Funding Public Goods via Best-Response Dynamics

Felix Brandt (with Matthias Greger, Erel Segal-Halevi, and Warut Suksompong)

17th Meeting of the Society for Social Choice and Welfare July 2024

Funding Public Projects via Best-Response Dynamics

Funding Public Projects via Best-Response Dynamics

- Each agent $i \in N$ distributes amount $C_i > 0$ of a divisible and homogeneous resource (e.g., money) among a set A of public goods (e.g., charities).
- A distribution $\delta_i \in [0, C_i]^A$ is a function with $\sum_{x \in A} \delta_i(x) = C_i$.
 - The set of all distributions of C_i is denoted by $\Delta(C_i)$.
- $C = \sum_{i \in N} C_i$ is called the endowment.
- $\delta = \sum_{i \in N} \delta_i \in \Delta(C)$ is the collective distribution of the endowment *C*.
- Agent *i* receives utility $u_i(\delta) \in \mathbb{R}$ from collective distribution δ .

The Model

Related Models

- Private provision of public goods (e.g., Bergstrom, Blume, and Varian, 1986) agents distribute their wealth between a private and a public good
- - no preferences over different public goods
- Probabilistic social choice/ fair mixing (e.g., Gibbard, 1977; Bogomolnaia et al., 2005)
 - ordinal, linear, or dichotomous preferences
 - exogenous fixed "endowment" of probability mass 1
- Participatory budgeting (e.g., Cabannes, 2004)
 - typically fixed costs for projects, which are either fully funded or not at all ►
 - exogenous endowment
- Budget aggregation (e.g., Freeman et al., 2021)
 - norm-based preferences (ℓ_1)
 - exogenous endowment

Potential Utility Functions

linear

Funding Public Projects via Best-Response Dynamics

Leontief

 ℓ_2 disutilities

Cobb-Douglas Utilities

- Agent *i*'s utility for distribution δ is $u_i(\delta) = \delta(x)^{v_i(x)}$
- Equivalently, $u_i(\delta) = \sum v_i(x) \cdot \log \delta(x)$. $x \in A$
- Example: $v_i(a) = 3$, $v_i(b) = 2$, $v_i(c) = 1$
 - Agent *i*'s favorite distribution of contribution 6 is (3,2,1).

• Each agent $i \in N$ assigns a non-negative weight $v_i(x)$ to each charity $x \in A$. $x \in A$

 Independently distributing one's contribution while disregarding everybody else's distributions may not be in an agent's best interest.

• $(\delta_i)_{i \in N}$ is in equilibrium if $u_i(\delta) \ge u_i(\delta - \delta_i + \delta'_i)$ for all $i \in N$ and $\delta'_i \in \Delta(C_i)$.

Funding Public Projects via Best-Response Dynamics

Equilibrium Distributions

agent 1 redistributes						
	а	b	С	Ci	Ui	
$oldsymbol{\delta}_1$	3	1		4	9	
$\boldsymbol{\delta}_2$		2	2	4	6	
δ	3	3	2	8		

Existence & Uniqueness

• Theorem: Every profile admits a unique equilibrium distribution.

 $(\delta_i)_{i \in N}$ is in equilibrium iff it maximizes

functions are replaced with Leontief utility functions using the same weights.

Cobb-Douglas

Funding Public Projects via Best-Response Dynamics

$$\prod_{i\in\mathbb{N}}\min_{x\in A: v_i(x)>0}v_i(x)^{-1}\cdot\delta(x).$$

The unique Nash equilibrium maximizes Nash welfare when all Cobb-Douglas utility

- **Theorem**: The equilibrium is rational-valued and can be computed in polynomial time via convex programming and a separation oracle.
- Theorem: The equilibrium distribution has nice monotonicity properties:
 - Agent increases contribution \Rightarrow utility increases, funding of no charity decreases
 - Agent increases weight for charity \Rightarrow funding of charity does not decrease
 - For linear utilities, both properties are violated by Nash welfare maximizing distribution.
- How do we get to the equilibrium?
 - 1. Implement mechanism
 - 2. Spending dynamics

Equilibrium Distributions

Spending Dynamics

- Each agent has set aside a, say, monthly budget for charitable activities.
- Agents become active in round-robin order.
- Each agent observes the accumulated distribution of the last n - 1 rounds and then distributes her own contribution myopically optimal.
- **Theorem**: The collective distribution of the last *n* rounds converges to the equilibrium distribution.
- Even with occasional changes to preferences and contributions, the relative overall distribution keeps converging towards the equilibrium distribution.

	а	b	С	d	Ci
$\boldsymbol{\delta}_1$	18	18			36
$\boldsymbol{\delta}_2$		6	24	24	54
$\boldsymbol{\delta}_3$			18		18
$\boldsymbol{\delta}_1$	21	15			36
$\boldsymbol{\delta}_2$		14	11	29	54
$\boldsymbol{\delta}_3$			18		18
δ_1	25	11			36
	• •	• •	• • •	• • •	-
δ	27	27	27	27	10

A Prisoners' Dilemma

- The equilibrium distribution can be inefficient.
 - There is $\delta' \in \Delta(C)$ with $u_i(\delta') > u_i(\delta)$ for all $i \in N$.

equilibrium

	а	b	С	Ci	Ui
$\boldsymbol{\delta}_1$	4	2		6	16
$\boldsymbol{\delta}_2$		2	4	6	16
δ	4	4	4	12	

	(0,3,3)	(0,2,4)	Cobb-Douglas	(0,3,3)	(0,2,4)	Leontief	(0,3,3)	(0,2,4)
(3,3,0)	(3,6,3)	(3,5,4)	(3,3,0)	18,18	15,20	(3,3,0)	3,3	3,4
(4,2,0)	(4,5,3)	(4,4,4)	(4,2,0)	20,15	16,16	(4,2,0)	4,3	4,4

Funding Public Projects via Best-Response Dynamics

Pareto improvement b $c C_i$ а U_i ${oldsymbol{\delta}_1}'$ 3 18 3 6 $\boldsymbol{\delta}_{2}'$ 3 3 18 6 δ' 3 6 3 12

For Leontief utility functions, equilibrium distributions are always efficient!

Conclusion and Outlook

- Unique equilibrium distribution for Cobb-Douglas and Leontief utility functions that will be reached by simple best-response dynamics.
- Further positive results for Leontief utilities:
 - Equilibrium distribution is efficient and in the core.
 - Equilibrium mechanism is the only group-strategyproof mechanism in the core.
- Further results for linear, dichotomous, and ℓ_1 -based utilities.
- B., Greger, Segal-Halevi, and Suksompong. Optimal budget aggregation with single-peaked preferences. Presented at ACM-EC 2024 igodol
- B., Greger, Segal-Halevi, and Suksompong. Coordinating charitable donations. 2024. Presented at ACM-EC 2023
- Brandl, B., Greger, Peters, Stricker, and Suksompong. Funding public projects. Journal of Mathematical Economics, 2022.
- Brandl, B., Peters, and Stricker. Distribution rules under dichotomous preferences: Two out of three ain't bad. Presented at ACM-EC 2021 $oldsymbol{O}$

