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Abstract

Security and privacy have become crucial factors in auction design. Var-
ious schemes to ensure the safe conduction of sealed-bid auctions have been
proposed recently. We introduce a new standard of security for auctions (“full
privacy”), that prevents extraction of bid information despite any collusion of
participants. This requirement is stronger than other common assumptions
that prohibit the collusion of certain third-parties (e.g., distinct auctioneers).
Full privacy is obtained by distributing shares of each bid on all bidders. The
bidders then jointly compute the selling price without uncovering any addi-
tional information. Auctioneers are obsolete in these “bidder-resolved” auc-
tion protocols. The auction outcome cannot be changed by dishonest bidders;
they can only inhibit the protocol. For this reason, we present a sub-protocol
that detects dishonest bidders, so that they can be fined, which provides the
incentive to follow the main protocol.

The major contribution of this work is the fully private Vickrey auction
protocol that determines the second-highest bid without revealing any other
information. As full privacy is our main goal, the drawback of our protocol
is efficiency. For this reason, it is currently only applicable for high-security
auctions with relatively few bidders in reasonable time.

1 Introduction

Auctions have become the major phenomenon of electronic commerce during the
last years. In recent times, the need for privacy has been a factor of increasing
importance in auction design. Even the world’s largest internet auction house ebay
recently introduced a “private auction”, in which bids are anonymous and only the
seller and the winning bidder learn the result of the auction. Obviously, privacy
in these auctions is very limited as it is up to the auction house whether the bids
remain confidential. Additionally, non-public, high-revenue auctions like spectrum
license auctions require a much higher level of protection.
We consider a situation where one seller and n bidders or buyers intend to come to an
agreement on the selling of a good1. Each bidder submits a sealed bid expressing
how much he is willing to pay. The bidders want the highest bidder to win the
auction for a price that has to be determined by a publicly known rule (e.g., the
highest or second-highest bid). In order to fulfill this task, they need a trusted
third-party, which is called the “auctioneer”. In a regular first-price auction, there
are few possibilities to cheat for the auctioneer if he has to announce the selling price
at the end of the auction. He could declare a price greater than the highest bid, in

1The assignment of tasks in reverse auctions works similarly.
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order to keep the good if he thinks the bids are not high enough. No bidder would
be able to discover this form of deception. In a second-price or so-called Vickrey
auction, things are worse. The winner of an auction has to doubt whether the price
the auctioneer tells him to pay is actually the second-highest bid. The auctioneer
could easily make up a “second-highest” bid to increase his (or the seller’s) revenue.
In addition to a possibly insincere auctioneer, bidders in all sealed-bid auctions have
to reveal their bids to the auctioneer. There are numerous ways to misuse these
values by giving them away to other bidders or the seller [5, 4, 3]. It remains in the
hands of the auctioneer whether the auction really is a sealed-bid auction.
Among the different auction protocols, the Vickrey auction [26] has received par-
ticular attention in recent times because it is “incentive-compatible”, i.e., bidders
are always best off bidding their private valuation of a good. This is a huge ad-
vantage over first-price auctions, where bidders have to estimate the other bidders’
valuations when calculating their bid. However, despite its impressive theoretical
properties, the Vickrey auction is rarely used in practice. This problem has been
addressed several times in the literature [19, 18, 22] and it is now common knowl-
edge that the Vickrey auction’s sparseness is due to two major reasons: The fear of
an untruthful auctioneer and the reluctance of bidders to reveal their true private
valuations.
The protocol in this report removes both crucial weaknesses of the Vickrey auction
by omitting the auctioneer and distributing the calculation of the selling price on
the bidders themselves. No information concerning the bids is revealed unless all
bidders share their knowledge, which obviously uncovers all bids in any auction
protocol.
The remainder of this report is structured as follows. Section 2 summarizes existing
efforts in the field of cryptographic auction protocols. Section 3 defines essen-
tial attributes that ensure a secure and private auction conduction and introduces
“bidder-resolved auctions”. In Section 4, we propose a simple protocol that realizes
a bidder-resolved 1st-price auction, which is followed by the enhanced, fully private
protocol MB-share. Finally, the Vickrey auction protocol YMB-share, which
complies with full privacy as well, is presented in Section 5. The report concludes
with a brief overview of advantages and disadvantages of bidder-resolved auctions
and an outlook in Section 6.

2 Related Work

There has been an extremely fast-growing interest in cryptographic protocols for
auctions during the last years. In particular, Vickrey auctions, which are strate-
gically equivalent to English auctions for bidders that privately evaluate a good,
attracted much attention. Starting with the work by Franklin and Reiter [9], which
introduced the basic problems, but disregarded the privacy of bids after the auction,
many secure auction mechanisms have been proposed [1, 3, 6, 10, 11, 12, 13, 14, 15,
16, 17, 20, 21, 24, 27, 28].
When taking away all the protocols that (in their current form) are not suitable for
the secure execution of second-price auctions or reveal (partial) information after
the auction is finished [9, 28, 21, 20, 11, 15, 27, 3], the remaining work can be
divided into two categories.
Most of the publications rely on the (limited) security of distributed computation
[12, 14, 13, 10, 24]. This technique requires m auctioneers, out of which a frac-
tion (e.g., bm−1

3 c) must be trustworthy. Bidders send shares of their bids to each
auctioneer. The auctioneers jointly compute the selling price without ever knowing
a single bid. This is achieved by using sophisticated, but sometimes inefficient,
techniques of secure multiparty function evaluation, mostly via distributed polyno-
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mials. However, a collusion of e.g., three out of five auctioneer servers can already
exploit the bidders’ trust. We argue that distributing the trust onto several distinct
auctioneers does not solve the general problem, because you can never rule out
that all of them collude. This point of view is supported in a growing number of
publications [16, 17, 25].
The remaining auction protocols prune the auctioneer’s ability to falsify the auction
outcome and reveal confidential information by introducing a new third-party, that
is not fully trusted. However, all of these approaches make weak assumptions about
the trustworthiness of this third-party. In [1, 6] the third-party may not collude with
any participant; in [16, 17] it is prohibited that the third-party and the auctioneer
collude.
Concluding, all present work on secure Vickrey auctions more or less relies on the
exclusion of third-party collusion, may it be auctioneers or other semi-trusted in-
stitutions. The technique we propose in this report is secure for a bidder, even if
all other bidders collude.

3 General Assumptions

This section contains demands that our protocols will meet. Furthermore, we make
several basic assumptions about bidders and collusions between them.

3.1 Privacy and Correctness

The required properties for safe conductions of sealed-bid auctions can be divided
into two categories.

Privacy No information concerning bids and the corresponding bidders’ identities
is revealed during and after the auction.

The only information that naturally has to be delivered is the information
that is needed to carry out the transaction, i.e., the winning bidder and the
seller learn the selling price and the seller finds out the winner’s identity. As
[21] pointed out, anonymity of the winner is crucial. Otherwise, a bidder that
breaks a collusive agreement could be identified by his partners.
In several schemes, it is necessary that the auctioneer announces the selling
price, in order to prevent the auctioneer from awarding the contract to a bogus
bidder (violating correctness).

Privacy, as we understand it, implies that no information on any bid is revealed
to the public, in particular no bid statistics (e.g., the amount of the lowest bid
or an upper bound for the highest bid) can be extracted, unlike some other
protocols.

Correctness The winner and the selling price are determined correctly.

This requirement contains non-repudiation (the winning bidder cannot deny
having made the winning bid). Bids are binding. Otherwise, bidders could
control the selling price in first-price and second-price auctions by using sub-
agents. Correctness also includes robustness (no set of malicious bidders can
render the auction outcome invalid). If the auction protocol is interactive,
this implies that missing bidder messages will not halt the auction process.
In a weaker formulation of this property, needed for bidder-resolved auctions,
bidders are able to falsify the auction result by not following the protocol, but
each malicious bidder can be tracked down and fined or excluded from the set
of bidders. When malicious bidders are detectable and fines are high enough,
there should be no incentive to perturb the auction.
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Of course, efficiency is also an important factor, but as we want to obtain full
privacy, we regard efficiency as secondary. Privacy and correctness have to be
ensured in a hostile environment, which is described by the following assumptions:

• Each agent (bidder or seller) can have arbitrarily many bidder sub-agents,
controlled by him, in any auction.

• Up to n− 1 bidders might share their knowledge and act as a team

• Any number of auctioneers or other third-parties might share their knowledge
and give it away to bidders.

3.2 Bidder-resolved Auctions

According to the assumptions of the previous section, bidders cannot trust any
third-party. We therefore distribute the trust onto the bidders themselves using a
simple secret sharing scheme. Bidders divide their bids into n shares, keep one and
send one share to each other bidder. Our protocols are designed in a way, that
renders it impossible for a bidder to change the outcome of an auction or to gain
knowledge by manipulating the shares, that have been entrusted to him. All he
can do is nullify the auction, so that no winner will be determined. However, such
a bidder is detectable and can be fined and/or excluded. For this reason, bidders
cannot be anonymous. It has to be possible to make them responsible for their
actions 2 .
The information sharing among bidders allows us to set a very high standard for
privacy. In a scenario with m auctioneers it cannot be ruled out that all of them
collude. However, when distributing the computation on n bidders, we can assume
that all bidders will never share their knowledge due to the competition between
them. If they do so, each of them abandons his own privacy, resulting in an open-cry
auction.

Definition: A secure, bidder-resolved auction protocol complies with full privacy
when no information on any bid can be retrieved unless all involved agents
collude.

When using classical terms of secure multiparty computation [8], full privacy can be
interpreted as (n−1)-privacy. A passive adversary that controls up to n−1 bidders
is incapable of uncovering any information. Active adversaries, that mutilate the
distributed computation will be detected by a sub-protocol, but only if they affected
the outcome of the auction. This sub-protocol will reveal information about the
highest bidder, which implies that fines have to be high enough to prevent deliberate
disturbance. Alternatively, auctions could be repeated whenever malicious bidders
disrupt the protocol. There would be no information revelation, but as we require
an auction to be robust against active adversaries, we prefer the detection and fining
of malicious bidders, even though it might reveal the winner and the selling price.
A threshold-scheme, that provides t-resilience is not appropriate when information is
shared among bidders, as any group of bidders might collude due to the assumptions
of the previous section. As a consequence, we cannot adapt existing, successful
schemes that were designed for m auctioneers like [10] or [12] because they rely
on secure multiparty computation according to Ben-Or, Goldwasser and Widgerson
[2], which in turn provides at most insufficient bn

2 c-privacy due to the multiplication
of degree n polynomials.
Like in most recent protocols, we define an ordered set of k possible prices (or
valuations) {p1, p2, . . . , pk}. In contrast to ascending auctions, bids have an upper

2We currently review the utilization of prior shared deposits.

4



B B B    =B2k1k 3k k.
.
.

.

.

.
.
.
.

.

.

. Winner determination
.
.
.

.

.

.

Bidder 1 Bidder 2 Bidder 3

B B B    =B11 21 31 1

Blackboard

➟

➟

Code sharing

+

+

+

+

Figure 1: B-share

limit. Each bidder submits k binary bids denoting whether he is willing to pay
a given price or not. All proposed protocols have in common that bidders jointly
compute a commutative bid function f(X1, X2, . . . , Xn) for each price pj .
Bidders communicate with each other through private and public channels, i.e.,
messages are encrypted and signed.

4 1st-price Auctions

In a first-price sealed-bid auction, each bidder submits a sealed bid and the highest
bidder wins the auction. The price he has to pay is the amount of his bid. Thus, n

bidders need to secretly compute the maximum of n values.

4.1 Interactive Protocol (Dutch auction)

There already is a perfectly secure and private, interactive first-price auction pro-
tocol: the Dutch auction. The auctioneer announces a decreasing bid from round
to round starting with the highest possible price. The first bidder that stops the
auction by expressing his willingness to pay is awarded the contract for the amount
of the actual bid. This might take some time (depending on k), but no information
except the selling price is revealed.

4.2 Protocol B-share

Serving as a simple example of bidder-resolved auctions, this protocol will not meet
all demanded criteria specified in Section 3. B-share’s bid function f1 : Gn 7→ G

is defined on the finite, Abelian group 〈G, +〉.

f1(X1, X2, . . . , Xn) =

n
∑

i=1

Xi (1)

It is jointly computed by using additive shares of each bid code. The ith additive
share of x is denoted by x+i.
Harkavy et al proposed this kind of protocol in [10]. However, they distributed the
bids on m auctioneers.
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Rounds Messages Bandwidth

B-share
overhead - - -

main O(1) O(n) O(nk)

MB-share
overhead - - -

main O(n) O(n) O(nk)

YMB-share
overhead O(n) O(n) O(n2k)

main O(n) O(n) O(nk)

Table 1: Protocol complexity (messages and bandwidth per bidder)

4.2.1 Protocol Sequence

The following protocol steps have to be executed by an arbitrary bidder a. i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , k}. All calculations are done in the finite Abelian
group 〈G, +〉. 0 is the neutral element of 〈G, +〉.

• Create codes

– Choose Yaj for each j and commit to Yaj by sending a cryptographic
hash to the seller.

• Share codes

– Choose b+i
aj for each j and i, so that

n
∑

i=1

b+i
aj =

{

Yaj if bidder a is willing to pay pj

0 else
.

– Send b+i
aj for each j to bidder i for each i 6= a.

– Receive b+a
ij for each i 6= a and j.

– Publish b+a
j =

n
∑

i=1

b+a
ij for each j.

– Compute Bj =

n
∑

a=1

b+a
j for each j by using the published b+a

j .

• Winner determination

– If Bj = Yaj for any j, then bidder a won the auction. The selling price
pmin{j|Bj=0}−1 is visible to all bidders. Only the seller and the winning
bidder can learn the winner’s identity.

4.2.2 Analysis

The intermediate sums need to be published simultaneously. This can be achieved
by using a bit commitment technique, e.g., via a cryptographic hash function. As
a consequence, bidders can only nullify auction by not following the protocol. Well
directed manipulation is impossible.
Table 1 shows the number and lengths of messages that have to be sent by a single
bidder. Please note that the entire protocol is finished after two rounds (sending
the shares and publishing the sums). Fixed execution time is the major advantage
over the interactive Dutch auction protocol.
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Convenient choices for the finite group 〈G, +〉 are 〈Z2l , +〉 or 〈{0, 1}l,xor〉. There
is a very small probability of failure depending on n and l if two or more bidders
chose the same code for the same price or if several codes add up to zero by chance,
but this is negligible for large l.
Any bidder that does not follow the prescribed protocol and changes its outcome
has to be detectable, so that he can be fined or punished. When applying B-share,
there are two ways for a bidder to disrupt the auction.

• Idleness: A bidder does not send the required messages in time. Idle bidders
can be punished and/or excluded from the set of bidders.

• False Computation: A bidder does not carry out the prescribed computation
correctly. If the outcome is affected, the bidder can be tracked down.

The so-called “Fault Detection Protocol”, has to be executed whenever the seller
claims that he cannot identify a winner. In this case, all signed messages, i.e., all
b+i
aj , have to be published, beginning at the highest j. This method yields either

1. a lying seller,

2. a bidder that committed False Computation, or

3. a tie between two or more bidders.

As soon as one of these cases is detected, the protocol is halted. In the first two
cases or if a bidder does not provide the messages required by the Fault Detection
Protocol, the corresponding agent has to be fined and/or excluded from a possible
re-auctioning of the same item. The Fault Detection Protocol only reveals the
identity of the highest bidder; losing bids will not be opened. For this reason, the
fines for malicious bidders should be high enough to prevent bidders from “buying”
information on the identity of the highest bid.
As a consequence of the Fault Detection Protocol, a tie between two or more bidders
results in the revelation of the bidders’ identities and their (identical) bids. However,
this case demands a random-based decision to determine the winner, which requires
the participation of all bidders. One possible solution is to enlarge the bidding set to
nk values, so that bidder i is only allowed to bid a multiple of i. The bidder ordering
has to be arranged at random beforehand, which enables fair winner determination.
Besides “only” providing (n− 2)-privacy, the protocol has another major flaw. The
second-highest bid can be read by the winner of the auction [14]. More generally,
the cth highest bid can be read by a collusion of the c− 1 highest bidders. We will
fix that in the subsequent protocol.

4.3 Protocol MB-share

In order to mask the sums of the previous protocol, we multiply them with a shared
random multiplier Mj =

∏n

i=1 m×i
j that is not known to any of the bidders. A

similar solution was proposed in [14]. However, the implementation provides at
most bn

2 c-privacy due to the reasons specified in Section 3.2. Our protocol uses a
one-way function and the propagation of values from bidder to bidder (ring transfer)
to realize a multiplication.
The following function f2 : F n 7→ F is used as the bid function (g is a generator in
the multiplicative group of the finite field F , i.e., F = {gi | i ∈ ZZ}).

f2(X1, X2, . . . , Xn) = g
�

n
i=1

XiM (2)
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Figure 2: MB-share

All bidders spread additive shares of their Xi. Then, each bidder calculates gx
+a
j

with x+a
j being the sum of bidder a’s additive shares. This value is handed from bid-

der to bidder (ring transfer) and raised to the power of m×a
j (the multiplier share).

The last bidder publishes the resulting value gx
+a
j

�
n
i=1

m
×i
j . When multiplying all

published values, this yields

n
∏

a=1

gx
+a
j

� n
i=1

m
×i
j = g

� n
a=1

(x+a
j

� n
i=1

m
×i
j

) = f2(X1, X2, . . . , Xn) .

The exponential (one-way) function ensures privacy of the shared multipliers, based
on the intractability of the discrete logarithm problem. Function f2 was originally
developed for the secure Vickrey auction protocol YMB-share and has further
advantageous features that will be explained in Section 5.2.
In order to enable ring transfer, we need an ordering on bidders. s(i) returns the
successor to bidder i.

s(i) =

{

i + 1 if i < n

1 else

4.3.1 Protocol Sequence

The following is the protocol for an arbitrary bidder a. i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , k}. All calculations are done in the finite field F , e.g., GF(2l). ba ∈
{1, 2, . . . , k} denotes bidder a’s bid.

• Create codes/ Commit to bid

– Choose Yaj and m×a
j 6= 0 for each j and a random number ra.

– Commit to bid ba by sending cryptographic hashes of ba + ra and ra to
the seller.

• Share codes

– Choose b+i
aj for each j and i, so that

n
∑

i=1

b+i
aj =

{

Yaj if ba ≥ j

0 else
.

– Send b+i
aj for each j to bidder i for each i 6= a.
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– Receive b+a
ij for each i 6= a and j.

• Ring transfer

– Compute n−1Baj = g
�

n
i=1

b
+a
ij

m
×a
j for each j and send them to bidder

s(a).

– When receiving rBij , compute r−1Bij = (rBij)
m
×a
j . If r > 1, send it to

bidder s(a); else, publish Bij = 0Bij .

– Compute Bj =

n
∏

i=1

Bij for each j by using the published Bij .

• Winner determination

– The selling price pmin{j|Bj=1}−1 is visible to all bidders. The winning
bidder authenticates to the seller by secretly sending ra.

4.3.2 Analysis

Ring transfer requires n additional rounds, but after all the message complexity is
unchanged (Table 1). Due to the intractability of the discrete logarithm problem
and the masking multiplications, the protocol is now fully private.

Theorem: MB-share is fully private (except the declaration of the highest bid).

Proof: As we can subsume a collusion of n−1 bidders to one single bidder, it suf-
fices to show, that in an auction with two bidders, bidder 2 cannot reveal bidder 1’s
bid b1. We assume that b1 < b2 because only losing bids are protected in MB-share.
Bidder 2 needs to test whether b+1

1j = −b+2
1j for each j. There are two possibilities

to achieve this. First, bidder 2 can try to extract b+1
1j by using any combination

of values known to him: b+1
2j , b+2

2j , b+2
1j , m2j , Bj = g(b+1

1j
+b+2

1j
+b+1

2j
+b+2

2j
)m1jm2j , and

g(b+1

1j
+b

+1

2j
)m1j . This is not feasible unless the discrete logarithm problem can be

solved. Secondly, he can try to compute g(−b
+2

1j
+b

+2

1j
+b

+1

2j
+b

+2

2j
)m1jm2j and compare

it with Bj . However, this is impossible because m1j is unknown to bidder 2 and
cannot be extracted from the values known to him. �

Besides “Idleness” and “False Computation”, mentioned in Section 4.2.2, there is
another possibility to disrupt the auction in this protocol.

• Concealment of Victory: A bidder remains silent even though he won the
auction. Such a bidder will be identified by the Fault Detection Protocol.

The Fault Detection Protocol works like in the B-share protocol with the only
difference that intermediate ring transfer values rBaj have to be published as well.

5 2nd-price Auctions

The 2nd-price sealed-bid auction works like the 1st-price auction with the only
difference that the winning bidder pays the amount of the second-highest bid. In
an optimal implementation, only the winning bidder (and the seller) can read the
second-highest bid.
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Figure 3: YMB-share

5.1 Interactive Protocol ascending MB-share

It is possible to perform the previous protocol in an interactive fashion in order to
hide the highest bid. This enables the execution of interactive Vickrey auctions.
In this protocol, bidders share their bids iteratively for each price pj beginning
at the lowest price p1. The execution of the protocol is stopped when a bidder
claims (and proves) that he won the auction. This reveals only the selling price,
but not how far the winner would have gone. When valuations depend on other
bidders’ valuations (correlated value model), this will lead to a higher revenue like
in English auctions. However, this protocol is very slow as it takes O(nk) messages
to determine the winner. Kikuchi et al mentioned this type of protocol in [13] (but
shared the information among distinct auctioneers).
Other interactive protocols that determine a pre-committed second-highest bid are
presented in [3]. They do not necessarily need an auctioneer, but reveal partial
information.

5.2 Protocol YMB-share

In this protocol, each bidder has two different codes Y (“yes”) and N (“no”)
for each price, denoting whether he is willing to pay at the given price or not.
Bidders submit shares of their bids Baj that are either Yaj or Naj and jointly
compute Bj = f2(B1j , B2j , . . . , Bnj) for each price j. Personalized keys Kij =
f2(N1j , N2j , . . . , Yij , . . . , Nnj) are jointly computed for each bidder i and price j, so
that in the end only bidder i knows the value of Kij . By comparing his keys with
the published Bj , a bidder can find out whether he won the auction.
In order to prevent manipulation of keys, the yes-value for each bidder is jointly
created by all bidders and the no-value Naj = −Yaj can be derived by inverting all
shares.
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5.2.1 Protocol Sequence

Like in the previous sections, this is the step-by-step protocol specification for bidder
a. i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k}. All calculations are done in the finite field
F , e.g., GF(2l). g is a generator in the multiplicative group of F .

• Create shared codes

– Choose y+a
ij 6= 0 for each i and j and m×a

j for each j.

• Compute keys (using ring transfer)

– Compute nK×a
ij = g(y+a

ij −
�

h6=i y
+a

hj
)m×a

j for each j and i and send them
to bidder s(a).

– When receiving rK
×h
ij :

If r = 0, set K×h
aj = 0K

×h
ij and commit to K×h

aj by sending a crypto-
graphic hash to the seller.

Else, compute r−1K
×h
ij = (rK

×h
ij )m

×a
j and send it to bidder s(a) if r > 2

or to bidder i if r = 1.

– Compute Kaj =

n
∏

i=1

K×i
aj for each j.

• De-share codes/ Share Bids

– Send y+a
ij for each j to bidder i for each i 6= a.

– Compute Yaj =

n
∑

i=1

y+i
aj and Naj = −Yaj for each j.

– Choose b+i
aj for each j and i, so that

n
∑

i=1

b+i
aj =

{

Yaj if ba ≥ j

Naj else
.

– Send b+i
aj for each j to bidder i for each i 6= a.

– Receive b+a
ij for each i 6= a and j.

• Ring transfer

– Compute n−1Baj = g
�

n
i=1

b
+a
ij

m
×a
j for each j and send them to bidder

s(a).

– When receiving rBij , compute r−1Bij = (rBij)
m
×a
j . If r > 1, send it to

bidder s(a); else, publish Bij = 0Bij .

– Compute Bj =

n
∏

i=1

Bij for each j by using the published Bij .

• Winner determination

– If Bj = Kaj for any j, then bidder a won the auction. He then contacts
the seller and authenticates by supplying the signed messages containing
K×i

aw for each i and w = min{j|Bj = Kaj}. The selling price is pw−1.
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5.2.2 Analysis

The combination of joint code creation, intractability of the discrete logarithm,
and immutability of f2, provide full privacy in the second-price auction protocol
YMB-share.

Theorem: YMB-share is fully private.

Proof: Again, we show that in an auction with two bidders, bidder 2 cannot
reveal bidder 1’s bid b1. There are three ways to reveal b1. First of all, testing
if b+1

1j + b+2
1j = y+1

1j + y+2
1j cannot be realized, because b+1

1j and y+1
1j are unknown

values and cannot be extracted from the one-way function f2. Secondly, bidder 2
can try to derive f2(N1j , N2j) from K2j = f2(N1j , Y2j) or f2(B1j , Y2j) from B2j =
f2(B1j , B2j), which both would uncover b1 if b1 > b2. This is prevented by the
masking multiplier m1j . We say function f2 is immutable. Finally, bidder 2 could
try to compute f2(N1j , N2j) instead of K2j . He cannot win the auction this way,
but as we assume that each bidder can have sub-agents, he could assign this job
to a sub-agent. However, this is impossible, because Y1j is jointly created by all
bidders and N1j 6= Y1j (with a very high probability). �

It would be possible to use the same multiplier M for all j. However, this would
simplify the calculation of the discrete logarithm and thus make it easier to uncover
M . Please note that if the discrete logarithm problem is solved (for the right j),
only the amount of the highest bid can be read. All other bids enjoy unconditional
(n − 2)-privacy.
In contrast to most other protocols, including the previous two, the selling price is
only visible to the winning bidder and the seller.
Table 1 shows the message and round complexity of the protocol. The computation
of personalized keys for each bidder does not increase the number of messages,
but results in a high demand for bandwidth (O(n2k)). On the other hand, the
same keys can be used for umpteen auctions with the same set of bidders. This
requires commitment to an additional multiplier by each bidder at the beginning
of an auction to prevent the seller from using the personalized keys. If the keys
are used only once, the huge amount of numbers to exponentiate can be drastically
reduced by substituting r−1K

×h
ij with an arbitrary random number when j ≤ ba.

To give an example, we will compute the bandwidth demand of a typical high-
security auction. Let us consider an auction with ten bidders (n = 10) and 200
possible prices (k = 200)3. We use 1024-bit numbers to ensure that f2 is indeed a
one-way function (l = 1024). Each seller has to send the following amount of data.

• overhead: n2kl + (n − 1)kl bits = 2.79 Mbytes

• main: (n − 1)kl + nkl bits = 486 Kbytes

Like in the previous two protocols, ties result in an activation of the Fault Detection
Protocol, which reveals the highest and second-highest bid (which are equal in this
case) and their origins. Possible solutions are the partitioning of the bid set as
described in Section 4.2.2 or the omission of the Fault Detection Protocol and re-
start of the auction. As a matter of fact, there are protocols regarding an auction
with equal winning bids as an auction with no winner at all.
The approach we chose to detect the second-highest bid cannot be transfered to
uniform price auctions (sometimes called (M + 1)st-price auctions) without major
changes.

3Usually the number of different prices or valuations is much lower than one would expect, e.g.,
Lipmaa et al argue that k ≤ 500 is sufficient for most auctions [16].
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6 Conclusion

We presented a novel kind of secure and private auction protocols, where informa-
tion is shared among bidders. The protocols comply with the highest standard of
privacy possible: they are safe for a single bidder no matter how many of the par-
ticipants collude. Malicious bidders, that nullify the auction outcome, can always
be detected and fined.
Besides the fully private first-price auction protocol MB-share, the main contri-
bution of this report is the secure Vickrey auction protocol YMB-share, in which
bidders jointly compute personal keys for each bidder. Applying these keys, only a
bidder can discover whether he won the auction or not. We are not aware of any
Vickrey auction protocol, that achieves a similar level of privacy.
The drawback of YMB-share is efficiency. Currently, it can take hours, if not
days, to decide auctions with a high number of bidders. The execution time could
be greatly reduced, if we did not have to rely on the discrete logarithm problem
when computing f2. Furthermore, the intractability of the discrete logarithm is
the only cryptographic assumption made. As a consequence, the main part of our
future research goes into the development of different functions f , possibly by using
non-associative operations, which could result in a more efficient, unconditional
protocol. Another option to optimize the protocol might be to use binary radix
representations of bids, in order to reduce the bandwidth complexity to O(n2 log k).
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