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Zusammenfassung

Die Auswahl einer Wahlregel, mit der die Gewinner einer Wahl bestimmt werden, ist eine
wichtige Aufgabe, da die verwendete Regel großen Einfluss auf den Ausgang der Wahl
haben kann. Daher ist es in jedermanns Interesse, eine möglichst attraktive Regel zu
verwenden. In dieser Arbeit konzentrieren wir uns ausschließlich auf Wahlen mit drei und
vier Kandidaten und wir bewerten die Qualität von gebräuchlichen Regeln unter mehreren
Gesichtspunkten.
Wir untersuchen zum einen die Ähnlichkeit von Regeln und können so Regeln feststellen,
die in ihrer Entscheidung übereinstimmen. Für Regeln, die nicht übereinstimmen, liefern
wir minimale Präferenzprofile, die eine solche Abweichung der gewählten Kandidaten
aufzeigen.
Jede Regel kann unerwünschte und paradoxe Situationen hervorrufen. Das Auftreten der-
artiger Paradoxe wird ebenfalls untersucht. Dabei betrachten wir nicht nur die theoreti-
sche Anfälligkeit für Paradoxe, sondern auch deren erwartete Häufigkeit. Wir nutzen dazu
die Tatsache, dass das Auftreten eines Paradoxes häufig als lineares Ungleichungssystem
beschrieben werden kann. So können wir Ehrhart-Theorie, eine Methode zum Zählen von
ganzzahligen Punkten in Polyedern, auf die jeweiligen Ungleichungssysteme anwenden.
Dieser Ansatz ermöglicht es uns aktuelle Resultate zu ergänzen und liefert ein gründliches
Verständnis des Verhaltens von beliebten Regeln in Profilen mit drei und vier Kandidaten.

Abstract

Choosing a voting rule, with which the winner of an election is determined, is an important
task because the used rule can have significant impact on the outcome of the election.
Hence it is in everybody’s interest to use an attractive rule. In this thesis we focus
solely on elections that involve three and four candidates, and we evaluate the quality of
established voting rules under several measures.
We investigate the similarity of rules, and determine rules that coincide in their decision.
For rules that do not coincide we provide minimal preference profiles that showcase such
a difference in elected winners.
Every voting rule can generate undesirable and paradoxical voting situations. We analyse
the occurrence of such paradoxes as well. Not only the theoretical susceptibility to such
paradoxes is taken into account, but also its expected frequency. We make use of the fact
that occurrences of paradoxes can usually be described as linear inequalities. Therefore
we can apply Ehrhart theory, a method for counting integer points inside polyhedra, to
the respective linear inequality descriptions. This approach enables us to complement
current results, and obtain a thorough understanding of the behaviour of common voting
rules for three and four candidates.
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1 Introduction

“Elections alone do not make true democracy.1“

The right to take part in political elections is a cornerstone of modern democracy. Al-
though the history of political elections reaches back hundreds of years, some groups of
society had to fight heavily in order to get the right to vote. In democratic states the right
to take part in a political election is now a fundamental right for everyone. Apart from
political elections, situations in which we have to elect one of many alternatives based on
different preferences are part of our everyday life. Whether it is a rather small decision
such as which film to watch in the cinema or which dessert to share in a restaurant, such
situations are omnipresent. It seems to be clear that the preferences of the voters deter-
mine the winner of the election. An important aspect, that is often neglected in those
discussions, is the question of how to aggregate the voters’ preferences. Much to the
surprise of most people the way the preferences are aggregated, can change the outcome
of an election dramatically. Also situations can occur that are against human intuition,
and seem rather undesirable. In this thesis we want to investigate how different voting
rules behave in elections, how they interact and how prone they are to counter-intuitive
outcomes.

As this is a wide field of study we restrict ourselves to a limited domain of elections.
In this thesis we focus solely on the special case of voting procedures that only include
three or four candidates. Such elections are not uncommon, and even in the political con-
text there are often only few candidates that can be chosen upon. We get the motivation
for this specific restriction by the even stricter case, where there are only two candidates
to chose from. The question on how to aggregate preferences is quite straight-forward to
answer in this case. It is known that the most natural decision rule - the majority rule - is
also reasonable from a mathematical point of view as a lot of the commonly used voting
rules coincide in this case, and have nice properties. Nevertheless, in profiles with three
and more candidates the resulting preference relation can include majority cycles, and is
therefore called intransitive. This does occur even if every voters’ preference ranking is
transitive. This circumstance is cause for most of the difficulties in voting theory. Hence
it is unrealistic to expect such an obvious optimal voting rule as in the two candidate
case, but there is still good cause for hope that the restriction of the candidates simplifies
the search for a reasonable or even optimal voting rule.
We will investigate if a similar equivalence of rules can be shown for three and four can-
didates. To do so, we will analyse the interaction of several well-known voting rules, and
check for equivalences and differences among them in chapter 3. We distinguish between
three candidates in 3.2 and four candidates in 3.3.
Additional to that, we are interested in the susceptibility of voting rules to paradoxical
situations. It has been shown through famous impossibility results that certain sets of
desirable properties cannot occur simultaneously, and therefore basically every rule suffers
some sort of paradox. We will give an overview of the literature in section 4.1. However,
some of the impossibilities might not already materialise in the special case of a restricted

1Barack Obama in a speech at the University of Cairo in 2009
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number of candidates. We will study which impossibility results can be softened by the
restriction to a small number of candidates, and provide an overview in section 4.4.
Also, for paradoxical situations that can occur theoretically, the frequency of their oc-
currence certainly is a crucial argument. This is why we will also consider results and
methods to calculate the probability of the occurrence of an undesirable situation. Meth-
ods of assessing the probability of paradoxes are introduced in 4.2. These frequencies can
often be obtained with the use of Ehrhart theory, a method for counting integer points
inside polyhedra, that has been developed in the sixties, and is now applied to such prob-
lems of voting theory. A short introduction and example for the use of Ehrhart theory
can be found in section 4.3. New results of the application of Ehrhart theory are shown
in sections 4.5 and 4.6.
By investigating both the behaviour of the rules themselves as well as their vulnerability
to voting paradoxes we try to provide a good understanding as to which of the established
rules are attractive or even optimal for the case of a small number of candidates. The
conclusion in section 5. provides an overview of all the accomplishments of this thesis.
In order to set up the notation for all following investigations we will introduce all basic
notions such as voting rules and voting paradoxes next.
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2 Preliminaries

In this section the mathematical notation, that is used throughout the thesis, is intro-
duced. Also the most important concepts are defined in this section. The definitions are
mainly based on [Fel12] and [BCE+16].
Let A = {a, b, c, . . . } be the set of candidates or alternatives of size m. In most cases m
will be restricted to three or four candidates as this is the special case that this thesis fo-
cuses on. Let N = {1, 2, 3, . . . } be the set of voters of size n. Every voter is endowed with
a preference ranking �i over the candidates. This ranking is assumed to be a complete,
asymmetric and transitive binary relation, �i∈ A × A, which gives a strict preference
order over all candidates. Hence a �i b means that voter i prefers candidate a strictly
over candidate b.

Definition 2.1. A preference profile � specifies the preference relation of every individual
voter i ∈ N , i.e. �= (�1, . . . ,�n). If a certain voter i is not submitting a preference
ranking, we denote this by �−i= (�1, . . . ,�i−1,�i+1, . . . ,�n). Similarly if a set I ⊂ N
of voters is not submitting their rankings, we denote it as �−I .

Note that we assume that every voters’ preference relation has to be transitive. Even
though it can happen that the preference profile of the whole population is intransitive,
and thus contains a majority cycle2. This is the root for most of the difficulties of voting
theory as we will establish later.

Usually we are not interested in which voter is submitting which ranking. We say we
treat preference profiles in an anonymous manner. An anonymous preference profile is
unchanged under permutations of the voters, and all voters are therefore treated equally.
Representing a preference profile in an anonymous fashion reduces to stating the numbers
of voters with a certain preference ranking.

Example 2.1. As an example consider this anonymous preference profile on three can-
didates, and how it is usually depicted throughout the thesis.

1 1 1 4
a a b c
b c a a
c b c b

Our example is a preference profile containing seven voters, one of them prefers candidate
a before b and candidate b before c. Rankings with zero voters are omitted. Note that we
do not distinguish between the voters, but only care about their preference ranking as we
treat them anonymously.

Often we are not even interested in the preference profile but only care about the absolute
numbers of voters that prefer one candidate over another. Hence we define the paired
comparison margin and majority margin between two candidates in the following.

2This property is also known as the Condorcet paradox [Fel12].
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Definition 2.2 (Paired comparison margin, Majority margin). Let � be a preference
profile with a finite set of candidates A and a finite set of voters N . Let a, b ∈ A and
i ∈ N . Define

n(a, b) := |{i : a �i b}|

as the number of voters that prefer candidate a over candidate b. This margin will be
called paired comparison margin.
The majority margin of candidate a and b is defined as

m(a, b) := n(a, b)− n(b, a).

A positive majority margin indicates that candidate a beats candidate b in a paired com-
parison, whereas a negative margin indicates a pairwise loss. Is the majority margin zero,
then as many voters prefer candidate a over b as vice versa.

Example 2.1. In the above example it holds that n(a, b) = 6 as six voters prefer candidate
a over candidate b. All paired comparison margins can be depicted in a matrix:

a b c
a − 6 3
b 1 − 2
c 4 5 −

As n(b, a) = n − n(a, b) = 1, the majority margin is m(a, b) = 6 − 1 = 5. From this
positive majority margin we can see that candidate a wins over candidate b in a pairwise
comparison. All majority margins can be depicted in a matrix as well:

a b c
a − 5 −1
b −5 − −3
c 1 3 −

One of the central concepts in social choice theory is the notion of a Condorcet winner.
This notion is now defined:

Definition 2.3 (Condorcet Winner). Let � be a preference profile on a set of candidates
A with a, b ∈ A. Candidate a is a Condorcet winner if and only if m(a, b) > 0 for
every other candidate b, i.e. candidate a wins each pairwise comparison with every other
candidate.

Clearly, if there is a Condorcet winner in a preference profile, then it is unique. No two
candidates can both win against all other candidates, as this would imply that one wins
against the other, which contradicts the fact that both are Condorcet winners.
The definition of a Condorcet loser is now straight-forward.

Definition 2.4 (Condorcet Loser). Let � be a preference profile on a set of candidates A
with a, b ∈ A. Candidate a is a Condorcet loser if and only if m(b, a) > 0 for every other
candidate b, i.e. candidate a loses each pairwise comparison with every other candidate.
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Example 2.1. As one can read from either the paired comparison matrix or even more
easily from the majority margin matrix, candidate c is the Condorcet winner in the above
example as it wins the paired comparisons with both candidates a and b. On the other
hand candidate b loses not only against c, but also against candidate a which makes it
the Condorcet loser.

Note that neither Condorcet winner nor Condorcet loser have to exist in a preference
profile. It is also possible that a Condorcet winner exists but no Condorcet loser and vice
versa.

2.1 Voting Rules

Voting rules are functions that determine the outcome of an election. Therefore the choice
of the voting rule can have a significant impact on the outcome of the election, and it
should be chosen with great care and knowledge about the rules’ properties. We will
now introduce the general notion of a voting rule formally, and define some of the most
commonly used rules.

Definition 2.5. A voting rule f is a function that maps a preference profile � to a
nonempty set of candidates. The selected set of candidates f(�) is called winning set or
choice set. If this set is single-valued, i.e. |f(�)| = 1, then the selected element is called
winner, and we sometimes directly write the selected element as outcome of the voting
rule.

We say that a voting rule f is anonymous if it is immune to permutations of the voters, i.e.
f(�1) = f(�2) if �1= π(�2) with π : N → N a permutation of the voters. Anonymity
means that every voter is treated equal by the voting rule.
Hence for an anonymous voting rule it suffices to input an anonymous preference profile.
All voting rules we will consider in this thesis are anonymous. Therefore from now on we
can assume that we work with anonymous preference profiles only.

Another useful property in the context of voting rules is neutrality. We say that a voting
rule is neutral if it is immune to permutations of the candidates, i.e. π(f(�)) = f(π(�))
holds with π : A → A a permutation of the candidates. Neutrality means that every
candidate is treated equal. All voting rules that are defined in this thesis are also neutral.

An important property of voting rules is how they deal with preference profiles that
have a Condorcet winner, and this is formalised in the following definition:

Definition 2.6 (Condorcet consistency). A voting rule f is called Condorcet consistent
if and only if it elects the Condorcet winner whenever one exists. Condorcet consistent
voting rules are also called Condorcet extensions.

Now we will define voting rules that are examined throughout the thesis, and we already
distinguish between Condorcet consistent and not Condorcet consistent rules. We will
start with rules that are not Condorcet consistent.
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Definition 2.7 (Plurality Rule). The Plurality rule selects the candidate that is ranked
first by the highest number of voters.

fPlurality(�) = arg maxa∈A|{i : a �i b,∀b ∈ A \ {a}}|

Example 2.2. As an example for the mechanisms of the voting rules consider the follow-
ing anonymous preference profile with four candidates and seven voters:

3 1 1 2
a b d b
b c c c
c a a d
d d b a

The resulting paired comparison matrix then looks as follows:

a b c d
a − 4 3 4
b 3 − 6 6
c 4 1 − 6
d 3 1 1 −

Candidates a and b are ranked first by three voters each, whereas candidate d is ranked
first by only one voter, and candidate c is never ranked first. Hence the Plurality rule
selects both candidates a and b as winners.

Definition 2.8 (Borda’s Rule). Borda’s rule assigns scores from zero to |A| − 1 to the
candidates according to their position in the voters’ ranking, and elects the candidates with
the highest Borda score sum as winners.

fBorda(�) = arg maxa∈A
∑

b∈A\{a}

n(a, b)

Example 2.2. In order to calculate the Borda scores from the paired comparison matrix
one needs to add up the numbers of each row. Hence the Borda scores for the candidates
a, b, c and d are 11, 15, 11 and 5 respectively, and hence candidate b is the unique Borda
winner.

Definition 2.9 (Plurality with Runoff Rule). The Plurality with Runoff rule is a runoff
rule based on the plurality rule. If a candidate is ranked first by an absolute majority,
then it is elected immediately. If there is no absolute majority winner, then the pairwise
comparison between the two candidates that had the highest number of first ranks in the
first round decides on the winner.

Example 2.2. No candidate is ranked first by an absolute majority. Hence the two can-
didates that received the highest numbers of first ranks are compared. These candidates
are a and b. Candidate a wins this pairwise comparison and is therefore the Plurality
with Runoff winner.
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Definition 2.10 (Instant Runoff). The Instant Runoff rule is again a rule that requires
several steps. If there is a candidate that is ranked first by an absolute majority of the
voters, then this candidate is elected immediately. If no such candidate exists, the can-
didate that is ranked first by the smallest number of voters is eliminated, and after the
elimination it is again checked whether there is now a candidate ranked first by an absolute
majority of the voters. This is continued until an absolute majority winner is found.

Example 2.2. Candidate c is never ranked first, so it is discarded in the first step.
This elimination did not produce an absolute majority winner. Hence candidate d has
to be discarded in the second round as well, and leaves only candidates a with four first
rankings and candidate b with three first rankings. This makes candidate a the Instant
Runoff winner.

Definition 2.11 (Coombs’ Rule). Coombs’ rule is quite similar to the above defined
Instant Runoff rule. Again, if there is an absolute majority winner in the first place, it
is elected immediately. If this is not the case, then the candidate that is ranked last by
the largest number of voters is eliminated (instead of the candidate that is ranked first by
the smallest number of voters). This process is again continued until a candidate is found
that is ranked first by an absolute majority of the voters.

Example 2.2. The candidate that is ranked last by the highest number of voters is
candidate d, thus it is discarded in the first step. Now both candidates a and b are ranked
first by three voters each, and hence no absolute majority winner is found yet. It turns out
that candidate a is now ranked last by the highest number of voters and is hence discarded
next which makes candidate b the absolute majority winner and hence Coombs’ winner.

Definition 2.12 (Bucklin’s Rule). If a candidate exists, that is ranked first by an absolute
majority, then it is elected by Bucklin’s rule as well. If no such candidate exists, then the
number of voters that rank the candidate second is added to the number of voters that rank
the respective candidate first. We say these voters “support“ the respective candidate. It
is checked if now there is a candidate that is “supported“ by an absolute majority. If this
did not suffice, then also the number of voters that ranked the candidate third are added to
the number of supporters. This is continued until a candidate is found that is supported
by an absolute majority of the voters. If there are more candidates found to be supported
by an absolute majority, the candidate with the highest number of supporters is elected.

Example 2.2. As there is no absolute majority winner we need to add the voters that
rank a certain candidate second to the group of supporting voters. Hence candidate a
still has only three supporters, whereas b has now six, c has four, and d one supporter.
Clearly candidate b is supported by an absolute majority and by the highest number of
supporters, and it is therefore the Bucklin winner.
All following rules are Condorcet consistent, and hence they select the unique Condorcet
winner whenever one exists.

Definition 2.13 (Maximin Rule). The Maximin rule elects the candidates as winners
whose “worst loss is the least bad 3“. Hence it compares the smallest majority margins
of each candidate, and elects the candidate with the highest among the minimal majority

3[Fel12], page 28
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margins. In case a Condorcet winner exists, this candidate will be elected as its smallest
majority margin is positive contrary to the minimal margins of all other candidates.

fMaximin(�) = arg maxa∈A{minb∈Am(a, b)}

Example 2.2. Note that there is no Condorcet winner but a Condorcet loser in our toy
example as there is a majority cycle (a � b � c � a) � d where every candidate of the
cycle beats candidate d. Note further that even though the Maximin winners are formally
defined via the majority margins, also checking for the paired comparison margins suffices
as those two notions are positive linearly related. From the paired comparison matrix one
can read the row minimum of every candidate. These are 3 for candidates a and b and
1 for the other two candidates. As we are searching for the highest row minimum both
candidates a and b are Maximin winners.

Definition 2.14 (Black’s Rule). Blacks’s rule is a so called hybrid rule as it elects the
Condorcet winner whenever one exists, and in all other cases the winning set is determined
using Borda’s rule.

Example 2.2. Because there is no Condorcet winner, the Borda winner has to be chosen.
Hence Black’s winner is candidate b.

Definition 2.15 (Kemeny’s Rule). Kemeny’s rule maximises the number of agreements
between the voters’ preference rankings and the elected ranking. The number of agreements
is the number of pairs that are ranked in the same order in the two respective rankings.
Hence the number of agreements between all theoretical possible rankings and the preference
profile of every voter is counted, and the maximising ranking is elected. The winner is the
top ranked alternative of the elected Kemeny ranking. Define the number of agreements
between two rankings � and �∗ as agree(�,�∗).

fKemeny(�) = arg max�∗

∑
i∈N

agree(�∗,�i)

Example 2.2. In order to calculate the Kemeny winner one has to calculate the number
of agreements between the voters’ preferences and every possible ordering of candidates.
Consider for example the ranking a � b � c � d. The first three voters agree with this
ranking totally. The voter with preference b � c � a � d disagrees with a � b � c � d on
the two pairs a, b and a, c. The next voter only agrees with the ranking of the pair a, b.
The last three voters agree on three pairs. Hence in total the number of agreements for
the ranking a � b � c � d is 32. Now this procedure has to be done for all 24 possible
rankings and it turns out that 32 is actually one of the maxima and is also reached by
the ranking b � c � a � d. Hence we have two Kemeny winners and those are candidates
a and b.

Definition 2.16 (Nanson’s Rule). Nanson’s rule is a runoff method related to Borda’s
rule. In the first round the Borda scores are calculated for every candidate. Then all
candidates whose Borda scores are below or at the average Borda score are eliminated,
and a revised Borda score is calculated for the remaining candidates. This is continued
until a winner is found. In case the elimination should return the empty set, all candidates
that had an average Borda score in the previous round are elected.
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Example 2.2. We know already that the Borda scores of the candidates are 11, 15, 11
and 5 for candidates a, b, c and d respectively, which makes an average Borda score of
10.5. Hence only candidate d has a score below the average and is discarded. After d’s
elimination the Borda scores are recalculated and now turn out to be 7, 9 and 5 for a, b
and c. Hence the average Borda score in the second round is now 7, and candidates a and
c are now eliminated which makes candidate b the Nanson winner.

Definition 2.17 (Young’s Rule). Young’s rule selects the candidate that can be turned
into a Condorcet winner by removing the smallest number of voters from the preference
profile.
Define the Young score of a candidate as the number of voters that have to be removed to
make the respective candidate a Condorcet winner:

y(a) := min|{i : i ∈ I, I ⊂ N, a is Condorcet winner in �−I}|

Now the Young winner can be defined as the minimiser of the Young scores.

fY oung(�) = mina∈Ay(a)

Example 2.2. In order to make candidate a a Condorcet winner both of the voters that
rank a last have to be removed. Thus y(a) = 2. In order for candidate b to become a
Condorcet winner two voters have to be removed as well. But for candidates c and d
it does not suffice to remove two voters only. The Young scores of those candidates are
y(c) = 4 and y(d) = 6. Hence candidates a and b are the Young winners.

Definition 2.18 (Baldwin’s Rule). Baldwin’s rule is closely related to Nanson’s rule and
is also a runoff procedure involving Borda scores. Just like in Nanson’s rule again the
Borda scores are calculated for every candidate. Now only the candidate with the lowest
Borda score is eliminated, whereas for Nanson’s rule all candidates with below average
Borda scores are eliminated. After the deletion of the candidate from the ballots the Borda
scores are recalculated and the process is continued until there is only one candidate left,
or the Borda scores of all remaining candidates are the same. Either the only remaining
candidate is elected as the winner, or the candidates with the same Borda scores are elected
as winning set.

Example 2.2. As before the Borda scores of the candidates are 11,15,11 and 5 respec-
tively. The first candidate to be eliminated is d. The revised Borda scores are now 7,9
and 5 which makes us remove candidate c from the ballots. Now the paired comparison
between a and b is checked, and as a wins this paired comparison it is elected to be the
Baldwin winner.

Table 1 provides an overview of the results of all defined rules and our example preference
profile. As one can clearly see the voting rules all support the statement that candidates
a and b seem to be superior in the public opinion to the other two candidates. But the
decision who of those candidates wins the election or if a tie is the best outcome, seems
to be quite controversial. Note that in such a situation the choice of the voting rule used
to determine the winner is highly critical. There are even examples where this situation
is even worse and it can happen that the choice of the voting rule determines the winner



10 2 PRELIMINARIES

Voting Rules Outcome of election
Plurality a, b

Borda b
Plurality with Runoff a

Instant Runoff a
Coombs b
Bucklin b

Maximin a, b
Black b

Kemeny a, b
Nanson b
Young a, b

Baldwin a

Table 1: Overview of Voting Results of Example 2.2

of an election4.

In such situations it is important to have a profound understanding of how the voting
rules interact. It seems to be a good indicator whether a lot of voting rules coincide in
their choice or not. Therefore we will determine if a coincidence of voting rules happens
in restricted domains as this would support the choice decision if a set of rules were to
chose the same winners. Another interesting thing to check is if the rules are vulnerable
to certain paradoxical situations. The investigated paradoxes are now defined in the next
section.

2.2 Paradoxes

Paradoxes in Social Choice are outcomes produced by voting rules that seem counter-
intuitive or undesirable. Being vulnerable to certain paradoxes is a strong argument
against the respective voting rule. Nevertheless every voting rule suffers from some of
those undesirable properties, thus it is a question of quantity, frequency and personal
opinion, which paradoxes are to be considered bad or out of the question.
In this subsection the paradoxes are introduced that are examined in this thesis.
One of the most important paradoxes is the so called Condorcet winner paradox:

Definition 2.19 (Condorcet Winner Paradox). A voting rule f suffers the Condorcet
winner paradox if there exists a Condorcet winner in a preference profile, but f fails to
always elect it.

4Such an example can be

7 7 6 1
a b c a
c c b b
b a a c

where Plurality selects candidate a, Plurality with Runoff

b and the Borda rule selects c. Hence depending on the choice of the voting rule every candidate could
potentially win this election.
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This paradox is one of the most prominent paradoxes. As we defined the notion of
Condorcet consistency earlier, we already know that no Condorcet consistent rule suffers
from the Condorcet winner paradox by definition.
The Condorcet loser paradox is now defined quite straight-forward.

Definition 2.20 (Condorcet Loser Paradox). A voting rule f suffers the Condorcet loser
paradox if there exists a Condorcet loser in a preference profile, and it gets elected by f .

The following paradoxes are not that straight-forward as they require a change in the
underlying preference profile. Hence they showcase more a counter-intuitive consequence
of a change in the underlying preference profile.

Definition 2.21 (Lack of Monotonicity Paradox). Let f be a voting rule and � a prefer-
ence profile. Let candidate x be the winner of the election under f . We say f suffers from
Lack of Monotonicity if candidate x is no longer elected as winner after one or more vot-
ers increase their support of candidate x by moving it upwards in their preference ranking.
More precisely this is known as the More-is-less-paradox 5. Analogously the Less-is-more
paradox describes the situation if the support for a candidate is decreased by some of the
voters, but it is then elected, whereas before the change in support it was not. When men-
tioning the Lack of Monotonicity paradox without further specification we usually refer to
the More-is-less-paradox.

Another paradox that can occur when a change in voter behaviour happens is the follow-
ing:

Definition 2.22 (No Show Paradox). A voting rule f suffers the No Show Paradox if a
voter can benefit from abstaining the election, i.e. f(�−i) �i f(�) for some i ∈ N . It is
also possible that a group of voters abstains from the election, and every member of the
group benefits from this decision.

Lastly a paradox that can occur if there are elections in more than one district:

Definition 2.23 (Reinforcement Paradox). A voting rule f suffers the Reinforcement
paradox if it elects the same candidate in two separate districts, but when the rankings
of both districts are combined and treated as one joint election, a different candidate is
elected.

Note that this list of paradoxes is far from being complete. For a more extensive study
of different paradoxes we refer to Felsenthal [Fel12]. For this thesis we decided to only
examine these five introduced paradoxes since those are often considered severe or in-
teresting, and have also been studied previously. These criteria are also met by other
paradoxes, but in order to keep this thesis to a reasonable extent, we restricted ourselves
to the mentioned five paradoxes.

5[LMS17]
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2.3 Probabilistic Models for Preference Profiles

In order to get insights into the behaviour of voting rules we will sometimes assume ran-
domness of the preference profiles in some way. Also when discussing experiments the
generation of random preference profiles is important. We will now only briefly discuss
different probabilistic assumptions that define the distribution in order to generate prefer-
ence profiles. For a more thorough explanation we refer to Gehrlein and Lepelley [GL12]
[GL11].

The Dual Culture Assumption The dual culture assumption is a special case of
a multinomial probability model. The multinomial probability model assigns a proba-
bility pi to the ith preference ranking of a randomly selected voter. For instance in a
three candidate case the probability that a randomly selected voter ranks the candidates
a � b � c is p1. Clearly the probabilities of all possible rankings must add up to 1, i.e.∑m!

i=1 pi = 1. We further assume that each voter’s ranking can be obtained independently
from the other voters’ rankings. Obtaining a preference profile can now be seen as an
urn experiment, where n many balls are drawn. Each ball corresponds to one voter’s
preference ranking. The proportion of balls of each colour in relation to the total number
of balls corresponds to their probability pi. The selection is done with replacement as the
probabilities for observing a certain ranking are the same for each voter.
For the case of dual culture (DC) one now assumes that the probability of a ranking is
identical to the probability of the inverted ranking. Hence it is equally likely that a ran-
domly selected voter ranks a � b � c or c � b � a, i.e. it now holds that p1 = p6, p2 = p4
and p3 = p5. Under DC there is no expected advantage for any candidate in the paired
comparison with any other candidate. Hence there is expected balance when comparing
two candidates.

The Impartial Culture Assumption Impartial Culture (IC) on the other hand is
a special case of dual culture as it assumes that every ranking is equally likely for a
randomly selected voter. Hence pi = 1/m! holds. Again the preferences of any voter are
assumed to be independent of the preferences of all other voters’ preferences. Under IC
every candidate is equally likely to be the most preferred, last preferred or middle ranked
candidate. As IC is a special case of DC, it still holds that there is also expected balance
in the pairwise comparisons of any two candidates as well. Therefore it is often said
that IC is the “purest“ of all assumptions as no candidate has any expected advantage
whatsoever.

Impartial Anonymous Culture In contrast to the previous models the Impartial
Anonymous Culture (IAC) is not generated by assigning a probability to a randomly se-
lected voter’s preference ranking. Instead every preference profile with n voters is said
to be equally likely. As shown by Gehrlein and Lepelley [GL11], IAC actually does not
assume that the voters’ preference rankings are independent of each other which is a note-
worthy difference to the IC assumption. Gehrlein and Lepelley show that IAC can also
be seen as an urn experiment. The setting is similar to the urn model described for IC,
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but the difference is that after each draw the ball is placed back in the urn together with
one additional ball of the same colour. Repeating this draw and replacement action n
times gives a preference profile with n voters under the IAC assumption. Therefore, if one
colour is observed once, then the probability to observe this colour again is increased for
the following draws. This indicates a voter interaction as there is some sort of dependency
between the voters’ preferences, and some rankings turn out to be more popular than oth-
ers as voters influence each other. This model is also called Pólya-Eggenberger model with
parameter α = 1 whereas the IC assumption corresponds to a Pólya-Eggenberger model
with α = 0.

These cultural assumptions have been criticised for being unrealistic. In [RGMT06] it
is shown for instance that the examined real world election data are not similar to pref-
erence profiles obtained by DC, IC or IAC, and because of that the threat of majority
cycles is heavily overestimated when assuming the introduced probability models. Never-
theless, applying these cultural assumptions can still be useful because of several reasons.
One is that large scale real world data is basically not available. Also DC,IC and IAC
assumptions tend to exaggerate the probability of voting paradoxes, and hence can be
seen as worst case analysis. If only a small frequency is observed under IC or IAC, then
the probability of the paradox can be expected to be even smaller in real world elections.
Also the relative difference between several voting rules and different paradoxes can be
examined perfectly well. More reasons why using IC or IAC assumptions is useful can
be found in [GL12]. Plassmann and Tideman [PT14] use a special distribution that is a
spatial model which is fitted according to real world data. So it is especially designed to
imitate real world voter behaviour. We will briefly refer to this model later.
Throughout this thesis we will only use the IAC assumption. This assumption can be used
to obtain results with Ehrhart theory, a method for counting integer points in polyhedra.
Ehrhart theory together with recently developed algorithms enables us to come up with
new results. An introduction can be found in section 4.3. As this method requires the
IAC assumption, it is reasonable to compare to other results that also make use of IAC.
In the literature IAC is one of the most used cultural assumptions, and hence there are
already some results that we can compare our results with. This is the main reason for
choosing IAC as our preferred preference model. It comes in addition that IAC provides
an amount of voter interaction which seems to be somewhat closer to reality than the IC
assumption that requires independence of the voters’ preferences.
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3 Equivalences and Differences of Voting Rules

This thesis focuses on the case that there are only three of four candidates to chose
from. Such a restriction can have effects on the voting rules themselves and also on their
susceptibility to certain paradoxes. As a motivation one can consider the restriction to
preference profiles that involve two candidates only. A famous result has been shown for
this special case:

Theorem 3.1 (May’s Theorem). [May52] Let |A| = 2. The only voting rule that is
anonymous, neutral, and does not suffer the Lack of Monotonicity paradox is the Plurality
rule.

This means also that every rule that is anonymous, neutral, and does not suffer the Lack of
Monotonicity paradox in a domain with only two candidates reduces to the plurality rule.
Hence a lot of voting rules coincide in such a scenario which indicates a good and natural
fit of voting rules. Also those equivalent rules behave nicely in regards to vulnerability to
voting paradoxes. This theorem provides good cause for choosing the Plurality rule in a
profile with two candidates only.
We are now interested if a similar result can be obtained for the three or four candidate
case as well, and if we are able to obtain equivalences of voting rules. If several rules
coincide in their decision, this can be seen as a strong argument for the chosen candidate.

3.1 Finding minimal Preference Profiles using Linear Program-
ming

We will now examine if certain voting rules turn out to be equivalent when restricting the
domain to three or four candidates.
If rules do not coincide in their decision always, it is still interesting to find a preference
profile in which such a discrepancy of the respective choice sets happens. We want to
investigate if rules already differ for a very small number of voters. Therefore we search
for preference profiles in which the respective pair of voting rules differs in their decision
under the minimisation of the number of voters. As this is basically a minimisation
problem, it is straight-forward to use linear programming. The standard form of a linear
program is

min cTx

s.t. Ax ≤ b

x ≥ 0

with c ∈ Rk, A ∈ Rj×k, b ∈ Rj and the decision variables x ∈ Rk.

In order to set up suitable linear programs we first have to define reasonable decision
variables. We work solely with anonymous preference profiles. In order to specify such
profiles it suffices to state the number of voters with a certain preference ranking. There
are m! many possible preference rankings of m many candidates, and we will order rank-
ings lexicographically. Hence in the three candidate case every voter can have one of the
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following numbered rankings:

1 : a � b � c 4 : b � c � a

2 : a � c � b 5 : c � a � b

3 : b � a � c 6 : c � b � a

We now define the decision variables ni to be the number of voters with respective pref-
erence ranking i. These variables then specify an anonymous preference profile uniquely.
Obviously the sum of all variables has to equal the total number of voters n, and clearly
all variables have to be nonnegative and integer. Hence it always has to hold that

m!∑
i=1

ni = n

ni ≥ 0, integer, ∀i ∈ {1, . . . ,m!}.

We define the decision variables ni to be integer from now on, unless indicated otherwise,
and therefore we are faced with an integer linear program.
Note that the restriction of the variables to the natural numbers changes the hardness
of the minimisation task quite dramatically as integer linear programs are known to be
NP-complete, whereas linear programs can famously be solved in polynomial time6. This
hardness result does not bother us too much as we have to deal with relatively small
dimensions which can be quickly solved by an MILP solver. We decided to use the state-
of-the-art solver FICO Xpress 8.8 [Xpr20].

For our purpose we need to find preference profiles in which the pair of voting rules
differs in their respective choice sets, and the number of voters is minimised. The min-
imisation of the number of voters is stated in the objective function, and the constraints
will ensure the discrepancy of elected winners.
As an example we show the integer linear program for a minimal preference profile with
three candidates in which Plurality and Borda’s rule select different winners. The associ-
ated integer linear program is:

min
6∑

i=1

ni (1)

The objective function minimises the total number of voters.

− n1 − n2 + n3 + n4 < 0 (2)

− n1 − n2 + n5 + n6 < 0 (3)

Constraints (2) and (3) ensure that candidate a wins the plurality election as they demand
that the number of voters that rank candidate a first is larger than the number of voters
that rank candidates b and c first.

− n1 − 2n3 − 2n4 − n6 + 2n1 + 2n2 + n3 + n5 < 0 (4)

− n1 − 2n3 − 2n4 − n6 + n2 + n4 + 2n5 + 2n6 < 0 (5)

ni ≥ 0, i = 1, . . . , 6 (6)

6[PS82]
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The second set of inequalities (4) and (5) demands that candidate b has the highest
Borda score. Hence the constraints ensure that candidate a is the Plurality winner and
that candidate b is the Borda winner under minimisation of the total number of voters.
Obviously we need to demand nonnegativity of the variables in (6).
The resulting preference profile can be seen in 3.2.

3.2 Rules for three Candidates

The goal of this chapter is to check for equivalence of voting rules. If a set of voting
rules coincides in their election this usually indicates a good and natural fit of the chosen
candidate. We also know from May’s theorem 3.1 that in the restricted domain of only
two candidates a lot of rules are equivalent to the Plurality rule. This provides good
reasoning for the use of the Plurality rule in all two candidate elections.
Therefore we want to gain insights into whether some rules coincide for three candidates
as well, and, if they do not, then we are interested in how many voters are needed to
obtain an example that showcases the difference. We will start with Condorcet consistent
rules so that they are certainly equivalent whenever a Condorcet winner exists. It turns
out that actually several rules coincide in the three candidate case which makes this set
of rules ever more attractive.

In this section it is shown that some commonly used Condorcet extensions coincide in
the special case of only three candidates. Only two of the introduced Condorcet ex-
tensions differ from the others, namely Black’s rule and Baldwin’s rule. This section is
heavily influenced by Courtin, Mbih and Moyouwou [CMM14] although the notation can
differ, and some of the proofs are modified.
We start off stating the main result of this chapter and proving it.

Equivalent rules for three candidates

Theorem 3.2. In a preference profile � with three candidates the choice sets selected by
Maximin, Kemeny’s and Young’s rule are equivalent.

Proof. As all the rules are Condorcet consistent, they certainly select the same candidate
whenever a Condorcet winner exists due to their Condorcet consistency. Therefore we can
exclude this trivial case, and assume that there is no Condorcet winner in the preference
profile.

The proof of the equivalence of the mentioned rules works as follows. Basically all rules
will be shown to be equivalent to the Maximin rule which of course yields the equivalence
of all rules. As mentioned beforehand we assume that there is no Condorcet winner. We
will further distinguish two cases of preference profiles - one that have a majority cycle
and those that have not. Note that if there is an odd number of voters, every profile that
has no Condorcet winner has a majority cycle as no ties can occur.

Case 1: There is a majority cycle.
We now can assume a majority cycle, and due to the neutrality of all rules one can assume
the cycle to be a � c � b � a without loss of generality.
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The Maximin winner is defined to be

fMaximin(�) = arg max
x∈A
{ min
y∈A\{x}

n(x, y)}

Define further the respective row minimum of each candidate as the so called Maximin
score:

Maximin score of candidate x = min
y∈A\{x}

n(x, y).

The winning alternative is then obtained by maximising the Maximin score.

As we have a majority cycle each candidate loses exactly one pairwise comparison against
one other candidate. Hence it holds that

n(a, b) < n/2, n(c, a) < n/2, n(b, c) < n/2.

From this and the fact that n(a, b) + n(b, a) = n it follows that

n(b, a) ≥ n/2, n(a, c) ≥ n/2, n(c, b) ≥ n/2.

This yields the following Maximin scores:

Maximin score of candidate a

= min
x∈A\{a}

n(a, x)

= min{n(a, b), n(a, c)}
=n(a, b)

Analogously

Maximin score of candidate b = n(b, c)

Maximin score of candidate c = n(c, a).

As the Maximin winner is the maximiser of the Maximin scores, we have

fMaximin(�) = arg max{n(a, b), n(b, c), n(c, a)}.

We will show equivalence of every voting rule to this expression.

Claim 1: Kemeny’s Rule is equivalent to the Maximin Rule

Proof of Claim 1. The Kemeny rule maximises the number of agreements between the
voters’ preferences and the elected preference order. Every voter has one of the following
possible rankings:

�1 a � b � c
�2 a � c � b
�3 b � a � c
�4 b � c � a
�5 c � a � b
�6 c � b � a
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We again assign a score to each of these orders so that the winning preference ordering is
then obtained by maximising the score. The score is chosen to be exactly the number of
voters’ agreements to fulfil the definition of Kemeny’s rule:

s(�1) = n(a, b) + n(a, c) + n(b, c)
s(�2) = n(a, c) + n(a, b) + n(c, b)
s(�3) = n(b, a) + n(b, c) + n(a, c)
s(�4) = n(b, c) + n(b, a) + n(c, a)
s(�5) = n(c, a) + n(c, b) + n(a, b)
s(�6) = n(c, b) + n(c, a) + n(b, a)

Using that our profile contains a � c � b � a, it holds that

n(b, a) > n(a, b), n(a, c) > n(c, a), n(c, b) > n(b, c).

This yields

s(�1) < s(�2), s(�4) < s(�3), s(�5) < s(�6).

This reduces the election process to determining the maximiser of {s(�2), s(�3), s(�6)}.
For example candidate a is therefore elected if s(�2) = max{s(�2), s(�3), s(�6)}.
The scores can also be written in terms of the numbers of voters per preference profile.
So for example s(�2) = 2n1 + 3n2 + 2n5 + n3 + n6 holds.

In order to show that Kemeny’s rule now really coincides with the Maximin rule we
consider the differences in scores. We now examine every pair of candidates and calculate
their difference in scores. The alternative pair (a, b) is considered first, and thus we will
calculate the Maximin score of candidate a and subtract the Maximin score of candidate
b, and compare this to the difference in Kemeny scores of the two candidates.
The difference of Maximin score of candidate a to Maximin score of candidate b is

n(a, b)− n(b, c)

=n1 + n2 + n5 − n1 − n3 − n4

=n2 + n5 − n3 − n4.

Now the difference between Kemeny score of candidate a and Kemeny score of candidate
b is

s(�2)− s(�3)

=n(a, c) + n(a, b) + n(c, b)− n(b, a)− n(b, c)− n(a, c)

=n(a, b) + n(c, b)− n(b, a)− n(b, c)

=n1 + 2n2 + 2n5 + n6 − (n1 + 2n3 + 2n4 + n6)

=2(n2 + n5 − n3 − n4).

Now the same calculation is carried out for candidates b and c. The difference in Maximin
scores is

n(b, c)− n(c, a)

=n1 + n3 + n4 − n4 − n5 − n6

=n1 + n3 − n5 − n6
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and in Kemeny scores

s(�3)− s(�6)

=n(b, a) + n(b, c) + n(a, c)− n(c, b)− n(c, a)− n(b, a)

=n(b, c) + n(a, c)− n(c, b)− n(c, a)

=2n1 + n2 + 2n3 + n4 − (n2 + n4 + 2n5 + 2n6)

=2(n1 + n3 − n5 − n6).

A similar observation can be made for candidates c and a, and therefore the differences
in Maximin scores are precisely half of the differences in Kemeny scores. For deciding
on a winning candidate we consider the maximiser of the respective score in both cases.
This can be done for instance by checking the signs in the score differences, and electing
the candidate that yields only positive differences. Note that the sign of all differences,
whether in Maximin score or in Kemeny score, coincides. Therefore always the same set
of candidates is elected, and the two rules are equivalent.

Claim 2: Young’s Rule is equivalent to the Maximin Rule

Proof of Claim 2. In Young’s rule we check how many voters must be deleted from the
ballots in order for a candidate to become a Condorcet winner. In case we have the
majority cycle a � c � b � a every alternative loses exactly one pairwise comparison. So
we can use Proposition 3 from [CMM14], and get that we have to eliminate n− 2n(a, b)
many voters in order for candidate a to become the Condorcet winner. For b and c
the numbers are n − 2n(b, c) and n − 2n(c, a) respectively. As the Young winner is the
candidate that requires the smallest number of voters to be deleted from the ballots, it
holds that

fY oung(�)

= arg min{n− 2n(a, b), n− 2n(b, c), n− 2n(c, a)}
= arg max{n(a, b), n(b, c), n(c, a)}
=fMaximin(�).

From this it is immediately clear that Young’s rule and the Maximin rule are equivalent.

Case 2: There is no majority cycle.
We now can exclude the cases that there is a majority cycle and the cases in which a Con-
dorcet winner exists. Hence all the cases left include at least one tied paired comparison.
Define a weak Condorcet winner as a candidate that does not lose any paired comparison.
Note that in contrast to the Condorcet winner definition, a weak Condorcet winner can tie
with other candidates. Every preference profile in which there is neither Condorcet win-
ner nor a majority cycle, has at least one weak Condorcet winner. According to Fishburn
[Fis77] Maximin and Young’s rule satisfy the Strict Condorcet Principle, which means
they select exactly the set of weak Condorcet winners if one or more weak Condorcet
winners exist. Therefore in every preference profile that does not include a Condorcet
winner or a majority cycle, they select the same set of weak Condorcet winners. Fishburn
also showed that Kemeny’s rule satisfies the Inclusive Condorcet Principle which means



20 3 EQUIVALENCES AND DIFFERENCES OF VOTING RULES

that every weak Condorcet winner is included in Kemeny’s choice set. Nevertheless, it
can additionally contain candidates that are not weak Condorcet winners in a general
domain. In order to prove that Maximin, Young’s and Kemeny’s rule are equivalent for
three candidates, it now suffices to show that Kemeny’s rule excludes every candidate
that is not a weak Condorcet winner in the special case of three candidates.

Let candidate a be the unique weak Condorcet winner. Therefore b � a and c � a
cannot hold. Both candidates b and c have to lose at least one paired comparison. With-
out loss of generality say that c loses against b, and b must then lose against candidate a.
Therefore it holds that

n(b, a) < n/2, n(c, b) < n/2, n(c, a) ≤ n/2.

Using the Kemeny scores introduced earlier we get

s(�3) = n(b, a) + n(b, c) + n(a, c) < n(a, b) + n(a, c) + n(b, c) = s(�1)

s(�4) = n(b, c) + n(b, a) + n(c, a) < n(a, b) + n(a, c) + n(b, c) = s(�1)

and hence candidate b cannot maximise the Kemeny score and is therefore not included
in the choice set. The same holds for candidate c:

s(�5) = n(c, a) + n(c, b) + n(a, b) < n(a, b) + n(a, c) + n(b, c) = s(�1)

s(�6) = n(c, b) + n(c, a) + n(b, a) < n(a, b) + n(a, c) + n(b, c) = s(�1)

Now consider the case that only candidate c is not a weak Condorcet winner. It has to
hold that c cannot win any paired comparison, and it has to lose at least one. Without
loss of generality assume that c loses against candidate a, therefore n(c, a) < n/2 and
n(c, b) ≤ n/2 holds. It follows that

s(�5) = n(c, a) + n(c, b) + n(a, b) < n(a, b) + n(a, c) + n(b, c) = s(�1)

s(�6) = n(c, b) + n(c, a) + n(b, a) < n(b, a) + n(b, c) + n(a, c) = s(�3)

and therefore candidate c cannot be included in the Kemeny choice set. This shows that
in presence of weak Condorcet winners no candidate that is not a weak Condorcet winner
is elected using Kemeny’s rule. As also every candidate that is a weak Condorcet winner
is elected, according to Fishburn, it must hold that Kemeny’s rule satisfies the Strict
Condorcet Principle for three candidates just like Maximin and Young’s rule.

Therefore in every profile in which there is a set of weak Condorcet winners Kemeny’s,
Maximin and Young’s rule elect the same set of candidates. As the winning sets were
shown to be equivalent for both the cases of a Condorcet winner presence and a majority
cycle, this finishes the proof of equivalence of these rules for three candidates.

In the following theorem another Condorcet extension is shown to be closely related to
Maximin’s rule and thus to Young’s and Kemeny’s rule as well.

Theorem 3.3. In a preference profile with three candidates Nanson’s choice set is always
contained in the choice sets of the rules from Theorem 3.2.
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Proof. We have to show that Nanson’s set is included in the choice set of the Maximin
rule, and from this it follows that it is also included in Young’s and Kemeny’s set.
When determining the winning candidate using Nanson’s rule one has to calculate the
Borda scores of every alternative, and eliminate those candidates whose Borda scores are
below or at average.
As a first observation note that the average Borda score always equals the number of
voters n in the three alternative case. This is due to the fact that every voter induces
three Borda points, two for the voter’s most preferred candidate and one for the second
highest. Thus the sum of all Borda scores equals 3n. As we also have three candidates,
the average Borda score for each candidate is 3n/3 = n.

As before again consider the cases that there is a majority cycle and that there is not.
Case 1: There is a majority cycle.
Due to neutrality we can assume that we have the majority cycle a � c � b � a, and it
holds that

n(b, a) > n/2, n(a, c) > n/2, n(c, b) > n/2.

Hence one can define positive εa > 0, εb > 0 and εc > 0 such that the following holds:

n(b, a) = n/2 + εc

n(a, c) = n/2 + εb

n(c, b) = n/2 + εa

The paired comparison matrix can be written like this:

a b c
a − n/2− εc n/2 + εb
b n/2 + εc − n/2− εa
c n/2− εb n/2 + εa −

The Borda scores of the alternatives are the row sums in the above matrix and therefore
n− εc + εb for candidate a, n− εa + εc for candidate b and n− εb + εa for candidate c.

Now it is shown that a candidate that is selected by Nanson’s rule also has to be in
the choice set of the Maximin rule.
Assume without loss of generality that candidate a is a Nanson winner. Two subcases
have to be considered. First assume that candidate a is a Nanson winner and candidate b
is not. Then a has not been eliminated in the first step, and must have an above average
Borda score, so

n− εc + εb > n

must hold. Also b must have been eliminated, and must hence have a below average Borda
score:

n− εa + εc ≤ n.

It follows that εc ≤ εa and εc < εb. This implies that

n(a, b) > n(c, a), n(a, b) ≥ n(b, c)
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and therefore n(a, b) is a maximiser of the Maximin scores which ensures that candidate
a is contained in the Maximin choice set.
Secondly assume that both candidates a and b are Nanson winners. It has to hold that
also candidate c is a Nanson winner then. This is only possible if all candidates have the
same average Borda score and hence

εa = εb = εc.

This yields that every row minimum is equally large, and all candidates are also in the
winning set of the Maximin rule. Thus the winning set of the Nanson rule is always a
subset of the winning set of the Maximin rule.

For the reverse direction it is only possible to show that the winning sets coincide if
a single candidate is chosen by the Maximin rule. Hence assume b is the unique Maximin
winner. Then it has to hold that n(b, c) > n(a, b) and n(b, c) > n(c, a) or equivalently

n(c, b) < n(b, a), n(c, b) < n(a, c).

It follows that εa < εb and εa < εc, and therefore candidate b’s Borda score is above
average and c’s below. Hence c gets certainly eliminated in the first step. It is unknown
if candidate a also gets deleted in the first step, but even if not, then candidate b wins the
pairwise comparison against a in the second step, and is therefore also elected as Nanson
winner.

Case 2: There is no majority cycle.
As discussed previously in a preference profile in which there is neither a Condorcet win-
ner nor a majority cycle, there have to be one or more weak Condorcet winners. We
proved before that exactly this set of weak Condorcet winners is selected by Maximin,
Kemeny’s and Young’s rule. As we want to show that Nanson’s choice set is included
therein, we are left to show that Nanson’s rule does not select a candidate that is not a
weak Condorcet winner.
Let candidate a be the unique weak Condorcet winner. Both candidates b and c have to
lose at least one paired comparison, say b � c and a � b. Hence it holds that

n(a, b) = n/2 + εc

n(a, c) = n/2

n(b, c) = n/2 + εa

with εc, εa > 0. It follows that the Borda scores of the candidates are n+ εc for candidate
a, which is above average, and n− εa for candidate c, which is below average. Candidate
b’s Borda score can be above or below average. In case it is below or at average, candidate
b is eliminated immediately. In case it is above average, then a paired comparison with
candidate a is carried out which is lost by b. So only the weak Condorcet winner is selected
in this case.
Let now candidates a and b be both weak Condorcet winners. Hence candidate c has
to lose at least one paired comparison and cannot win any. Without loss of generality
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assume that a loss occurs in the comparison between a and c. Therefore n(c, a) < n/2 and
n(c, b) ≤ n/2. It can be written

n(c, a) = n/2− εb
n(c, b) = n/2− εa

with εb > 0 and εa ≥ 0. Candidate c’s Borda score is n − εb − εa < n which is certainly
below average, and hence candidate c is not already selected by Nanson’s rule.
This shows that Nanson’s rule satisfies the Exclusive Condorcet Principle for three can-
didates7, and no additional candidate can be selected by Nanson that is not included in
the choice set of Maximin, Kemeny and Young.
This finishes the proof of Theorem 3.3.

Theorem 3.2 and Theorem 3.3 provide a nice set of Condorcet consistent rules that can
always agree on a winning set. The fact that those rules agree in their decision is a strong
argument for the selected candidates. Two other rules, that are not included in other
investigations of this thesis, can also be shown to be equivalent to the Maximin rule. We
will informally introduce them, and state the fact of their equivalence to the rules from
Theorem 3.2.

Remark: Dodgson’s and Schulze’s rule Although they have not been introduced
formally, it is worth mentioning that the choice sets selected by Dodgson’s rule and
Schulze’s rule are equivalent to Maximin’s, Kemeny’s and Young’s choice sets.
Dodgson’s rule is related to the Young rule as it elects the Condorcet winner whenever
it exists, and if no Condorcet winner exists, then Dodgson’s rule selects the candidate
that requires the smallest number of switches in the voters’ rankings in order to become
a Condorcet winner.

Schulze’s rule is defined as follows: A path from one candidate x to another candidate y
is a sequence of candidates c(i), i ∈ N so that the first is x, i.e. c(1) = x, and the last
candidate after finitely many steps is y, i.e. c(n) = y, 2 ≤ n < ∞. For every step on the
path it has to hold that c(i + 1) ∈ A \ {c(i)}. Every step on the path has the weight of
the respective paired comparison margin n(c(i), c(i+ 1)).
The strength of a path is the smallest weight occurring on the path. Let P (x, y) be the
largest strength of all paths from candidate x to candidate y.
Define a binary relation O as follows: xy ∈ O if and only if P (x, y) > P (y, x). That
means there exists a path from x to y that has a higher strength than the path with the
highest strength from y to x. We say that candidate x dominates candidate y in this case.
The Schulze choice set S is the set of all candidates that are not dominated by another
candidate, i.e. S = {x ∈ A | ∀y ∈ A \ {x} : yx /∈ O}.

Corollary 3.1 (Dodgson’s Rule). According to Courtin, Mbih and Moyouwou [CMM14]
also Dodgson’s rule is equivalent to Maximin, Young’s and Kemeny’s rule in a preference
profile with three candidates.

7Note that Fishburn [Fis77] defines the Nanson rule differently, and hence his results are not applicable
here. His definition of Nanson’s rule is equivalent to the usual definition of Baldwin’s rule which can
cause some confusion.
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The proof that also Dodgson’s rule is equivalent to the above mentioned rules is left out
as this rule is not included in any further work of this thesis. The respective proof can be
found in Propositions 1, 2 and 9 of [CMM14] and the rule should be mentioned for the
sake of completeness.

Corollary 3.2 (Schulze’s Rule). Schulze’s rule is equivalent to Maximin, Young’s and
Kemeny’s rule in a preference profile with three candidates.

Proof. As we have already shown the equivalence of Young’s, Kemeny’s and Maximin
rule, it suffices to show that Schulze’s rule selects the same winning set as the Maximin
rule as well. We again distinguish the two cases, one if there is a majority cycle and one
if there is not.
Case 1: There is a majority cycle.
Assume without loss of generality that the majority cycle is a � c � b � a. Hence the
following steps have weights bigger than n/2:

from to weight
a c n(a, c)
c b n(c, b)
b a n(b, a)

All other steps yield a weight smaller than n/2 and therefore paths including those steps
yield a strength smaller than n/2. As these strengths are clearly smaller than paths that
only use the above listed steps, these are left out in the following. Therefore it suffices to
only consider the following paths with corresponding strengths:

from to a to b to c
a − min{n(a, c), n(c, b)} n(a, c)
b n(b, a) − min{n(b, a), n(a, c)}
c min{n(c, b), n(b, a)} n(c, b) −

Assume that candidate a is a Schulze winner. Therefore ba and ca cannot be contained
in O . In order for ba not to be contained in O , it has to hold that

n(b, a) ≤ min{n(a, c), n(c, b)}

and from this it follows that

n(b, a) ≤ n(a, c)

n(b, a) ≤ n(c, b).

These inequalities immediately give that candidate a is also a Maximin winner.
For the reverse direction assume that candidate a is a Maximin winner. Hence it has to
hold that

n(a, b) ≥ n(b, c)

n(a, b) ≥ n(c, a)

or equivalently

n(b, a) ≤ n(c, b)

n(b, a) ≤ n(a, c).
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From this it clearly follows that also

n(b, a) ≤ min{n(c, b), n(a, c)}

and hence ba cannot be in O . Also ca is not contained in O as

min{n(c, b), n(b, a)} = n(b, a) ≤ n(a, c).

Therefore candidate a is also selected by Schulze’s rule. This shows the equivalence of
Schulze’s and Maximin rule in case of a majority cycle.

Case 2: There is no majority cycle.
As argued before if there is neither a Condorcet winner nor a majority cycle, there has to
be a nonempty set of weak Condorcet winners. Schulze [Sch18b] himself has shown that
every weak Condorcet winner is contained in the Schulze choice set. So it is left to show
that for three candidates in the presence of a weak Condorcet winner no other candidate
can be elected. Hence assume that candidate c looses at least one comparison, and say
without loss of generality that a � c holds. Therefore in the majority graph there is a
directed path from a to c with weight n(a, c) > n/2. As we assumed that there is no ma-
jority cycle, c � b and b � a cannot both hold. Therefore a directed path from c to a can
have strength at most n/2. But this means that the path from a to c has a strictly higher
strength than from c to a which means that ac is contained in O . Therefore candidate
c cannot be Schulze winner. Hence no candidate that is not a weak Condorcet winner is
included in the Schulze set for three candidates. This shows that for three candidates, if
there is no majority cycle, the Schulze rule selects the set of weak Condorcet winners as
does the Maximin rule.

Experimental results for Nanson’s Rule and Maximin Rule We proved in Theo-
rem 3.3 that Nanson’s choice set is always included in the choice set of the Maximin rule.
It is interesting to see how often Nanson’s choice set is a real subset of the Maximin set,
and how often they are actually equivalent. In order to get a rough understanding of this
we decided to test several random preference profiles with a varying number of voters, and
check for their winners. The profiles are generated with the help of PreflibTools [MW13a]
under the IAC assumption. For every number of voters we tested 1000 profiles on their
winners. The results of this experimental analysis are the following:

Number of voters Difference of Choice sets in % 95% - Confidence Interval in %
100 1.1 (0.5, 1.7)
1000 0.1 (−0.1, 0.3)

We also tested profiles with 10,000 and 100,000 many voters, but there was no difference
in the choice set of Maximin and Nanson’s rule. This is due to the fact that ties are less
common the higher the number of voters is. Therefore the higher the number of voters,
the more likely it is that the Maximin rule selects a unique candidate, and Maximin’s and
Nanson’s choice sets are equivalent then. This shows that for a large number of voters
Nanson’s rule is equivalent to Maximin, Kemeny’s and Young’s rule almost surely.

We will now consider two voting rules that are also Condorcet extensions, but can differ
in the winners that they select.
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Black’s Rule It turns out that Black’s rule is different to the above mentioned voting
rules. To show that the Black rule does not always yield the same outcome as the above
mentioned rules one needs to find a counterexample. It is interesting to check for a
minimal such example. When following the approach described in chapter 3.1, this then
yields the following minimal example where Black’s and Maximin’s winner differ in the
three alternative case. The example involves eleven voters:

4 2 5
a b c
b c a
c a b

This profile yields the following pairwise majority matrix:

a b c
a − 9 4
b 2 − 6
c 7 5 −

This preference profile has no Condorcet winner as it contains the majority cycle a � b �
c � a. This is why Black’s rule says to choose the Borda winner here. The Borda scores
for a, b and c are 13, 8 and 12 respectively. Therefore the Black winner is candidate a.
As one can read from the paired comparison matrix, the row minima for candidates a, b
and c are 4, 2 and 5 respectively. Therefore candidate c is the unique Maximin winner.
It follows from Theorem 3.2 and Theorem 3.3 that also Young’s, Kemeny’s and Nanson’s
rule uniquely select c, and hence those rules cannot coincide with Black’s rule in the three
candidate case.
Note that Nanson’s rule is sometimes more decisive, and hence a minimal profile in which
Nanson’s and Black’s rule differ, can already be obtained with only five involved voters8.

Baldwin’s Rule Despite its similarity to Nanson’s rule Baldwin’s rule does not coincide
with the above mentioned rules for three candidates either. A minimal example for a
preference profile with different Maximin and Baldwin winners involves eleven voters:

5 2 4
a b c
b c a
c a b

The following pairwise comparison matrix corresponds to the preference profile.

a b c
a − 9 5
b 2 − 7
c 6 4 −

8e.g. n1 = 2, n4 = 1, n5 = 2 yields candidate a as Black winner and candidate c as Nanson winner
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The Borda scores of the candidates a, b and c are 14, 9 and 10 respectively. In the first
step of the Baldwin procedure only b is eliminated as it has the lowest score. In the second
step one has to compare a and c pairwise, and it turns out that a loses this comparison,
and hence c is the Baldwin winner. The row minima on the other hand are 5,2 and 4 for
candidates a, b and c which makes candidate a the unique Maximin winner and hence also
the unique Kemeny, Young and Nanson winner. This preference profile is also minimal
when only considering Baldwin’s and Nanson’s rule.

Black’s and Baldwin’s Rule Black’s and Baldwin’s rule do not coincide either. A
minimal example is obtained using an MILP solver, and involves five voters:

2 1 2
a b c
b c a
c a b

The preference profile in this example is cyclical. Hence Black’s rule elects the Borda
winner. The Borda scores of the candidates in this example are 6, 4 and 5 for a, b and c
respectively, and a gets elected as the Black winner. As candidate b has the lowest Borda
score, it is eliminated by Baldwin’s rule in the first step, and then the pairwise comparison
between the remaining alternatives is won by c.

We will now do similar investigations for rules that are not Condorcet consistent.
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As we were able to obtain a set of four Condorcet consistent rules that always share
a winner for the three candidate case, we now check the rules that are not Condorcet
consistent. We first show that those rules are not even Condorcet consistent for three
candidates by finding minimal profiles in which a Condorcet winner exists that is not
elected. Hence no equivalence to a Condorcet extension can be obtained as they elect the
Condorcet winner whenever one exists. The indicated profiles are taken from Schmidt
[Sch18a] and the remaining profiles are obtained by following the exact same method as
Schmidt.

Plurality Rule According to [Sch18a] a minimal example that shows that the Plurality
rule is not Condorcet consistent for three alternatives is:

2 1 2 2
a a b c
b c a b
c b c a

Clearly alternative a is the Plurality winner, but as four voters prefer b over a and also
four voters prefer b over c, b is the Condorcet winner. This shows that the Plurality rule is
not Condorcet consistent for three candidates which implies that it cannot coincide with
a Condorcet extension even for only three candidates.

Borda’s Rule Similar to the Plurality rule Borda’s rule is not Condorcet consistent as
well even for only few candidates. A minimal example according to [Sch18a] for three
candidates is

2 3
a b
c a
b c

Here b is the Condorcet winner, but candidate a is elected using the Borda count because
it has a Borda score of 7, whereas b and c have a score of 6 and 2 respectively.

Plurality with Runoff Rule The Plurality with Runoff method is also not Condorcet
consistent. With the same approach as in [Sch18a] a profile is determined that shows
without ties that Plurality with Runoff is not a Condorcet extension, and it involves 5
voters:

1 2 2
a b c
b a a
c c b

Here a is the Condorcet winner as it wins both pairwise comparisons with b and c. Nev-
ertheless a is eliminated in the first step of the runoff procedure as it is the candidate
with the least top votes. In the second step b wins the pairwise comparison with c and is
elected the winner here. This example also shows that Plurality with Runoff and Borda’s
rule do not coincide as a has the highest Borda score here.
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Coombs’ Rule It turns out that also Coombs’ method is not Condorcet consistent even
for three alternatives. A minimal example uses 13 voters:

3 3 1 3 1 2
a a b b c c
b c a c a b
c b c a b a

Again alternative a is the Condorcet winner. But clearly a gets eliminated in the first step
of Coombs’ method as it is ranked last by a plurality of the voters. After this elimination
b wins the pairwise comparison against c and is therefore elected.
This example also shows that the Plurality rule, Plurality with Runoff, Borda’s rule and
Coombs’ rule do not coincide.

Bucklin’s Rule In the same manner as above it can be established that the Bucklin
method is not Condorcet consistent for three candidates. The minimal example involves
seven voters:

3 1 2 1
a b b c
b a c a
c c a b

As before candidate a is the Condorcet winner. No alternative is ranked first by a major-
ity, therefore the voters who rank the alternative second are added to those voters who
rank the alternative first. Then 6 voters rank b first or second, whereas only 5 and 3
voters rank a and c first or second. The candidate supported by the largest majority is
elected, and in this case this is candidate b.
In this example also Plurality with Runoff and Coombs’ method would have a different
winner.

In total this subsection shows that none of the rules that are not Condorcet consistent
can coincide with rules from the other subsection.

Also for the rules in this chapter it could happen that a subset of them coincide in
the restricted domain of only three candidates. Unfortunately it turns out that this is
not the case. For each pair of rules a counterexample can be found so that the winning
alternatives are different. For all these examples we again minimised the number of voters
involved.

Plurality and Borda’s Rule A minimal example that shows that Plurality and Borda
rule can elect different alternatives as winner involves four voters:

2 1 1
a b c
b c b
c a a
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Clearly candidate a is the Plurality winner. The Borda scores of the candidates a, b and
c are 4, 5 and 3 respectively, and therefore b is elected as winner.

Plurality and Plurality with Runoff Rule Plurality and Plurality with Runoff also
do not yield the same winner in all preference profiles. A minimal counterexample involves
nine voters:

4 3 2
a b c
b a b
c c a

Again candidate a is the Plurality winner as it gets the most top votes. But in the
Plurality with Runoff procedure a second voting round is carried out as candidate a has
no absolute majority. The two candidates with the highest number of top votes are a and
b. So in the second voting round the pairwise comparison between those alternatives is
made, and b is elected as winner.

Plurality and Coombs’ Rule Similar to the above example also Plurality and Coombs’
rule do not coincide for three candidates. A minimal example that shows their difference
involves seven voters:

2 1 2 2
a a b c
b c a b
c b c a

Again candidate a is the Plurality winner, but has no absolute majority. Therefore a
is not immediately elected in Coombs’ procedure. As a majority of voters has ranked c
last in their preferences, candidate c is eliminated. In the pairwise comparison of the two
remaining candidates a and b, a majority prefers b over a, and hence Coombs’ winner is
candidate b.

Plurality and Bucklin’s Rule Also the comparison of Plurality rule and Bucklin’s
rule shows that they do not coincide with each other. A minimal example is obtained by
solving the respective mixed integer linear program, and involves seven voters:

2 1 1 1 2
a a b b c
b c a c b
c b c a a

In this example candidate a is the Plurality winner, but it has no absolute majority of
the top votes. Therefore for Bucklin’s procedure the second and first votes of all ballots
are added for each candidate, and then the majority winner is elected. It turns out that
six voters ranked alternative b first or second, whereas a and c are ranked first or second
by only four voters. Hence b is Bucklin’s winner.
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Borda’s Rule and Plurality with Runoff/Coombs’ Rule/Bucklin’s Rule Borda’s
rule also differs from the mentioned rules. The following exemplary preference profile uses
that the Borda rule does not have to elect an alternative that is ranked first by an absolute
majority, whereas Plurality with Runoff, Coombs’ and Bucklin’s rule do. The minimal
example involves five voters with only two different preference rankings:

3 2
a b
b c
c a

The Borda counts of the candidates a, b and c are 6, 7 and 2 which is why candidate b is
Borda winner. But clearly a is ranked first by a majority of voters. Hence candidate a is
immediately elected from Plurality with Runoff, Coombs’ and Bucklin’s rule.

Plurality with Runoff and Coombs’ Rule When comparing the Plurality with
Runoff procedure and Coombs’ rule, one can also find preference profiles with three can-
didates so that the respective selected winners from those two rules differ. The following
is a minimal example with five voters:

2 2 1
a b c
c c a
b a b

The Plurality with Runoff procedure checks the pairwise comparison between candidates
a and b as those are the alternatives that are ranked first by the most people, but have
no absolute majority. This comparison is won by candidate a. Coombs’ rule on the other
hand compares alternatives a and c, because b is ranked last by the highest number of
voters. In this comparison c is elected as winner.

Plurality with Runoff and Bucklin’s Rule The following preference profile shows
that Plurality with Runoff and Bucklin’s rule do not always yield the same outcome in
an election with three candidates:

2 2 1
a b c
b c a
c a b

In the Plurality with Runoff procedure candidate c is eliminated in the first step as a and
b are ranked first by more voters. The following pairwise comparison is won by candidate
a. But b is elected when Bucklin’s rule is used, because b is supported by the largest
number of voters when counting the first and second place rankings.

Coombs’ Rule and Bucklin’s Rule Coombs’ Rule and Bucklin’s Rule do not coincide
in elections with only three alternatives. This can be seen in the following minimal
example that involves seven voters:
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3 1 2 1
a b b c
b a c a
c c a b

Note that no alternative is ranked first by an absolute majority, so no candidate is elected
immediately. As candidate c is ranked last by the most voters, it is eliminated when using
Coombs’ procedure. Then a wins as it is preferred over b by a majority. But candidate b
is selected by Bucklin’s rule, because it has the most first and second place rankings.

Plurality with Runoff and Instant Runoff It is immediately clear from the defini-
tions that for three alternatives these rules are equivalent.

We will now move on to four candidates, and check whether any equivalences can be
maintained in that case.
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3.3 Rules for four Candidates

Firstly, note that if two rules do not coincide for three candidates, then they cannot
coincide for four candidates or any bigger number of alternatives in general. That is due
to the fact that one can model the three candidate case as a four candidate ranking with
a candidate that is always ranked last, and therefore has no influence on the election. In
that way all four alternative cases can be reduced to three alternatives cases, and it is
shown that two rules that were different for three candidates are certainly different for
four. Hence we are only left with the set of rules from Theorem 3.2 and Theorem 3.3.

3.3.1 Differences of Maximin, Kemeny’s, Nanson’s and Young’s Rule

Maximin Rule and Nanson’s Rule First note that according to Felsenthal [Fel12]
the Maximin rule is vulnerable to the Condorcet Loser paradox, but Nanson’s rule is not.
So these rules can differ if there exists a Condorcet loser but no Condorcet winner. In
an example where the Condorcet loser is uniquely selected by the Maximin rule 15 voters
are needed:

3 1 5 1 5
a a c d d
b d a a b
c b b b c
d c d c a

In this example candidate d is the Condorcet loser. The pairwise comparison matrix looks
as follows:

a b c d
a − 10 5 9
b 5 − 10 8
c 10 5 − 8
d 6 7 7 −

Now the row minima are 5 for candidates a, b and c and 6 for candidate d which makes
candidate d the unique Maximin winner, even though it is the Condorcet loser. The
winner according to Nanson’s rule is the set {a, b, c}.
Apart from the Maximin rule choosing a Condorcet loser the rules can also differ in other
preference profiles that do not have a Condorcet winner. In such profiles there has to be a
majority cycle involving all four alternatives. Therefore one can assume a < b < c < d < a
without loss of generality. One can assume, due to neutrality of the voting rules, that b
is the Maximin winner. To ensure that b is eliminated by Nanson’s rule there are several
possibilities. Hence one has to distinguish for example between a preference profile where
b is eliminated in the first step of the Nanson procedure and one where it is eliminated
later. Calculating the minimal profiles for every possible elimination order yields the
following minimal preference profile with seven voters:

2 1 2 2
b b c d
a c d a
c d a b
d a b c
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The pairwise comparison matrix looks as follows:

a b c d
a − 4 4 2
b 3 − 5 3
c 3 2 − 5
d 5 4 2 −

From this matrix it is clear that the row minima are 2 for candidates a, c and d and 3
for candidate b which makes b the unique Maximin winner. For Nanson’s procedure the
Borda scores have to be calculated. Candidates a and c have Borda score 10, whereas the
other alternatives b and d have Borda score 11. Hence a and c are eliminated in the first
round, and then b loses the pairwise comparison to d which makes candidate d the unique
Nanson winner.

Young’s Rule and Nanson’s Rule According to [BGS] it is unclear how the definition
of a Young winner can be translated into an inequality description. In order to carry out
the calculation of a minimal profile, one has to increment the Young scores. By proceeding
in such manner one can find a preference profile with different Nanson and Young winner
involving seven voters:

2 1 2 2
a a c d
b c d a
c d a b
d b b c

The Borda scores of the candidates are 15, 6, 10 and 11 which makes up for an average
Borda score of 10.5. Hence candidates b and c are discarded in the first round of Nanson
voting. The pairwise comparison of the remaining alternatives a and d is lost by a which
makes candidate d the Nanson winner. The Young winner on the other hand is a with
a score of 2. Using the worst defeats of each candidate one can calculate lower bounds
on the Young scores9. It turns out that all candidates have at least a Young score of 4
except candidate a who meets its lower bound 2 by deleting two voters with the preference
ranking c � d � a � b.

Nanson’s Rule and Kemeny’s Rule Also Nanson’s and Kemeny’s rule differ when
the number of candidates is increased to four. Again there cannot be a Condorcet winner,
and therefore it was assumed that there is a majority cycle a � b � c � d � a. Candidate
c was forced to be the Kemeny winner by some linear indicator constraints according to
the explanation in [Sch18a]. We also forced Nanson’s rule to eliminate the Kemeny winner
c. To do so every possible elimination order of candidates including c was examined, and a
minimal example could be obtained that involves seven voters with four different rankings
only:

9[Sch18a]
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2 2 1 2
a b c c
b c a d
c d b a
d a d b

The preference order with the lowest number of disagreements is c � a � b � d and hence
c really is the Kemeny winner. The Borda scores of the alternatives are 10, 11, 15 and 6
for a, b, c and d respectively. As the average Borda score is 10.5, candidates a and d are
eliminated in the first step. This leaves b and c for a pairwise comparison which is won
by b. Hence the Nanson winner is candidate b, whereas the Kemeny winner is c.

Maximin Rule and Kemeny’s Rule The Maximin rule and Kemeny’s rule do not
coincide for more than three candidates. This is partly due to the fact that the Maximin
rule can select a Condorcet loser which the Kemeny rule never does. The example that
has been used in the section about Nanson’s rule and Maximin rule can also be used
to show the difference in winners between Maximin and Kemeny for the case that the
Maximin rule elects a Condorcet loser. But apart from that case, there are also profiles
where there is neither a Condorcet winner nor a Condorcet loser, and still the winning
alternatives differ. For such an example consider the following profile which involves nine
voters:

2 1 1 2 3
a a c c d
b d a d b
c b b a c
d c d b a

The selected order in this profile by Kemeny is c � d � a � b, and hence candidate c is
the Kemeny winner again. The pairwise comparison matrix looks as follows:

a b c d
a − 6 3 4
b 3 − 6 3
c 6 3 − 5
d 5 6 4 −

The row minima are clearly 3 for a, b, c and 4 for d. Hence candidate d is the Maximin
winner, and therefore different from the Kemeny winner.

Young’s Rule and Kemeny’s Rule Young’s rule and Kemeny’s rule also differ for
the four candidate case. As an inequality description of Young’s rule is not known, one
has to search for a Young winner by increasing the Young score one by one. It turns out
that there is a profile in which Kemeny and Young winner are different, and the Young
score is 2. For this example consider the following profile that involves nine voters:
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3 1 3 2
a a c d
b d d b
c b a c
d c b a

The selected Kemeny ranking is c � d � a � b which makes c the Kemeny winner. For
determining the Young winner consider the pairwise comparison matrix:

a b c d
a − 7 4 4
b 2 − 6 3
c 5 3 − 6
d 5 6 3 −

One can see from the pairwise comparison matrix that the lower bounds of the Young
scores are 2, 6, 4 and 4 for candidates a, b, c and d respectively. In order to show that
candidate a really is the Young winner, it suffices to show that a’s Young score really is
2, as all other alternatives have certainly a score larger than 3. If the two voters with
preference ranking d � b � b � a are deleted from the ballots, then a is Condorcet winner.
Hence candidate a’s Young score really is equivalent to its lower bound 2. Therefore a is
Young winner, whereas c is Kemeny winner.
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3.3.2 Interaction of Young’s Rule and Maximin Rule

Similar to the other rules also Young’s rule and the Maximin rule are not equivalent for
four candidates. Nevertheless we identified preference profiles in which Young’s winner
and Maximin winner always coincide. The condition for when the winners are equivalent
is stated in the following theorem.

Theorem 3.4 (Sufficient condition for equivalence of Maximin and Young winners). Let
� be a preference profile with four candidates and an arbitrary number of voters. Let can-
didate a be the unique Maximin winner. We state the following properties of a preference
profile �:

(i) a loses against at least two candidates, i.e. |x : x � a| ≥ 2 , and

(ii) the number of voters that rank a last is less or equal to its smallest margin of defeat,
i.e. n(a last) ≤ minx:x�a(n(x, a)− n(a, x)) .

If a preference profile � does not satisfy the above condition (i) and (ii), then candidate
a is also the unique Young winner and hence the winners coincide.

Note that the reverse does not hold. Hence if � does satisfy the mentioned condition, the
winners can still be equivalent.

Proof. The proof is a bit lengthy. First we prove an auxiliary condition that is stated in
Lemma 3.1, and makes a statement about the Young scores of candidates in certain pref-
erence profiles. This can only be shown with a case distinction of the preference profiles.
Having proved Lemma 3.1, it is then easy to conclude Theorem 3.4.

For the proof introduce the following notation: Let � be the starting preference profile
with an arbitrary number of voters. Denote �∗ as the preference profile in which a min-
imal number of voters is deleted in order to make candidate a the Condorcet winner.
Hence one can assume that a is not a Condorcet winner in � as this is a trivial case,
but it is in �∗. Let n(a, b) be the number of voters that prefer a over b. Assume due to
neutrality that if candidate a loses against other candidates, then its worst loss happens
against candidate d.

Lemma 3.1. Assume that candidate d defeats candidate a with the highest number of
voters. If � is a preference profile with four candidates and � does not satisfy (i) and
(ii), then candidate a’s Young score is n(d, a)− n(a, d) + 1.

Proof of Lemma 3.1. In the following we show a way to delete specific voters in order
to make candidate a the Condorcet winner. We will select n(d, a) − n(a, d) + 1 many
voters, and thereby prove that an elimination of those will result in candidate a being the
Condorcet winner. In order to keep notation short define q = n(d, a)− n(a, d) + 1 as the
number of voters that we choose to delete, and let Q be the set of voters that we choose
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to delete. Denote the profile in which the designated voters are removed with �−Q.
As candidate a needs to win over candidate d in �∗, at least q voters need to be elim-
inated, and hence q yields a lower bound on the Young score of candidate a. It is now
left to show that q is also an upper bound on candidate a’s Young score. We do that
by selecting q many voters to be removed, and claim that in the resulting profile �−Q
candidate a wins every pairwise comparison.

One can distinguish two cases here.
Case 1: Let q be smaller or equal to the number of voters that rank a last; this will be
denoted by q ≤ n(a last). Hence one can delete q voters that rank a last. Then it holds
that

n(a, d,�−Q) = n(a, d,�).

An elimination of voters that rank candidate a last has clearly no impact on the voters that
rank candidate a before candidate d. On the other hand for voters that rank candidate d
before candidate a, it holds that

n(d, a,�−Q) = n(d, a,�)− q = n(d, a,�)− n(d, a,�) + n(a, d,�)− 1.

Using these two expressions one can now calculate the majority margin in the altered
profile:

n(a, d,�−Q)− n(d, a,�−Q)

=n(a, d,�)− n(a, d,�) + 1

=1

This indicates that candidate a defeats d with a margin of 1.
The majority margins for the other candidates can be calculated similarly. For candidate
b it holds that

n(b, a,�−Q)− n(a, b,�−Q)

=n(b, a,�)− q − n(a, b,�)

=n(b, a,�)− n(d, a,�) + n(a, d,�)− 1− n(a, b,�)

<0.

Likewise for candidate c it holds that

n(c, a,�−Q)− n(a, c,�−Q)

=n(c, a,�)− q − n(a, c,�) =

=n(c, a,�)− n(d, a,�) + n(a, d,�)− 1− n(a, c,�)

<0

as n(a, b) ≥ n(a, d) and n(d, a) ≥ n(b, a), n(a, c) ≥ n(a, d) and n(d, a) ≥ n(c, a), and all
deleted voters preferred both b and c over a. Hence in this case the elimination of q voters
suffices to make candidate a win every paired comparison, and hence a’s Young score is
upper bounded by q. Therefore we already know that for preference profiles in which
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q ≤ n(a last) the Young score of candidate a is exactly q.

Case 2: The second case is that there are less voters that rank candidate a last than
q. Then q can be set to q = n(a last) + r, for some r ∈ N, r > 0. Hence we are aiming for
a preference profile where we delete all voters that rank candidate a last and some more
voters - namely r many - so that after their elimination candidate a is the Condorcet
winner. The voters that have to be deleted additionally have to rank d before a, but they
do not rank a last as by assumption these are already deleted and are less than q. So
they have to have one of the following preferences:

r1
d b
b d
a a
c c

r2
d c
c d
a a
b b

r3
d d
a a
b c
c b

In these tables one can also already see that we can refine r even further, and hence we
define r1 as voters with the above stated preferences and similarly for r2 and r3. Note
that now one can write r = r1 + r2 + r3. Note further that if r such voters are deleted
together with all voters that ranked candidate a last, then a wins over d with margin 1.
Now one can compare the majority margins of candidates b and c with candidate a before
and after the elimination.

n(a, c,�−Q)

=n(a, c,�)− r1 − r3
=n(a, c,�) + n(a last)− q + r2

=n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n11 + n19 + n20 + n21

+ n10 + n12 + n16 + n18 + n22+24

− n(d, a,�) + n(a, d,�)− 1 + r2

=2(n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8)− n17 − n23 + n9 + n13 + n14 + n15 − 1 + r2

n(c, a,�−Q)

=n(c, a,�)− n(a last)− r2
=n9 + n10 + n12 + n13 + n14 + n15 + n16 + n17 + n18 + n22 + n23 + n24

− n10 − n12 − n16 − n18 − n22 − n24 − r2
=n9 + n13 + n14 + n15 + n17 + n23 − r2

In order to calculate the majority margin of candidates a and c one has to subtract the
above expressions from one another:

n(a, c,�−Q)− n(c, a,�−Q)

=2(n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8)− 2n17 − 2n23 + 2r2 − 1
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Similar calculations can be done for the paired comparison between candidates b and a,
and this yields:

n(a, b,�−Q)

=2(n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14)− n11 − n21 + n7 + n8 + n9 + n15 − 1 + r1

n(b, a,�−Q) = n7 + n8 + n9 + n11 + n15 + n21 − r1

n(a, b,�−Q)− n(b, a,�−Q)

=2(n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14)− 2n11 − 2n21 + 2r1 − 1

As candidate a needs to win over c in the altered preference profile, the majority margin
that has been calculated above has to be positive. Therefore we can choose r2 in such a
way that a beats c by a margin of 1 when r2 voters are removed whenever this is possible.
Hence choose

r2 = max{0,−(n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8) + n17 + n23 + 1}
r3 = 0.

Then for the paired comparison between candidates a and b and the case that r2 > 0 was
previously chosen it follows:

n(a, b,�−Q)− n(b, a,�−Q)

=2(n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14 − n11 − n21 + q − n(a last)− r2)
=2(n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14 − n11 − n21

− n10 − n12 − n16 − n18 − n22 − n24

+ n10 + n11 + n12 + n16 + n17 + n18 + n19 + n20 + n21 + n22 + n23 + n24

− n1 + n2 − n3 − n4 − n5 − n6 − n7 − n8 − n9 − n13 − n14 − n15

+ n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 − n17 − n23) + 1− 1

=2(n1 + n2 + n3 + n4 + n5 + n6 + n19 + n20 − n9 − n15)

For the choice r2 = 0 = r3 it holds that

n(a, b,�−Q)− n(b, a,�−Q)

=2(n1 + n2 + n3 + n4 + n5 + n6 + n13 + n14 − n11 − n21 + q − n(a last))

=n17 + n19 + n20 + n23 − n7 − n8 − n9 − n15 + 1.

From here on in the help of an LP-solver is needed. We need to show that our choice
was suited to make candidate a win every paired comparison provided that we have a
preference profile that does not satisfy (i) and (ii). We do this by contradiction, so we
assume that our selection of voters that ought to be eliminated was not sufficient to make
candidate a a Condorcet winner, and hence that a still loses one paired comparison. As
we defined r in such a way that candidate a surely wins the paired comparisons with
candidates d and c after the elimination of the designated voters, we can only assume for
contradiction that a loses against candidate b. We derived an expression of the majority
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margin between candidates a and b in �−Q dependent on the choice of r2 above. Hence
we consider the following sets of linear inequalities to provoke a contradiction:

−(n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8) + n17 + n23 + 1 > 0 (7)

2(n1 + n2 + n3 + n4 + n5 + n6 + n19 + n20 − n9 − n15) ≤ 0 (8)

Inequality (7) describes the case that r2 can be chosen to be a positive number as one
can see from the definition above. The resulting majority margin was also derived above,
and in (8) it is stated that precisely this margin is less or equal to zero which means that
candidate a does not win over b. If r2 does not turn out to be positive, then (9) has to
hold:

(n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8) + n17 + n23 + 1 ≤ 0 (9)

n17 + n19 + n20 + n23 − n7 − n8 − n9 − n15 + 1 ≤ 0 (10)

Similar to above we also add the inequality (10) that states that the respective majority
margin of candidate a to candidate b is less or equal to zero in order to provoke the
contradiction. Of course we always have to consider both sets of inequalities to cover
both cases of r2.
Additional to those two sets of linear inequalities we now need inequalities that describe
the starting preference profiles so that they violate either (i) or (ii). In such preference
profiles candidate a either loses against only one other candidate, or it loses against more
than one other candidate, but the smallest margin of defeat is smaller than the number of
voters that rank candidate a last. Hence these are the cases that we need to distinguish
in the following. Together with either (7) and (8) or (9) and (10) the inequalities that
describe the preference profile form a linear program. As we hope for a contradiction
these linear programs should be infeasible as then (8) and (10) turn out to be untrue, and
this results in candidate a being indeed the Condorcet winner. To obtain the infeasibility
results an MILP-solver is used.
Claim 1: If candidate a loses against one candidate only, the describing inequalities
together with each (7) and (8) and with (9) and (10) form an infeasible linear program.

Proof of Claim 1. We can assume without loss of generality that the candidate that a
loses against is candidate d. The starting profile can then be described as follows:

n(a, b) > n/2 (11)

n(b, c) ≥ n/2 (12)

n(c, d) ≥ n/2 (13)

n(d, a) > n/2 (14)

n(a, c) > n/2 (15)

The first four inequalities describe the majority cycle a � b � c � d � a, and the
last inequality states that candidate a also wins against candidate c. Now the two sets of
inequalities are added independently of each other. In both linear programs an infeasibility
is obtained which means that our selection of voters that are removed in the altered profile
�−Q was successful in order to make candidate a become a Condorcet winner.
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Claim 2: If candidate a loses against both candidates d and c and n(a last) ≥ n(c, a)−
n(a, c) holds, then the describing inequalities together with each (7) and (8) and with (9)
and (10) form an infeasible linear program.

Proof of Claim 2. We proceed as above, and represent the preference profile as a linear
program. We have to assume that candidate a’s highest defeater is candidate d.

n(a, b) > n/2 (16)

n(b, c) ≥ n/2 (17)

n(c, d) ≥ n/2 (18)

n(d, a) > n/2 (19)

n(a, c) < n/2 (20)

n(a, d) ≤ n(a, c) (21)

n(a last) ≥ n(c, a)− n(a, c) (22)

Inequalities (16) - (21) describe the preference profile. The last inequality describes the
assumption that there are more or equally many voters that rank candidate a last than
the smallest margin of a’s defeats. Again both sets of inequalities are added to the
linear program, and with the help of the MILP-solver infeasible programs are detected.
Therefore here it is possible as well to turn candidate a into a Condorcet winner whilst
eliminating only q many voters.

Claim 3: If candidate a loses against all other alternatives and n(a last) ≥ n(b, a)−n(a, b)
holds, then the describing inequalities together with each (7) and (8) and with (9) and
(10) form an infeasible linear program.

Proof of Claim 3. Again we describe the preference profile as a linear program, and
assume that the candidate that beats candidate a with the smallest margin of defeat is
candidate b.

n(a, b) < n/2 (23)

n(a, c) ≤ n(a, b) (24)

n(a, d) ≤ n(a, c) (25)

n(b, c) ≥ n/2 (26)

n(c, d) ≥ n/2 (27)

n(d, b) ≥ n/2 (28)

n(a last) ≥ n(b, a)− n(a, b) (29)

The first six inequalities (23) - (28) describe the starting profile. The last inequality (29)
is our assumption that the number of voters that rank candidate a last is sufficiently
large. As above both pairs of inequalities are again added, and in both cases an infeasible
linear program is the result which contradicts the starting assumption that a is not the
Condorcet winner in the altered profile.

Together the three claims show that the choice of voters ought to be eliminated in order
to turn candidate a into a Condorcet winner was suited. Hence we managed to make
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candidate a win every paired comparison whilst only removing q = n(d, a) − n(a, d) + 1
many voters. This shows that q is also an upper bound on the Young score of candidate
a, and hence the Young score of a is precisely n(d, a) − n(a, d) + 1 which concludes the
proof of Lemma 3.1.

It is left to show that now Young winner and Maximin winner are equivalent if the pref-
erence profile does not satisfy conditions (i) and (ii).

Remark: Note that in the argumentation so far we have not used that a is the Maximin
winner. Hence it holds for every candidate x that does not satisfy conditions (i) and (ii),
that its Young score is n(y, x)−n(x, y) + 1 where y is the candidate that defeats x by the
highest number of voters.

Let canidate a be the unique Maximin winner in the preference profile �, and assume �
does not satisfy conditions (i) and (ii). Then, as established in Lemma 3.1, candidate a’s
Young score is n(d, a)−n(a, d)+1 if alternative d is again the candidate that defeats a by
the highest number of voters. As a is the Maximin winner, it holds that n(a, d) > n(b, x)
where x is the alternative that defeats b with the highest number of voters and is hence
b’s row minimum. It follows that

y(a)

=n(d, a)− n(a, d) + 1

=n− n(a, d)− n(a, d) + 1

=− 2n(a, d) + n+ 1

<− 2n(b, x) + n+ 1

=n(x, b)− n(b, x) + 1

≤y(b)

and similar for the other alternatives. Therefore candidate a is also the unique Young
winner in this scenario. For the reverse direction assume a is not the Maximin winner.
Then there is another unique Maximin winner that is by the above argument also the
unique Young winner and hence a cannot be Young winner as well.
This finishes the proof of Theorem 3.4.

Hence we have established that for a broad class of preference profiles Young winner and
Maximin winner do coincide. Nevertheless, there are profiles in which the winners differ,
and two such cases are now shown as an example:
As an example for a preference profile in which the Maximin winner loses against two
other candidates consider the following:

1 1 4 5 1 3
a a b c d d
b d c d a b
c b a a b a
d c d b c c
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The majority matrix looks as follows:

a b c d
a − 8 6 6
b 7 − 10 5
c 9 5 − 10
d 9 10 5 −

The row minima are 6 for candidate a and 5 for all other candidates, which makes a the
unique Maximin winner. But in order to make candidate a become a Condorcet winner
one has to eliminate seven voters, whereas for alternative b for example an elimination of
six voters suffices. Hence a is certainly not the Young winner.
The second example is an example in which the Maximin winner is also the Condorcet
loser. Hence this in an instance in which the Maximin rule suffers the Condorcet loser
paradox, but the Young rule does not.

1 1 2 3 2
a b b c d
d a c d b
b c a a a
c d d b c

The majority matrix looks as follows:

a b c d
a − 4 4 4
b 5 − 6 3
c 5 3 − 6
d 5 6 3 −

Clearly a is the Maximin winner as its row minimum is the highest among all candidates.
But in order to make candidate a a Condorcet winner one has to eliminate more than four
voters, whereas an elimination of four rankings suffices to make for example candidate c
become a Condorcet winner.

In this context it is worth mentioning that the previous proof settles a question that
came up in [Str15] where it remained open, whether the Condorcet loser paradox occurs
for the Maximin rule whenever it occurs for the Young rule at least for the four candidate
case.

Corollary 3.3. Whenever the Young rule suffers the Condorcet Loser paradox in a pref-
erence profile with four candidates, then so does the Maximin rule but not vice versa.

Proof. This can easily be seen using Lemma 3.1. Assume that candidate a is the Con-
dorcet loser, candidate d is its highest defeater, and candidates b, c and d form a majority
cycle. Assume further that candidate a is chosen by the Young rule. Hence it holds that

y(a) ≥ n(d, a)− n(a, d) + 1.
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Assume for contradiction that the Maximin rule does not simultaneously suffer the Con-
dorcet loser paradox, and picks candidate b instead. Note that b loses against one al-
ternative only, say c, and therefore its Young score is by the above argument y(b) =
n(c, b) − n(b, c) + 1. Note further that n(b, c) is also b’s row minimum as c is the only
candidate that it loses to. As candidate a is the Young winner the following holds:

y(a) < y(b)

n(d, a)− n(a, d) + 1 < n(c, b)− n(b, c) + 1

2n(d, a)− n < 2n(c, b)− n
n(d, a) < n(c, b)

n(a, d) > n(b, c)

and n(a, d) is a’s row minimum, and n(b, c) is b’s row minimum. This now contradicts the
fact that candidate b is Maximin winner, and hence whenever the Young rule chooses the
Condorcet loser then so does Maximin. The reverse is obviously not true as the above
example shows. Hence the frequency of the Condorcet loser paradox when using the
Maximin rule is an upper bound for the frequency of the Condorcet Loser paradox when
using the Young rule in the four candidate case.

3.3.3 Experimental results about Nanson’s Rule and Maximin Rule

We have obtained in Theorem 3.2 and Theorem 3.3 that Maximin, Young’s, Kemeny’s
and Nanson’s rule always share at least one winning candidate. This does not hold for
the four candidate case. As one would expect that the rules are still similar, we decided
to test their similarity experimentally. In order to gain more insights into the interaction
of Nanson’s rule and the Maximin rule we decided to compare those two rules for four
candidates.
Using PreflibTools [MW13a] it is easy to generate random preference profiles according
to the IAC assumption. For the explanation of randomness and definition of cultural
assumptions we refer to section 2.3.
For every generated profile we calculated both Nanson’s and Maximin choice sets, and
compared them. We distinguish between different choice sets, which means that they
are not equivalent, and disjoint choice sets, which indicates an empty intersection of the
respective sets. For every number of voters we did 1000 runs, and obtained the following
results.

Number of voters Difference of Choice sets in % 95% - Confidence interval in %
101 5.6 (4.2, 7.0)
1001 3.8 (2.6, 5.0)
10001 3.6 (2.4, 4.8)
100001 4.1 (2.9, 5.3)

For the disjointness of the choice sets we obtained the following percentages:
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Number of Voters Disjointness of Choice sets in % 95% - Confidence interval in %
101 3.3 (2.2, 4.4)
1001 3.5 (2.4, 4.6)
10001 3.6 (2.4, 4.8)
100001 4.1 (2.9, 5.3)

These results are rather unsurprising. Overall it seems to be the case that the rules are
still quite similar, as one would suspect. Naturally ties occur more often the smaller the
number of voters involved is, and as the Nanson rule seems to be more decisive this yields
a higher percentage in the differing choice sets. If the number of voter is increased this
effect fades as the occurrence of ties is less common.
Also when looking at the choice sets that are disjoint, the percentages that indicate that
Nanson’s and Maximin rule cannot agree on a winning candidate are still rather small.
They seem to rise a bit the more voters are involved.
Hence one can expect the outcomes of Nanson’s and Maximin rule to still be similar in
the four candidate case.

In this section we have shown that no pair of voting rules coincides for the four can-
didate case, whereas we found a set of rules that are equivalent in the three candidate
case. Unfortunately this did not carry over to the four candidate restriction. In the next
chapter we will now take voting paradoxes as defined in 2.2 into account in order to obtain
an understanding of how vulnerable voting rules are to certain paradoxical situations.
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4 Paradoxical Behaviour of Voting Rules

For the definition of paradoxes we refer to 2.2. At first we will consider general results
about voting paradoxes such as important impossibility results, that indicate that some
sets of properties are incompatible. We will briefly introduce general methods that can
be used to gain knowledge about the frequency of paradoxical voting situations. One
such method, that is used later on, is Ehrhart theory, that will be introduced in 4.3. We
will also give an overview of recent results of research in this area, and complement these
results with our own work.

4.1 Results about Paradoxes

Several results have been shown that deal with the interaction of voting paradoxes and
voting rules, and with the properties of voting rules in general. As we want to understand
the vulnerability of certain voting rules to paradoxes better, these general results are an
important starting point. A lot of impossibility results have already been proven. Hence it
should not come as a surprise that there simply is no flawless voting rule. All impossibili-
ties are commonly shown to hold on a general domain. This raises the question whether a
restriction of the preference profiles results in a softening of the impossibility results. As
we deal with domains that have a restricted number of candidates such behaviour could
come in handy for us.
We want to briefly mention one of the most famous results: the impossibility theorem of
Gibbard [Gib73] and Satterthwaite [Sat75]. The theorem introduces the notion of strate-
gyproof voting rules which means that no voter can improve the outcome of the election
by lying about his true preferences. The theorem says that certain common properties
cannot be combined with strategyproofness without turning the rule into a dictatorial
rule. Dictatorial rules always elect the most preferred candidate of one respective voter.
It has been shown by Gibbard and Satterthwaite that every single valued, non-imposing
voting rule is strategyproof if and only if it is dictatorial. Single valued means that only
one candidate is selected which can be achieved by a tie-breaking mechanism for example,
and non-imposing means that every candidate can be elected under some sort of prefer-
ence profile. These two properties are quite common and reasonable.
Hence the Gibbard-Satterthwaite-Theorem is quite strong because in a society with demo-
cratic principles a dictatorial voting rule is usually not desired. All rules that we intro-
duced are not dictatorial and non-imposing. We can turn all voting rules into single valued
rules by linking them to a tie breaking mechanism. This means that all rules we con-
sider throughout this thesis are not strategyproof, and voters can benefit from deviating
from their genuine preference ranking and reporting a dishonest ranking. The theorem of
Gibbard and Satterthwaite shows that this flaw is quite common and very hard to avoid.
Therefore we will not consider strategyproofness in the forthcoming.

Another important statement that deals with the relationship between Condorcet consis-
tency and the susceptibility to the No Show paradox is the following:

Theorem 4.1 (Moulin’s Theorem). [Mou88]

1. For |A| ≥ 4 and |N | ≥ 25, every Condorcet consistent voting rule is susceptible to
the No Show paradox.
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2. If |A| ≤ 3, there exist Condorcet consistent voting rules that do not violate the No
Show paradox.

Brandt, Geist and Peters [BGP17] tightened the bound, and have shown that starting
from twelve voters already no Condorcet extension exists that also does not violate the
No Show paradox in the case of four or more candidates. This theorem shows that the re-
striction of the domain is an opportunity to soften certain impossibility results. Whereas
in general the combination of Condorcet consistency and immunity to the No Show para-
dox is impossible, it can be reached in a three candidate domain. Hence when restricting
ourselves to three candidates, we can hope for a rather attractive voting rule that is Con-
dorcet consistent and does not violate the No Show paradox, whereas this will not happen
for the four candidate case.

The following theorem considers the interaction between Condorcet consistency and the
Reinforcement paradox.

Theorem 4.2 (Young’s Theorem). [You75] [BCE+16] Let f be a Condorcet consistent
voting rule and |A| ≥ 3. Then f violates the Reinforcement paradox.

From this theorem we immediately know that we cannot find a Condorcet consistent vot-
ing rule that does not violate Reinforcement in preference profiles with more than 2 voters.

These theorems give an overview on what we can hope for when searching for attrac-
tive rules. Which paradoxes are more severe than others is controversially discussed.
Additional to the vulnerability to paradoxical situations other arguments have to be taken
into account as well. For instance in most elections it is important that the rule is rather
simple so that it can be quickly understood by the voters and also the communication is
easy. If this is not the case and the voter does not understand how the winner is selected,
this might discourage him or her from taking part in the election.
Another aspect is the difficulty of the rule itself as there are some rules that are compu-
tationally quite demanding and others where the calculations are more straight-forward
and easy.
Nevertheless these arguments are hard to quantify which is why we will mainly concen-
trate on the equivalences of rules and their vulnerability to the mentioned paradoxes.
Apart from the number of paradoxes that a rule is susceptible to, there seems to be a
consensus that the severity to a certain paradox is influenced by the frequency with which
the paradox occurs. Therefore we are interested in the frequencies of paradoxes in ran-
domly selected preference profiles. Obtaining the probability of a voting paradox can be
done by following one of three approaches, that are introduced in the next section.

4.2 Methods of Assessing the Probability of Voting Paradoxes

We want to shortly introduce the most common three approaches on how to assess the
probability of a certain voting paradox under a voting rule. Each of those three approaches
obviously has advantages and drawbacks, that we also want to discuss briefly.
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The Analytical Approach When determining probabilities with the analytical ap-
proach we use mathematical calculations to describe the probability of the voting paradox
exactly. In order to do this, we need to specify the cultural assumptions as discussed in
2.3, and under those assumptions calculations can then be carried out to precisely de-
termine the wanted frequency. Clearly the assumptions determine the usefulness of the
results, and how close they are to real world examples. As stated before, using IAC is a
fair assumption for the cause of this thesis, but will most likely not represent frequencies
of paradoxes in reality. Nevertheless, it is especially useful to compare different results
that also assume IAC. There are already quite a lot of such results as IAC is one of the
most prominent cultural assumptions.
The major advantage of the analytical approach is that it creates reproducible results.
On the other hand in a lot of cases the analytical approach seems to be infeasible. Most
of the results obtained analytically are limited to three candidates. Only recent improve-
ments of algorithms have made it possible to determine results for the four candidate
case. Results in this situation are still quite rare, and also some of the problems seem to
remain infeasible despite the positive development of computational power. To the best
of our knowledge analytical results for five of more candidates have not been obtained yet.
As this thesis focuses on preference profiles with a small amount of candidates, analytical
results are still very interesting for us.

The Experimental Approach In the experimental approach preference profiles are
created randomly. For these random profiles it can then be checked if a certain paradox
occurs under a specified voting rule, and thus the frequency of the voting paradox is
determined. As stressed before the random creation of preference profiles also requires
a cultural assumption that heavily influences the outcome. Which of the probability
models is most suited is controversially discussed. Even though it sounds temptingly
easy, checking for voting paradoxes can be computationally very demanding as well, and
even determining winning sets under certain rules is demanding in itself as there are some
prominent voting rules that are in NP10. Also the number of runs has to be carefully
selected as it determines the statistical significance of the obtained result11.
Nevertheless this approach is much more versatile than the analytical approach, and
results are not restricted to a small number of candidates, but can be obtained for various
combinations of numbers of candidates and numbers of voters. Due to this flexibility of
the experimental approach there is a variety of papers published on frequencies of voting
paradoxes. Strobl [Str15] provides a summary of these results and the respective sources.

The Empirical Approach When aiming for results that are likely to be observed in
reality, the empirical approach is ideal without a doubt. When using this approach, one
only examines real world data. There is no need for choosing a probabilistic model that
restricts the general applicability of the result. The biggest flaw of this approach is obvi-
ously that real world data is quite sparse. Also some data sets are either incomplete or
inaccurate. This is due to several difficulties that arise when acquiring data. Often the
collection and preprocessing of the data is the main difficulty as for instance medical data

10[BCE+16]
11[Str15]
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needs to be carefully anonymised, and must be available in larger scales to ensure the per-
sonal rights and privacy of the patients, and to obey the current laws for data processing.
Also some researchers are afraid to share their data sets in order to maintain exclusivity.
Therefore the success of this approach bases solely on the quality and availability of the
data sets.
Although in general it is quite hard to acquire suitable data, the library PreflibTools
[MW13b] provides access to a collection of different data sets. These data sets are pro-
vided by a community of researchers that believe in sharing their findings. As this thesis
focuses on a small set of candidates, only data sets that fulfil this requirement come into
question, which again restricts the availability of suitable data.

We will now introduce a method following the analytical approach. Using this method
we are able to obtain new results about frequencies of some paradoxes and voting rules.

4.3 Introduction to Ehrhart Theory

Ehrhart theory is a method firstly developed by the French mathematician Eugène Ehrhart
[Ehr62] for counting integer points in polyhedra. Luckily we are able to make use of these
exact analytical tools for our purposes under the assumption of IAC. Assuming IAC means
that we assume that every anonymous voting situation is equally likely which enables us
to create Laplace experiments. So if we are interested in the probability of a voting para-
dox, we can obtain it by counting the number of paradoxical profiles and dividing it by
the number of all possible profiles.
As mentioned before voting situations can typically be described as sets of linear inequal-
ities, and hence the problem corresponds to computing the number of integer solutions to
these inequality descriptions. It has been shown by Ehrhart in the sixties that the number
of integer solutions to a linear inequality system can be described as a quasi-polynomial
in n with periodic coefficients. Only recently one realised that this result comes in handy
for problems from voting theory such as the frequency of voting paradoxes. The following
is a brief introduction to Ehrhart theory based on Lepelley, Louichi and Smaoui [LLS08].

Rd is the Euclidean d-space of all d-dimensional vectors with real entries, i.e. (x1, ..., xd) ∈
Rd with xi ∈ R. Then Zd is the integer lattice and as such a subset of Rd. All d-dimensional
vectors with integer coordinates are contained in Zd.

Definition 4.1 (Rational polyhedron, rational polytope). A rational polyhedron P of
dimension d is a subset of the Euclidean d-space that is defined as the solution of a
system of linear inequalities.

P = {x ∈ Rd : Ax ≤ b} ⊂ Rd

with A ∈ Zm×d, b ∈ Zm and m the number of linear inequalities.
If the polyhedron is bounded, it is called a polytope.

Hence the problem of counting integer solutions to a finite set of linear inequalities is
equivalent to counting integer points in the corresponding rational polyhedron.
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Definition 4.2 (Dilated polytope). Let n ≥ 1 be an integer parameter and P ⊂ Rd a
d-dimensional polytope. The polytope Pn defined by

Pn := {nx : x ∈ P}

is called the dilation of P . Then |Pn ∩ Zd| is the number of integer points that lie in the
dilation of P .

Definition 4.3 (Quasi-polynomial). A function f : Z→ Q is a quasi-polynomial if there
are q many polynomials gi such that f(n) = gi(n) if n ≡ i mod q.

Theorem 4.3 (Ehrhart’s Theorem [LLS08]). Let P be a rational polytope in dimension
d. The number of integer points that lie in the dilation of P is given by a quasipolynomial
of degree d. The coefficient of the leading term is independent of n and equivalent to the
Euclidean volume of P .

Every anonymous preference profile is uniquely specified by an integer vector of dimension
m! when m is the number of candidates. The paradox, that is ought to be examined, needs
to be described as set of inequalities. Then counting the integer solutions to the induced
linear program is equivalent to the number of voting situations in which the paradox
occurs. As we want to obtain a frequency, we have to divide this number by the number
of all possible voting situations. Because we assume IAC, every voting situation is equally
likely, and thus this approach fulfils its purpose.
The number of all possible voting situations that can occur is known to be

(
m!+n−1
m!−1

)
.

It follows that the probability of occurrence of a voting paradox with n many voters
described as polytope P is given as

P(n) =
|Pn ∩ Zd|(
m!+n−1
m!−1

) .
Ehrhart’s theorem states that the numerator is given as a quasipolynomial of degree
d. Finding these quasipolynomials can only be done due to recent improvements in
algorithms, and luckily there are now computer programs such as NORMALIZ [BIR+].
Computing the quasipolynomial is computationally very demanding which limits this
analytical tool to a rather small number of candidates. This is due to the fact that
the number of rankings and hence the dimension of the polytope grows exponentially
in the number of candidates. As far as we are aware, not more than four candidates
can be tackled by now, and even cases with four candidates are not always feasible.
As NORMALIZ has previously been used in problems where four candidate cases were
successfully examined, we decided to use this program as well.
One is often especially interested in the behaviour of a voting rule if a large number of
voters is involved. Fortunately restricting computations to finding the leading coefficient
of the quasipolynomials suffices in order to obtain the limit probability for a fixed number
of candidates and n → ∞, which in itself is a nice and helpful result. In the following
we present an example that shows an application of Ehrhart theory in the voting theory
context.

Example 4.1 (Probability that no Condorcet winner exists). As the notion of a Con-
dorcet winner is essential in social choice we are interested in the probability that no
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Condorcet winner exists in a preference profile with a large number of voters and three
candidates. As we want to follow the above described approach, and determine the limit
probability under IAC with Ehrhart theory, we have to describe the voting situation as
system of linear inequalities. As it appears to be easier, we will determine the com-
plementary probability, and therefore describe the situation in which candidate a is the
Condorcet winner:

n1 + n2 + n5 − n3 − n4 − n6 > 0 (30)

n1 + n2 + n3 − n4 − n5 − n6 > 0 (31)

ni ≥ 0, i = 1, . . . , 6 (32)

The first inequality describes that candidate a wins pairwise against candidate b, and
the second inequality states that candidate a also wins over candidate c. Hence in the
described voting situation candidate a has to be the Condorcet winner. We implicitly
assume that the total number of voters is n.
Entering this system of linear inequalities into NORMALIZ [BIR+] immediately gives the
desired limit probability:

P(candidate a is Condorcet winner |m = 3, n→∞) =
5

16

Note that the voting situations that have candidates b or c as Condorcet winner are
symmetric to the described situation which allows us to multiply the result by 3 to account
for the three possibilities in choosing a Condorcet winner. We then obtain that the limit
probability of having a Condorcet winner in a random preference profile is 15/16. Therefore
the complementary event of having no Condorcet winner is determined to be 1/16 = 6.25%.
This limit probability was already derived in the seventies by Fishburn and Gehrlein
[FG76] [Geh82]. We are even able to describe the probability that no Condorcet winner
exists as a quasipolynomial in the number of voters. The quasipolynomial has period 2
and degree 5 and looks as follows:

g0(n) = 1− 3(
1

384
n5 +

12

384
n4 +

52

384
n3 +

96

384
n2 +

64

384
n)

g1(n) = 1− 3(
1

384
n5 +

15

384
n4 +

86

384
n3 +

234

384
n2 +

297

384
n+

135

384
)

Hence the probability that a preference profile with three candidates under IAC has no
Condorcet winner is

g0(n)(
n+5
5

) for even n
g1(n)(
n+5
5

) for odd n.

In Figure 1 one can see the probabilities that there is no Condorcet winner in dependency
of the number of voters in a preference profile with three candidates assuming IAC. It is
obvious from the figure and the quasipolynomial that in profiles with an even number of
voters the probability that there is no Condorcet winner is higher than in profiles with
an odd number of voters as also the possibility for ties is higher in profiles with an even
number of voters.
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Figure 1: Probability that there is no Condorcet winner

4.4 Axiomatic Overview

For the following axiomatic consideration some rules introduced earlier are left out. We
chose to concentrate on the simplest, most popular and most attractive rules. Because of
their simplicity and popularity we decided to examine Plurality, Plurality with Runoff and
Borda’s rule further. Due to Theorem 3.2 we have good cause to suspect that Maximin,
Kemeny’s, Nanson’s and Young’s rule are an attractive choice for a small set of candidates,
and therefore we are interested to see how they behave concerning paradoxical situations.
In contrast we decided to also examine Black’s rule further as it is a Condorcet extension
but not equivalent to the previous mentioned set of rules.

Additional to before we will now also take paradoxes into consideration. Paradoxes are
unwanted outcomes that can result from elections that use a certain voting rule. These
outcomes are counter-intuitive and undesirable. Several different paradoxes were intro-
duced and defined in 2.2. It is quite commonly known that there is no voting rule that is
immune to all paradoxes, so every voting rule violates some axioms. The discussion about
which paradoxes are more “severe“ than others, or which paradoxes should be avoided at
all cost is ongoing with a lot of different opinions. Some people consider voting rules that
suffer the Condorcet winner paradox as inappropriate.
We will again distinguish between the three and four candidate case. Not all rules that
are in general vulnerable for a certain paradox already exhibit this vulnerability in profiles
with a small number of voters only. Minimal examples - in the number of candidates and
voters - for pairs of voting rules and paradoxes are calculated by Schmidt [Sch18a].
A wide consensus is reached that even if the voting rule suffers a certain paradox, the
probability of such an undesirable outcome should be assessed in order to gain knowledge
about the frequency with which one can expect a paradox to occur. It is clear that if
the frequency that a certain paradox occurs is quite small, then also the severity of this
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paradox is not as big. To gain insights into these probabilities three main methods can
be used. One is gaining theoretical results using Ehrhart theory, the second method is to
gain experimental frequencies using computer simulations and randomly generated pro-
files, and the third method requires real world election data that can then be examined
for paradoxes. All three methods have been introduced in 4.2.

Table 2 provides an overview of the results that have been gained in the last years for
three candidates. In the table different pairs of voting rules and paradoxes that are vul-
nerable to the respective paradox are listed. The column “minimal“ provides the smallest
number of voters for which a profile with three candidates exhibits the paradox without
the use of a tie-breaking mechanism. Most of the results are provided in [Sch18a]. If not
calculated there, we followed the identical approach to find the minimal examples our-
selves. The other columns deal with the results that have been found on the frequencies of
paradoxes. The column “n“ states the number of voters that was used in the calculation
of the probabilities, whereby “∞ “ indicates that a limit probability for an infinitely large
amount of voters has been found. In the column “distribution“ it is stated which kind of
probabilistic model was assumed. Usually we focused on the IAC distribution as this is
a widely used assumption, and makes the use of Ehrhart theory possible. Nevertheless,
we found interesting results by Plassmann and Tideman [PT14] who used a spatial distri-
bution, that is more realistic than the IAC assumption, and thus we also included these
results in the table. The method that was used is also stated, whereby “Sim.“ indicates
computer simulations, and of course the results are stated as well. The last column states
the source of the frequency calculations.
It turns out that even for a relatively small number of voters most paradoxes can al-
ready occur. Especially the Condorcet winner paradox that is known to be quite severe,
can occur for preference profiles with only five voters. Also the limit probability with
which the Condorcet winner paradox occurs is not that low. Here it is worth mentioning
that the Plurality with Runoff rules exhibits this paradox significantly less often than the
Plurality rule. No results using Ehrhart theory have been found for the Reinforcement
paradox, but the computer simulations suggest that the frequencies are rather low for the
Reinforcement paradox to occur. This supports our assessment from before that the set
of related rules from Theorem 3.2, namely Maximin, Kemeny’s, Nanson’s and Young’s
rule, are a quite attractive choice for an election with three candidates. We will still take
a closer look to the occurrence of the Reinforcement paradox in 4.6.
In summary for the not Condorcet consistent rules Borda’s rule seems to be a good choice
as it is only vulnerable to the Condorcet Winner paradox, whereas Plurality suffers two
severe paradoxes - the Condorcet Winner and the Condorcet Loser paradox. We will have
a closer look at Plurality with Runoff in 4.5 as it is quite popular in political elections.
Concerning the Condorcet extensions the set of equivalent rules remains attractive. Con-
trary to those rules, Black’s rule suffers more often from the Reinforcement paradox, and
is additionally also vulnerable to the No Show paradox.

For four candidates far less results have been obtained until now due to the immense
computational power that is needed to tackle the exponential growth in dimension be-
tween three candidates and four candidates. The overview can be seen in table 3. Borda’s
rule is still only vulnerable to the Condorcet Winner paradox, and hence remains a good
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choice for a not Condorcet consistent rule. But for the Condorcet consistent rules it is
much harder to decide on an attractive rule. All Condorcet consistent rules are inevitable
vulnerable to both the No Show and the Reinforcement paradox due to Theorem 4.1 and
Theorem 4.2. The only rule that is susceptible to those two paradoxes only is Kemeny’s.
Nanson’s rule is additionally also vulnerable to the Lack of Monotonicity paradox. Both
Young’s and Maximin rule are vulnerable to the No Show paradox, the Reinforcement
paradox and the Condorcet Loser paradox. As they are shown to be quite similar in a
four candidate election also the frequencies can be expected to be similar. Hence between
those two rules Maximin should be preferred as it is computationally easier. Apart from
that the suitability of the rules has to be individually discussed and also arguments like
computational hardness and simplicity as mentioned in 4.1 have to be taken into account.
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Paradox Voting Rule minimal12 n distribution method probability source
Monotonicity Pl. with Runoff 17 ∞ IAC Ehrhart 5% [LMS17]
No Show Pl. with Runoff 11 ∞ IAC Sim. 4.1% [LM01]
No Show Black 9 ∞, 1 M IAC, spatial Ehrhart, Sim. 0.1%, 0% [BHS19], [PT14]
Condorcet Winner Pl. with Runoff 5 ∞ IAC Ehrhart 4% 13 [OLS19]
Condorcet Winner Borda 5 ∞, 1 M IAC, spatial Ehrhart, Sim. 9% 13, 2.6% [OLS19], [PT14]
Condorcet Winner Plurality 5 ∞, 1 M IAC, spatial Ehrhart, Sim. 12% 13, 4.5% [OLS19], [PT14]
Reinforcement Pl. with Runoff 26
Reinforcement Maximin 15 100, 1 M IAC, spatial Sim., Sim. 0.2%, 0% [CMM14], [PT14]
Reinforcement Kemeny 15 100, 1 M IAC, spatial Sim., Sim. 0.2%, 0% [CMM14], [PT14]
Reinforcement Nanson 11 100, 1 M IAC, spatial Sim., Sim. 0.2%, 0% [CMM14], [PT14]
Reinforcement Young 15 100, 1 M IAC, spatial Sim., Sim. 0.2%, 0% 14 [CMM14], [PT14]
Reinforcement Black 9 100, 1 M IAC, spatial Sim., Sim. 1.3%, 0% [CMM14], [PT14]
Condorcet Loser Plurality 7 ∞, 1 M IAC, spatial Ehrhart, Sim. 3%15, 0.3% [OLS19], [PT14]

Table 2: Overview of the axiomatic properties for three candidates

12most examples from [Sch18a]
13provided a Condorcet winner exists
14It should not come as a surprise that the probabilities of a paradox are quite similar for Maximin, Kemeny, Nanson and Young rule as we proved in

3.2 that these rules are quite similar in their decision for three candidates. The decisiveness of Nanson’s is also the reason why the minimal examples are
not equivalent.

15provided a Condorcet loser exists
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Paradox Voting Rule minimal12 n distribution method probability source
Monotonicity Pl. with Runoff 13
Monotonicity Nanson 7
No Show Pl. with Runoff 11
No Show Nanson 13 ∞ IAC Sim. 3% (max14) [BHS19]
No Show Maximin 9 ∞ IAC Ehrhart 0.55% (max14) [Str15], [BHS19]
No Show Kemeny tie breaking [BGP17]
No Show Black 6 ∞ IAC Sim. 4% (max14) [BHS19]
No Show Young 9
Condorcet Winner Pl. with Runoff 5 ∞ IAC Ehrhart 9%13 [BIS19]
Condorcet Winner Borda 5 ∞ IAC Ehrhart 13%13 [OLS19]
Condorcet Winner Plurality 5 ∞ IAC Ehrhart 25%13 [BIS19]
Reinforcement Pl. with Runoff 26
Reinforcement Maximin 11
Reinforcement Kemeny 9
Reinforcement Nanson 9
Reinforcement Young 11
Reinforcement Black 5
Condorcet Loser Maximin 9 ∞ IAC Ehrhart 0.06% [Str15]
Condorcet Loser Young 15 ∞ IAC Sim. 0.06% (max15) [Str15]
Condorcet Loser Plurality 5 ∞ IAC Ehrhart 2.3%15 [OLS19]

Table 3: Overview of the axiomatic properties for four candidates
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4.5 Analysis of the Plurality with Runoff Rule

As this particular voting rule is considered to be attractive for a small number of can-
didates, we want to take a closer look at the axiomatic properties of this rule. A lot of
political elections use rules that are quite similar to the Plurality with Runoff procedure.
So for instance during the municipal elections in Bavaria mayors and district adminis-
trators are elected with a similar rule to the Plurality with Runoff rule18. According to
[FN19] the President of 40 countries is elected in a similar manner so for instance the
President of state in France19 or Austria20. This shows that the Plurality with Runoff
rule is quite commonly used in essential political elections despite its vulnerability to four
of our five selected voting paradoxes. This is good cause for a more thorough analysis
of the properties and behaviour of the Plurality with Runoff rule in paradoxical voting
situations, and whether they can be avoided.

4.5.1 Domain Restrictions

We will consider two different domain restrictions. We have seen that the Plurality with
Runoff rule is in general susceptible for all of the selected voting paradoxes but the Con-
dorcet loser paradox even for three candidates already. This might not be the case if we
restrict the domain of preference profiles further. As Plurality with Runoff is often used
in a political context, it can be a fair assumption to assume that voter preferences can
be somehow ordered along a line from left-wing to right-wing. This property is known as
single peakedness and is formalised in Definition 4.4. Felsenthal and Nurmi [FN19] make
a different assumption as they consider a quite stable starting preference profile in which
a Condorcet winner exists, and is also selected by the respective voting rule. As Plurality
with Runoff is no Condorcet extension, it might not always select the Condorcet winner.

First we consider the restricted domain of voters’ preference rankings for when they are
single peaked:

Definition 4.4. A domain is single peaked if for every voter i and all pairs of candidates
a, b ∈ A for which a �i b, there exists an ordering of the alternatives such that either
candidate a is the most preferred candidate, or a and b are on opposite sides of the most
preferred candidate, or a and b are on the same side of the most preferred candidate and
a is closer to it than b.

In figure 2 one can see two different domains. The left domain has single peaked prefer-
ences, whereas the other has not. The right domain is not single peaked as the voter i
indicated by the green line has the preference c � a � b. Consider now the pair a, b. It
holds that a �i b, but candidate a is not the most preferred candidate, a and b are on
the left to the most preferred candidate and hence not on opposite sides, and candidate

14Limit probability tends to zero and is always below the mentioned percentage.
15As show in Corollary 3.3 the frequency of the Condorcet Loser paradox for the Young rule is upper

bounded by the frequency of the Condorcet Loser paradox for the Maximin rule.
18[Sta20]
19[Pre20b]
20[Pre20a]
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Figure 2: Single peaked and not single peaked domain

b is ordered closer to the most preferred candidate than a. Hence this ordering of the
candidates does not fulfil the needed properties. Note that one has to check every possi-
ble ordering of the candidates, and it turns out that every ordering violates the defined
properties. Hence the domain is not single peaked.
Unfortunately it turns out that even when restricting ourselves to three candidates and
single peaked domains only, Plurality with Runoff is still vulnerable to most of the para-
doxes.

Example 4.2. We consider an example preference profile with three candidates. The
preference rankings of the voters are either a � b � c, b � a � c or c � a � b. Then this
domain is single peaked. In this domain the No Show and the Reinforcement paradox can
be observed.

3 4 4
a b c
b a a
c c b

In this preference profile candidate b is the Plurality with Runoff winner. If now two voters
with preference c � a � b abstain from the election, then candidate a is elected which is
preferred from the abstainers.
The following is an example of the Reinforcement paradox within the single peaked domain.
The first two profiles describe the separate districts, and the third is the joint district that
comes up when the two districts are merged into one:

4 6 3
a b c
b a a
c c b

4 3 6
a b c
b a a
c c b

8 9 9
a b c
b a a
c c b

In the two separate districts candidate a wins the elections, whereas when combining the
districts candidate b wins.
In a quite similar domain where the preference rankings a � b � c, b � a � c and
c � b � a are used the Condorcet loser and the Lack of Monotonicity paradox can be
observed. This domain is also single peaked.
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2 1 2
a b c
b a b
c c a

This preference profile is an example of the Condorcet winner paradox in a single peaked
domain. Candidate a wins the election using the Plurality with Runoff rule, but candidate
b is the Condorcet winner.

6 5 6
a b c
b a b
c c a

6 5 4 2
a b c a
b a b c
c c a b

In this example two voters with preference ranking c � b � a manipulated by moving
candidate a up in the ranking. Before their manipulation candidate a won, but including
the new preference ranking now candidate b wins. Note that the manipulated domain is
no longer single peaked. But as the manipulation of the individual preference ranking can
be seen as a dishonest report of the genuine individual preference, one can argue that also
the Monotonicity paradox can happen in a single peaked domain.

This shows that even such a strong restriction does not suffice to make the Plurality with
Runoff rule less vulnerable to voting paradoxes. Note that this observation holds for four
candidates as well, as we can easily turn the above examples to a four candidate election
by ranking the fourth candidate last for every voter. This does not change the assumption
of single peakedness. Hence also for four voters the paradoxes, that the Plurality with
Runoff rule is vulnerable to, can happen in a single peaked domain.
However, in [FN19] several other domain restrictions are considered, whereas the number
of candidates is unrestricted. By doing so Felsenthal and Nurmi can show that Plurality
with Runoff is not longer vulnerable to the No Show paradox if there is a Condorcet winner
in the preference profile that is also elected by the Plurality with Runoff procedure. Also
the Monotonicity paradox cannot happen in a domain where there exists a Condorcet
winner that is simultaneously the Plurality with Runoff winner. On the other hand the
Reinforcement paradox cannot be tackled by this approach. So even if in both districts
there is a Condorcet winner that is elected by the Plurality with Runoff procedure, it
can still happen that another candidate is elected by Plurality with Runoff in the joint
district as the following example from [FN19] shows.

Example 4.3. Consider the following two districts:

5 4 4 3
a b c c
b a a b
c c b a

4 3 3 3
a b b c
c a c a
b c a b

In both districts candidate a is the Condorcet winner. Also candidate a is elected as the
unique Plurality with Runoff winner. This seems like a rather stable position which is why
it is even more astonishing what happens if the two districts are merged:
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5 4 7 3 7 3
a a b b c c
b c a c a b
c b c a b a

Clearly candidate a is still the Condorcet winner. But now candidate a is eliminated in
the first round of the Plurality with Runoff procedure already as it is ranked first by the
smallest number of voters, and hence we witnessed a rather surprising instance of the
Reinforcement paradox.

We see that even this strict restriction that demands the existence of a seemingly stable
profile does not suffice to make the Plurality with Runoff procedure immune to all para-
doxes. One also has to add that Plurality with Runoff might even not elect the Condorcet
winner if one exists.

In the following we will now focus on a unrestricted domain with three or four candi-
dates again but we now assume a large amount of voters. As we have already seen that
paradoxes can happen for the Plurality with Runoff procedure already for a rather small
number of voters, we are now interested in seeing how this develops when the amount of
voters is rather large. Hence we are interested in the limit probability of certain paradoxes
when the number of candidates is fixed, and the number of voters tends to infinity. As
listed above if the number of candidates is fixed to be three, some research is already done
and some theoretical results are determined. Hence the limit probability for an instance of
the Monotonicity paradox is 5%21 and for the Condorcet Winner paradox it only happens
in 4% of the preference profiles in which Condorcet winners exist22, which is a rather small
probability. Especially in comparison to the also very popular and simple Plurality rule
this small probability for the Condorcet Winner paradox is a valid argument for the Plu-
rality with Runoff rule. The Plurality rule selects a candidate different to the Condorcet
winner in 12% of all profiles in which a Condorcet winner exists, which is three times
the frequency of the Plurality with Runoff rule. As many consider the Condorcet Winner
paradox as quite severe, and an instance of this paradox is often quite obvious for the
voters to see, this could be the cause why the Plurality with Runoff rule is chosen over the
Plurality rule despite its susceptibility to many other paradoxes. As we did not find such
results, we decided to examine the frequency of the Lack of Monotonicity paradox and
the frequency of the Reinforcement paradox ourselves following the introduced approach
with Ehrhart theory.

21[LMS17]
22[OLS19]
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4.5.2 Analytical Results for the No Show paradox with Ehrhart Theory

In order to make use of Ehrhart theory and the NORMALIZ [BIR+] software one has to
describe the preference profile in which the No Show paradox appears for the Plurality
with Runoff rule as system of inequalities. This inequality description has already been
determined by Lepelley and Merlin [LM01]. Due to the neutrality of the voting rule we
can assume for now that candidate c wins the election, and candidate a is eliminated in
the first step. Note that it is not possible that no candidate is eliminated in the first step
as this would imply that candidate c is ranked first by an absolute majority of the voters.
Such an absolute majority win can only be changed if some of the voters that rank c first
do not show up, but as they are content with the outcome of the election they have no
incentive to abstain the election. Therefore only elections where one of the candidates is
eliminated in the first step come into question.

n5 + n6 ≤ 1/2
6∑

i=1

ni (33)

n3 + n4 ≤ 1/2
6∑

i=1

ni (34)

Due to the above mentioned reasons neither candidate b nor candidate c can be ranked
first by an absolute majority as they would then be immediately elected. This is ensured
by the above two inequalities.

n5 + n6 > n1 + n2 (35)

n3 + n4 > n1 + n2 (36)

n2 + n5 + n6 > n1 + n3 + n4 (37)

Inequalities (35) and (36) state that candidate a gets eliminated in the first step as it has
the smallest number of first places. After a’s removal the pairwise comparison between
candidates b and c is carried out which returns candidate c as the Plurality with Runoff
winner due to (37).

n1 + n2 > n4 (38)

In this situation only voters with preference ranking b � a � c can benefit from abstaining
the election as they can change the elimination process in their favour. The number of
voters of this type is encoded as n3. We need to make sure that there are enough voters of
this type present at the election. Hence when removing all voters with ranking b � a � c,
which corresponds to setting n3 = 0, candidate b has to be eliminated instead of candidate
a. This is ensured by (38).
It is now left to demand that deleting k, k ∈ N, 0 < k ≤ n3 many voters succeeds to make
candidate a the new Plurality with Runoff winner. Hence the following two inequalities
have to hold:

n1 + n2 > n3 − k + n4 (39)

n1 + n2 + n3 − k > n4 + n5 + n6 (40)
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Inequality (39) states that after the removal of k many voters with ranking b � c � a,
candidate b gets now eliminated instead of candidate a as it lost first ranks through the
abstention of voters. Now candidate a wins the paired comparison against candidate
c as ensured by (40), and is therefore the new Plurality with Runoff winner. Hence the
abstention of k many voters led to their benefit which characterises the No Show paradox.
Fortunately adding those two inequalities (39) and (40) results in

2n1 + 2n2 − 2n4 − n5 − n6 > 0 (41)

which is independent of k. And therefore adding (41) to (33) - (38) describes a general
instance of the No Show paradox.
A proof that this inequality description is suited for its purpose can be found in [LM01].

Note that all three candidates can be chosen to be the winner in the original prefer-
ence profile, and then still two candidates are available to be eliminated in the first step.
Hence in total there are six possibilities in which the No Show Paradox happens, but
only one possibility is described as a set of inequalities. Due to symmetry of the cases it
suffices to multiply the result by 6 to account for the six possible cases.
With the help of NORMALIZ [BIR+] we get:

Theorem 4.4. The limit probability that an instance of the No Show paradox happens in
a preference profile with three candidates under the assumption of IAC and under the use
of the Plurality with Runoff rule is

P(No Show paradox for Plurality with Runoff |m = 3, n→∞) = 6 · 47

6912
≈ 4.0799%.

This result is in perfect accordance to the result of Lepelley and Merlin [LM01] who used
integration in order to obtain the polyhedral volume and thus the limit probability.
Additionally we can even obtain the probability for the No Show paradox in dependency
of the number of voters.

Theorem 4.5. The probability of the No Show paradox combined with the Plurality with
Runoff voting rule in a preference profile with three candidates under the assumption of
IAC can be described by a quasipolynomial with period 24 and degree 5.

In figure 3 one can see the probability in dependency of the voters.
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Figure 3: Probability of the No Show paradox under the Plurality with Runoff rule
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4.5.3 Analytical Results for the Reinforcement paradox with Ehrhart Theory

The Plurality with Runoff rule is vulnerable to the Reinforcement paradox for three can-
didates as well. Hence we decided to also use Ehrhart theory to obtain the probability
with which one can expect the Reinforcement paradox to happen when the Plurality with
Runoff rule is used on randomly selected profiles with three candidates. In order to do
so we need to find an inequality description again. As the Plurality with Runoff rule can
select a winner in either of its two steps we have to make a case distinction. We will
again assume, due to the neutrality of the rule, that candidate a is selected as winner.
Note that it is not possible that candidate a has an absolute majority in both districts as
then it certainly also has an absolute majority in the combined district. It can also not
happen that in both districts the same elimination order happens as this will only produce
the identical elimination order in the joint district, and therefore no different winner can
occur there. So the cases left to consider are, if in one of the districts candidate a has an
absolute majority and it has not in the other district, and if there are different elimination
orders in the districts.
Consider first the case that in one of the districts a is absolute majority winner. Let
xi ∈ N correspond to the number of voters with ranking i in the first district and yi ∈ N
the number of voters with ranking i in the second district. The rankings are lexicograph-
ically ordered.

x1 + x2 > x5 + x6 (42)

x3 + x4 > x5 + x6 (43)

x1 + x2 + x5 > x3 + x4 + x6 (44)

Inequalities (42) and (43) ensure that candidate c is eliminated in the first step as it has
the smallest number of first ranks. The constraint (44) ensures that candidate a then
wins over b in a paired comparison in the first district.

y1 + y2 > 1/2

6∑
i=1

yi (45)

This inequality makes sure that in the second district candidate a is the absolute majority
winner.

x1 + x2 + y1 + y2 > x3 + x4 + y3 + y4 (46)

x5 + x6 + y5 + y6 > x3 + x4 + y3 + y4 (47)

x4 + x5 + x6 + y4 + y5 + y6 > x1 + x2 + x3 + y1 + y2 + y3 (48)

Now for the joint district a different elimination order has to happen in order to obtain
a different winner. Hence now candidate b has to be eliminated in the first step. This is
ensured by inequalities (46) and (47). Therefore now candidates a and c reach the second
step, and c has to win the paired comparison as demanded in (48).
Combining all inequalities then yields a linear program that describes an instance of the
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Reinforcement paradox. Note that we have to account for the symmetric possibilities of
obtaining a Reinforcement paradox. There are three possibilities as to which candidate
is the winner in the separate districts and two possibilities which candidate is eliminated
in the first district. This then specifies who can be the winner in the joint district. Also
it can happen that the first district has the absolute majority winner and the second has
not, which is symmetric, and therefore has equal probability.
Similar to this inequality description one can proceed for the case that in none of the
districts there is an absolute majority winner, and instead in the first district candidate c
is eliminated in the first step, and in the second district candidate b is eliminated. Using
both these linear programs and NORMALIZ [BIR+] one can obtain the limit probability
for the Reinforcement paradox under the Plurality with Runoff rule. Again the symmetric
cases have to be considered. There are three possibilities as to which candidate wins
both separate districts. The ordering of the two separate districts is symmetric and
the elimination order also induces two possibilities. Hence multiplying the sum of the
probabilities obtained through both of the linear programs by 12 accounts for symmetries.

Theorem 4.6. The limit probability that an instance of the Reinforcement paradox hap-
pens in a profile with three candidates under the assumption of IAC and under the use of
the Plurality with Runoff rule is

P(Reinforcement paradox for Plurality with Runoff |m = 3, n→∞) ≈ 0.59%.

As mentioned in the introduction of Ehrhart Theory in chapter 4.3 we divide the number
of all paradoxical profiles by the number of all possible profiles. In this case one can argue
that, when considering the Reinforcement paradox, dividing by the number of all possible
profiles is not very reasonable. This includes dividing by the number of all profiles in
which the two separate districts do not even coincide in their winning candidates, al-
though in such profiles an occurrence of the Reinforcement paradox is simply impossible.
This of course decreases the probability of the Reinforcement paradox in an unnatural
manner. So by this reasoning dividing by the number of all profiles in which the winner
of the two separate districts coincides is more natural.

We are now left with determining the probability that the two winners of the separate
districts coincide. Assuming IAC gives no candidate an expected advantage over one an-
other, and hence the probability that candidate a wins in a randomly selected profile is
1/3. As the districts are assumed to be independent of another, the event that candidate
a wins in the second district simultaneously is 1/9. As there are three possible candidates
the overall probability that there is the same winner in both districts is 1/3. Therefore we
can now determine the probability of the Reinforcement paradox if both districts elect
the same candidate.

Corollary 4.1. The limit probability that an instance of the Reinforcement paradox hap-
pens in a profile with three candidates under the assumption of IAC and under the use of
the Plurality with Runoff rule, if the winners of the separate districts coincide, is

P(Reinforcement paradox |m = 3, n→∞, same winner in both districts) ≈ 1.77%.

We have studied the Plurality with Runoff rule quite thoroughly. We have seen that even
in single-peaked domains Plurality with Runoff can suffer from paradoxical situations.
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For all considered paradoxes, that can happen in the three candidate case, we obtained
frequencies of their occurrences. We can conclude that Plurality with Runoff suffers
significantly less often from the Condorcet winner paradox than other rules that are prone
to this paradox. For the Lack of Monotonicity paradox the expected frequency is 5% and
for the No Show paradox it is 4%. These frequencies are not dramatically huge, but are
also not that small that they can be ignored. The Reinforcement paradox happens not
very often, and the frequency will later be compared to the frequencies of other rules.
Overall it is important to stress that Plurality with Runoff does have more problems with
the occurrence of paradoxical situations than other rules that are considered here.
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4.6 Analysis of the Reinforcement Paradox with Ehrhart The-
ory

Because Ehrhart theory has, at least to our knowledge, not been applied to the Rein-
forcement paradox yet, we decided to investigate this paradox with the use of Ehrhart
theory. Due to Young’s Theorem 4.2 we know that the Reinforcement paradox cannot be
avoided for Condorcet consistent rule, and such rules play an important part in voting
theory which makes it valuable to learn about the frequency of this paradox. Given the
frequency is reasonably low the susceptibility to the Reinforcement paradox is possibly
not a big threat to the attractiveness of Condorcet extensions.

4.6.1 Black’s Rule

Black’s rule is a Condorcet consistent rule that differs from the set of rules from Theorem
3.2. Due to Young’s Theorem it is also susceptible to the Reinforcement paradox, and
apart from this vulnerability the No Show paradox can occur as well. As shown from
Brandt, Hofbauer and Strobl [BHS19] with the help of Ehrhart theory the No Show para-
dox is not very likely to happen. Therefore one can argue that the theoretical possibility
of a No Show paradox occurrence is so low that this is not a strong argument against
Black’s rule in comparison to Maximin, Nanson’s, Kemeny’s and Young’s rule which are
not vulnerable to the No Show paradox at all. It is left to compare the frequencies of the
Reinforcement paradox of Black’s rule to the aforementioned rules. As we want to apply
Ehrhart theory, we have to formulate a paradoxical preference profile under the use of
Black’s rule as a linear program.
As Black’s rule elects the Condorcet winner whenever it exists and the Borda winner in
all other cases, we have to distinguish these two cases. Due to neutrality one can assume
that candidate a is the winner in the separate districts, and candidate b is the winner
of the joint district. Note that if in both districts the same winner is elected, and it is
a Condorcet winner, then the same candidate will be a Condorcet winner in the joint
district, and therefore no Reinforcement paradox can occur in this case. Also if in both
districts there is the same majority cycle, this carries over to the joint district, and hence
the winner cannot differ. So we are left with two cases. The first is that in one of the
districts candidate a is elected as it is Condorcet winner, and in the other district there is
no Condorcet winner, and candidate a is elected as Borda winner. The second case is that
there are no Condorcet winners in both districts, and different majority cycles happen.
We have to make a case distinction for the joint district as well, and again distinguish
between a district in which a Condorcet winner exists and one in which it does not. As an
example consider the case that there is a Condorcet winner in one of the districts, and in
the other there is not, but in the joint district again a Condorcet winner is elected. Due
to the symmetry of the districts one can assume that the Condorcet winner occurs in the
first district, and the majority cycle in the second. The following linear program assumes
further that the majority cycle is a � c � b � a in the second district. Let the variables
that correspond to the number of voters of ranking i in the first district be denoted as
xi ∈ N and yi ∈ N as the respective variables in the second district.
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x1 + x2 + x5 > x3 + x4 + x6 (49)

x1 + x2 + x3 > x4 + x5 + x6 (50)

These two inequalities state that candidate a is the Condorcet winner in the first district.
For the second district it has to hold:

y1 + y2 + y3 > y4 + y5 + y5 (51)

y3 + y4 + y6 > y1 + y2 + y5 (52)

y2 + y5 + y6 > y1 + y3 + y4 (53)

2y1 + 2y2 + y3 + y5 > 2y3 + 2y4 + y1 + y6 (54)

2y1 + 2y2 + y3 + y5 > 2y5 + 2y6 + y2 + y4 (55)

Inequalities (51) - (53) describe the majority cycle. Therefore Black’s rule has to elect
the Borda winner which is also candidate a as ensured by (54) and (55).
The following inequalities describe the joint district.

x3 + y3 + x4 + y4 + x6 + y6 > x1 + y1 + x2 + y2 + x5 + y5 (56)

x3 + y3 + x4 + y4 + x1 + y1 > x2 + y2 + x5 + y5 + x6 + y6 (57)

These two constraints demand that candidate b is Condorcet winner in the joint district
which corresponds to an occurrence of the Reinforcement paradox.

In the following combinations of districts we obtained a positive probability for the case
that candidate a is elected in both the separate districts and candidate b in the joint.

District 1 District 2 Joint District Probability for Reinforcement
Condorcet winner a � c � b � a Condorcet winner 0.01756%
Condorcet winner a � b � c � a a � b � c � a 0.00096%
Condorcet winner a � c � b � a a � c � b � a 0.00003%
a � b � c � a a � c � b � c Condorcet winner 0.00025%

Note that in order to obtain the total probability of the Reinforcement paradox one has to
account for the symmetric possibilities. There are three possible winners of the elections
in the separate districts, two possible winners of the joint district and two possibilities
of the ordering of the above noted districts. Hence one has to multiply the sum of the
aforementioned probabilities by 12 to obtain the total probability.

Theorem 4.7. The limit probability that an instance of the Reinforcement paradox hap-
pens in a preference profile with three candidates, under the assumption of IAC and under
the use of Black’s rule is

P(Reinforcement paradox for Black’s rule |m = 3, n→∞) = 12 · 0.0188 ≈ 0.23%

Corollary 4.2. The limit probability that an instance of the Reinforcement paradox hap-
pens in a preference profile with three candidates, under the assumption of IAC and under
the use of Black’s rule, if the winner in the separate districts coincide, is

P(Reinforcement paradox |m = 3, n→∞, same winner in both districts ) ≈ 0.69%.
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4.6.2 Maximin Rule

As stated in Theorem 3.2 the choice sets of Maximin, Kemeny’s, Young’s and Nanson’s
rule are intersecting in the three candidate case which makes this set of voting rules quite
attractive. Therefore we are especially interested in the frequency of the Reinforcement
paradox when using these voting rules. Hence we decided to apply the analytical ap-
proach using Ehrhart theory to this problem setting. We will use the Maximin rule for
our calculations as it is computationally not that demanding in contrast to Young’s and
Kemeny’s rule. Also it does not require a runoff procedure and revised calculations in
contrast to Nanson’s rule which makes it the most suitable rule in order to be described
as system of linear inequalities.

We will assume due to neutrality that candidate a is elected in both separate districts,
and candidate b wins in the joint district.
In order to describe the Reinforcement paradox under the Maximin rule, define mi as the
paired comparisons in the first district and gi as the paired comparisons of the second dis-
trict. Then obviously the comparisons in the joint district are the sums of the respective
mi and gi.
In order to describe the Maximin winners with an inequality description, it is crucial which
pairwise comparison constitutes the row minimum for each candidate. As for every of the
three candidates two pairwise comparisons are listed, there are eight possibilities on how
the row minima are distributed within the paired comparison matrix. These possibilities
are listed in the following, whereby the row minima are denoted as boxed entries of the
matrices:

1.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −

2.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −

3.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −
4.

a b c
a − m1 m2

b m3 − m4

c m5 m6 −

5.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −

6.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −
7.

a b c
a − m1 m2

b m3 − m4

c m5 m6 −

8.
a b c

a − m1 m2

b m3 − m4

c m5 m6 −

As mentioned above, we will assume that in both districts candidate a is the Maximin
winner. If the districts have either a majority margin matrix with pattern 4. or 8., can-
didate a cannot be the Maximin winner, and such districts can therefore be excluded.
Similarly if the joint district turns out to have a majority margin with pattern 5. or 7.,
then candidate b cannot be the Maximin winner in the joint district.
Note also that if the row minima happen at the same matrix entry, so for example both
m1 and g1 are the row minima of candidate a in the two separate districts, then m1 + g1
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will be the row minimum of candidate a in the joint majority matrix. Therefore we can
exclude all joint districts that do not have m1 + g1 as the row minimum of candidate a in
the joint district if m1 is row minimum in the first district and g1 in the second.
This is also the reason why the Reinforcement paradox cannot happen if both districts
have the same pattern of row minima because the row minima and their relations are
transferred to the joint majority matrix by adding the margins. Hence we can exclude
the case that both districts have the same row minimum pattern.

The following linear program is an example for the combination of two separate dis-
tricts in which the Reinforcement paradox takes place. We assume, as stated above,
that candidate a wins in both of the separate districts, but candidate b wins in the joint
district. The row minima of the first district are distributed as in pattern 1.:

m1 −m2 ≤ 0 (58)

m3 −m4 ≤ 0 (59)

m5 −m6 ≤ 0 (60)

These inequalities state the entries of the paired comparison matrix that constitute the
row minimum for each candidate in the first district. For example candidate a’s row
minimum is admitted at m1 due to (58).

m3 −m1 < 0 (61)

m5 −m1 < 0 (62)

Through these inequalities it is ensured that candidate a is the Maximin winner in the
first district as its row minimum is the largest of all candidates.

g1 − g2 ≤ 0 (63)

g4 − g3 ≤ 0 (64)

g5 − g6 ≤ 0 (65)

g4 − g1 < 0 (66)

g5 − g1 < 0 (67)

Similarly to the first district now the second district is described through inequalities (63)
- (67). As explained above the second district cannot also have a row minimum pattern
1. as the first district. We decided to demand a row minimum pattern as in matrix 3.
Hence candidate b’s row minimum in the second district is set to m4, whereas it is m3

in the first district. The row minima of the candidates a and c coincide in their matrix
entries to those from the first district, and therefore they must be transferred to the
paired comparison matrix of the joint district. Thus the row minimum of candidate a in
the joint district must occur at m1+g1 as it occurred at m1 in the first district and at g1 in
the second. Similarly also candidate c’s row minimum in the joint district is determined
by the separate districts. Only the row minimum of candidate b is not pre-determined
already. The only two patterns that can occur in the paired comparison matrix of the
joint district are 1. and 3. We decided to state the case that pattern 1. occurs in the
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joint district as ensured by the following inequalities:

m1 + g1 −m2 + g2 ≤ 0 (68)

m3 + g3 −m4 − g4 ≤ 0 (69)

m5 + g5 −m6 − g6 ≤ 0 (70)

In this last set of inequalities we state that candidate b is the Maximin winner in the joint
district:

m1 + g1 −m3 − g3 < 0 (71)

m5 + g5 −m3 + g3 < 0 (72)

Note that every paired comparison margin can be translated in terms of number of voters
with a certain preference ranking, so for example m1 = x1 + x2 + x5 as m1 is the number
of voters that prefer candidate a over candidate b, and the preference rankings 1,2 and
5 rank a before b. As we already did before we will again use the number of voters of
each possible ranking as our decision variables, and for the implementation we translated
every of the above inequalities in terms of those variables. This formulation has the big
advantage that it uniquely specifies the anonymous preference profile that causes the in-
stance of the Reinforcement paradox. Therefore we have six variables in each district,
and it follows that the dimension of the above - with inequalities - described polyhedron
is 12.

Apart from the described restrictions one has to take into account all possible combina-
tions of two separate districts with majority margins of pattern 1, 2, 3, 5, 6 or 7 and a
resulting joint district. Depending on the entries of the row minima the inequality descrip-
tion has to be altered. So for every of the above paired comparison matrices a different
inequality description is used in order to describe the Maximin winner. Hence for every
combination of districts and resulting joint districts a special inequality description has
to be implemented. With the use of NORMALIZ [BIR+] all those cases were examined,
and eight cases were identified in which the Reinforcement paradox can happen with a
positive probability. These cases and the respective probabilities are the following. The
number of the districts refer to the pattern of their paired comparison matrix.

District 1 District 2 Joint District Probability for Reinforcement
1 3 1 0.00244%
1 3 3 0.00163%
2 3 1 0.00382%
2 3 2 0.00081%
2 3 3 0.00015%
3 6 1 0.00054%
3 6 2 0.00027%
3 6 3 0.00054%

As the incidents of the Reinforcement paradox happen symmetrically, the probability of
Reinforcement is also 0.00244% if the first district has pattern 3., and both the second
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district and the joint district have pattern 1. Hence the total probability of the Reinforce-
ment paradox is double the amount of the above listed probabilities and hence 0.0204%.
We have assumed that candidate a wins in the separate districts and candidate b in the
joint district. Hence we have to multiply the above number by 6 to take into account that
there are three possible winners for the separate districts and two for the joint district
then. Hence the following turns out:

Theorem 4.8. The limit probability that an instance of the Reinforcement paradox hap-
pens in a preference profile with three candidates, under the assumption of IAC and under
the use of the Maximin rule is

P(Reinforcement for the Maximin Rule |m = 3, n→∞) = 6 · 0.0204 = 0.1224%.

In [CMM14] Monte Carlo simulations are done in order to obtain probabilities for the
Reinforcement paradox up to 100 voters. Due to this moderate number of voters the
results are not perfectly comparable, but it is still nice to see that the order of magnitude
seems to be similar. In [CMM14] even the maximal probabilities, that seem to be more
likely for smaller electorates, are well below 1% and their result for 100 voters is even
below 0.2%. Hence it is fair to say that our theoretical limit probability is in accordance
to their work.

Corollary 4.3. The limit probability that an instance of the Reinforcement paradox hap-
pens in a preference profile with three candidates, under the assumption of IAC and under
the use of Maximin rule, if the winner of the separate districts coincide, is

P(Reinforcement paradox |m = 3, n→∞, same winner in both districts ) ≈ 0.37%.

4.6.3 Comparison of the Probabilities for the Reinforcement paradox

We applied Ehrhart theory to three different rules in order to find out about the fre-
quency of the Reinforcement paradox. As the Maximin rule is only vulnerable to the
Reinforcement paradox, and turns out to be equivalent to some other voting rules for
three candidates, we were especially interested in this rule. In order to have reasonable
trademarks, we decided to compare to the Plurality with Runoff rule and Black’s rule.
Plurality with Runoff has previously been investigated because of its popularity. As we
also wanted to compare to a Condorcet consistent rule, we chose to take Black’s rule into
account. We obtained the following results for the limit probabilities:

Voting Rule Frequency of Reinforcement given both districts elect equivalently
Pl. with Runoff 1.77%

Black’s rule 0.69%
Maximin Rule 0.37%

Overall the frequencies are quite low, so the Reinforcement paradox should not be a
big problem in elections with a large number of voters. Nevertheless, Plurality with
Runoff suffers the Reinforcement paradox more often than the other rules do. As we have
seen before, even domain restrictions do not prevent the Reinforcement paradox. Black’s
rule and Maximin rule both exhibit the Reinforcement paradox very rarely, whereby the
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Maximin rule suffers even less often than Black’s rule. This presents another argument
why the Maximin rule and its related and equivalent rules are a good choice in the three
candidate case.

4.7 Further Ideas and Limitations

Not only paradoxical behaviour can be investigated with Ehrhart theory. Also an analysis
of the similarity of voting rules can be done with this approach. It is an interesting
question with what frequency a pair of rules selects different or disjoint winning sets
similar to what we did previously for the Maximin rule and the Nanson rule following an
experimental approach in 3.2 and 3.3. This task can also be approached with Ehrhart
theory as we can often describe the situation that one rule selects one candidate, and
the other rule does not select the same candidate as linear program. Obviously we could
apply this approach for almost every pair of here considered rules, but this would surely
go beyond the scope of this thesis.
Unfortunately this task showcases the limitations of the approach with Ehrhart theory.
It has already been established by other researchers that investigating frequencies of
paradoxical behaviour with Ehrhart theory for four candidates can lead to infeasible
problems. This is due to the fact that the dimension of variables grows exponential in the
number of candidates, and when investigating problems with four candidates the number
of variables is already 24, whereas it was 6 for the three candidate case.
Also the problem of comparing voting rules is likely to be quite demanding. If you consider
the Plurality and the Plurality with Runoff rule as an example, these two rather simple
rules already show how dramatically the running times change when moving from three
to four candidates. Say for instance we are interested in the frequency of how often
Plurality and Plurality with Runoff select different winners. For the three candidate case
the inequality description looks as follows:

n1 + n2 > n3 + n4 (73)

n3 + n4 > n5 + n6 (74)

n1 + n2 + n5 < n3 + n4 + n6 (75)

We assumed that candidate a is the Plurality winner, whereas candidate b gets elected
by Plurality with Runoff. Using this inequality description in NORMALIZ [BIR+] we get
that the limit frequency of this specific situation is 2.05% and hence 12.3% when taking all
symmetric possibilities into account. The calculation of the describing quasipolynomial
terminated in under a second. Also Lepelley, Louichi and Smaoui [LLS08] were able to
calculate this within a few seconds. In the case of four candidates they concluded that
it was computationally too demanding and hence infeasible. This does show that the
running time can increase dramatically when we step up to four candidates.
Still, we can make use of the fact that we are often only interested in the limit probability.
This has been used by De Loera et al.[LDK+13], and hence they were able to come up
with the limit probability that Plurality and Plurality with Runoff select different winners
in an election with four candidates. Also in our implementation of the four candidate case
we are able to obtain the limit probability within seconds. We can conclude that Plurality
and Plurality with Runoff choose different winners in 24.5% of large elections with four
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candidates. Nevertheless, the calculation of the whole describing quasipolynomial remains
infeasible.
Yet another improvement has been found by Schürmann [Sch13]. He shows that one can
exploit appearing symmetries, and further decrease the dimension which also reduces the
computation time. He claims that this approach is hundred times faster than if the full
dimensional inequality description is used.
As another example we also considered Plurality and Borda’s rule. In contrast to runoff
procedures there is no case distinction needed here, and the inequality description consists
of only six inequalities. We were able to obtain the limit probability that Plurality and
Borda’s rule do not coincide in their decision for a four candidate election, which turns
out to be 27.5%. Nevertheless even restricting ourselves to the limit probability resulted
in a running time of above two hours. In this case an exploitation of symmetries is not as
easily possible as before due to the specific inequalities, and hence it is hard to improve
the running time in this case.

We noted that often the running times are higher when using strict inequalities in the
inequality description. Usually strict inequalities are needed in order to describe the de-
sired event, because inequalities that are not strict, can result in ties that should not
be included. But when restricting ourselves to the limit probability, we can make use
of the fact that the probability for ties vanishes as the number of voters grows higher.
This knowledge allows us to use not strict inequalities as they only include events with
probability zero to the limit calculations. We believe that this idea should be further
investigated, and that it could improve calculations with Ehrhart theory.

Note that in contrast to Maximin and Nanson’s rule the above mentioned rules are rather
easy to describe as linear inequalities as they do not induce a case distinction such as
Nanson’s rule. The Maximin rule needs several cases as explained in section 4.6.2 as well.
Also exploiting symmetries of the inequalities might not always be possible depending
on the specific rule, not to mentioned that some of the rules simply do not allow for an
inequality description. Hence the chance of obtaining feasible results for example of the
similarity of Maximin’s and Nanson’s rule in the four candidate case must be expected to
be rather low. This of course is unfortunate as these rules have drawn our attention due
to their similarity and their nice behaviour concerning paradoxes.
Nevertheless, using Ehrhart theory to obtain results on the similarity of rules and how
often they coincide in their decision is an interesting task that can surely be applied for
the three candidate cases, and is very interesting to research further for four candidates.
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5 Conclusion and Outlook

The aim of this master thesis is to get insights into which rules are attractive in three
and four candidate elections. By working towards this goal we obtained four major
accomplishments:

� A detailed investigation of equivalences and differences of voting rules
for three and four candidates
A set of voting rules was identified to be equivalent in the three candidate case. We
were able to prove the equivalence of Maximin, Kemeny’s and Young’s rule. Al-
though not further investigated also Dodgson’s and Schulze’s rule have been proven
to be equivalent in that case. Furthermore it has been shown that the choice set
of the Nanson rule is always contained inside the choice set of the aforementioned
rules. Hence four Condorcet consistent rules provide a nonempty intersection of
their choice sets in the three candidate case. For the four candidate case it turned
out that no such set of rules exists. We were only able to identify properties that
lead to an equivalence of the Maximin and Young’s rule.
For all other pairs of rules - whether in the three candidate or in the four candidate
case - we provided preference profiles in which the respective rules have choice sets
with empty intersection, and thus do not agree on a winning candidate. In order
to gain insights into the behaviour of voting rules for a small number of voters we
minimised the number of voters while searching for such profiles. It can be seen that
almost all these examples occur for under ten voters already. Note that the number
of voters for which the choice sets differ, but may have a nonempty intersection
can only be smaller, and therefore differences in rules can occur for an even smaller
number of voters already.

� An overview of the axiomatic properties for selected voting rules and
paradoxes for three and four candidates
Not only the voting rules themselves but also their behaviour in paradoxical voting
situations play an important role when investigating the quality of rules. Hence
we provided an overview on existing results in this area. It is quite well known
which rules are vulnerable to which paradoxes in general. For every rule that proves
to be vulnerable to a certain paradox for three or four candidates we distinguished
between a small and a large number of voters. Hence we stated which is the smallest
number of voters for which the respective paradox can occur. When considering a
large number of voters, we were especially interested in statements about the limit
case where the number of voters tends to infinity. Therefore we listed results for this
case that have been obtained with the use of Ehrhart theory. As applying Ehrhart
theory is sometimes infeasible, we also considered experimental results that use a
rather high number of voters.

� A thorough analysis of the axiomatic properties of the Plurality with
Runoff rule
Due to its simplicity and enormous popularity in political elections we decided to
take a closer look at the Plurality with Runoff rule. As Plurality with Runoff is
vulnerable to the No Show paradox, the Reinforcement paradox, the Lack of Mono-
tonicity paradox and the Condorcet Winner paradox for three candidates already,
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several domain restrictions were considered. Results about the frequency of the
Condorcet Winner paradox and the Lack of Monotonicity paradox for three can-
didates have previously been obtained with the use of Ehrhart theory. In order
to complement these results we managed to apply Ehrhart theory to the No Show
paradox and the Reinforcement paradox, and have therefore obtained a thorough
understanding of the behaviour of the Plurality with Runoff procedure in the three
candidate case. Our results suggest that there are several other rules that perform
better than Plurality with Runoff considering the introduced quality measures and
that are equally simple.

� An analytic study of the Reinforcement paradox for three candidates Due
to the previously mentioned result that Maximin, Kemeny’s and Young’s rule are
equivalent for the three candidate case we were especially interested in their ax-
iomatic behaviour. The only paradox out of the five paradoxes under consideration,
that can happen for those rules in a three candidate election, is the Reinforcement
paradox. We decided to study this paradox thoroughly. We applied Ehrhart theory
to the Maximin rule, Black’s rule and Plurality with Runoff rule to get insights
into the frequency of the Reinforcement paradox for different rules. To the best of
our knowledge an application of Ehrhart theory to the Reinforcement paradox has
not been made before, and we were able to obtain new results here. These results
support our assessment of the Maximin rule and the related rules as very attractive
because the frequency of the Reinforcement paradox is pleasantly small.

The goal of this master thesis was to identify attractive rules for three and four candidate
elections. In order to measure the attractiveness of a voting rule we considered the follow-
ing criteria. Firstly, studying the similarity and equivalence of rules provides information
if certain rules agree in their decision, which indicates a reasonable choice. Secondly, a
rule can be considered more attractive if it is hardly susceptible to paradoxical situations.
Other criteria, that should be kept in mind, are simplicity of the rules, computational
hardness and decisiveness.
In the three candidate case we succeeded in finding a set of rules that seem to be at-
tractive in many ways. The fact that Maximin, Kemeny’s, Young’s and Nanson’s sets
are never disjoint, already indicates a good fit. Furthermore these rules satisfy Moulin’s
Theorem as they are Condorcet consistent and do not suffer the No Show paradox for
three candidates which is impossible for four or more candidates. Therefore out of the
five considered paradoxes they are only vulnerable to the Reinforcement paradox. The
smallest instances for the occurrence of the Reinforcement paradox involve at least eleven
voters. For a very small number of voters, the rules are indeed immune to every para-
dox that has been considered here. Through the application of Ehrhart theory results
for a large, in fact infinitely large, number of voters have been obtained. These results
show that the frequency with which an instance of the Reinforcement paradox can be
expected is rather low. Also in comparison with other rules that suffer the Reinforcement
paradox for three candidates - we have used a Condorcet consistent and a not Condorcet
consistent rule as trademark - the frequency is desirably small. Additionally, Nanson’s
and the Maximin rule are easy to compute and reasonably simple so that they can be
quickly understood by the voters. Nanson’s rule is not always equivalent to Maximin,
Kemeny’s and Young’s rule, but it differs in rare occasions. Nevertheless its choice set
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is still included in the choice sets of the other equivalent rules. Hence Nanson’s rule is
the most decisive rule among our set of four rules but still provides all good qualities
that have been stated above. As decisiveness is often desired and due to the other listed
reasons the recommendation for the three candidate case is Nanson’s rule.

The picture is not as clear for the four candidate case. The first drawback in this case was
the fact that no pair of rules turned out to be equivalent. Also not nearly as much results
about axiomatic properties have been obtained with the use of Ehrhart theory. This is
due to the increased dimension of the problems that causes infeasibility as it demands
exorbitant computational power. So unfortunately we, as many others, were not able
to contribute to analytical results in this area. Nevertheless the results that have been
obtained in the past provide hints as to which rules are attractive in this case. Again
Maximin and Nanson’s rule seem to be a good choice due to their simplicity. We also
showed experimentally that these rules are still quite similar in the four candidate case,
and a lot of their decisions coincide. But differences appear in their axiomatic behaviour.
Additionally to the Reinforcement paradox the Maximin rule can also suffer from the
No Show paradox and the Condorcet Loser paradox for four candidates although the fre-
quencies of the latter two have been proven to be quite small. Nanson’s rule on the other
hand can suffer the Lack of Monotonicity, the No Show and the Reinforcement paradox.
The frequency for the No Show paradox seems to be higher than for the Maximin rule.
Still, for some a vulnerability to the Condorcet Loser paradox can understandably be an
exclusion criterion and they might thus prefer Nanson’s rule over the Maximin rule. A
voting rule that avoids this conflict of axioms is Kemeny’s rule as it is only vulnerable to
the Reinforcement and the No Show paradox. Obviously the computation is harder for
this rule, and it is also not quite as straight-forward to understand. We would confidently
say that it comes down to these three rules, and among them it is a question of personal
taste and opinion.

There are certainly attractive rules and important voting paradoxes that have not been
considered in this thesis. Therefore all the investigations we made can be adapted for new
voting rules and different paradoxes. Especially Schulze’s rule is certainly worth further
investigations as it has been shown that it is equivalent to attractive rules in the three
candidate case, and satisfies many desirable properties.
Note that a lot of the rules we considered are runoff rules of some sort. Due to several
rounds of eliminations that are often needed when using those rules, stepping up to four
candidates increases the number of possible elimination orders. This comes often hand
in hand with a high number of cases that have to be distinguished. Due to these case
distinctions and the computational issues we did not apply Ehrhart theory to any four
candidate problem. A way to decrease the dimension of the problems is to make use of
possibly occurring symmetries as described by Schürmann [Sch13]. If computation was
still too demanding, then also experimental results would be quite helpful to quantify the
vulnerability to paradoxical situations.
Also analysis of the similarity of rules as mentioned in 4.7 is an interesting application of
Ehrhart theory, and can provide new insights into which rules are related to one another.
As often criticised for being unrealistic, the IAC assumption can be changed for a more
realistic probability model. One must not forget that assuming IAC enabled us to make
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use of Ehrhart theory, and come up with reproducible analytical results. So ditching this
assumption means losing a nice analytical tool. Obviously studying real election data is a
nice way to obtain empirical results. Note that the PrefLib library [MW13b] is a brilliant
source of real world data, that would surely be worth investigating. With that comes
the major problem that in most elections not strict preference rankings are submitted
in contrast to our assumption throughout this thesis. Hence one would be required to
pre-process the data reasonably or to adapt the computations to also allow for incomplete
or partial rankings and ties within the rankings.
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A Quasipolynomial of the No Show paradox with the

Plurality with Runoff rule

The following are the coefficients of the quasipolynomial that describes the No Show
paradox in a preference profile with three candidates under the assumption of IAC and
under the use of the Plurality with Runoff rule. It has period 24 and degree 5. The
common denominator is 829,440.

x0 x1 x2 x3 x4 x5

0 0 4608 10080 700 −40 47
1 2085 11583 −10730 −3150 165 47
2 15520 1568 −6280 700 −40 47
3 −22275 7983 −1170 −590 165 47
4 −99840 −5312 12640 −1860 −40 47
5 −5915 −31617 −490 −590 165 47
6 272160 −8352 −19080 700 −40 47
7 180285 56943 −13970 −3150 165 47
8 −204800 40448 22880 700 −40 47
9 −174555 −11457 2070 −590 165 47

10 −86880 −70112 −16520 −1860 −40 47
11 −35075 −38097 −3730 −590 165 47
12 207360 30528 10080 700 −40 47
13 183525 37503 −10730 −3150 165 47
14 67360 27488 −6280 700 −40 47
15 3645 33903 −1170 −590 165 47
16 −307200 −31232 12640 −1860 −40 47
17 −187355 −57537 −490 −590 165 47
18 220320 −34272 −19080 700 −40 47
19 154365 31023 −13970 −3150 165 47
20 2560 66368 22880 700 −40 47
21 6885 14463 2070 −590 165 47
22 −35040 −44192 −16520 −1860 −40 47
23 −9155 −12177 −3730 −590 165 47
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Compte-rendus de l’académie des sciences, Paris 254, 616-618,, 1962.

[Fel12] Dan S. Felsenthal. Review of paradoxes afflicting procedures for electing a
single candidate. Electoral Systems, 2012.

[FG76] P.C. Fishburn and William V. Gehrlein. Condorcet’s paradox and anonymous
preference profiles. Public Choice 26, 1–18 (1976), 1976.

[Fis77] Peter C. Fishburn. Condorcet social choice functions. SIAM Journal on
Applied Mathematics, Vol. 33, No. 3 (Nov., 1977), pp. 469-489, 1977.

[FN19] Dan S. Felsenthal and Hannu Nurmi. Voting Procedures Under a Restricted
Domain: An Examination of the (In)Vulnerability of 20 Voting Procedures to
Five Main Paradoxes. SpringerBriefs in Economic, 2019.

[Geh82] William Gehrlein. The frequency of condorcet’s paradox in large groups. April
1982.

https://www.normaliz.uni-osnabrueck.de


82 REFERENCES

[Gib73] Allen Gibbard. Manipulation of voting schemes: A general result. Economet-
rica, Vol. 41, No. 4 (Jul., 1973), pp. 587-601, 1973.

[GL11] William V. Gehrlein and Dominique Lepelley. Voting Paradoxes and Group
Coherence : The Condorcet Efficiency of Voting Rules. Springer Verlag Berlin
Heidelberg, 2011.

[GL12] William V. Gehrlein and Dominique Lepelley. Electoral Systems: Paradoxes,
Assumptions, and Procedures, chapter The Value of Research Based on Simple
Assumptions about Voters’ Preferences, pages 173–200. 2012.
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