Casting the lot puts an end to disputes and decides between powerful contenders. — Solomon, Proverbs 18:18

Fishburn's Maximal Lotteries

Felix Brandt Workshop on Decision Making and Contest Theory Ein Gedi, January 2017

Probabilistic Social Choice

- Voters have complete and transitive preference relations \geq_i over a finite set of alternatives A.
- A social decision scheme f maps a preference profile (\ge_1, \ldots, \ge_n) to a lottery $\Delta(A)$.
 - randomization or other means of tie-breaking are inevitable when insisting on anonymity and neutrality.
 - first studied by Zeckhauser (1969), Fishburn (1972),
 Intriligator (1973), Nitzan (1975), and Gibbard (1977)

Maximal Lotteries

Peter C. Fishburn

- Kreweras (1965) and Fishburn (1984)
 - rediscovered by Laffond et al. (1993), Felsenthal and Machover (1992), Fisher and Ryan (1995), Rivest and Shen (2010)
- Let $(M_{x,y})$ be the majority margin matrix, i.e., $M_{x,y} = |\{i : x \ge_i y\}| - |\{i : y \ge_i x\}|.$
- *M* admits a (weak) Condorcet winner if *M* contains a nonnegative row, i.e., there is a standard unit vector *v* such that $v^T M \ge 0$.

Maximal Lotteries

Peter C. Fishburn

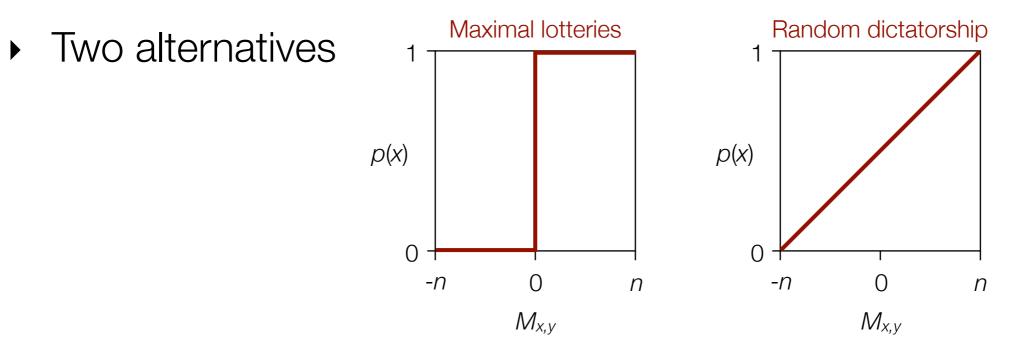
- A lottery *p* is maximal if $p^T M \ge 0$.
 - randomized Condorcet winner
 - p is "at least as good" as any other lottery
 - bilinear expected majority margin $p^T M q \ge 0$ for all $q \in \Delta(A)$

Maximal Lotteries

Peter C. Fishburn

- always exist due to Minimax Theorem (v. Neumann, 1928)
- almost always unique
 - set of profiles with multiple maximal lotteries has measure zero
 - always unique for odd number of voters with strict preferences (Laffond et al., 1997)
- do not require asymmetry, completeness, or even transitivity of individual preferences
- can be efficiently computed via linear programming
- known as popular mixed matchings in assignment (aka house allocation) domain (Kavitha et al., 2011)

Examples



- *M* can be interpreted as a symmetric zero-sum game.
 - Maximal lotteries are mixed minimax strategies.

2	2	1	а	0	1	-1
	b	-	b	-1	0	3
D	С	а				
С	а	b	С	1	-3	0

b

а

С

• The unique maximal lottery is $\frac{3}{5}a + \frac{1}{5}b + \frac{1}{5}c$.

	Maximal Lotteries	Random Serial Dictatorship	Borda's Rule
population-consistency			
agenda-consistency			
cloning-consistency			
Condorcet-consistency			
(SD-) strategyproofness			
(ST-) group-strategyproofness			
(SD-) participation			
(SD-) efficiency			
efficient computability			
randomness			

	Maximal Lotteries	Random Serial Dictatorship	Borda's Rule
population-consistency		only for strict prefs	
agenda-consistency			
cloning-consistency	even composition-consistency		
Condorcet-consistency			
(SD-) strategyproofness		even strongly	
(ST-) group-strategyproofness			
(SD-) participation	even PC-group-participation	even very strongly	
(SD-) efficiency		only for strict prefs otherwise only <i>ex post</i>	
efficient computability		#P-complete in P for strict prefs	
randomness	some	a lot	very little

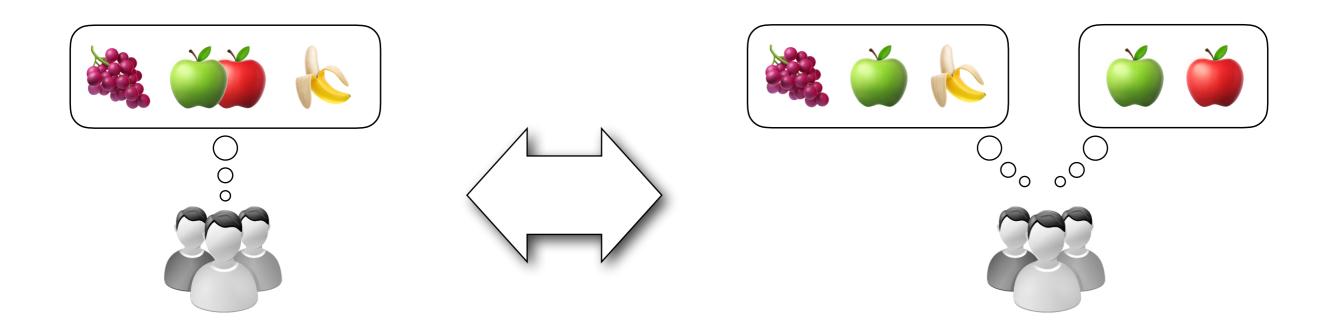
Population-Consistency

Whenever two disjoint electorates agree on a lottery, this lottery should also be chosen by the union of both electorates.

1 1	1 1	1 1 2
a b	a b	a a b
b c	C C	bcc
c a	b a	c b a
R	S	$R \cup S$
½ a + ½ b	$\frac{1}{2}a + \frac{1}{2}b$	½ a + ½ b

- first proposed by Smith (1973), Young (1974), Fine & Fine (1974)
- also known as "reinforcement" (Moulin, 1988)
- famously used for the characterization of scoring rules and Kemeny

Composition-Consistency



Composition-Consistency 🔽

Decomposable preference profiles are treated component-wise. In particular, alternatives are not affected by the cloning of other alternatives

2 1 3	3 3	2 4	
a a b b' b b' b b' a	a b b a	b' b b b'	A={a,b} B={b,b'}
R	$R _{A}$	$R _B$	
½ a + ½ b + ½ b'	½ a + ½ b	⅔b + ⅓b'	

- Laffond, Laslier, and Le Breton (1996)
- cloning consistency precursors: Arrow and Hurwicz (1972), Maskin (1979), Moulin (1986), Tideman (1987)

Chevalier de Borda

Non-Probabilistic Social Choice

Marquis de Condorcet

- All scoring rules satisfy population-consistency. (Smith 1973; Young, 1974)
- No Condorcet extension satisfies population-consistency. (Young and Levenglick, 1978)
- Many Condorcet extensions satisfy compositionconsistency. (Laffond et al., 1996)
- No Pareto-optimal scoring rule satisfies compositionconsistency. (Laslier, 1996)
- Population-consistency and composition-consistency are incompatible in non-probabilistic social choice. (Brandl et al., 2016)
- A probabilistic SCF satisfies population-consistency and composition-consistency iff it returns all maximal lotteries. (Brandl et al., 2016)

Agenda Consistency 🔽

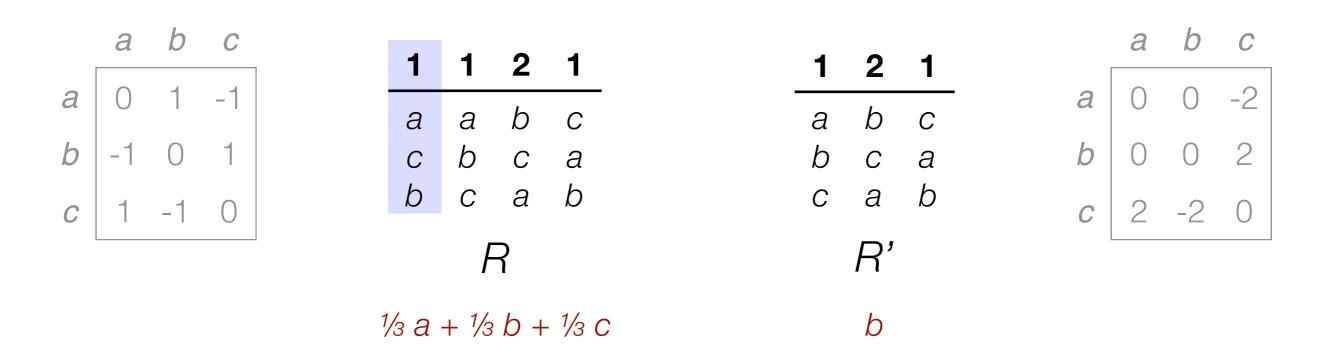
A lottery should be chosen from two agendas iff it is also chosen in the union of both agendas.

1 1	1 1	1 1	
a b d c b d c a	a b b c c a	a b d d b a	A={a,b,c} B={a,b,d}
R	$R _{\mathcal{A}}$	$R _B$	
½ a + ½ b	½ a + ½ b	½ a + ½ b	

- Sen (1971)'s α (contraction) and γ (expansion)
- at the heart of numerous impossibilities (e.g., Blair et al., 1976; Sen, 1977; Kelly, 1978; Schwartz, 1986)

SD-Participation

No agent can obtain more expected utility (for all vNM representations) by abstaining from an election.



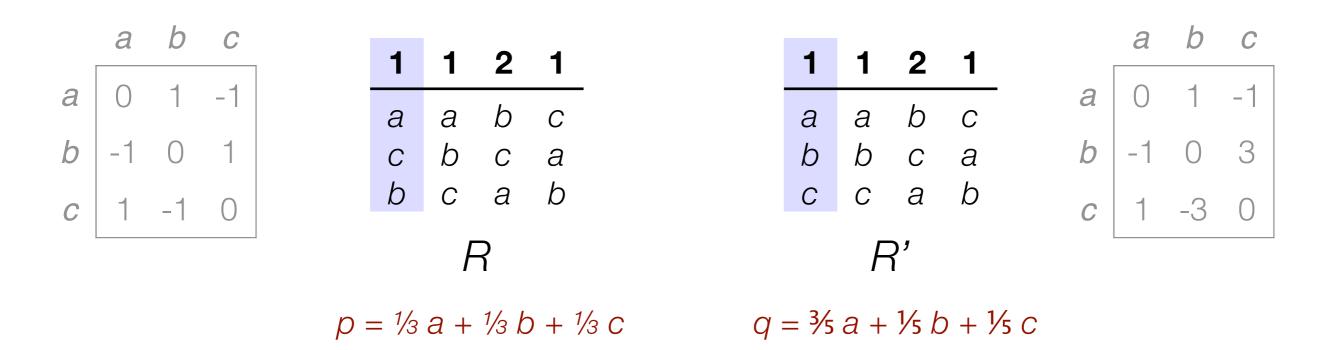
- cannot be satisfied by resolute Condorcet extensions (Moulin, 1988)
- satisfied by maximal lotteries

The expected utility of a voter can only be increased by decreasing the expected utility of another.

- maximal lotteries are SD-efficient
- violated by random serial dictatorship: there can even be lotteries that give strictly more expected utility to *all* voters!
- maximal lotteries are social-welfare-maximizing lotteries for canonical skew-symmetric bilinear (SSB) utility functions

SD-Strategyproofness

No agent can obtain more expected utility (for all vNM representations) by misreporting his preferences.



- maximal lotteries are *not* strategyproof with respect to stochastic dominance
 - q will always yield more expected utility than p

SD-Strategyproofness (ctd.)

- Maximal lotteries are SD-strategyproof in all profiles that admit a Condorcet winner (Peyre, 2013) .
- Maximal lotteries are group-strategyproof with respect to the "sure thing" lottery extension .
 - loosely based on Savage's sure-thing principle
 - ignore alternatives that receive the same probability in p and q
 - all remaining alternatives in the support of q should be preferred to all remaining alternatives in the support of p.
- Almost all randomized versions of classic rules fail to satisfy even this weak notion of strategyproofness
 - e.g., Borda, Copeland, STV, Kemeny, Dodgson

References

pnyx.dss.in.tum.de

- Aziz, Brandl, and B. *Universal dominance and welfare for plausible utility functions*. Journal of Mathematical Economics, 60:123-133, 2015.
- Aziz, B., and Brill. The computational complexity of random serial dictatorship. Economics Letters, 121(3):341-345, 2013.
- Aziz, B., and Brill. On the tradeoff between efficiency and strategyproofness.
 2016. Working paper.
- Brandl, B., and Hofbauer. Welfare maximization entices participation. 2016. Working paper.
- Brandl, B., and Suksompong. The impossibility of extending random dictatorship to weak preferences. Economics Letters, 141:44-47, 2016.
- Brandl, B., and Seedig. Consistent probabilistic social choice.
 Econometrica, 84(5):1839-1880, 2016.
- Fishburn. Probabilistic social choice based on simple voting comparisons.
 Review of Economic Studies, 51(4):683-692, 1984.

