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Abstract

We describe a learning inference control heuristic for
an equational theorem prover. The heuristic selects a
number of problems similar to a new problem from a
knowledge base and compiles information about good
search decisions for these selected problems into a term
space map, which is used to evaluate the search al-
ternatives at an important choice point in the theo-
rem prover. Experiments on the TPTP problem li-
brary show the improvements possible with this new
approach.

Introduction
Automated theorem provers (ATP systems) are pro-
grams that try to prove the validity of a given state-
ment under the assumption of a set of axioms. They
are currently beginning to make inroads into industrial
and scientific fields outside the core deduction com-
munity. Systems like DISCOUNT (Denzinger, Kro-
nenburg, & Schulz 1997) and SETHEO (Letz et al.
1992) are being used for the verification of proto-
cols (Schumann 1997), the retrieval of software com-
ponents (Fischer & Schumann 1997) and mathemati-
cal theorems (Dahn & Wernhard 1997) from libraries.
Recent successes of theorem provers, most visibly the
proof of the Robbins algebra problem by EQP (Mc-
Cune 1997), demonstrate the power of current theo-
rem proving technology. However, despite the fact that
ATP systems are able to perform basic operations at
an enormous rate and can solve most simple problems
much faster than any human expert, they still fail on
many tasks routinely solved by mathematicians.

We believe that this is due to the differences in
how humans and computers search for proofs. Hu-
man beings usually develop both conscious and intu-
itive knowledge about which operations to apply in a
given situation to reach a given target. Most theorem
proving programs, on the other hand, use very little of
this kind of search control knowledge and rely on a set
of fixed, preprogrammed search control heuristics.

Optimization of the theorem prover for a given set of
problems consists in the selection of an existing heuris-
tic (with suitable parameters), or even in the manual
coding of a new heuristic based on the experience of
a user with the domain. Both tasks are tedious, and
expensive in terms of time and manpower. Our aim is
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to adapt a theorem prover to a domain or a problem
by learning from examples of successful proof searches.

For this purpose, we store information about good
search decisions for problems in a given domain. For
each new problem, we select a couple of previous exam-
ples with similar features and compile the associated
information into a term space map, which in turn de-
fines a search guiding heuristic for the new problem.
This work solves some problems encountered with a
similar approach without example selection (Denzinger
& Schulz 1996a).

In this paper, we first give a very short introduc-
tion into equational theorem proving and the associ-
ated search problem. We then describe how we gener-
ate and store examples of good search decisions. The
next section describes how we select training examples
for a given new problem and how we use these exam-
ples to create a suitable heuristic evaluation function.
Finally, we present experimental results with the the-
orem prover DISCOUNT 2.1/TSM and conclude.

Equational Theorem Proving

The aim of equational theorem proving is to show that
two terms s and t can be transformed into each other
by the application of equations from a set of axioms E,
i.e. they try to show that s = t is a logical consequence
of E. This problem is only semi-decidable, therefore
all proof procedures have to search for a proof in an
infinite search space. Most successful theorem provers
(e.g. DISCOUNT or Waldmeister (Hillenbrand, Buch,
& Fettig 1996)) for this kind of deduction are based
on unfailing completion (Bachmair, Derschowitz, &
Plaisted 1989). We assume that the reader is famil-
iar with most basic terms and only give a very short
introduction to the necessary concepts. See (Baader &
Nipkow 1998) for a more comprehensive introduction.

The set Term(F, V ) of terms over a finite set of func-
tion symbols F (with associated arities) and an enu-
merable set of variables V is defined as usually. An
equation s = t is a pair of terms. We consider equa-
tions to be symmetrical. A rule l → r is an oriented
equation such that all variables in r also occur is l.
A ground reduction ordering > is a Noetherian partial
ordering that is stable with respect to the term struc-
ture and substitutions and total on ground terms. A



rule l → r is said to be compatible with > if l > r.
Rules and equations can be applied to terms by match-
ing one side onto a subterm and replacing this subterm
with the instantiated other side. We usually only allow
simplifications, i.e. applications of rules and equations
that replace larger terms by smaller terms.

Our prover, DISCOUNT, takes a set of equations
E, a goal s = t and a ground reduction ordering > as
input. It tries to decide the equality of s and t modulo
E by incrementally generating a ground confluent and
terminating set of rules and equations equivalent to
E. If certain fairness criteria are ensured, it can be
guaranteed that any valid equation s = t can be proven
after a finite number of inferences by simplifying s and
t as far as possible (i.e. to compute their normal forms)
with each successive system of rules and equations.

The proof procedure of DISCOUNT is based on two
basic inference rules: Ordered unit paramodulation
(the building of critical pairs) and rewriting. Ordered
unit paramodulation generates new equation by over-
lapping a maximal side of one rule or equation into a
maximal side of another rule or equation. Rewriting,
on the other hand, is a contracting inference. It does
not create new equations, but allows the simplification
of an existing rule or equation if certain conditions are
fulfilled. We use three sets of term pairs to represent
the current state of a completion process: A set E of
processed, but unorientable equations, a set R of rules
(processed and oriented equations) and a set CP of
unprocessed equations. The completion algorithm will
start out with empty sets R and E, and the initial ax-
ioms in CP. It will examine each equation in CP in
turn, reduce it to normal form with respect to E and
R, use it to build new critical pairs (to be added to
CP) and to eliminate redundancies from R and E by
simplification. It will then be added to either R (if it
can be oriented according to >) or E.

The order in which equations from CP are processed
is one of the most crucial points for the performance
of the prover. This order is determined by an heuris-
tic evaluation function, which assigns a weight to each
fact. The prover always selects the fact with the lowest
weight for processing. Experimental results show that
all proofs found by DISCOUNT at all can be repro-
duced in sub-second times if a good evaluation func-
tion is used. However, using standard search heuristics
(weighting equations according to the number of sym-
bol in the terms) the prover typically spends more than
99% of the processing time on inferences not contribut-
ing to the proof (see (Denzinger & Schulz 1996b) for
more detailed results). Our aim is to improve the over-
all performance of the prover by controlling this choice
point with a learning evaluation function.

Knowledge Acquisition and
Representation

Learning search control knowledge for theorem provers
is based on the hypothesis that experience from pre-

vious proof searches is useful in guiding new proof
searches. Given this hypothesis, the basic questions
are which parts of a proof search should be used in
learning, what kind of knowledge should be learned,
and what learning algorithm should be employed.

Our approach to learning for DISCOUNT tries to
extract search control knowledge from listings of infer-
ence steps. Our basic assumption is that the equations
occurring in a successful proof search contain enough
information to describe the proof adequately for repro-
duction, and that information about the exact struc-
ture of the proof is less important. This assumption is
supported by the success of learning by pattern mem-
orization (Denzinger & Schulz 1996a) particularly in
reproducing proofs. We believe that the most impor-
tant reason for this effect is that much of the relevant
structure of the proof is given implicitly by the cal-
culus (inferences can only be performed after all the
necessary preconditions are fulfilled).
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Figure 1: The DISCOUNT system

Our knowledge acquisition algorithm is structured
into two phases (compare figure 1). First, a proof pro-
tocol of a successful proof search is analyzed. We de-
termine the set of equations actually used in the proof.
In the second phase, the selected equations are gener-
alized and stored in a knowledge base, indexed by a
set of features describing the proof problem.

Proof Recording and Analysis

One of the strengths of the DISCOUNT system is
its ability to record proof searches in the PCL for-
mat (Denzinger & Schulz 1996b). PCL is a generic
language for describing completion based proof pro-
cesses. Figure 2 shows some example code. PCL pro-
tocols can be automatically analyzed, structured and
transformed into a human-readable form. They also
serve as the basis for a number of learning approaches,
including the one presented in this paper.



. . .
21:tes-eqn : f(x,f(y,f(x,y))) = e() : cp(20,L,9,L)
22:tes-eqn : f(x,f(x,y)) = f(e(),y) : cp(20,L.1,9,L)
23:tes-eqn : f(x,f(x,y)) = y : tes-red(22,R,7,L)
39:tes-lemma : f(x,f(x,y)) → y : orient(23,u)
. . .

Figure 2: Example PCL code

Full PCL listings contain an entry for each inference
done by the prover, describing both the inference and
the resulting fact. Despite the fact that DISCOUNT’s
inference engine is by now rather dated and cannot
compare with e.g. Waldmeister in speed of execution, a
typical protocol for a hard problem will contain about
400 000 such entries and take more than 50 MB of
disk space. As a first step of abstraction, we discard
all facts except for the axioms and those contributing
to the final proof. The resulting pruned listing typi-
cally contains between 50 and 500 facts and inferences
(see (Denzinger & Schulz 1996b) for specific examples).
As we are only interested in the facts themselves, we
discard all structural information and keep only the
equations to represent the proof process1.

Term Patterns

Users of ATP systems often use the same symbol with
different intended semantics in different proof prob-
lems, and similarly use multiple symbols with the same
intended semantics. We have e.g. seen both plus and
add to describe an additive operator, and likewise seen
product as a binary function symbol or a ternary pred-
icate symbol. For this reason, we abstract from the
particular signature used for a given proof problem by
transforming the equations occurring in the proof into
representative patterns. A representative pattern for a
term t is computed by normalizing the variables in the
term and substituting its function symbols in the way
that the ith original function symbol of arity j occur-
ring in t is replaced by the new symbol fji

2. As an ex-
ample, pat(f(x, a, a)) = f31(x1, f01, f01). A represen-
tative pattern for an equation is computed by first ori-
enting the equation according to some ordering stable
with respect to the pattern transformation, and then
treating it as a single term with top symbol ’=’. For de-
tails consult (Denzinger & Schulz 1996a). It is impor-
tant to note that representative patterns of both terms
and equations are terms over a new signature with
function symbols {f01 . . . f0n, f11 . . . f1n, fm1 . . . fmn}
for suitably large numbers of n and m. Thus, all op-
erations on terms (including learning algorithms) can

1The approaches described in (Denzinger & Schulz
1996a) and (Schulz 1998) extract additional information
about equations. However, we can treat a pruned PCL
listing as a flat set of equations in this paper.

2This definition specializes the one given in (Denzinger
& Schulz 1996a), ensuring that each new symbol is only
used with one arity even in independently generated pat-
terns.

be directly transferred to patterns.
As the transformation of equations into patterns

may generate the same pattern more than once, we
annotate each pattern with the number of equations
corresponding to it. Thus, a proof is represented by a
set of annotated patterns of equations.

Indexing Proof Examples

One of the main problems in learning search control
knowledge for theorem provers is that there exist very
few efficient algorithms for learning on or comparing
arbitrary sized recursive structures. Therefore, even
the very first approaches to learning in theorem prov-
ing resorted to represent terms by vectors of numerical
features. The success of these approaches has been,
however, limited, as finite vectors of simple numerical
features necessarily ignore a lot of information about
the structure of terms. We do not use numerical fea-
tures to learn evaluation functions, however, we do use
them to generate a fingerprint for a complete proof
problem, similar to the approach described in (Fuchs
1997).

We selected the following values for the feature vec-
tor:

• Number of axioms in the original specification

• Average term depth of the axioms

• Standard deviation of the term depth of the axioms

• Term depth of the goal

• A vector describing the distribution of function ari-
ties in the signature of the problem.

The experiments described below showed that this
set of features does not contain redundant information,
i.e. dropping any of the features leads to decreased
performance of the proof system.

Term Space Maps

Term patterns describe only the structure of individual
terms and equations, and allow for very little general-
ization. Fixed size feature vectors, on the other hand,
can describe properties of large sets of terms, but lack
the ability to describe significant structural elements
of the terms. Term Space Maps (TSMs), introduced
in (Schulz 1998) as a generalization of term evaluation
trees (Denzinger & Schulz 1996b), fall in between these
two extremes. They are recursive structures that have
the ability to describe some structural aspects of sets
of terms or equations.

TSMs partition a set of terms according to an in-
dex function , i.e. a function i :Term(F, V ) 7→ I that
maps the set of terms onto an arbitrary (but fixed)
index set I and has the property that for two terms
s = f(s1 . . . sn) and t = g(t1 . . . tm) (where variables
are treated as operators of arity 0) i(s) = i(t) implies
that n = m. This same operation is recursively applied
to the subterms of the terms in each partition. Each
partition (or term space alternative, TSA) in the TSM



may be annotated with the a representation of annota-
tions of terms falling into this partition. Equations can
be mapped onto TSMs in two ways, either by treating
them as two separate terms or by treating them as a
single term with the special top symbol =.

In our case, we use an index function that
maps a term to its top symbol3. The left pic-
ture (tsm1) in figure 3 shows an example term
space map, where terms are annotated with sim-
ple integers and partitions with the sum of these
annotations. The TSM corresponds to the set
{(f(a, b); 1), (f(b, b); 3), (a; 1), (g(b); 1), (g(f(a, b); 2)}.
We use term space maps not on the original terms
and equations, but rather on their corresponding
representative patterns (which, as stated above, are
terms over a new signature).

tsm 1

f;4 a;1 g;3

a;1 b;4 f;2

a;2 b;2

b;3 b;1

tsm 2

f . g .

a . g . a . b .

a . b .

δTSM (tsm1, tsm2) =

0+1
2

+1

2
+ 1 +

1+0
2
1

3
= 3

4

Figure 3: Example TSMs, δTSM

As in (Schulz 1998) we use term space maps to com-
pute evaluations for terms and equations. However, we
also use them to compute a distance measure for proof
problems (see below).

Knowledge Application
In the application phase the prover retrieves some ex-
ample proofs from the knowledge base and uses them
to generate an evaluation function for the new prob-
lem.

Selection of Example Proofs

Previous approaches of learning with TSM-like struc-
tures described good initial successes, but also showed
that performance of the prover peaks at a relatively
small number of training examples and drops off as
more example are added. We strongly believe that the
main reason for this is that compiling too many and to
diverse training examples into a single term space map
leads to an undifferentiated map in which all nodes
have a very similar weight. On the other hand, having
a wide range of different training examples is obviously
desirable to cover a large number of cases. We solve

3Term evaluation trees result as a special case if we map
each term to the arity of its top symbol.

this dilemma by selecting only a few suitable examples
from a much larger knowledge base, using two differ-
ent similarity measures: First, we use a weighted Man-
hattan distance on the feature vectors describing each
problem. Secondly, we used a tree distance measure
δTSM : TSM × TSM 7→ [0; 1] on the TSMs generated
by the axiomatization of two problems.
δTSM recursively compares the indices of the TSAs

of two TSMs. At each level, it adds 1 for each index
occurring in only one of the two corresponding TSMs.
It also adds the distances for the sub-TSMs for each
TSA, normalized by dividing them by the number of
TSMs belonging to the TSA. The resulting value is
again normalized by dividing it by the number of TSAs
in the larger of the two TSMs. Figure 3 shows an
example calculation. Please note that the annotations
in tsm1 are only required for the evaluation of terms.
It can be shown that δTSM is a metric on the space of
TSMs, and that δTSM (tsm1, tsm2) = 1 exactly if there
is no term that can be completely mapped onto both
TSMs. See (Brandt 1998) for more details on both
feature and TSM distance measures.

We use both a maximal number of examples and
a threshold for the distance to limit the number of
examples selected.

Computing Evaluations

After selecting a number of proof examples for a given
new problem, we compile the annotated patterns of the
useful equations into a TSM. The annotations in the
resulting TSM denote how many useful equations have
been mapped to this node during the example proof
searches. To evaluate a new equation, the two sides
are mapped onto the TSM. Each term node receives
an evaluation according to the annotation stored at the
corresponding TSM node. We compute the weight for
a node as W (node) = wbase ∗ (1− limit∗occur/norm),
where wbase is 1 for variable nodes and 2 for oper-
ator nodes, limit is a scaling factor determining the
maximal effect of the learned knowledge (set to 0.5 in
our experiments), occur is the annotation of the node
(i.e. the number of useful equations mapped to this
TSA) and norm is the sum over all annotations of the
corresponding TSM, i.e. the maximal number of equa-
tions which potentially might have been mapped to
this TSA. Term nodes not corresponding to any TSM
node just receive the base weight. To weight a term,
we sum over all term nodes, and to weight an equation
we sum over both terms.

As an example, consider the term f(a,X) evaluated
against tsm1 from figure 3, with limit set to 0.5. The
top node with the operator f is mapped onto the left
most TSA with the annotation 4. The total number of
terms mapped to the TSM is 4 + 1 + 3 = 8. Therefore,
the weight of the node is 2 ∗ (1− 0.5 ∗ 4/8) = 1.5. The
weight of the node a is 2∗(1−0.5∗1/4) = 1.75. As there
is no TSA corresponding to the last node containing
the variable X , we assign a weight of 1, giving a total



weight of 4.25 for the complete term.

Experimental Results
We used the set of all unit-equality problems from the
TPTP problem library, version 2.1.0 (Suttner & Sut-
cliffe 1997), as a test case. The set of training examples
contains 201 proofs for problems that could be found
by DISCOUNT within a 180 second time limit using
DISCOUNT’s best conventional strategy, AddWeight 4.

Table 1 shows results for AddWeight, for Occnest
(a goal-directed strategy), and 4 different TSM-based
strategies: A strategy without example selection, a
strategy with random example selection, a strategy us-
ing the feature vector distance measure, and a version
using the δTSM distance measure. The time limit for
these tests was again 180 seconds.

Experiments were performed on a 233 MHz Pentium
PC running Linux. All times and time limits are CPU
times.

Heuristic Solutions Time/Sol.

Occnest 237 8.04 s
AddWeight 253 7.95 s
TSM (no selection) 248 7.81 s
TSM (random selection) 237 6.97 s
TSM (features) 259 7.30 s
TSM (δTSM ) 263 8.24 s

Table 1: Results

The system also participated in the CADE-15 ATP
system competition and, despite the known weaknesses
of DISCOUNT’s base inference engine, completed in
third place (of 8) in the unit equality category. See
http://www.cs.jcu.edu.au/∼tptp/CASC-15/.

Conclusion
Our results show that information about previous
proofs can help in finding new proofs even for pre-
viously unsolvable problems. They also demonstrate
that term space maps compiled from patterns of equa-
tions contain useful information both for the evaluation
of search alternatives in theorem proving and for the
selection of similar proof problems.

Our future work will concentrate on a couple of top-
ics. First, we will work on improving TSM-related
learning algorithms by aiming at stronger expressive
power. Currently, TSM-based learning algorithms
only allow us to express some rather simple concepts,
namely distribution of certain function symbols and
simple substructures in the training set. By using more
general index functions on terms to discriminate be-
tween term space alternatives, we can express more

4Proof recording is not yet implemented for problems
with existentially quantified variables in the goal. Ad-
dWeight solves an additional 52 of these problems, which
are not available for learning.

complex concepts, and can extend term space mapping
to include pattern memorization as a special case.

Another current focus of our work is the implemen-
tation of a more efficient inference engine capable of
handling full clausal logic. This will allow us to evalu-
ate our learning techniques for the more general case,
and will hopefully also lead to an even more competi-
tive prover.
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