Weak Strategyproofness in Randomized Social Choice

Felix Brandt (joint work with Patrick Lederer, UNSW)

> AAAI 2025, Philadelphia, USA February 2025

- Set of *n* voters \cdot N :
- Preference relation of voter *i* $\succ \geq_i$: over the *m* alternatives in *A*.
- Set of all weak preference relations \bullet \mathcal{R} : (complete, transitive)
- Set of all strict preference relations $\star \mathcal{L}:$ (complete, transitive, and antisymmetric)

→ $f: \mathscr{R}^N \to \Delta(A)$: Social decision scheme (SDS) maps $R = (\succeq_1, ..., \succeq_n)$ to a lottery $p \in \Delta(A)$.

- An SDS is
 - even-chance if it only returns uniform lotteries,
 - Condorcet-consistent if it puts probability 1 on Condorcet winners,
 - ex post efficient if it puts probability 0 on Pareto-dominated alternatives, and
 - strategyproof if no voter is better off by misstating his true preferences.

Randomized Social Choice

Stochastic Dominance

- When is a voter "better off"?
 - 2 1 0 7 5 1 3 2 0 a > b > cconsistent with the voter's preference relation \gtrsim . $p = (\frac{1}{2} \quad 0 \quad \frac{1}{2})$ $q = (0 \ \frac{1}{2} \ \frac{1}{2})$
- We only know his preferences over A, not his preferences over $\Delta(A)$. • Quantify over all utility functions $u: A \to \mathbb{R}$ • *u* is consistent with \gtrsim iff $\forall x, y \in A : u(x) \ge u(y) \Leftrightarrow x \succeq y$.
- For $p, q \in \Delta(A)$, $p \gtrsim q$ iff $\forall u \in \mathbb{R}^A$ consistent with $\gtrsim : \mathbb{E}_p[u] \geq \mathbb{E}_q[u]$ 4 3 0 4 1 0 iff $\forall x \in A$: $\sum_{y \geq x} p(y) \geq \sum_{y \geq x} q(y)$. a > b > c $p = (\frac{1}{2} \quad 0 \quad \frac{1}{2})$
- Some lotteries are incomparable (\gtrsim is incomplete).

q = (0)

Strategyproofness

- The following has to hold for all R and $i \in N$.
- Strong strategyproofness: $\forall \gtrsim_i'$:

 - Gibbard (1977) gave a complete characterization of strongly strategyproof SDSs for \mathscr{L}^N .
- Weak strategyproofness: $\forall \gtrsim_i'$:

 - Postlewaite & Schmeidler (SCW 1986); Bogomolnaia & Moulin (JET 2001)
 - Few SDSs were known to only satisfy weak strategyproofness:
 - Condorcet rule for \mathscr{L}^N (Postlewaite & Schmeidler, SCW 1986)
 - Egalitarian simultaneous reservation for \mathscr{R}^N (Aziz & Stursberg, AAAI 2014)
 - **Omni**^{*} for \mathscr{L}^N (Lederer, IJCAI 2021)

$$f(\succeq_i,\ldots) \gtrsim_i f(\succeq'_i,\ldots)$$

• A manipulation by *i* is successful if $\mathbb{E}_{f(\geq_i,\dots)}[u_i] > \mathbb{E}_{f(\geq_i,\dots)}[u_i]$ for some consistent $u_i \in \mathbb{R}^A$.

$$f(\succeq_i,\ldots) \not\prec_i f(\succeq'_i,\ldots)$$

A manipulation by *i* is successful if $\mathbb{E}_{f(\geq_i,\ldots)}[u_i] > \mathbb{E}_{f(\geq_i,\ldots)}[u_i]$ for all consistent $u_i \in \mathbb{R}^A$.

Results

- A function $s: \mathscr{L}^N \times A \to \mathbb{R}_{\geq 0}$ is a score function if for all R, $\sum_{x \in A} s(R, x) > 0$ and for all distinct $x, y, z \in A$ and R' = R, except that voter *i* swapped x and y such that $y \succ_i x$. • s(R, z) = s(R', z), (localizedness)
- - $s(R, y) \leq s(R', y)$, and (monotonicity)
 - $s(R, y) < s(R', y) \Rightarrow s(R, x) > s(R', x)$. (balancedness)
- Examples
 - Plurality: $s_P(R, x) = |\{i \in N : \forall y \in A : x \succeq_i\}$
 - Borda: $s_B(R, x) = \sum_{i \in N} |\{y \in A : x \succ_i y\}|$
 - Copeland: $s_C(R, x) = |\{y \in A : x \succ_{maj} y\}| + \frac{1}{2}|\{y \in A \setminus \{x\} : x \sim_{maj} y\}|$
- Let *s* and *t* be score functions and $g: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ a strictly increasing function, then s + t and $g \circ s$ are also score functions.
 - Boosted plurality, Borda, and Copeland scores: s_P^k , s_R^k , and s_C^k

Score Functions

Positive Results

- For score function *s*, the corresponding score-based SDS returns *p* with $p(x) = \frac{s(R, x)}{\sum_{y \in A} s(R, y)}$ for all $x \in A$.
- Theorem: Every score-based SDS for \mathscr{L}^N is weakly strategyproof.
 - $s_{P'}^k$, $s_{B'}^k$, and s_C^k are arbitrarily good approximations of plurality, Borda, and Copeland.
 - Impossible with strong strategyproofness (Procaccia, AAAI 2010)!
 - These SDSs become manipulable for more and more utility functions as k increases.
- We can also allow infinite scores for at most one alternative.
 - E.g., Condorcet-consistent variant of s^k_C, which is approximately ex post efficient!
 Impossible with strong strategyproofness (B. et al., SCW 2024)!
- We give a complete characterization of weakly strategyproof even-chance SDSs for \mathscr{L}^N that only depend on the voters' top choices and are anonymous and neutral.

- - 1. even-chance,
 - open whether even-chance is required
 - 2. pairwiseness, neutrality,
 - 3. anonymity,
- neutrality,
 - much simpler proof than Brandl et al. (JACM 2018), 14 pages \rightarrow 2 pages
 - still open whether neutrality is required
 - 4. no bi-dictatorship, even-chance,
 - stronger than Corollary 2 of B. et al. (JET 2022)
 - are all ex post efficient, weakly strategyproof SDSs mixtures of dictatorships?

Limitations & Conclusion

The following properties are incompatible with weak strategyproofness: **Condorcet-consistency**, **ex post efficiency** \mathscr{L}^N , $m \ge 5$, $n \ge 5$ odd

> ex post efficiency $\mathscr{L}^*, m \geq 5$ ex ante efficiency \mathscr{R}^N , $m \geq 4$, $n \geq 4$

ex post efficiency \mathscr{R}^N , $m \geq 3$, $n \geq 3$

We have identified a large class of interesting, weakly strategyproof SDSs.

Several interesting questions concerning weak strategyproofness remain.

