidate is approved by 𝑥
2
voters, but all (𝑥

2
− 1)𝑥

2
⇑2

pairs of central voters are just covered once, no matter the value of

𝛾 . Thus, when we select 𝛾𝑥
3
+ 1 central candidates and (1 −𝛾)𝑥

3

block candidates, we get the following AV and Pairs scores.

AV(𝑊𝛾 ,ℰ) = 𝛾𝑥
5

+ (1 − 𝛾)𝑥
4

≤ 𝛾𝑥
5

+𝒪(𝑥
4

), and

Pairs(𝑊𝛾 ,ℰ) = (1 − 𝛾)
𝑥
5
− 𝑥

4

2

+
𝑥
4
− 𝑥

2

2

≤ (1 − 𝛾)𝑥
5

+𝒪(𝑥
4

),

where the 𝒪(⋅) terms are independent of 𝛾 . Observe that the maxi-

mum AV score is obtained when we take 𝛾 = 1, and the maximum

Pairs score is obtained when 𝛾 = 0. Also,

AV(𝑊𝛾 ,ℰ)

AV(𝑊1,ℰ)
+
Pairs(𝑊𝛾 ,ℰ)

Pairs(𝑊0,ℰ)
≤ 1 +𝒪(1⇑𝑥).

Therefore, for 𝑥 large enough, regardless of the value of 𝛾 , the

sum of approximation ratios for AV and Pairs is less than 1 + 𝜀, a

contradiction. □

It may seem that the Pairs and CC objectives are more aligned

than Pairs and AV. Indeed, both CC and Pairs only demand that a

voter (resp., a pair of voters) has at least one candidate in the selected

committee that they (jointly) approve. However, surprisingly, the

worst-case trade-off for this pair of objectives is the same as for

Pairs and AV.

Proposition 5.4. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-CC, then 𝛼 + 𝛽 ≤ 1.

Proof sketch. The proof is similar to the one of Proposition 5.3.

This time, the idea is that the block candidates are required to

achieve a large CC-score, while the central candidates are required

to achieve a large Pairs-score, see Figure 4.

We now increase the number of blocks from 𝑥
3
to 𝑥

4
, and the

number of central voters from 𝑥
2
to 𝑥

3
. Accordingly, we increase the

number of block candidates to 𝑥
4
so that each block still approves

precisely one block candidate, and the number of central candidates

to 𝑥
4
+1, where still all central voters approve all central candidates.

Further, we add 𝑥
4
+ 1 arm voters (𝑣

𝑎
𝑖 )𝑖∈𝑥4+1, where each 𝑣𝑎𝑖 further

approves the central candidate 𝑖 . Finally, we set the target committee

size to 𝑘 = 𝑥
4
+ 1.

Just as in the proof of Proposition 5.3, the choice of the committee

boils down to choosing 𝛾𝑥
4
central candidates and (1 −𝛾)𝑥

4
block

candidates for some 𝛾 ∈ {0, 1⇑𝑥
4
, . . . , 1}. Then, by a similar analysis,

we get that

CC(𝑊𝛾 ,ℰ)

CC(𝑊1,ℰ)
+
Pairs(𝑊𝛾 ,ℰ)

Pairs(𝑊0,ℰ)
≤ 1 +𝒪(1⇑𝑥),

which concludes the proof. □

Finally, we investigate how we can combine the Pairs objective

with proportional representation, as captured by the EJR axiom.

𝑥
4

𝑥

...

...

⋮

...

𝑥
3

⋮
⋮... 𝑥

4
+ 1

Figure 4: An illustration of the profile constructed in the

proof of Proposition 5.4. Block voters are on the left, cen-

tral voters in the middle, and arm voters on the right. Block

candidates are approved by 𝑥 block voters each whereas arm

candidates are approved by all central voters and one arm

voter each.

Again, we can use the committee-splitting technique to show that

for every election ℰ = (𝑉 ,𝐴,𝑘) there is a committee that satisfies

[︂𝛼𝑘⌉︂⇑𝑘-Pairs and (1−𝛼)-EJR. For this, we first need to show that we

can guarantee (1−𝛼)-EJR with a (1−𝛼)-fraction of the committee

seats. To obtain this, we utilize a variant of the method of equal

shares (MES) [30]. Roughly speaking, this rule gives each voter 𝑘⇑𝑛

units of money and then sequentially selects candidates that are

best for voters that still have money, and subtracts money from

the supporters of the selected candidate (the formal definition is in

Appendix B). Mimicking the proof that MES satisfies EJR by Peters

and Skowron [30], we show that a variant of MES in which we

scale money allocated to voters by 𝛼 provides 𝛼-EJR for the original

instance, which can be of independent interest.
3

Lemma 5.5. Let 𝛼 ≤ 1 be given. For every election ℰ = (𝑉 ,𝐴,𝑘), ex-

ecuting MES on (𝑉 ,𝐴, 𝛼𝑘) returns a committee of size ⟨︀𝛼𝑘⧹︀ satisfying

𝛼-EJR in polynomial time.

Using this lemma, we now easily obtain the desired guarantees.

Proposition 5.6. For every 𝛼 ∈ (︀0, 1⌋︀ and election ℰ , there exists

a committee that satisfies 𝛼-Pairs and (1 − 𝛼)-EJR.

Proof. Consider an election ℰ . By Lemma 5.5, we can satisfy

(1−𝛼)-EJR using ⟨︀(1−𝛼)𝑘⧹︀ candidates.With the remaining𝑘−⟨︀(1−

𝛼)𝑘⧹︀ = [︂𝛼𝑘⌉︂ candidates, we can guarantee 𝛼-CC on the associated

pair instance ℰ
(2)

. This is equivalent to satisfying 𝛼-Pairs on ℰ ,

concluding the proof. □

As before, we provide the matching upper bound. We note that

our proof even works if, instead of EJR, we considere the much

weaker axiom of justified representation (JR) [2].

Proposition 5.7. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1.

To conclude this section, we note that the algorithms for obtain-

ing the guarantees of Propositions 5.1, 5.2, and 5.6 can be made

polynomial-time using greedy approximations of CC and Pairs,

but this will result in the respective guarantees being multiplied

by (1 − 1⇑𝑒) [24]. Indeed, a (1 − 1⇑𝑒)-approximation of Pairs can

3

A similar observation was made by Dong and Peters [11], but requires [︂(1 − 𝛼)𝑘⌉︂
seats, which in our case would allow only for a rounded-down Pairs guarantee.



be computed in polynomial time using the sequential Chamberlin–

Courant rule on the associated pair instance.

5.2 Cons Objective

An important reason why we obtained good approximations of

Pairs, AV, and CC was that these objectives are subadditive, i.e., for

every two committees𝑊 and𝑊
′
, the value for committee𝑊 ∪𝑊

′
is never larger than the sum of the values for𝑊 and𝑊

′
. As a

consequence, these objectives are sublinear with respect to the

committee size, in the sense that if we only use an 𝛼-fraction of

the 𝑘 committee seats, we can obtain at least an 𝛼-fraction of the

original value for a committee of size 𝑘 (up to rounding).

In contrast, the Cons objective is not subadditive, so we cannot

use the same technique. In fact, the following result shows that the

trade-off betweenCons and any of AV,CC, or Pairs is strictly worse

(on the side of the Cons) than the trade-offs we have established

in Section 5.1. Notably, our upper bound applies even to instances

that belong to the VI domain.

Proposition 5.8. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-AV, 𝛽-CC, or 𝛽-Pairs, then 𝛼 + 𝛽 ≤ 1. This already

holds in the VI domain.

Proof sketch. For the proof of all three statements, consider

an instance with 𝑥
3
blocks, with each block consisting of 𝑥 voters

approving the corresponding block candidate. Further, we have

𝑥
3
+ 1 central voters ordered on a line, with each pair of adjacent

central voters approving a designated central candidate.

This instance belongs to the VI domain, as we can first enumerate

each block and then the central voters on the line. The remainder

of the proof consists of two parts. In part one, we show that, to

satisfy 𝛽-Pairs, 𝛽-CC, or 𝛽-AV, we require at least 𝛽𝑥
3
−𝒪(𝑥

2
)

block candidates. In part two, we show that with the remaining

candidates, we can obtain at most a (1 − 𝛽)
2
-approximation of

Cons. □

We obtain an analogous result for EJR by reducing the number

of blocks from 𝑥
3
to slightly less than 𝛽𝑥

3
.

Proposition 5.9. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1. This already holds in the VI

domain.

However, in some cases the trade-off is even worse than the

one presented in the above results. Consider a stepwise function

𝑠 ∶ (︀0, 1⌋︀ → (︀0, 1⌋︀ given by 𝑠(𝛼) = 1⇑([︂2⇑𝛼⌉︂ − 1), as illustrated in

Figure 6. Intuitively, it finds the smallest 𝑝 ∈ N such that 𝛼 ≥ 2⇑𝑝

and returns 1⇑(𝑝−1). We then have the following trade-off between

Cons and AV.

Proposition 5.10. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝑠(𝛼)-Cons and 𝛽-AV, then 𝛼 + 𝛽 ≤ 1.

Proof. Let 𝑦 = 1⇑𝑠(1 − 𝛽). For an arbitrary constant 𝑥 ∈ N,

consider the election ℰ = (𝑉 ,𝐴,𝑘), defined as follows (see Figure 5

for an illustration). Let 𝑉 consist of 𝑥
2
block voters (𝑣

𝑏
𝑖 )𝑖∈(︀𝑥2⌋︀, as

well as 𝑦𝑥
3
arm voters split into 𝑦 arms (𝑣

𝑎
𝑖,𝑗)𝑖∈(︀𝑥3⌋︀, 𝑗∈(︀𝑦⌋︀, 𝑦(𝑥

2
− 1)

chain voters also split into 𝑦 arms, (𝑣
𝑐
𝑖, 𝑗)𝑖∈(︀𝑥2−1⌋︀, 𝑗∈(︀𝑦⌋︀, and one

central voter 𝑣
𝑞
. Moreover, let 𝐶 contain 𝑦𝑥

2
+ 1 block candidates

𝑥
2

⋮ 𝑐
𝑞
1
𝑐
𝑞
2
⋯ 𝑐

𝑞

𝑦𝑥2+1 𝑥
3

𝑥
2
− 1
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Figure 5: An illustration of the profile constructed in the

proof of Proposition 5.10.

(𝑐
𝑏
𝑖 )𝑖∈(︀𝑦𝑥2+1⌋︀,𝑦 arm candidates (𝑐

𝑎
𝑖 )𝑖∈(︀𝑦⌋︀, and𝑦𝑥

2
chain candidates

(𝑐
𝑐
𝑖, 𝑗)𝑖∈(︀𝑥2⌋︀, 𝑗∈(︀𝑦⌋︀.
All block voters approve all block candidates, i.e., for every 𝑖 ∈

(︀𝑥
2
⌋︀ and 𝑗 ∈ (︀𝑦𝑥

2
+1⌋︀ voter 𝑣

𝑏
𝑖 approves 𝑐

𝑏
𝑗 . Next, arm voters in each

arm approve the respective arm candidate, i.e., for every 𝑖 ∈ (︀𝑥
3
⌋︀

and 𝑗 ∈ (︀𝑦⌋︀, voter 𝑣
𝑎
𝑖,𝑗 approves 𝑐

𝑎
𝑗 . Then, every chain voter approves

the chain candidate corresponding to their index and the next one,

i.e., for every 𝑖 ∈ (︀𝑥
2
− 1⌋︀ and 𝑗 ∈ (︀𝑦⌋︀ voter 𝑣

𝑐
𝑖, 𝑗 approves candidates

𝑐
𝑐
𝑖, 𝑗 and 𝑐

𝑐
𝑖+1, 𝑗 . Finally, the first arm voter in each arm approves

the last chain candidate in each arm, i.e., for every 𝑗 ∈ 𝑦 voter 𝑣
𝑎
1, 𝑗

approves 𝑐
𝑐
𝑥2, 𝑗

and the central voter 𝑣
𝑞
approves the first chain

candidates in each arm, i.e., 𝑐
𝑐
1, 𝑗 for every 𝑗 ∈ (︀𝑦⌋︀.

Now, assume that we want to select a committee of size 𝑘 =

𝑦(𝑥
2
+ 1)+ 1. The high-level idea for the proof is that for Cons it is

important to connect the arm voters through the selection of chain

candidates. However, if we select a 𝛽-fraction of block candidates

in order to guarantee 𝛽-AV, then we cannot connect any two such

groups of voters.

Observe that at least one block candidate will always be chosen,

as there are not enough other candidates. Moreover, if we want

to maximize either AV or Cons, it is always better to select an

arm candidate than any other candidate, thus we can assume that

we select all 𝑦 of them. Then, from the remaining 𝑦𝑥
2
slots in the

committee, we can select any number of 𝑧 ≤ 𝑦𝑥
2
block candidates

and 𝑦𝑥
2
− 𝑧 chain candidates. Let us denote an arbitrary committee

with such a selection of candidates by𝑊𝑧 ⊆ 𝐶 .

For AV, we get score 𝑥
2
for every selected block candidate, 𝑥

3

for every selected arm candidate, and 2 for every selected chain

candidate. Thus, we obtain

AV(𝑊𝑧 ,ℰ) = 𝑧𝑥
2

+𝑦𝑥
3

+ 𝑥
2

+ 2(𝑦𝑥
2

− 𝑧).

Observe that we maximize AV when 𝑧 = 𝑦𝑥
2
, thus, in order to

obtain 𝛽-AV it has to be the case that 𝑧 ≥ 𝛽𝑦𝑥
2
−𝒪(𝑥).

Now, forCons, we claim that for large enough 𝑥 , with the remain-

ing 𝑦𝑥
2
− 𝑧 chain candidates, we cannot connect arm voters from

any two arms. To this end, recall that 𝑦 = 1⇑𝑠(1 − 𝛽), and let 𝑝 be

smallest integer such that 1− 𝛽 ≥ 2⇑𝑝 . Thus, 1− 𝛽 < 2⇑(𝑝 − 1). Also,

by definition 𝑦 = 𝑝 −1. Thus, we get (1−𝛽)𝑦 < 2(𝑝 −1)⇑(𝑝 −1) = 2.



In other words, there is an 𝜀 > 0 such that (1 − 𝛽)𝑦 = 2 − 𝜀. Since

𝑧 ≥ 𝛽𝑦𝑥
2
−𝒪(𝑥), we choose at most 𝑥

2
𝑦−𝑧 ≤ (1−𝛽)𝑦𝑥

2
+𝒪(𝑥) <

2𝑥
2
−𝜀𝑥

2
+𝒪(𝑥) arm candidates. Thus, for large enough 𝑥 we have

strictly fewer than 2𝑥
2
chain candidates, which proves the claim.

Let us now calculate the value of the Cons objective. For block

voters we get (
𝑥
2

2
), nomatter howmany block candidates we choose.

For connections of chain voters to themselves we get at most (
𝑦𝑥

2

2
).

For connections between chain voters and arm voters we get at

most 𝑦𝑥
5
. And finally, for connections of arm voters to themselves,

since we did not connected any two arms with each other, we get

𝑦(
𝑥
3

2
). In total

Cons(𝑊𝑧 ,ℰ) =
𝑦

2

𝑥
6

+𝒪(𝑥
5

).

The maximum value of Cons is obtained when we select all 𝑦𝑥
2

chain voters, which yields

(
𝑦𝑥

3
+ 𝑥

2
𝑦 + 1

2

) =
𝑦
2

2

𝑥
6

+𝒪(𝑥
5

).

Thus, the fraction of Cons we can obtain while satisfying 𝛽-AV

converges to
1

𝑦
for 𝑥 →∞. As we assumed,

1

𝑦
= 𝑠(1 − 𝛽), which

concludes the proof. □

Consider the two upper bounds that we have obtained for 𝛼-

approximation of Cons given that a voting rule satisfies 𝛽-AV in

Propositions 5.8 and 5.10 (their plots are presented in Figure 6). Since

the upper bounds intersect several times and they are of different

nature (stepwise vs. continuous), it seems that establishing tight

trade-offs might be a challenging and interesting problem. Similarly,

because Cons is not subadditive, finding a general lower bound for

these trade-offs seems highly non-trivial as well. Nevertheless, we

conclude this section with a positive result on guarantees that we

can obtain for a combination of Pairs and Cons objectives in the

VI domain, which matches our upper bound.

Proposition 5.11. For instances (𝑉 ,𝐴,𝑘) in the VI domain with

even 𝑘 , there exists a committee satisfying
1

2
-AV,

1

2
-CC,

1

2
-EJR, or

1

2
-Pairs and

1

4
-Cons.

Proof sketch. Let ℰ be an election with even 𝑘 that belongs

to the VI domain. Take an optimal committee𝑊 with respect to

Cons. In the corresponding hypergraph,𝑊 consists of one or more

connected components.

For components in which we have an even number of candidates,

we can show that half of these candidates connect more than half

of the voters covered by the whole component. This gives us at

least
1

4
of connections inside the component.

For components with an odd number of candidates, we observe

that since 𝑘 is even, there is an even number of them. We arbitrarily

group them into pairs. Then, for every pair, we show that it is

possible to select half of the candidates rounded up in one of them

and half of the candidates rounded down in the other so that in

total we cover
1

4
connections from both. □
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Figure 6: Two different upper bounds on the possible 𝛼-

approximation of Cons for rules that satisfy 𝛽-AV. The

(1 − 𝛽)
2
upper bound is the result of Proposition 5.8 and

𝑠(1 − 𝛽) is implied by Proposition 5.10.

6 CONCLUSION

Our paper sheds new light on the interdependency of mass and

elite polarization. We observe that the selection of a representative

committee can significantly influence elite polarization indepen-

dently of mass polarization. With the aim of avoiding polarization

at the level of the representation, we have introduced Pairs and

Cons, two numerical objectives that measure how well a committee

interlaces the electorate.

We show that, while maximizing both objectives is NP-hard, a
committee maximizing either of them can be computed in polyno-

mial time on the voter-candidate interval domain. Also, we study

the compatibility of our objectives with measures of excellence,

diversity, and proportionality. We find approximation trade-offs

suggesting that there is nothing better than dividing the committee

seats among different objectives and trying to maximize each ob-

jective with their designated share of the committee: in the worst

case, the synergies are negligible. While a subcommittee yields the

approximation of an objective proportional to its size, the depen-

dency for Cons is quadratic (or even worse0, leading to inferior

guarantees.

We believe that our work offers an important perspective that

has been missing from the social choice literature on multiwinner

voting. As such, it calls for further research; in what follows, we

suggest some promising directions.

An immediate open question is to determine the exact trade-off

between Cons and other objectives. While we have a bound for 𝛼
2
-

Cons and 𝛽-approximations of other objectives, Proposition 5.10

shows that the picture is more nuanced.

Going beyond our base model, another direction is to consider

our objectives in the broader context of participatory budgeting

(PB), where each candidate has a cost, and the committee needs to

stay within a given budget. In this setting, candidates are usually

projects, such as a playground, a community garden, or a cycling

path. Interlacing voters by projects in PB has an additional interpre-

tation apart from linking similar opinions: the funded projects may

lead to interaction among the agents who use them (e.g., working

together in a community garden). This seems quite desirable in the

context of PB, where one of the goals is community building.
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APPENDIX FOR SUBMISSION 933

In the supplementary material, we present proofs missing from the

main part of the paper.

A MISSING PROOFS FROM SECTION 4

In this section, we consider themissing proof about the computation

of Pairs and Cons. We start with the hardness result for Cons.

Theorem 4.2. It is NP-complete to decide whether, given an elec-

tion ℰ = (𝑉 ,𝐴,𝑘) and a threshold 𝑞 ∈ N, there exists a committee𝑊

of size 𝑘 such that Cons(𝑊,ℰ) ≥ 𝑞. The hardness result holds even if

𝑞 = (
𝑛
2
), i.e., if the goal is to connect all 𝑛 voters.

Proof. Membership in NP is clear: checking if a committee

connects 𝑞 pairs of voters reduces to finding connected components

of the associated graph (where there is an edge from 𝑣 to 𝑣
′
if 𝑣 and

𝑣
′
approve the same committee member).

To show NP-hardness, we present a reduction from X3C. Given

an instance (𝑅,𝒮) of X3C with ⋃︀𝑅⋃︀ = 3𝜌 , we construct an instance

of our problem as follows. We create a candidate for each set in 𝒮

and a voter for each element of the ground set 𝑅, as well as one

additional voter, i.e., we set 𝐶 = {𝑐𝑆 ∶𝑆 ∈ 𝒮}, 𝑉 = {𝑣} ∪ {𝑣𝑟 ∶ 𝑟 ∈ 𝑅}.

For each 𝑆 ∈ 𝒮 , 𝑐𝑆 is approved by {𝑣} ∪ {𝑣𝑟 ∶ 𝑟 ∈ 𝑆}. We want to

select a committee𝑊 ⊆ 𝐶 of size 𝑘 = 𝜌 and set the threshold 𝑞 to

(
𝑛
2
), where 𝑛 = ⋃︀𝑉 ⋃︀.

Consider a collection 𝒮
′
⊆ 𝒮 of size 𝑘 and the respective com-

mittee𝑊 = {𝑐𝑆 ∶ 𝑆 ∈ 𝒮
′
}. If 𝒮 covers 𝑅, each voter in 𝑉 approves

a candidate in𝑊 , and 𝑣 approves all candidates, so all voters are

connected via 𝑣 . Conversely, if all pairs of voters are connected,

then each voter must approve some candidate in𝑊 and hence 𝒮
′

covers 𝑅. This completes the proof. □

Next, we provide the proof that the VCI domain is equal to the

CI domain in the absence of dominated candidates.

Proposition 4.3. Let ℰ be an instance in the VCI domain. If ℰ

contains no dominated candidates, then it belongs to the CI domain.

Proof. Consider an election ℰ = (𝑉 ,𝐴,𝑘) over the candidate

set 𝐶 that belongs to the VCI domain, as witnessed by positions

{𝑥𝑐}𝑐∈𝐶 ∪ {𝑥𝑣}𝑣∈𝑉 and radii {𝑟𝑐}𝑐∈𝐶 ∪ {𝑟𝑣}𝑣∈𝑉 . Renumber the

candidates so that 𝑥𝑐1 ≤ 𝑥𝑐2 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑐𝑚 .

Suppose for the sake of contradiction that this ordering of the

candidates does not witness that ℰ belongs to CI. Then, there exists

a voter 𝑣 ∈ 𝑉 and ℎ < 𝑖 < 𝑗 such that 𝑣 approves 𝑐ℎ and 𝑐 𝑗 , but not 𝑐𝑖 .

For readability, we will refer to the positions and radii of 𝑐ℎ , 𝑐𝑖 and

𝑐 𝑗 as 𝑥ℎ, 𝑥𝑖 , 𝑥 𝑗 and 𝑟ℎ, 𝑟𝑖 , 𝑟 𝑗 , respectively. Since 𝑣 does not approve

𝑐𝑖 , we have 𝑥𝑣 ≠ 𝑥𝑖 ; we can then assume without loss of generality

that 𝑥𝑣 < 𝑥𝑖 ≤ 𝑥 𝑗 . To obtain a contradiction, we will show that 𝑐𝑖 is

dominated by 𝑐 𝑗 .

We will first argue that (︀𝑥𝑖 − 𝑟𝑖 , 𝑥𝑖 + 𝑟𝑖⌋︀ ⊆ (︀𝑥 𝑗 − 𝑟 𝑗 , 𝑥 𝑗 + 𝑟 𝑗 ⌋︀.

Indeed, 𝑐𝑖 ⇑∈ 𝐴𝑣 implies 𝑥𝑖 − 𝑟𝑖 > 𝑥𝑣 + 𝑟𝑣 whereas 𝑐 𝑗 ∈ 𝐴𝑣 implies

𝑥 𝑗 −𝑟 𝑗 ≤ 𝑥𝑣+𝑟𝑣 . Rearranging the terms, we obtain 𝑟𝑖 < 𝑥𝑖 −𝑥𝑣−𝑟𝑣 ≤

𝑥 𝑗 − 𝑥𝑣 − 𝑟𝑣 ≤ 𝑟 𝑗 . Thus, the right endpoint of 𝑐 𝑗 ’s interval is at

𝑥 𝑗 +𝑟 𝑗 ≥ 𝑥𝑖 +𝑟𝑖 . For the left endpoints of both intervals, in a similar

manner we obtain 𝑥𝑖 − 𝑟𝑖 > 𝑥𝑣 + 𝑟𝑣 ≥ 𝑥 𝑗 − 𝑟 𝑗 . Thus, the interval of

𝑐𝑖 is subsumed by that of 𝑐 𝑗 , and hence every voter who approves

𝑥𝑖 also approves 𝑥 𝑗 . Moreover, 𝑣 approves 𝑐 𝑗 , but not 𝑐𝑖 . We have

shown that 𝑐𝑖 is dominated, concluding the proof. □

Finally, we provide the details for the polynomial time computa-

tion of our polarization-preventing objectives in the VCI domain.

We start with the simple proof for Pairs.

Proposition 4.4. In the VCI domain, a committee that maximizes

Pairs can be computed in polynomial time.

Proof. Fix an election instance ℰ . As argued earlier, we can

assume that ℰ is in the CI domain with respect to candidate ordering

𝑐1, . . . , 𝑐𝑚 . Recall that Pairs(𝑊,ℰ) = CC(𝑊,ℰ
(2)

). Now, note that

for all {𝑢, 𝑣} ∈ 𝑉
(2)

, it holds by definition that 𝐴{𝑢,𝑣} = 𝐴𝑢 ∩𝐴𝑣 is

the intersection of two intervals of that ordering and hence itself

an interval. Thus, ℰ
(2)

is in the CI domain with respect to the

same candidate ordering. For instances in the CI domain, CC can be

maximized in polynomial time [4, 15]. This concludes the proof. □

We conclude the section by providing the proof concerning the

dynamic program that computes a committee maximizing Cons on

the VCI domain.

Theorem 4.5. In the VCI domain, a committee that maximizes

Cons can be computed in polynomial time.

Proof. Consider an election ℰ = (𝑉 ,𝐴,𝑘); again, we assume

that ℰ belongs to the CI domain, as witnessed by the candidate

order 𝑐1, . . . , 𝑐𝑚 . For each voter 𝑣 ∈ 𝑉 , let ℓ(𝑣) ∶= min{𝑖 ∶𝑐𝑖 ∈ 𝐴𝑣}

and 𝑟(𝑣) ∶= max{𝑖 ∶𝑐𝑖 ∈ 𝐴𝑣} be the leftmost and rightmost approved

candidates of voter 𝑣 , respectively. Given candidate indices 1 ≤ 𝑗 <

𝑖 ≤𝑚, let 𝑉 (¬ 𝑗, 𝑖) be the set of voters that approve 𝑐𝑖 , but not 𝑐 𝑗 ,

i.e., 𝑉 (¬ 𝑗, 𝑖) ∶= {𝑣 ∈ 𝑉 ∶ 𝑗 < ℓ(𝑣) ≤ 𝑖 ≤ 𝑟(𝑣)}. Further, we introduce

an indicator variable 1( 𝑗 ∧ 𝑖) defined by

1( 𝑗 ∧ 𝑖) ∶=

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

true, if 𝑉𝑐 𝑗 ∩𝑉𝑐𝑖 ≠ ∅

false, otherwise.

Hence, 1( 𝑗 ∧ 𝑖) is true if and only if there is a voter that approves

both 𝑐 𝑗 and 𝑐𝑖 .

Calculating connected pairs after the addition of a candidate. Con-

sider adding 𝑐𝑖 to a committee𝑊 ⊆ {𝑐1, . . . , 𝑐𝑖−1}. Let 𝑗∗ be the

index of the rightmost candidate in𝑊 . We will now show how to

update Cons(𝑊 ∪ {𝑐𝑖}) dependent on whether there is some voter

approving 𝑐 𝑗∗ and 𝑐𝑖 , i.e., dependent on the value of 1( 𝑗∗ ∧ 𝑖).
First, if 1( 𝑗∗∧𝑖) is false (or if𝑊 = ∅, i.e., 𝑐𝑖 is the only candidate),

then no voter in 𝑉𝑐𝑖 approves any candidate in𝑊 . This is because,

in the CI domain, if 𝑐 𝑗 , 𝑐𝑖 ∈ 𝐴𝑣 for some 𝑗 < 𝑗
∗
and 𝑣 ∈ 𝑉 , then also

𝑐 𝑗∗ ∈ 𝐴𝑣 . Thus, adding 𝑐𝑖 only connects the voters approving 𝑐𝑖 and

no members of𝑊 , i.e., ⋃︀𝑉 (¬ 𝑗
∗
, 𝑖)⋃︀ additional voters. Thus, after we

add 𝑐𝑖 to𝑊 , we obtain

Cons(𝑊 ∪ {𝑐𝑖}) = Cons(𝑊 ) + (
⋃︀𝑉 (¬ 𝑗

∗
, 𝑖)⋃︀

2

)

connected pairs.

Otherwise, 1( 𝑗∗ ∧ 𝑖) is true, and, by CI, if a voter approves 𝑐𝑖
and some 𝑐 𝑗 ∈𝑊 , they also approve 𝑐 𝑗∗ . The update now depends

on the connected component containing 𝑐 𝑗∗ on the hypergraph

induced by𝑊 ∪ {𝑐𝑖}. Consider a candidate 𝑐 ∈ 𝐶 and a voter 𝑣 ∈ 𝑉𝑐 .

We define𝐾𝑊 (𝑐) ∶= {𝑢 ∈ 𝑉 ∶𝑢 ∼𝑊 𝑣}, i.e.,𝐾𝑊 (𝑐) is the set of voters

contained in the connected component containing the hyperedge 𝑐 .



Note that 𝐾𝑊 (𝑐) is well defined because ∼𝑊 is an equivalence

relation and 𝑢 ∼𝑊 𝑢
′
for all 𝑢,𝑢

′
∈ 𝑉𝑐 .

We have that

𝐾𝑊∪{𝑐𝑖}(𝑐𝑖) = 𝑉 (¬ 𝑗
∗
, 𝑖) ⊍𝐾𝑊 (𝑐 𝑗∗),

where the union is disjoint. Since 𝐾𝑊 (𝑐 𝑗∗) is already connected,

adding 𝑐𝑖 creates two types of connections: those within the newly

connected voters in 𝑉 (¬ 𝑗
∗
, 𝑖) and those between 𝑉 (¬ 𝑗

∗
, 𝑖) and

the voters in the connected component to which they connect, i.e.,

𝐾𝑊 (𝑐 𝑗∗). This leads to

Cons(𝑊∪{𝑐𝑖}) = Cons(𝑊 )+(
⋃︀𝑉 (¬ 𝑗

∗
, 𝑖)⋃︀

2

)+⋃︀𝑉 (¬ 𝑗
∗
, 𝑖)⋃︀⋃︀𝐾𝑊 (𝑐 𝑗∗)⋃︀

connected pairs after the addition of 𝑐𝑖 .

Defining the dynamic program. Let opt(︀𝑖, 𝑥,𝑏⌋︀ denote the maxi-

mum number of connected pairs that can be achieved by a commit-

tee of size at most 𝑏 that has 𝑐𝑖 as its rightmost candidate, while 𝑐𝑖
is in a connected component of size 𝑥 . We use the convention that

opt(︀𝑖, 𝑥,𝑏⌋︀ = −1 if there is no such committee. We will define func-

tions dp(︀𝑖, 𝑥,𝑏⌋︀ and𝑊 (︀𝑖, 𝑥,𝑏⌋︀ and argue that for all 𝑖, 𝑥,𝑏 it holds

that dp(︀𝑖, 𝑥,𝑏⌋︀ = opt(︀𝑖, 𝑥,𝑏⌋︀ and, moreover, if this value is nonneg-

ative,𝑊 (︀𝑖, 𝑥,𝑏⌋︀ is a committee of size at most 𝑏 with rightmost

candidate 𝑐𝑖 having a connected component of size 𝑥 satisfying

Cons(𝑊 (︀𝑖, 𝑥,𝑏⌋︀,ℰ) = opt(︀𝑖, 𝑥,𝑏⌋︀.
For the initialization, we consider 𝑏 = 1. We further take care of

the trivial solution when 𝑖 = 1 to avoid a case distinction later.

● For 𝑖 ∈ (︀𝑚⌋︀, we initialize dp(︀𝑖, ⋃︀𝑉𝑐𝑖 ⋃︀, 1⌋︀ = Cons({𝑐𝑖},ℰ).

This is the number of pairs connected by {𝑐𝑖}. Moreover,

set𝑊 (𝑖, ⋃︀𝑉𝑐1 ⋃︀, 1) = {𝑐𝑖}, and dp(︀𝑖, 𝑥, 1⌋︀ = −1 for all other 𝑥 .
● For 𝑏 ∈ (︀𝑘⌋︀, we initialize dp(︀1, ⋃︀𝑉𝑐1 ⋃︀, 𝑏⌋︀ = Cons({𝑐𝑖},ℰ).

Again, this is the number of pairs connected by {𝑐1}. Also,

set𝑊 (1, ⋃︀𝑉𝑐1 ⋃︀, 𝑏) = {𝑐1}, and dp(︀1, 𝑥,𝑏⌋︀ = −1 for all other 𝑥 .
Clearly, for 𝑏 = 1 (resp., 𝑖 = 1) the claim is correct, i.e., it holds that

dp(︀𝑖, 𝑥, 𝑝⌋︀ = opt(︀𝑖, 𝑥, 𝑝⌋︀ for all 𝑥, 𝑖 ≤ 𝑚 (resp., 𝑥 ≤ 𝑚, 𝑏 ≤ 𝑘) and if

the value is nonnegative, then𝑊 (︀𝑖, 𝑥,𝑏⌋︀ is a committee achieving

this value.

For the induction step, let 𝑖 , 𝑥 , and 𝑏 be given with 𝑖, 𝑏 ≥ 2. Any

committee of size at most 𝑏 with rightmost candidate 𝑐𝑖 whose

connected component is of size 𝑥 is induced by a committee of size

at most 𝑏 − 1 with rightmost candidate 𝑐 𝑗 , where 𝑗 < 𝑖 , inducing

a connected component of size 𝑦 ≤𝑚. The sizes of the connected

components need to align, i.e., if 1( 𝑗 ∧ 𝑖) is false, the only feasible

size is 𝑥 = ⋃︀𝑉 (¬ 𝑗, 𝑖)⋃︀, while only 𝑥 = ⋃︀𝑉 (¬ 𝑗, 𝑖)⋃︀ +𝑦 is possible when

1( 𝑗 ∧ 𝑖) is true. To choose the committee𝑊 (︀𝑖, 𝑥,𝑏⌋︀, we calculate

the numbers of pairs induced when adding 𝑐𝑖 to𝑊 (︀ 𝑗,𝑦,𝑏 − 1⌋︀ for

each feasible 𝑗,𝑦, then go with the best extension. For this, define

score(𝑖, 𝑥,𝑏, 𝑗,𝑦) for each 𝑗 < 𝑖 , 𝑦 ≤𝑚 as follows:

● If 1( 𝑗 ∧ 𝑖) is true, 𝑦 + ⋃︀𝑉 (¬ 𝑗, 𝑖)⋃︀ = 𝑥 , and dp(︀ 𝑗,𝑦,𝑏 − 1⌋︀ ≥ 0,

set score(𝑖, 𝑥,𝑏, 𝑗,𝑦) = dp( 𝑗,𝑦,𝑏 − 1) + (
𝑥−𝑦
2
) + (𝑥 −𝑦)𝑦.

● If 1( 𝑗 ∧ 𝑖) is false, ⋃︀𝑉 (¬ 𝑗, 𝑖)⋃︀ = 𝑥 , and dp( 𝑗,𝑦,𝑏 − 1) ≥ 0, set

score(𝑖, 𝑥,𝑏, 𝑗,𝑦) = dp( 𝑗,𝑦,𝑏 − 1) + (
𝑥
2
).

● Else, set score(𝑖, 𝑥,𝑏, 𝑗,𝑦) = −1.
As, intuitively, score(𝑖, 𝑥,𝑏, 𝑗,𝑦) calculates the number of pairs

that can be obtained when (successfully) extending the committee

𝑊 (︀ 𝑗,𝑦,𝑏 − 1⌋︀ by adding 𝑐𝑖 , we define dp(︀𝑖, 𝑥,𝑏⌋︀ and𝑊 (︀𝑖, 𝑥,𝑏⌋︀ to

maximize this score.

● dp(︀𝑖, 𝑥,𝑏⌋︀ = max(𝑗,𝑦) score(𝑖, 𝑥,𝑏, 𝑗,𝑦).
● 𝑊 (︀𝑖, 𝑥,𝑏⌋︀ =𝑊 ( 𝑗

∗
,𝑦
∗
, 𝑏 − 1) ∪ {𝑐𝑖} for some maximizers

𝑗
∗
,𝑦
∗
of score(𝑥, 𝑖,𝑏, 𝑗,𝑦), if dp(︀𝑖, 𝑥,𝑏⌋︀ ≥ 0.

Correctness of the dynamic program. By construction, it holds that

if dp(︀𝑖, 𝑥,𝑏⌋︀ is nonnegative, then Cons(𝑊 (︀𝑖, 𝑥,𝑏⌋︀,ℰ) = dp(︀𝑖, 𝑥,𝑏⌋︀.
It remains to prove correctness of the update formulas for the

dynamic program, i.e., dp(︀𝑖, 𝑥,𝑏⌋︀ = opt(︀𝑖, 𝑥,𝑏⌋︀. First, note that, by
definition, dp(︀𝑖, 𝑥,𝑏⌋︀ = opt(︀𝑖, 𝑥,𝑏⌋︀ = −1 if there is no committee

satisfying the constraints. To consider satisfiable (𝑖, 𝑥,𝑏), we split

the proof into two inequalities.

For “≤”, let𝑊 (︀𝑖, 𝑥,𝑏⌋︀ be induced by the score maximizer𝑊
′
=

𝑊 ( 𝑗
∗
,𝑦
∗
, 𝑏 − 1). Then,𝑊

′
is of size at most 𝑏 − 1, with rightmost

candidate index 𝑗
∗
< 𝑖 having a connected component of size 𝑦

∗
and𝑊 =𝑊

′
∪ {𝑐𝑖}. By our previous observations, if 1( 𝑗∗ ∧ 𝑖) is

true, the number of connected pairs𝑊 (︀𝑖, 𝑥,𝑏⌋︀ induces is equal to

Cons(𝑊 (︀𝑖, 𝑥,𝑏⌋︀) = Cons(𝑊
′
) + (

𝑥 −𝑦
∗

2

) + (𝑥 −𝑦
∗
)𝑦
∗

= dp( 𝑗∗,𝑦∗, 𝑏 − 1) + (
𝑥 −𝑦

∗

2

) + (𝑥 −𝑦
∗
)𝑦
∗

= score(︀𝑖, 𝑥,𝑏, 𝑗∗,𝑦∗⌋︀
= dp(︀𝑖, 𝑥,𝑏⌋︀,

and if 1( 𝑗∗ ∧ 𝑖) is false, the number of pairs𝑊 (𝑖, 𝑥,𝑏) induces is

equal to

Cons(𝑊 (︀𝑖, 𝑥,𝑏⌋︀) = Cons(𝑊
′
) + (

𝑥

2

)

= dp( 𝑗∗,𝑦∗, 𝑏 − 1) + (
𝑥

2

)

= score(︀𝑖, 𝑥,𝑏, 𝑗∗,𝑦∗⌋︀
= dp(︀𝑖, 𝑥,𝑏⌋︀.

As𝑊 (︀𝑖, 𝑥,𝑏⌋︀ is a feasible committee, we conclude that dp(︀𝑖, 𝑥,𝑏⌋︀ ≤
opt(︀𝑖, 𝑥,𝑏⌋︀.

For “≥”, consider the committee𝑊
∗
that achieves opt(︀𝑖, 𝑥,𝑏⌋︀.

Since 𝑏 ≥ 2 and 𝑖 ≥ 2, we may assume without loss of generality that

⋃︀𝑊 ⋃︀ ≥ 2. We set𝑊
′
=𝑊

∗
∖ {𝑐𝑖}, 𝑗 as the candidate with rightmost

index in𝑊
′
, and 𝑦 as the size of its connected component under

𝑊
′
. If 1( 𝑗∗ ∧ 𝑖) is true, we have

dp(︀ 𝑗,𝑦,𝑏 − 1⌋︀ = opt(︀ 𝑗,𝑦,𝑏 − 1⌋︀

≥ Cons(𝑊
′
)

= Cons(𝑊 ) − (
𝑥 −𝑦

2

) − (𝑥 −𝑦)𝑦

= opt(︀𝑖, 𝑥,𝑏⌋︀ − (
𝑥 −𝑦

2

) − (𝑥 −𝑦)𝑦,



and if 1( 𝑗∗ ∧ 𝑖) is false, we have

dp(︀ 𝑗,𝑦,𝑏 − 1⌋︀ = opt(︀ 𝑗,𝑦,𝑏 − 1⌋︀

≥ Cons(𝑊
′
)

= Cons(𝑊 ) − (
𝑥

2

)

= opt(︀𝑖, 𝑥,𝑏⌋︀ − (
𝑥

2

).

In the first case, we have dp(︀𝑖, 𝑥,𝑏⌋︀ ≥ score(︀𝑖, 𝑥,𝑏, 𝑗,𝑦⌋︀ = dp(︀ 𝑗,𝑦,𝑏−
1⌋︀ + (

𝑥−𝑦
2
) + (𝑥 − 𝑦)𝑦 ≥ opt(︀𝑖, 𝑥,𝑏⌋︀. Similarly, in the second case,

we have dp(︀𝑖, 𝑥,𝑏⌋︀ ≥ score(︀𝑖, 𝑥,𝑏, 𝑗,𝑦⌋︀ = dp(︀ 𝑗,𝑦,𝑏 − 1⌋︀ + (
𝑥
2
) ≥

opt(︀𝑖, 𝑥,𝑏⌋︀.
Together, we obtain dp(︀𝑖, 𝑥,𝑏⌋︀ = opt(︀𝑖, 𝑥,𝑏⌋︀. Finally, to compute a

feasible committee that maximizes Cons, we output any committee

𝑊 ∈ arg max𝑖∈(︀𝑚⌋︀,𝑥∈(︀𝑛⌋︀ Cons(𝑊 (︀𝑖, 𝑥,𝑏⌋︀).

Note that the dynamic program has 𝒪(𝑚𝑛𝑘) cells as 𝑖 ∈ (︀𝑚⌋︀,

𝑥 ∈ (︀𝑛⌋︀, and 𝑏 ∈ (︀𝑘⌋︀. Moreover, every cell can be computed in

polynomial time given the values of previously computed cells.

Hence, we have obtained a polynomial-time algorithm to compute

a committee maximizing Cons. □

B MISSING PROOFS FROM SECTION 5

In this section, we provide the missing proofs for all results on

tradeoffs between classic and interlacing committee selection ob-

jectives.

B.1 Proofs from Section 5.1

We start with trade-offs that concern the Pairs objective.

Proposition 5.4. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-CC, then 𝛼 + 𝛽 ≤ 1.

Proof. For a given constant 𝑥 ∈ N, consider the election in-

stance ℰ = (𝑉 ,𝐴,𝑘), defined as follows. (see Figure 4 in the main pa-

per for an illustration). Let there be 𝑥
5
block voters (𝑣

𝑏
𝑖,𝑗)𝑖∈(︀𝑥⌋︀, 𝑗∈(︀𝑥4⌋︀,

𝑥
4
+1 arm voters (𝑣

𝑎
𝑖 )𝑖∈(︀𝑥4+1⌋︀, and 𝑥

3
central voters (𝑣

𝑞
𝑖 )𝑖∈(︀𝑥3⌋︀. In to-

tal, there are 𝑥
5
+𝑥

4
+𝑥

3
+1 voters in𝑉 . Additionally, wewill have 𝑥

4

block candidates (𝑐
𝑏
𝑖 )𝑖∈(︀𝑥4⌋︀ and 𝑥

4
+ 1 arm candidates (𝑐

𝑎
𝑖 )𝑖∈(︀𝑥4+1⌋︀.

In total, there are 2𝑥
4
+1 candidates. We define that for every 𝑖 ∈ (︀𝑥⌋︀

and 𝑗 ∈ (︀𝑥
4
⌋︀, block voter 𝑣

𝑏
𝑖,𝑗 approves only block candidate 𝑐

𝑏
𝑗 and,

similarly, for every 𝑖 ∈ (︀𝑥
4
+ 1⌋︀, arm voter 𝑐

𝑎
𝑖 approves only arm

candidate 𝑐
𝑎
𝑖 . On the other hand, for every 𝑖 ∈ (︀𝑥

3
⌋︀, central voter

𝑣
𝑞
𝑖 approves all arm candidates and no further candidates.

Now, assume that we want to select a committee of size 𝑘 =

𝑥
4
+ 1. By symmetry, without loss of generality, this means that

for some 𝛼 ∈ {0, 1⇑𝑥
4
, 2⇑𝑥

4
, . . . , 1} we select committee𝑊𝛼 ⊆ 𝐶

containing arm candidates 𝑐
𝑎
1
, 𝑐
𝑎
2
, . . . , 𝑐

𝑎
𝛼𝑥4+1 and block candidates

𝑐
𝑏
1
, 𝑐
𝑏
2
, . . . , 𝑐

𝑏
(1−𝛼)𝑥4 . Observe that every selected block candidate

covers 𝑥 voters and 𝑥(𝑥 − 1)⇑2 pairs of voters. In turn, the first

selected arm candidate covers 𝑥
3
+ 1 voters and (𝑥

3
+ 1)𝑥

3
⇑2 pairs

of voters and every following arm candidate covers 1 voter and

𝑥
3
pairs of voters. Thus, when we select 𝛼𝑥

4
+ 1 arm candidates

and (1−𝛼)𝑥
4
block candidates, we get the following CC and Pairs

scores:

CC(𝑊𝛼 ,ℰ) = (1 − 𝛼)𝑥
5

+ 𝛼𝑥
4

+ 𝑥
3

+ 1, and

Pairs(𝑊𝛼 ,ℰ) = 𝛼𝑥
7

+
2 − 𝛼

2

𝑥
6

−
1 − 𝛼

2

𝑥
5

+
1

2

𝑥
3

.

Observe that the maximum number of covered voters is obtained

when we take 𝛼 = 0, and the maximum number of covered pairs of

voters is obtained when 𝛼 = 1. Also we have,

CC(𝑊𝛼 ,ℰ)

CC(𝑊0,ℰ)
= 1−𝛼+𝒪(1⇑𝑥) and

Pairs(𝑊𝛼 ,ℰ)

Pairs(𝑊1,ℰ)
= 𝛼+𝒪(1⇑𝑥).

Therefore, when 𝑥 goes to infinity, every possible solution becomes

at most an 𝛼-approximation of Pairs and an (1−𝛼)-approximation

of CC for some 𝛼 ∈ (︀0, 1⌋︀. □

We now define MES formally: At the start, every voter 𝑣 ∈ 𝑉

is assigned a budget bud(𝑣) = 𝛼 𝑘
𝑛
, the committee𝑊 is initialized

as empty set and every candidate has a cost of 1. In each step,

we consider the candidates in 𝐶 ∖𝑊 that can be bought by the

voters approving it. We then choose a candidate minimizing the

maximum amount of budget a voter approving it has to spend to

buy it into the committee. More formally, for each 𝑐 ∈ 𝐶 ∖𝑊 such

that ∑𝑣∶𝑐∈𝐴𝑣
bud(𝑣) ≥ 1, we set 𝜌(𝑐) as the minimal value 𝜌 ≥ 0

such that ∑𝑣∶𝑐∈𝐴𝑣
min (bud(𝑣), 𝜌) ≥ 1. If there is no such 𝑐 , the

algorithm terminates and returns𝑊 . Else, we add 𝑐
∗
to𝑊 with 𝑐

∗
minimizing 𝜌(𝑐). We further update the voter budgets bud(𝑣) ad

bud(𝑣) −min (bud(𝑣), 𝜌(𝑐
∗
)) for all voters 𝑣 with 𝑐

∗
∈ 𝐴𝑣 .

Lemma 5.5. Let 𝛼 ≤ 1 be given. For every election ℰ = (𝑉 ,𝐴,𝑘), ex-

ecuting MES on (𝑉 ,𝐴, 𝛼𝑘) returns a committee of size ⟨︀𝛼𝑘⧹︀ satisfying

𝛼-EJR in polynomial time.

Proof. For brevity, set 𝑛 = ⋃︀𝑉 ⋃︀. MES terminates after at most

⟨︀𝛼𝑘⧹︀ rounds, as in each round the total budget is reduced by 1 and

the total budget is 𝛼𝑘 . Hence, the returned committee𝑊 is also of

size at most ⟨︀𝛼𝑘⧹︀.

Assume for contradiction that𝑊 violates 𝛼-EJR, i.e., there is

𝑆 ⊆ 𝑉 and ℓ ≤ 𝑘 with ⋃︀𝑆 ⋃︀ ≥ 𝑙
𝛼𝑘
𝑛 and ⋃︀⋂𝑣∈𝑆 𝐴𝑣 ⋃︀ ≥ 𝑙 , but ⋃︀𝐴𝑣 ∩𝑊 ⋃︀ < ℓ

for all 𝑣 ∈ 𝑆 .

From this, we will infer the following: For any purchase done

during the run of the algorithm, each voter in 𝑆 spends at most 𝛼 𝑘
𝑛ℓ
.

If this claim was false, consider for contradiction the first time 𝑡

at which a voter 𝑣 ∈ 𝑆 spends strictly more than 𝛼 𝑘
𝑛ℓ

to buy the

candidate 𝑐𝑡 into𝑊 = {𝑐1, . . . , 𝑐𝑡 , . . . , 𝑐𝑟}. By definition of the rule,

then 𝜌(𝑐𝑡 ) > 𝛼
𝑘
𝑛ℓ

in round 𝑡 . Before this purchase, all voters spent

at most 𝛼 𝑘
𝑛ℓ

per candidate 𝑐𝑖 , 𝑖 < 𝑡 . By assumption, they approve at

most ℓ − 1 candidates from𝑊 . Thus, before the purchase of 𝑐𝑡 , each

voter has a remaining budget of at least 𝛼 𝑘
𝑛
− (ℓ − 1)𝛼 𝑘

𝑛ℓ
= 𝛼 𝑘

𝑛ℓ
.

Together, they thus have a budget of 𝛼 𝑘
𝑛ℓ
⋃︀𝑆 ⋃︀ ≥ 𝛼 𝑘

𝑛ℓ
ℓ
𝛼𝑘
𝑛 = 1. This

means that for all candidates 𝑐
∗
∈ ⋂𝑣∈𝑆 𝐴𝑣 with 𝑐

∗
≠ 𝑐1, . . . 𝑐𝑡−1,

we have 𝜌(𝑐
∗
) ≤ 𝛼 𝑘

𝑛ℓ
in round 𝑡 . This is the desired contradiction,

as 𝑐𝑡 was not a minimizer of 𝜌 in round 𝑡 .

Following from the claim, after the rule has terminated, each

voter in 𝑆 still has a remaining budget of at least 𝛼 𝑘
𝑛ℓ
. Again, this

yields a total budget for 𝑆 of at least 1, a contradiction to the fact

that our modification of the method of equal shares terminated

already. Hence, no violation of 𝛼-EJR can occur. □
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Figure 7: Illustration of the profile constructed in the proofs

of Proposition 5.7 and Proposition 5.9. Block voters are on

the left, central voters in the middle, and arm voters on the

right. Block candidates are approved by 𝑥 block voters each,

whereas arm candidates are approved by all central voters

and one arm voter each.

Proposition 5.7. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼-Pairs and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1.

Proof. Let 𝑓 be a voting rule that satisfies 𝛽-EJR for some 𝛽 ∈

(︀0, 1⌋︀. Let any 𝜀 > 0 be given with 𝜀 < 𝛽 . Consider the profile from

the proof in Proposition 5.4, but reduce the number of arms such

that we only have (𝛽−𝜀)𝑥
4
instead of 𝑥

4
arm candidates and voters.

We claim that any committee satisfying 𝛽-EJR has to contain all

block candidates. For this, note that there are (𝛽 −𝜀)𝑥
5
block voters

and 𝑥
3
+ 𝑥

4
+ 1 central and arm voters. Thus,

𝑛
𝑘
= (𝛽 − 𝜀)𝑥 +𝑂(1),

yielding
𝑛
𝛽𝑘
=
(𝛽−𝜀)

𝛽
𝑥 + 𝑂(1) < 𝑥 for large enough 𝑥 . Take any

block candidate 𝑏. Since 𝑏 is approved by 𝑥 voters, at least one of

the supporters obtains an approved candidate in the committee.

The only such candidate is 𝑏 itself, proving the claim.

Following from our claim, at most (1−𝛽+𝜀)𝑥
4
candidates that are

not block candidates can be contained in any committee satisfying

𝛽-EJR. With the same argument as for previous proofs, such a

committee induces at most (1 − 𝛽 + 𝜀)𝑥
7
+𝑂(𝑥

6
) pairs that share

an approval, and (1− 𝛽 + 𝜀)
2 𝑥

8

2
+𝑂(𝑥

7
) pairs that are connected in

the hypergraph. The optimal number of pairs sharing an approval

is 𝑥
7
+𝑂(𝑥

6
), and the optimal number of pairs that are connected is

𝑥
8

2
+𝑂(𝑥

7
). Thus, any rule that satisfies 𝛽-EJR is at most a 1− 𝛽 + 𝜀

approximation of Pairs, and a (1 − 𝛽 + 𝜀)
2
approximation of Cons.

Since 𝜀 can be chosen arbitrarily close to zero, letting 𝜀 tend to 0

concludes the proof. □

B.2 Proofs from Section 5.2

Proposition 5.8. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-AV, 𝛽-CC, or 𝛽-Pairs, then 𝛼 + 𝛽 ≤ 1. This already

holds in the VI domain.

Proof. For the proof of all three statements, consider the in-

stance (𝑉 ,𝐴, 𝑥
3
) depicted in Figure 8: There are 𝑥

3
blocks, each

consisting of 𝑥 block voters (𝑣
𝑏
𝑖,𝑗)𝑖∈(︀𝑥3⌋︀, 𝑗∈(︀𝑥⌋︀. In addition, there

are 𝑥
3
block candidates (𝑐𝑖)𝑖∈(︀𝑥3⌋︀. All block voters 𝑣

𝑏
𝑖,𝑗 from block

𝑖 ≤ 𝑥
3
approve block candidate 𝑐𝑖 exclusively. Further, we have

𝑥
3

𝑥

...

...

⋮

...

𝑥
3
+ 1⋮

Figure 8: An illustration of the profile constructed in the

proof of Proposition 5.8. Block voters are on the left, central

voters on the right. Each central candidate only adds one pair,

but choosing all central candidates yields a large connected

component.

𝑥
3
+ 1 central voters (𝑣

𝑞
𝑖 )𝑖∈(︀𝑥3+1⌋︀, together with 𝑥

3
central candi-

dates (𝑐
𝑞
𝑖 )𝑖∈(︀𝑥3⌋︀. Each central candidate 𝑐

𝑞
𝑖 is exclusively approved

by central voters 𝑣
𝑞
𝑖 and 𝑣

𝑞
𝑖+1.

To show that this instance is in VI, we enumerate first the voters

according to their blocks, and then the central candidates from first

to last. By definition of the profile, each candidate is approved by

an interval of voters.

Now, the proof consists of two parts. In part one, we show that

to satisfy 𝛽-Pairs, CC, or AV, we require at least 𝛽𝑥
3
− 𝒪(𝑥

2
)

block candidates. In part two, we show that with the remaining

candidates, we can obtain at most a (1 − 𝛽)
2
approximation of

Cons.

Pairs: We start by considering how many block candidates

are required to guarantee 𝛽-Pairs. Each block candidate creates

𝑥
2

2
+ 𝒪(𝑥) direct pairs, each central candidate only one. Thus,

clearly the optimal committee for Pairs consists of the 𝑥
3
block

candidates with an objective value of 𝑥
3
(𝑥

2

2
− 𝑥

2
). Since we have

to guarantee at least a 𝛽-fraction of this value, note that the chosen

central candidates can in total yield at most 𝑥
3
pairs, negligible for

the Pairs objective. Thus, if we choose 𝑦 block candidates, then the

total number of connected pairs is at most 𝑥
3
+𝑦(𝑥

2

2
− 𝑥

2
), hence

our approximation guarantee implies 𝑥
3
+𝑦(𝑥

2

2
− 𝑥

2
) ≥ 𝛽𝑥

3
(𝑥

2

2
− 𝑥

2
)

and thus

𝑦 ≥ 𝛽𝑥
3

−
𝑥
3

(𝑥
2

2
− 𝑥

2
)
= 𝛽𝑥

3

−𝒪(𝑥
2

).

Cons:We now show that with the remaining (1−𝛽)𝑥
3
+𝒪(𝑥

2
)

candidates, we obtain at best a (1−𝛽)
2
approximation of Cons. For

this objective, it is optimal to fill all remaining seats with central

candidates. To see this, the block candidates have disjoint support

sets and can together contribute at most 𝑥
3
(
𝑥
2

2
) connections, negli-

gible for Cons, but as soon as we choose at least 𝑥
2
central voters

each further central voter contributes more than that each block

voter to Cons. By adding the remaining (1 − 𝛽)𝑥
3
+𝒪(𝑥

2
) central

candidates to the chosen 𝛽𝑥
3
−𝒪(𝑥

2
) block candidates, we hence

obtain at most (
(1−𝛽)𝑥3+𝒪(𝑥2)

2
) + 𝒪(𝑥

5
) = (1 − 𝛽)

2 𝑥
6

2
+ 𝒪(𝑥

5
)

connections. However, when choosing all 𝑥
3
central candidates,

we obtain (
𝑥
3

2
) = 𝑥

6

2
−𝒪(𝑥

5
) connections. For large 𝑥 , hence the
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Figure 9: An illustration of the profile constructed in the

proof of Proposition 5.9. By reducing the number of blocks

in comparison to Figure 8, each block enforces via EJR that

their block candidate is elected.

achieved fraction of the objective value converges to (1 − 𝛽)
2
. In

other words, 𝛼 ≤ (1 − 𝛽)
2
. This yields

⌋︂
𝛼 + 𝛽 ≤ 1, concluding the

proof for Pairs.

AV: Next, we consider committees satisfying 𝛽-AV. Note that

each block candidate gives an AV-score of 𝑥 , while each central

candidate only contributes a score of 2. Thus, the optimal candidate

consists of 𝑥
3
block candidates, with anAV-score of 𝑥

4
. If we choose

𝑦 ≤ 𝑥
3
block candidates, the total score is 𝑦𝑥 + 2(𝑥

3
−𝑦). To satisfy

𝛽-AV, it must hold that 𝑦𝑥 + 2(𝑥
3
− 𝑦) ≥ 𝛽𝑥

4
, or equivalently

𝑦 ≥
(𝛽𝑥4−2𝑥3)
(𝑥−2) ≥

𝛽𝑥
4−2𝑥3

𝑥
= 𝛽𝑥

3
−𝒪(𝑥

2
).

CC: If we choose 𝑦 ≤ 𝑥
3
block candidates,the CC-score is 𝑦𝑥 +

(𝑥
3
− 𝑦) + 1. The optimal CC-score is 𝑥

4
. Thus, all committees

satisfying 𝛽-CC have to satisfy 𝑦𝑥 + (𝑥
3
− 𝑦) + 1 ≥ 𝛽𝑥

4
, which is

equivalent to𝑦 ≥
𝛽𝑥

4−𝑥3−𝑥3+1
𝑥−1 ≥ 𝛽𝑥

3
−𝒪(𝑥

2
). We obtain oncemore

that for 𝑥 tending to∞ we only obtain a (1 − 𝛽)
2
-approximation

of Pairs, concluding the proof. □

Proposition 5.9. For every 𝛼, 𝛽 ∈ (︀0, 1⌋︀, if a voting rule satisfies

𝛼
2
-Cons and 𝛽-EJR, then 𝛼 + 𝛽 ≤ 1. This already holds in the VI

domain.

Proof. Fix some small rational number 𝜀 > 0 and and some, for

now rational, 𝛽 ≤ 1. Consider the instance (𝑉 ,𝐴, 𝑥
3
) depicted in

Figure 9: There are (𝛽 − 𝜀)𝑥
3
blocks (which is a natural number for

infinitely many 𝑥 ∈ N) instead of 𝑥
3
, the rest remains exactly the

same as in Proposition 5.8.

Clearly, this instance remains in VI.

EJR:We start by showing that at least (𝛽−𝜀)𝑥
3
block candidates

are required to guarantee 𝛽-EJR. Each block candidate has a support

of 𝑥 voters and the total number of voters is (𝛽 − 𝜀)𝑥
4
+𝒪(𝑥

3
).

Hence, for large enough 𝑥 , 𝑛
𝑘
= (𝛽 − 𝜀)𝑥 +𝒪(1) < 𝑥 . Consequen-

tially, EJR demands that in each block at least one voter approves

a candidate of the winning committee. Since the voters in each

block exclusively approve of the corresponding block candidate, all

(𝛽 − 𝜀)𝑥
3
block candidates have to be selected by EJR.

Cons: It is clearly optimal for Cons to use the remaining (1−𝛽+

𝜀)𝑥
3
seats of the committee to elect central candidates. This in total

yields
(1−𝛽+𝜀)2𝑥6

2
+𝒪(𝑥

5
) connections for the elected committee.

Since the optimal value still is
𝑥
6

2
−𝒪(𝑥

5
), obtained by choosing

only central candidates, for 𝑥 → ∞ we obtain an upper bound

on the Cons approximation of (1 − 𝛽 + 𝜀)
2
. Since we can choose 𝜀

arbitrarily close to 0, the upper bound becomes (1−𝛽)
2
, concluding

the proof for rational 𝛽 .

For irrational 𝛽 , simply observe that if the rule satisfied 𝛽-EJR,

then the rule also satisfies 𝛽𝑖 -EJR for a sequence of rational 𝛽𝑖 < 𝛽

that converge towards 𝛽 . Since the inequality
⌋︂
𝛼 + 𝛽𝑖 ≤ 1 holds

for all 𝑖 , it also holds for 𝛽 . □

Proposition 5.11. For instances (𝑉 ,𝐴,𝑘) in the VI domain with

even 𝑘 , there exists a committee satisfying
1

2
-AV,

1

2
-CC,

1

2
-EJR, or

1

2
-Pairs and

1

4
-Cons.

Proof. Let (𝑉 ,𝐴,𝑘) be an election instance in the VI domain as

certified by the voter ordering 𝑣1, . . . , 𝑣𝑛 and let 𝑘 be even. It suffices

to show that with
1

2
𝑘 candidates, we can guarantee

1

4
-Cons. With

the other
1

2
𝑘 candidates, we can use the methods in Propositions 5.1

and 5.2 and Lemma 5.5 to obtain
1

2
-AV,

1

2
-CC,

1

2
-EJR, or

1

2
-Pairs.

The proof idea is to partition the candidates of the optimal solu-

tion for Cons into subsets that form intervals. Each interval formed

by an even number of candidates is split into two halves and we

choose the larger one. If some intervals are formed using an odd

number of candidates, there must be an even number of such inter-

vals. We show that for each pair of such intervals, we can always

assign one candidate more than half to one interval and one candi-

date less than half to the other in a way that the
1

4
-approximation

remains intact.

First, let 𝑑1, . . . , 𝑑𝑡 ∈ 𝐶 be candidates such that the voters ap-

proving at least one of them form an interval. Since for Cons it

is never desirable to select candidates approved by the identical

set of voters or dominated candidates, we can assume that in𝑊

there are no such candidates. Let ℓ(𝑖) and 𝑟(𝑖) denote the index

of the leftmost and rightmost voter approving 𝑑𝑖 , respectively. By

renaming candidates, we may assume without loss of generality

that ℓ(1) ≤ ℓ(2) ≤ ⋅ ⋅ ⋅ ≤ ℓ(𝑡). By the choice of our candidates, it

follows that in fact ℓ(1) < ℓ(2) < ⋅ ⋅ ⋅ < ℓ(𝑡), 𝑟(1) < 𝑟(2) < . . . 𝑟(𝑡)

(no candidates approved by identical set of voters, no dominated

candidates), and 𝑟(𝑖) ≥ ℓ(𝑖 + 1) (the candidates form a connected

subinterval). Without loss of generality, we assume that ℓ(1) = 1

and 𝑟(𝑡) = 𝑥 for some 𝑥 ∈ N. Hence, the connected subinterval

connects 𝑥 voters.

There are two cases. First, if 𝑡 = 2𝑠 is even, then we simply con-

sider 𝑟(𝑠). If 𝑟(𝑠) > 𝑥
2
, then clearly we can choose {𝑑1, . . . , 𝑑𝑠}

which create an interval containing more than
𝑥
2
voters. Else,

ℓ(𝑠 + 1) ≤ 𝑟(𝑠) ≤ 𝑥
2
. Hence, the candidates {𝑑𝑠+1, . . . , 𝑑𝑡} create an

interval containing more than
𝑥
2
voters. Note that (

𝑦
2
) ≥ 1

4
(
𝑥
2
) for

all 𝑦 ≥ 𝑥
2
+ 1, concluding the first part of the proof.

The remaining case is that 𝑡 = 2𝑠 + 1 is odd, where we say that

candidate𝑑𝑠+1 is the central candidate. Since𝑘 is even, there must be

a second interval consisting of 𝑦 voters {𝑤1, . . . ,𝑤𝑦}, also formed

by an odd number of candidates 𝑒1, . . . , 𝑒2𝑠′+1. In both intervals we

can only choose strictly less or strictly more than half of the candi-

dates. E.g., in the first interval, we can choose 𝑠 or 𝑠 + 1 candidates.

Without loss of generality, we may assume that the left half of

the interval including the central candidate contains strictly more

than half of the voters. Hence, we can consider ℎ𝑥 ∈ 0.5N such that

𝑥
2
+ ℎ𝑥 = 𝑟(𝑠 + 1). Then, choosing {𝑑1, . . . , 𝑑𝑠+1} yields an interval

containing
𝑥
2
+ ℎ𝑥 voters and consequently choosing 𝑑𝑠+2, . . . , 𝑑𝑡



yields an interval containing at least 𝑥− 𝑥
2
−ℎ𝑥+1 =

𝑥
2
−ℎ𝑥+1 voters,

where the +1 comes from the fact that ℓ(𝑠 + 2) ≤ 𝑟(𝑠 + 1). Analo-

gously, we define ℎ𝑦 such that half of the candidates 𝑒𝑖 rounded

up we connect a subinterval containing
𝑦
2
+ ℎ𝑦 voters, and with

half of the candidates rounded down we can still include
𝑦
2
−ℎ𝑦 + 1

voters in our subinterval.

We now claim that if choosing 𝑑1, . . . 𝑑𝑠 , 𝑑𝑠+1 and 𝑒1, . . . 𝑒𝑠′ does
not yield a

1

4
-approximation of Cons, then we can choose the other

half of candidates to achieve this. Clearly, the number of pairs that

needs to be connected is

𝑥
2

8

−
𝑥

8

+
𝑦
2

8

−
𝑦

8

.

First, the number of pairs induced by 𝑑1, . . . 𝑑𝑠 , 𝑑𝑠+1 is (
𝑥
2
+ℎ𝑥
2

),

and the number of pairs induced by 𝑒1, . . . 𝑒𝑠′ , is (
𝑦

2
−ℎ𝑦+1
2

). Note

that

(

𝑥
2
+ ℎ𝑥

2

) =
(𝑥
2
+ ℎ𝑥)

2
− (𝑥

2
+ ℎ𝑥)

2

=

𝑥
2

4
+ 𝑥ℎ𝑥 + ℎ

2

𝑥 −
𝑥
2
− ℎ𝑥

2

=
𝑥
2

8

+
(𝑥 + ℎ𝑥 − 1)ℎ𝑥

2

−
𝑥

4

.

We want the sum of these to be at least as large as the number

of pairs that needs to be connected, so we subtract the former from

the latter obtaining

(

𝑥
2
+ ℎ𝑥

2

) − (
𝑥
2

8

−
𝑥

8

) =
(𝑥 + ℎ𝑥 − 1)ℎ𝑥

2

−
𝑥

8

.

Doing the same for terms involving 𝑦, we obtain

(

𝑦
2
− ℎ𝑦 + 1

2

) =
(
𝑦
2
− ℎ𝑦 + 1)

2
− (

𝑦
2
− ℎ𝑦 + 1)

2

=

𝑦
2

4
+ ℎ

2

𝑦 + 1 −𝑦ℎ𝑦 − 2ℎ𝑦 +𝑦 −
𝑦
2
+ ℎ𝑦 − 1

2

=
𝑦
2

8

−
𝑦ℎ𝑦

2

+
𝑦

4

+
ℎ
2

𝑦

2

−
ℎ𝑦

2

and hence

(

𝑦
2
− ℎ𝑦 + 1

2

) − (
𝑦
2

8

−
𝑦

8

) = −
𝑦ℎ𝑦

2

+
3

8

𝑦 +
ℎ
2

𝑦

2

−
ℎ𝑦

2

.

In total, by summing the two differences together we obtain

(

𝑥
2
+ ℎ𝑥

2

) + (

𝑦
2
− ℎ𝑦 + 1

2

) − (
𝑥
2

8

−
𝑥

8

+
𝑦
2

8

−
𝑦

8

) =

(𝑥 + ℎ𝑥 − 1)ℎ𝑥

2

−
𝑥

8

−
𝑦ℎ𝑦

2

+
3

8

𝑦 +
ℎ
2

𝑦

2

−
ℎ𝑦

2

.

If this term is at least zero, then we can guarantee
1

4
of the

pairs that the two intervals connect by electing the subcommittee

{𝑑1, . . . , 𝑑𝑠 , 𝑑𝑠+1, 𝑒1, . . . 𝑒𝑠′}, where 𝑠 + 1 + 𝑠
′
is precisely half of the

2𝑠 + 2𝑠
′
+ 2 candidates required to connect the two intervals.

Else, the difference is strictly less than zero. By isolating 𝑦ℎ𝑦 in

the inequality, we obtain

𝑦ℎ𝑦 > (𝑥 + ℎ𝑥 − 1)ℎ𝑥 −
𝑥

4

+
3

4

𝑦 + ℎ
2

𝑦 − ℎ𝑦 . (∗)

We use this to claim that with the other half of the candidates,

we can obtain the desired guarantee. Formally, consider the sub-

committee {𝑑𝑠+2, . . . , 𝑑2𝑠+1, 𝑒𝑠′+1, . . . , 𝑒2𝑠′+1}. Now, we only obtain

𝑥
2
− ℎ𝑥 + 1 voters from the chosen candidates 𝑑𝑖 , but in return ob-

tain
𝑦
2
+ ℎ𝑦 voters from the chosen 𝑒𝑖 . The calculations are precisely

symmetric to the ones we did before, just with 𝑥 and 𝑦 replaced

by each other. Thus, if we denote the difference between actually

connected pairs and the desired approximation by 𝐷 , we obtain

that

𝐷 = (
𝑥
2
− ℎ𝑥 + 1

2

) + (

𝑦
2
+ ℎ𝑦

2

) − (
𝑥
2

8

−
𝑥

8

+
𝑦
2

8

−
𝑦

8

)

=
(𝑦 + ℎ𝑦 − 1)ℎ𝑦

2

−
𝑦

8

−
𝑥ℎ𝑥

2

+
3

8

𝑥 +
ℎ
2

𝑥

2

−
ℎ𝑥

2

.

Then, we obtain

2𝐷 = (𝑦 + ℎ𝑦 − 1)ℎ𝑦 −
𝑦

4

− 𝑥ℎ𝑥 +
3

4

𝑥 + ℎ
2

𝑥 − ℎ𝑥

= 𝑦ℎ𝑦 + ℎ
2

𝑦 − ℎ𝑦 −
𝑦

4

− 𝑥ℎ𝑥 +
3

4

𝑥 + ℎ
2

𝑥 − ℎ𝑥

> (𝑥 + ℎ𝑥 − 1)ℎ𝑥 −
𝑥

4

+
3

4

𝑦 + ℎ
2

𝑦 − ℎ𝑦 (by (∗))

+ ℎ
2

𝑦 − ℎ𝑦 −
𝑦

4

− 𝑥ℎ𝑥 +
3

4

𝑥 + ℎ
2

𝑥 − ℎ𝑥

= 2ℎ
2

𝑥 − 2ℎ𝑥 +
1

2

𝑥 +
1

2

𝑦 + 2ℎ
2

𝑦 − 2ℎ𝑦

≥ 1 + 2ℎ
2

𝑥 − 2ℎ𝑥 + 2ℎ
2

𝑦 − 2ℎ𝑦 (since 𝑥,𝑦 ≥ 1)

≥ 0. (as 𝑧
2
− 𝑧 ≥ − 1

4
for all 𝑧 ∈ R)

Thus, we get 𝐷 > 0, which concludes the proof. □
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