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Randomized Social Choice
‣  :  Set of  voters 

‣  : Preference relation of voter   
  over the  alternatives in . 

‣  : Set of all weak preference relations  
  (complete, transitive) 

‣  : Set of all strict preference relations  
  (complete, transitive, and antisymmetric) 

‣  : Social decision scheme (SDS) maps  to a lottery . 

‣ An SDS is  
‣ even-chance if it only returns uniform lotteries, 
‣ Condorcet-consistent if it puts probability 1 on Condorcet winners, 
‣ ex post efficient if it puts probability 0 on Pareto-dominated alternatives, and 
‣ strategyproof if no voter is better off by misstating his true preferences.
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Stochastic Dominance

‣ When is a voter “better off”? 
‣ We only know his preferences over , not his preferences over . 

‣ Quantify over all utility functions   
consistent with the voter’s preference relation . 
‣  is consistent with   iff  . 

‣ For ,  
      iff  consistent with :  

       iff . 

‣ Some lotteries are incomparable (  is incomplete).

A Δ(A)

u : A → ℝ
≿

u ≿ ∀x, y ∈ A : u(x) ≥ u(y) ⇔ x ≿ y

p, q ∈ Δ(A)
p ≿ q ∀u ∈ ℝA ≿ 𝔼p[u] ≥ 𝔼q[u]

∀x ∈ A : ∑y≿x p(y) ≥ ∑y≿x q(y)

≿

3

a ≻ b ≻ c
p= ( ½ 0 ½ )
q= ( 0 ½ ½ )
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a ≻ b ≻ c
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q= ( 0 1 0 )

4    3    0
4    1    0



Weak Strategyproofness in Randomized Social Choice Felix Brandt

Strategyproofness
‣ The following has to hold for all  and . 

‣ Strong strategyproofness:   
‣ A manipulation by  is successful if  for some consistent . 

‣ Gibbard (1977) gave a complete characterization of strongly strategyproof SDSs for . 

‣ Weak strategyproofness:   
‣ A manipulation by  is successful if  for all consistent . 

‣ Postlewaite & Schmeidler (SCW 1986); Bogomolnaia & Moulin (JET 2001) 
‣ Few SDSs were known to only satisfy weak strategyproofness: 

- Condorcet rule for  (Postlewaite & Schmeidler, SCW 1986) 
- Egalitarian simultaneous reservation for  (Aziz & Stursberg, AAAI 2014) 
- Omni* for  (Lederer, IJCAI 2021)

R i ∈ N
∀≿′ i : f(≿i , …) ≿i f(≿′ i , …)

i 𝔼f(≿′ i,…)[ui] > 𝔼f(≿i,…)[ui] ui ∈ ℝA

ℒN

∀≿′ i : f(≿i , …) /≺i f(≿′ i , …)
i 𝔼f(≿′ i,…)[ui] > 𝔼f(≿i,…)[ui] ui ∈ ℝA

ℒN

ℛN

ℒN
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Score Functions
‣ A function  is a score function if for all ,  and  

for all distinct  and , except that voter  swapped  and  such that . 
‣ ,       (localizedness) 

‣ , and      (monotonicity) 

‣ .  (balancedness) 

‣ Examples 
‣ Plurality:   

‣ Borda:    

‣ Copeland:   

‣ Let  and  be score functions and  a strictly  
increasing function, then  and  are also score functions. 
‣ Boosted plurality, Borda, and Copeland scores: , , and 

s : ℒN × A → ℝ≥0 R ∑x∈A s(R, x) > 0
x, y, z ∈ A R′ = R i x y y ≻′ i x

s(R, z) = s(R′ , z)
s(R, y) ≤ s(R′ , y)
s(R, y) < s(R′ , y) ⇒ s(R, x) > s(R′ , x)

sP(R, x) = |{i ∈ N : ∀y ∈ A : x ≿i y}|
sB(R, x) = ∑i∈N |{y ∈ A : x ≻i y} |
sC(R, x) = |{y ∈ A : x ≻maj y} | + ½|{y ∈ A∖{x}: x ∼maj y} |

s t g : ℝ≥0 → ℝ≥0
s + t g ∘ s
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Positive Results
‣ For score function , the corresponding score-based SDS returns  with 

 for all . 

‣ Theorem: Every score-based SDS for  is weakly strategyproof. 
‣ , , and  are arbitrarily good approximations of plurality, Borda, and Copeland. 

- Impossible with strong strategyproofness (Procaccia, AAAI 2010)! 
- These SDSs become manipulable for more and more utility functions as  increases. 

‣ We can also allow infinite scores for at most one alternative. 
‣ E.g., Condorcet-consistent variant of , which is approximately ex post efficient! 

- Impossible with strong strategyproofness (B. et al., SCW 2024)! 

‣ We give a complete characterization of weakly strategyproof even-chance SDSs  
for  that only depend on the voters’ top choices and are anonymous and neutral.

s p
p(x) = s(R, x)

∑y∈A s(R, y)
x ∈ A

ℒN
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Limitations & Conclusion
‣ The following properties are incompatible with weak strategyproofness: 

1. even-chance,   Condorcet-consistency, ex post efficiency    , ,  odd 

- open whether even-chance is required 

2. pairwiseness,   neutrality,     ex post efficiency    ,  

3. anonymity,   neutrality,     ex ante efficiency    , ,  
- much simpler proof than Brandl et al. (JACM 2018), 14 pages → 2 pages 
- still open whether neutrality is required 

4. no bi-dictatorship, even-chance,    ex post efficiency    , ,  

- stronger than Corollary 2 of B. et al. (JET 2022) 
- are all ex post efficient, weakly strategyproof SDSs mixtures of dictatorships? 

‣ We have identified a large class of interesting, weakly strategyproof SDSs. 

‣ Several interesting questions concerning weak strategyproofness remain.

ℒN m ≥ 5 n ≥ 5

ℒ* m ≥ 5

ℛN m ≥ 4 n ≥ 4

ℛN m ≥ 3 n ≥ 3
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