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Abstract

An important—but very demanding—property in collective
decision-making is strategyproofness, which requires that vot-
ers cannot benefit from submitting insincere preferences. Gib-
bard (1977) has shown that only rather unattractive rules are
strategyproof, even when allowing for randomization. How-
ever, Gibbard’s theorem is based on a rather strong interpre-
tation of strategyproofness, which deems a manipulation suc-
cessful if it increases the voter’s expected utility for at least one
utility function consistent with his ordinal preferences. In this
paper, we study weak strategyproofness, which deems a ma-
nipulation successful if it increases the voter’s expected utility
for all utility functions consistent with his ordinal preferences.
We show how to systematically design attractive, weakly strat-
egyproof social decision schemes (SDSs) and explore their
limitations for both strict and weak preferences. In particular,
for strict preferences, we show that there are weakly strate-
gyproof SDSs that are either ex post efficient or Condorcet-
consistent, while neither even-chance SDSs nor pairwise SDSs
satisfy both properties and weak strategyproofness at the same
time. By contrast, for the case of weak preferences, we discuss
two sweeping impossibility results that preclude the existence
of appealing weakly strategyproof SDSs.

1 Introduction
Any mechanism that relies on the private information of
agents should incentivize agents to report their private in-
formation truthfully. However, designing mechanisms that
satisfy this property—known as strategyproofness—is a chal-
lenging task in many domains of economic interest. This is
particularly true for the field of social choice, which stud-
ies voting rules that aggregate the voters’ preferences into a
collective decision: a seminal result by Gibbard (1973) and
Satterthwaite (1975) shows that voters can benefit by lying
about their true preferences in any reasonable determinis-
tic voting rule. Early hopes that more positive results can
be achieved for randomized voting rules were shattered by
Gibbard (1977). Gibbard considered social decision schemes
(SDSs), which return a probability distribution for each pro-
file of individual preferences, and the final winner will be
chosen by chance according to this distribution.

In particular, Gibbard (1977) has shown that the only strat-
egyproof and ex post efficient SDSs are random dictatorships,
which choose each voter with a fixed probability and imple-
ment this voter’s favorite alternative as the winner of the

election. While this result allows for more rules than the
Gibbard-Satterthwaite theorem, random dictatorships suffer
from a large degree of randomization and fail to identify
good compromise alternatives. The latter observation is re-
lated to the fact that random dictatorships violate Condorcet-
consistency, i.e., they may fail to select an alternative that
beats all other alternatives in a pairwise majority comparison.

Like all results on strategyproof SDSs, Gibbard’s random
dictatorship theorem crucially hinges on the exact definition
of strategyproofness, which, in turn, depends on the assump-
tions of the voters’ preferences over lotteries. Gibbard (1977)
postulates that a voter prefers one lottery to another if the
former yields at least as much expected utility as the latter for
every utility function that is consistent with his true prefer-
ences. Then, an SDS is called strategyproof if voters always
prefer the outcome when voting truthfully to every outcome
they could obtain by lying about their true preferences. This
strategyproofness notion, which we will call strong strate-
gyproofness, is predominant in the literature (e.g., Barberà
1979; Procaccia 2010; Brandt, Lederer, and Romen 2024) be-
cause it guarantees that voters cannot manipulate regardless
of their exact utility functions. However, as demonstrated by
the random dictatorship theorem, strong strategyproofness
mainly leads to negative results.

In this paper, we will thus study a weaker notion of strate-
gyproofness, first considered by Postlewaite and Schmeidler
(1986) and later popularized by Bogomolnaia and Moulin
(2001) in the context of random assignment. To this end, we
observe that the preferences over lotteries defined by Gibbard
(1977) are incomplete because there are lotteries such that a
voter prefers neither of them to the other. This view results
in two ways to define strategyproofness, depending on how
we interpret incomparable lotteries. Strong strategyproofness,
as defined by Gibbard (1977), views a deviation to an in-
comparable lottery as a successful manipulation. By contrast,
we only consider deviations to comparable lotteries as suc-
cessful and deem all others as unsuccessful. The resulting
strategyproofness notion is called weak strategyproofness and
requires that voters cannot obtain a strictly preferred lottery
by lying about their true preferences.

Our contribution. We improve our understanding of weak
strategyproofness by contributing various positive and nega-
tive results. A summary of these results is given in Table 1.
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In our first theorem, we introduce the large class of score-
based SDSs and show that all SDSs within this class are
weakly strategyproof. This result allows, e.g., to construct
appealing weakly strategyproof SDSs that satisfy Condorcet-
consistency or ex post efficiency, or that approximate deter-
ministic voting rules arbitrarily close. Both of these objec-
tives are impossible to achieve for strong strategyproofness
(Procaccia 2010; Brandt, Lederer, and Romen 2024). Sec-
ondly, we present characterizations of weakly strategyproof
tops-only SDSs, which only have access to the voters’ fa-
vorite alternatives. In this context, we also cover the design
of weakly strategyproof even-chance SDSs, which always
return a uniform lottery over some subset of alternatives. It
has often been argued that such SDSs are more acceptable be-
cause uniform lotteries are easier to grasp cognitively and to
implement in practice (e.g., Fishburn 1972; Gärdenfors 1979;
Brandt, Saile, and Stricker 2022). However, no attractive
even-chance SDS satisfies strong strategyproofness.

We also analyze the limitations of weakly strategyproof
SDSs. In particular, for strict preferences, we show that no
weakly strategyproof, even-chance SDS simultaneously satis-
fies ex post efficiency and Condorcet-consistency, and that no
weakly strategyproof, pairwise, and neutral SDS (which can
only access the pairwise majority comparisons between alter-
natives) satisfies ex post efficiency. These results indicate that
Condorcet-consistency and ex post efficiency may be incom-
patible for all weakly strategyproof SDSs. However, such a
result seems very difficult to obtain as, for every ε > 0, there
are weakly strategyproof and Condorcet-consistent SDSs that
assign at most ε probability to Pareto-dominated alternatives.

Finally, we also consider weakly strategyproof SDSs for
weak preferences. In this setting, we provide the first easily
verifiable proof of an important impossibility theorem by
Brandl et al. (2018), showing that no weakly strategyproof
SDS simultaneously satisfies anonymity, neutrality, and ex
ante efficiency. When restricting attention to even-chance
SDSs, we strengthen this result by proving that all weakly
strategyproof and ex post efficient SDSs always randomize
over the favorite alternatives of at most two fixed voters.
These results show that, if we allow weak preferences, even
mild forms of strategyproofness preclude attractive SDSs.

Related work. Studying weaker forms of strategyproofness
is an active area in social choice theory (e.g., Bogomolnaia
and Moulin 2001; Balbuzanov 2016; Aziz et al. 2018; Brandl
et al. 2018; Lederer 2021; Mennle and Seuken 2021). Un-
fortunately, in the realm of voting, this approach mainly led
to strengthened impossibility results: for instance, Lederer
(2021) studies a strategyproofness notion that lies logically
between weak and strong strategyproofness and shows that
it is still incompatible with Condorcet-consistency. Despite
these negative results, weak strategyproofness has received
little attention in social choice theory. In particular, only few
SDSs, such as the Condorcet rule (Postlewaite and Schmei-
dler 1986) or the egalitarian simultaneous reservation rule by
Aziz and Stursberg (2014), are known to be weakly strate-
gyproof. In more recent work, weak strategyproofness was
used to prove impossibility theorems for the case of weak
preferences (Aziz et al. 2018; Brandl, Brandt, and Suksom-

pong 2016; Brandl et al. 2018). This approach culminated
in a sweeping impossibility theorem for weak preferences:
no weakly strategyproof SDS satisfies anonymity, neutrality,
and ex ante efficiency (Brandl et al. 2018).

Some of our results can also be compared to results for set-
valued voting rules (which return sets of winning alternatives
rather instead of lotteries). In particular, even-chance SDSs
can be interpreted as set-valued voting rules and weak strat-
egyproofness then translates to a strategyproofness notion
called even-chance strategyproofness (e.g., Gärdenfors 1979;
Brandt, Saile, and Stricker 2022). This strategyproofness no-
tion is slightly stronger than commonly considered set-valued
strategyproofness notions such as Fishburn-strategyproofness
(Fishburn 1972) or Kelly-strategyproofness (Kelly 1977), and
our paper is thus related to recent work on set-valued vot-
ing rules (e.g., Botan and Endriss 2021; Brandt, Saile, and
Stricker 2022; Brandt and Lederer 2023).

2 Preliminaries
Let N = {1, . . . , n} denote a set of n voters and let A =
{a1, . . . , am} denote a set of m ≥ 2 alternatives. Every voter
i ∈ N reports a (weak) preference relation ≿i, which is a
complete and transitive binary relation on A. The strict part of
≿i is denoted by ≻i (i.e., x ≻i y iff x ≿i y and not y ≿i x)
and the indifference part by ∼i (i.e., x ∼i y iff x ≿i y
and y ≿i x). A preference relation ≿i is called strict if its
irreflexive part coincides with ≻i. We represent preference
relations by comma-separated lists, where brackets indicate
that a voter is indifferent between some alternatives. For
instance, a, {b, c} denotes that the considered voter prefers
a to both b and c and is indifferent between the latter two
alternatives. We denote the set of all strict preference relations
by L and the set of all weak preference relations by R.

A (weak) preference profile R = (≿1, . . . ,≿n) is a vector
that specifies the preference relations ≿i of all voters i ∈ N .
A preference profile is strict if the preference relations of
all voters are strict. The set of all strict preference profiles
is given by LN , and the set of all weak preference profiles
is RN . We represent preference profiles as collections of
preference relations, where the set of voters that report a
preference relation is stated directly before the preference
relation. For instance, {1, 2, 3} : a, b, c means that voters 1,
2, and 3 prefer a to b to c. To improve readability, we omit
curly brackets for singleton sets.

The main objects of study in this paper are social decision
schemes, which intuitively are voting rules that may use
chance to determine the winner of an election. To formalize
this, we define lotteries as probability distributions over the
alternatives, i.e., a lottery p is a function of the type A →
[0, 1] such that

∑
x∈A p(x) = 1. Moreover, by ∆(A) we

denote the set of all lotteries over A. Then, a social decision
scheme (SDS) on a domain D ∈ {LN ,RN} is a function that
maps every preference profile R ∈ D to a lottery p ∈ ∆(A).
We denote by f(R, x) the probability that the SDS f assigns
to alternative x in the profile R and extend this notion to sets
of alternatives X by defining f(R,X) =

∑
x∈X f(R, x).

We will sometimes restrict our attention to even-chance
SDSs. These SDSs pick a set of alternatives and random-
ize uniformly over these alternatives. Formally, an SDS f is
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even-chance if it chooses for every profile R a non-empty
set of alternatives X such that f(R, x) = 1

|X| if x ∈ X and
f(R, x) = 0 otherwise. Even-chance lotteries are appealing
because of their simplicity and because non-uniform random-
ization may be difficult to implement in the real world. On
top of that, even-chance SDSs can naturally be interpreted as
set-valued voting rules, which have been studied in detail in
the social choice community.

2.1 Strategyproofness
The central axiom for our analysis is strategyproofness which
demands that voters cannot benefit by lying about their true
preferences. To define this axiom for SDSs, we need to spec-
ify how voters compare lotteries over the alternatives. We
assume for this that voters have utility functions ui : A → R
and aim to maximize their expected utility. However, the ex-
act utility functions are not known as voters only reveal their
ordinal preferences over alternatives. We will thus quantify
over all utility functions ui that are consistent with the voter’s
preference relation ≿i, i.e., that satisfy that ui(x) ≥ ui(y)
if and only if x ≿i y for all x, y ∈ A. A voter then prefers
lottery p to lottery q, denoted by p ≿i q, if p guarantees
him at least as much expected utility for every utility func-
tion ui that is consistent with his preference relation, i.e., if
E[ui(p)] ≥ E[ui(q)] for all consistent utility functions ui.
Alternatively, this lottery extension can also be defined based
on stochastic dominance. To state this definition, we let the
upper contour set U(≿i, x) = {y ∈ A : y ≿i x} of x denote
the set of alternatives that voter i weakly prefers to x. It then
holds that p ≿i q if and only if p(U(≿i, x)) ≥ q(U(≿i, x))
for all x ∈ A (see, e.g., Sen 2011; Brandl et al. 2018).

Importantly, the voters’ preferences over lotteries, as de-
fined above, are incomplete, i.e., there are lotteries p and q
and a preference relation ≿i such that neither p ≿i q nor
q ≿i p. For example, for the preference relation a, b, c, the
lotteries p and q defined by p(a) = p(b) = p(c) = 1/3 and
q(b) = 1 are incomparable as neither of them stochastically
dominates the other. Consequently, there are two ways to
define strategyproofness depending on how we handle incom-
parable lotteries. The approach suggested by Gibbard (1977)
counts a deviation to an incomparable lottery as a success-
ful manipulation and strategyproofness hence prohibits such
deviations. This results in strong strategyproofness, which re-
quires of an SDS f that f(R) ≿i f(R

′) for all profiles R,R′

and voters i ∈ N such that ≿j = ≿′
j for all j ∈ N \ {i}. By

contrast, we will not count the deviation to an incomparable
lottery as a successful manipulation. This leads to a weaker
form of strategyproofness: an SDS f is weakly strategyproof
if f(R′) ̸≻i f(R) for all profiles R, R′ and voters i ∈ N
such that ≿j = ≿j

′ for all j ∈ N \ {i}.

2.2 Further Axioms
We conclude this section by stating four standard axioms.

Anonymity. Anonymity is a basic fairness property that
states that the identities of the voters should not matter. For-
mally, an SDS f is anonymous if f(R) = f(π(R)) for all
permutations π : N → N and profiles R, where the profile
R′ = π(R) is given by ≿′

π(i) = ≿i for all voters i ∈ N .

Neutrality. Similar to anonymity, neutrality is a fairness
property that requires that alternatives are treated equally. In
more detail, an SDS f is neutral if f(τ(R), τ(x)) = f(R, x)
for all permutations τ : A → A and profiles R. This time,
the profile R′ = τ(R) is defined by τ(x) ≿′

i τ(y) if and only
if x ≿i y for all x, y ∈ A and i ∈ N .

Ex post efficiency. Ex post efficiency postulates that alter-
natives should have no chance of being selected if there is
another alternative that makes at least one voter better off
without making any other voter worse off. To this end, we
say an alternative x Pareto-dominates another alternative y
in a profile R if x ≿i y for all voters i ∈ N and x ≻i y for
some i ∈ N . Conversely, an alternative is Pareto-optimal in
a profile R if it is not Pareto-dominated by any other alterna-
tive. Finally, an SDS f is ex post efficient if f(R, x) = 0 for
all profiles R and Pareto-dominated alternative x.

Condorcet-consistency. Condorcet-consistency demands
that a Condorcet winner, an alternative that beats every other
alternative in a pairwise majority comparison, should be se-
lected with probability 1 whenever it exists. To formalize this,
we define the majority relation ≿M of a profile R by x ≿M y
if and only if |{i ∈ N : x ≻i y}| ≥ |{i ∈ N : y ≻i x}| for
all x, y ∈ A. Moreover, ≻M denotes the strict part of ≿M and
∼M its indifferent part. Then, an alternative x is a Condorcet
winner in a profile R if x ≻M y for all y ∈ A \ {x}, and an
SDS f is Condorcet-consistent if f(R, x) = 1 whenever x is
the Condorcet winner in R.

3 Results
We are now ready to state our results. We start by presenting
theorems that can be used to design attractive weakly strate-
gyproof SDSs (Section 3.1), and then discuss the limitations
of weakly strategyproof SDSs (Sections 3.2 and 3.3). Due to
space constraints, we defer most of our proofs to the appendix
and present proof sketches instead.

3.1 Possibility Theorems for Strict Preferences
In this section, we will show how to design weakly strate-
gyproof SDSs when voters have strict preferences. In more
detail, we will first present a large class of weakly strate-
gyproof SDSs (cf. Theorem 1) and then give two character-
izations of weakly strategyproof SDSs that only depend on
the voters’ favorite alternatives (cf. Theorem 2).

We first introduce the class of score-based SDSs and show
that all of these SDSs are weakly strategyproof. To this end,
let Ri:yx be the profile derived from another profile R ∈ LN

by letting voter i only reinforce y against x; in particular, this
requires that x ≻i y and that there is no alternative z with
x ≻i z ≻i y. Next, a function s : LN ×A → R≥0 ∪ {∞} is
a score function if it satisfies for all profiles R ∈ LN , distinct
alternatives x, y, z ∈ A, and voters i ∈ N that
• s(R, x) = ∞ implies s(R, y) ̸= ∞ (at most one infinity),
• s(R, z) = s(Ri:yx, z) (localizedness),
• s(R, y) ≤ s(Ri:yx, y) (monotonicity), and
• s(R, y) = s(Ri:yx, y) implies s(R, x) = s(Ri:yx, x) un-

less s(R, y) = ∞, or s(R, x) = ∞ and s(R, y) > 0
(balancedness).
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We note that a score function can assign a score of infinity
to at most one alternative. We thus assume the usual arith-
metic rules for infinity: for all x ∈ R, it holds that ∞ > x,
∞ + x = ∞, x

∞ = 0, and ∞
∞ = 1. Finally, an SDS f on

LN is score-based if there is a score function s such that∑
y∈A s(R, y) > 0 and f(R, x) = s(R,x)∑

y∈A s(R,y) for all alter-

natives x ∈ A and profiles R ∈ LN .
We will next discuss several examples of score-based SDSs

to illustrate this class of and its versatility. To this end, we first
consider two classical score functions, namely the Copeland
score function sC (R, x) = |{y ∈ A \ {x} : x ≻M y}| +
1
2 |{y ∈ A \ {x} : x ∼M y}| and the plurality score func-
tion sP (R, x) = |{i ∈ N : ∀y ∈ A \ {x} : x ≻i y}|. Both of
these functions are indeed score functions according to our
definition and the corresponding SDSs are thus score-based.
Moreover, for every strictly monotonically increasing func-
tion g : N0 → R≥0, it holds that sgC (R, x) = g(sC (R, x))
and sgP (R, x) = g(sP (R, x)) are also score functions. For
example, this means that the SDSs defined by the functions
skC and skP , which take the k-th power of sC (R, x) and
sP (R, x), are score-based. Even SDSs that seem rather unre-
lated to score functions belong to our class. For instance, the
Condorcet rule (which chooses the Condorcet winner with
probability 1 whenever it exists and randomizes uniformly
over all alternatives otherwise) is the score-based SDS de-
fined by the score function s with s(R, x) = ∞ if x is the
Condorcet winner in R and s(R, x) = 1 otherwise. Similarly,
the function sk,CW

C , which assigns a score of infinity to the
Condorcet winner and otherwise coincides with skC , satisfies
all our conditions and is thus a score function.

We will now prove that all score-based SDSs are weakly
strategyproof.

Theorem 1. Every score-based SDS on LN satisfies weak
strategyproofness.

Proof sketch. Let f be a score-based SDS and let s be its
score function. Moreover, we consider two profiles R,R′ ∈
LN and a voter i ∈ N such that ≿j = ≿′

j for all j ∈ N \{i}
and f(R) ̸= f(R′). To simplify this proof sketch, we addi-
tionally assume that 0 < s(R, x) < ∞ and s(R′, x) < ∞
for all x ∈ A, and that ≿i = x1, x2, . . . , xm. Next, we de-
fine stotal(R̂) =

∑
x∈A s(R̂, x) and consider three cases.

First, if stotal(R) < stotal(R
′), we use the monotonicity

and localizedness of s to show that s(R, x1) ≥ s(R′, x1)
by transforming R to R′ with a swap sequence that never
reinforces x. Since stotal(R) < stotal(R

′), it follows that
f(R, x1) = s(R,x1)

stotal (R) > s(R′,x1)
stotal (R′) = f(R′, x1) and thus

f(R′) ̸≻i f(R). If stotal(R) > stotal(R
′), we can use

a similar argument by showing that the score of voter i’s
least preferred alternative xm weakly increases when going
from R to R′. Finally, if stotal(R) = stotal(R

′), we let xh

denote the alternative such that s(R, xℓ) = s(R′, xℓ) for
all ℓ < h and s(R, xh) ̸= s(R′, xh). Then, we prove that
s(R, xh) > s(R′, xh), which shows that f(R,U(≿i, xh)) >
f(R′, U(≿i, xh)) and thus f(R′) ̸≻i f(R). Finally, slightly
more involved arguments extend this analysis to the case that
stotal(R) = ∞ or stotal(R′) = ∞.

Theorem 1 has a number of important consequences.
Firstly, this result implies that the score-based SDSs defined
by skP and skC are weakly strategyproof. Since all these rules
fail strong strategyproofness when k ̸= 1, this demonstrates
that the space of weakly strategyproof SDSs is significantly
richer than the one of strongly strategyproof SDSs. Secondly,
we note that the score-based SDSs defined by skP and skC ap-
proximate the Plurality rule and Copeland rule (which simply
choose the alternatives with maximal Plurality and Copeland
score, respectively) arbitrarily closely by increasing the expo-
nent k. This stands in sharp contrast to a result by Procaccia
(2010) who has shown that strongly strategyproof SDSs are
poor approximations of common deterministic voting rules.
Thirdly, Theorem 1 implies that there are interesting weakly
strategyproof SDSs that are ex post efficient or Condorcet-
consistent. For instance, all score-based SDSs defined by
a score-function sgP (R, x) = g(sP (R, x)) are ex post effi-
cient when g satisfies that g(0) = 0 and g(x) > g(y) for all
x, y ∈ N0 with x > y, and the Condorcet rule as well as the
score-based SDS defined by sk,CW

C are Condorcet-consistent.
This stands again in contrast to results for strong strate-
gyproofness because Brandt, Lederer, and Romen (2024)
have shown that all strongly strategyproof SDSs can put at
most probability 2/m on Condorcet winners, and that all
strongly strategyproof SDSs that assign at most a probabil-
ity of less than 1/m to Pareto-dominated alternatives have a
random dictatorship component.

A natural follow-up question for Theorem 1 is whether the
class of score-based SDSs is equivalent to the set of weakly
strategyproof SDSs. This is not the case since the omninomi-
nation rule fO, which randomizes uniformly over the set of
top-ranked alternatives OMNI(R) = {x ∈ A : sP (R, x) >
0}, is weakly strategyproof but not score-based. In particular,
every score function that induces this SDS fails balancedness
or localizedness, so it cannot be score-based.

To give some characterizations for weakly strategyproof
SDSs, we will next focus on the class of tops-only SDSs,
which only depend on the voters’ favorite alternatives. More
formally, let Ti(R) = {x ∈ A : x ≿i y for all y ∈ A} de-
note the set of voter i’s favorite alternatives and note that
|Ti(R)| = 1 if R is strict. Then, an SDS f is tops-only if
f(R) = f(R′) for all preference profiles R and R′ such that
Ti(R) = Ti(R

′) for all i ∈ N . We will now provide two
characterizations of weak strategyproofness for tops-only
SDSs on LN : firstly, we will show that, for tops-only SDSs,
weak strategyproofness is equivalent to a monotonicity prop-
erty. Furthermore, we will characterize the class of weakly
strategyproof SDSs that are tops-only, even-chance, anony-
mous, and neutral as parameterized omninomination rules.
These SDSs are defined by two parameters θ1 > n

2 and θ2
and coincide with fO except for two special cases: (i) if an
single alternative is top-ranked by at least θ1 voters, then
this alternative is assigned probability 1, and (ii) if no such
alternative exists and more that θ2 alternatives are top-ranked
in total, then we randomize uniformly over all alternatives.
More formally, an SDS f is a parameterized omninomination
rule if there are two parameters θ1 ∈ {⌈n+1

2 ⌉, . . . , n + 1}
and θ2 ∈ {0, . . . ,m− 1} such that
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• f(R, x) = 1 for all profiles R and alternatives x ∈ A
such that sP (R, x) ≥ θ1,

• f(R) = fO(R) for all profiles R such that
maxx∈A sP (R, x) < θ1 and |OMNI(R)| ≤ θ2,

• f(R, x) = 1
m for all profiles R and alternatives x ∈ A

such that maxx∈A sP (R, x) < θ1 and |OMNI(R)| > θ2.

Theorem 2. Let f denote a tops-only SDS on LN .

1) f is weakly strategyproof if and only if f(R) = f(R′) or
f(R, Ti(R)) > f(R′, Ti(R)) for all profiles R,R′ ∈ LN

and voters i ∈ N such that ≿j = ≿′
j for all j ∈ N \ {i}.

2) f is weakly strategyproof, even-chance, anonymous, and
neutral if and only if it is a parameterized omninomination
rule.

Proof. We will only prove the first claim here and defer the
proof of the second part of the theorem to the appendix. Thus,
let f denote a tops-only SDS. We first show the direction
from right to left and hence suppose that f satisfies the given
condition. Now, let R and R′ denote two preference profiles
and i a voter such that ≿j = ≿′

j for all j ∈ N\{i}. Moreover,
let x denote voter i’s favorite alternative in R and y his
favorite alternative in R′. If f(R) = f(R′), voter i clearly
cannot manipulate by deviating from R to R′. Hence, we
suppose that f(R) ̸= f(R′), which requires that x ̸= y due
to tops-onlyness. In turn, the condition of our theorem implies
that f(R′, x) < f(R, x) if f(R) ̸= f(R′) and x ̸= y. This
implies that f(R′) ̸≻i f(R), so f is weakly strategyproof.

Next, we will show that f fails weak strategyproofness
if it fails the condition in the theorem. To this end, assume
there are profiles R and R′, a voter i, and an alternative x
such that ≿j = ≿′

j for all j ∈ N \ {i}, Ti(R) = {x},
f(R) ̸= f(R′), and f(R, x) ≤ f(R′, x). We define Z+ =
{z ∈ A \ {x} : f(R′, z) ≥ f(R, z)} and Z− = {z ∈ A \
{x} : f(R′, z) < f(R, z)} and observe that Z− ̸= ∅ since
f(R) ̸= f(R′). Moreover, we consider the profile R∗ derived
from R by assigning voter i a strict preference relation ≿∗

i
with x ≻∗

i z+ ≻∗
i z− for all z+ ∈ Z+ and z− ∈ Z−. By

tops-onlyness, f(R) = f(R∗). On the other hand, it holds
by construction that f(R′) ̸= f(R∗) and f(R′, U(≿∗

i , x)) ≥
f(R∗, U(≿∗

i , x)) for all x ∈ A, so f(R′) ≻∗
i f(R∗) and f

fails weak strategyproofness.

Remark 1. The second claim of Theorem 2 can be used
to characterize the SDS that assigns probability 1 to an al-
ternative if it is top-ranked by a strict majority of voters and
randomizes uniformly over OMNI (R) if no such alterna-
tive exists: among all SDSs that are tops-only, even-chance,
weakly strategyproof, anonymous, and neutral, it is the one
that uses the least amount of randomization.

Remark 2. Every strongly strategyproof SDS is score-
based. This follows from a result by Gibbard (1977), which
states that an SDS is strongly strategyproof if and only if
the SDS itself is localized and monotonic. In our termi-
nology, this means that an SDS is strongly strategyproof
if and only if it is defined by score function s : LN ×
A → R≥0 that satisfies monotonicity, localizedness, and
that s(R, x) − s(Ri:yx, x) = s(Ri:yx, y) − s(R, y) for all

x, y ∈ A and R ∈ LN . By replacing the last constraint by
balancedness (and even allowing at most one alternative with
s(R, x) = ∞), we derive significantly more flexibility in the
design of weakly strategyproof SDSs.

3.2 Impossibility Theorems for Strict Preferences
We will now turn to the limitations of weakly strategyproof
SDSs for the case that voters report strict preferences. To
this end, we observe that, while our results in Section 3.1
allow to construct weakly strategyproof SDSs that are arbi-
trarily close to simultaneously satisfying ex post efficiency
and Condorcet-consistency (e.g., the score-based rule defined
by skC for very large k), we were not able to construct a
weakly strategyproof SDS that satisfies both axioms at the
same time. As it turns out, constructing such an SDS may
be impossible. In more detail, we subsequently prove that
no even-chance SDS (cf. Theorem 3) and no neutral and
pairwise SDSs (cf. Theorem 4) simultaneously satisfies weak
strategyproofness, Condorcet-consistency, and ex post effi-
ciency. This shows that the most common approaches for
designing Condorcet-consistent SDSs do not allow to simul-
taneously satisfy weak strategyproofness, ex post efficiency,
and Condorcet-consistency.

Let us first consider even-chance SDSs.

Theorem 3. Assume that m ≥ 5 and n ≥ 5 is odd. No
even-chance SDS on LN satisfies weak strategyproofness,
Condorcet-consistency, and ex post efficiency.

Proof Sketch. For the proof of this result, we first show two
auxiliary claims: assuming that the number of voters n is odd,
we prove (i) that every weakly strategyproof and Condorcet-
consistent even-chance SDS assigns probability 1 to an al-
ternative x if and only if x is the Condorcet winner, and (ii)
that such SDSs can never randomize over exactly two alterna-
tives. We then consider the following two preference profiles;
additional alternatives are bottom-ranked by all voters.

R1: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

R̂1: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c
For these profiles, we show based on our auxiliary claims

that every even-chance SDS that is weakly strategyproof,
Condorcet-consistent, and ex post efficient uniformly ran-
domizes over {a, b, c, e} for R1 and over {a, b, d, e} for R̂1.
This means that voter 3 can manipulate by deviating from R1

to R̂1, contradicting weak strategyproofness.

Let us now turn to pairwise and neutral SDSs. An SDS
is pairwise if f(R) = f(R′) for all profiles R, R′ such that
|{i ∈ N : x ≻i y}| − |{i ∈ N : y ≻i x}| = |{i ∈
N : x ≻′

i y}| − |{i ∈ N : y ≻′
i x}| for all x, y ∈ A. In

other words, an SDS is pairwise if it only depends on the
weighted majority relation. There are many important pair-
wise SDSs (see, e.g., Brandt et al. 2016, Chapter 3 and 4)
and most Condorcet-consistent voting rules are pairwise.
Hence, showing that all pairwise, neutral, and weakly strate-
gyproof SDSs fail ex post efficiency can be seen as evidence
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that no SDS simultaneously satisfies weak strategyproofness,
Condorcet-consistency, and ex post efficiency. We need to
slightly extend the domain of SDSs for the following result:
L∗ =

⋃
N⊆N is finite and non-empty LN contains all strict prefer-

ence profiles for every finite and non-empty electorate. This
is required because pairwiseness establishes relationships
between profiles with different numbers of voters.
Theorem 4. Assume that m ≥ 5. No pairwise, neutral, and
weakly strategyproof SDS on L∗ satisfies ex post efficiency.

Proof Sketch. For this proof sketch, we focus on the case
that there are m = 5 alternatives. Moreover, we will only
consider profiles with n = 3 voters; this suffices as we work
in L∗. Nevertheless, the impossibility theorem can be ex-
tended to all odd values n > 3 by adding voters with inverse
preferences as pairwiseness requires that the outcome does
not change when adding such voters. Now, assume for con-
tradiction that there is an SDS f that satisfies all axioms of
our theorem. First, we show that f is invariant under weak-
ening alternatives that obtain probability 0, i.e., if R′ arises
from a profile R by only weakening an alternative x with
f(R, x) = 0, then f(R) = f(R′). Next, we focus on the
profiles R and R′.

R: 1: a, b, e, c, d 2: b, c, e, a, d 3: e, c, a, b, d
R′: 1: a, b, e, c, d 2: b, c, a, e, d 3: e, c, a, b, d

In particular, we show that f(R, a) = f(R, b) =
f(R, e) = 1

3 and f(R′, a) = f(R′, b) = f(R′, c) = 1
3

by analyzing several auxiliary profiles. However, this means
that voter 2 can manipulate by deviating from R to R′ as
f(R′) ≻2 f(R), so f fails weak strategyproofness.

Remark 3. All axioms except of the even-chance condi-
tion are required for Theorem 3: the omninomination rule
fO satisfies ex post efficiency and weak strategyproofness,
the Condorcet rule satisfies Condorcet-consistency and weak
strategyproofness, and uniformly randomizing over known
majoritarian choice sets such as the uncovered set satisfies
ex post efficiency and Condorcet-consistency. Moreover, the
bounds on n and m are tight: if n ≤ 4, the SDS that chooses
the Condorcet winner with probability 1 if there is one and
otherwise randomizes uniformly over the top-ranked alter-
natives satisfies all given axioms; if m ≤ 4, the SDS that
chooses the Condorcet winner with probability 1 if there is
one, randomizes uniformly over the top-ranked alternative
if there are two that are first-ranked by exactly half of the
voters, and otherwise randomizes uniformly over the set of ex
post efficient alternatives meets all conditions of Theorem 3.
Finally, we conjecture that the even-chance assumption is not
required for the impossibility.

Remark 4. Just like numerous other results on Condorcet-
consistency (e.g., Botan and Endriss 2021; Brandt, Lederer,
and Suksompong 2023), we cannot prove Theorem 3 for even
n. However, we show in the appendix that there is no even-
chance SDS that satisfies weak strategyproofness, ex post
efficiency, and strong Condorcet-consistency. The last con-
dition requires that an alternative is chosen with probability
1 if and only if it is the Condorcet winner, and it is typically
satisfied by all strategyproof, Condorcet-consistent SDSs.

Remark 5. The main result of Brandt and Lederer (2023)
implies that, under mild additional assumptions, no pairwise
set-valued voting rule satisfies Condorcet-consistency, ex post
efficiency, and a strategyproofness notion called Fishburn-
strategyproofness. When interpreting even-chance SDSs as
set-valued voting rules, Theorem 3 extends this observation
to all set-valued voting rules at the expense of using a slightly
stronger notion of strategyproofness.

3.3 Impossibility Theorems for Weak Preferences
In this section, we prove two impossibility theorems for
weakly strategyproof SDSs on RN : firstly, we present a sim-
plified proof of the main result of Brandl et al. (2018) (cf.
Theorem 5) in the appendix; secondly, we prove an even more
severe impossibility for even-chance SDSs (cf. Theorem 6).
These results demonstrate that there are no attractive weakly
strategyproof SDSs when voters have weak preferences.

We start by revisiting the impossibility theorem by Brandl
et al. (2018). It shows that no anonymous, neutral, and weakly
strategyproof SDS is ex ante efficient. The last condition, also
known as SD-efficiency, is a strengthening of ex post effi-
ciency focusing on lotteries rather than individual alternatives.
In more detail, a lottery p ex ante dominates a lottery q in
a profile R if p ≿i q for all i ∈ N and p ≻i q or some
i ∈ N . Conversely, a lottery is ex ante efficient if it is not
ex ante dominated by any lottery, and an SDS f is ex ante
efficient if f(R) is ex ante efficient for every profile R. Ex
ante efficiency ensures that there is no lottery that weakly
increases the expected utility of all voters and strictly for at
least one voter. Hence, the impossibility theorem by Brandl
et al. (2018) shows that no weakly strategyproof SDS on RN

satisfies mild efficiency constraints.

Theorem 5 (Brandl et al. (2018)). Assume n ≥ 4 and m ≥ 4.
No anonymous and neutral SDS on RN satisfies ex ante
efficiency and weak strategyproofness.

Brandl et al. (2018) have shown this result by a computer-
generated proof, which reasons over 47 (canonical) prefer-
ence profiles. As it is very difficult for humans to verify the
correctness of this 14-page proof, Brandl et al. had the proof
checked by the interactive theorem prover Isabelle/HOL. By
contrast, we give a rather simple proof of this result in the
appendix, which argues over only 13 profiles (10 canonical
profiles) and takes less than two pages. Its correctness can
easily be verified by the avid reader.

Theorem 5 crucially relies on ex ante efficiency. Indeed, if
ex ante efficiency is replaced with ex post efficiency, random
serial dictatorship satisfies all the axioms (Aziz et al. 2018).
This SDS randomly chooses an order over the voters and
each voter in the sequence then acts as dictator, breaking the
ties left by the previous dictators. This leads to the question
whether there are also reasonable even-chance SDSs on RN

that satisfy weak strategyproofness and ex post efficiency.
Unfortunately, it turns out that this is not the case: every such
SDS can only randomize over the top-ranked alternatives of at
most two voters. To make this formal, we say an SDS f is dic-
tatorial if there is a voter i ∈ N such that f(R, Ti(R)) = 1
for all profiles R, and bidictatorial if there are two distinct
voters i, j ∈ N such that f(R, Ti(R) ∪ Tj(R)) = 1 for all
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Strict preferences Weak preferences

ex post efficiency ⊕ Various tops-only SDSs (Thm 1,2) ⊕ Random serial dictatorship (Aziz et al. 2018)
⊖ No ex ante efficient SDSs∗ (Brandl et al. 2018)
⊖ Only (bi)dictatorial even-chance SDSs (Thm 7)

Condorcet-consistency ⊕ Variants of Copeland’s rule (Thm 1) ⊖ No SDS (Brandt 2015)

ex post efficiency and
Condorcet-consistency

⊕ Approximately ex post efficient and
Condorcet-consistent SDSs (Thm 1)

⊖ No even-chance SDS (Thm 4)
⊖ No pairwise SDS∗ (Thm 5)

⊖ No SDS (Brandt 2015)

Table 1: Summary of our results. Each cell states which weakly strategyproof SDSs satisfy which axioms for strict preferences
(left column) and weak preferences (right column). Results marked by a ⊕ symbol are possibility theorems, whereas the ⊖
symbol indicates impossibility theorems. Results with an asterisk (∗) additionally need anonymity and/or neutrality.

profiles R. Clearly, dictatorial and bidictatorial SDSs are
undesirable as at most two voters can influence which alter-
natives are returned with positive probability.

Theorem 6. Assume m ≥ 3 and n ≥ 3. Every ex post
efficient and weakly strategyproof even-chance SDS on RN

is dictatorial or bidictatorial.

Proof Sketch. Let f denote an even-chance SDS that is ex
post efficient and weakly strategyproof. The proof of this
theorem is focusing on the decisive groups and weak dictators
of f . To this end, we say that a voter i is a weak dictator for
f if f(R, Ti(R)) > 0 for all profiles R and a group of voters
G ⊆ N is decisive for f if f(R, Ti(R)) = 1 for all voters
i ∈ G and profiles R such that all voters in G report the
same preference relation in R. First, a result by of Brandt,
Bullinger, and Lederer (2022) implies that if a voter i is not a
weak dictator for f , then N \ {i} is decisive for f . We next
show that there are at least one and at most two weak dictators
i, j for f , so we get for every voter h ̸∈ {i, j} that N \{h} is
decisive. The last insight for our proof is a contraction lemma
stating that if there are two decisive groups G and G′ for f
such that |G| = |G′| and |G∩G′| = |G| − 1, then G∩G′ is
also decisive for f . By applying this to our decisive groups,
we infer that the set of weak dictators is decisive. Based on
this observation, we finally show that f is (bi)dictatorial.

Remark 6. All axioms are required for Theorem 6. Every
constant even-chance SDS only fails ex post efficiency, the
SDS that randomizes uniformly over the Pareto-optimal al-
ternatives is ex post efficient and not (bi)dictatorial. Finally,
random serial dictatorship satisfies all axioms but it is not
even-chance nor (bi)dictatorial.

Remark 7. Theorem 6 has interesting connections to
known results. Firstly, based on much stronger strategyproof-
ness notions, Feldman (1980) and Barberà, Dutta, and Sen
(2001) show that all strategyproof and ex post efficient even-
chance SDSs are dictatorial or bidictatorial when the voters’
preferences are strict. For instance, Feldman (1980) uses
strong strategyproofness and his result is thus a corollary of
the theorem by Gibbard (1977). Theorem 6 demonstrates
that a much weaker strategyproofness notion still allows to

deduce the same result when allowing for weak preferences.
Secondly, Theorem 6 is related to a result by Brandt, Saile,
and Stricker (2022) who show that no set-valued voting rule
on RN satisfies anonymity, ex post efficiency, and a strat-
egyproofness notion due to Fishburn (1972). When inter-
preting even-chance SDSs as set-valued voting rules, weak
strategyproofness is only slightly stronger than Fishburn-
strategyproofness, but it yields the much more restrictive
conclusion of (bi)dictatorial rules. Moreover, Theorem 6 is
stronger than Corollary 2 of Brandt, Saile, and Stricker.

4 Conclusion
In this paper, we study randomized voting rules, so-called
social decision schemes (SDSs), with respect to weak strat-
egyproofness. This strategyproofness notion only deems a
manipulation successful if it increases the voter’s expected
utility for all utility functions consistent with his ordinal pref-
erences. We show that weak strategyproofness allows for
some positive results. For example, in contrast to results on
strong strategyproofness (Brandt, Lederer, and Romen 2024),
there are Condorcet-consistent weakly strategyproof SDSs
that are approximately ex post efficient. We also explore the
limitations of weak strategyproofness and show, e.g., that
no even-chance SDS simultaneously satisfies weak strate-
gyproofness, Condorcet-consistency, and ex post efficiency
when preferences are strict. Moreover, we prove much more
severe impossibility theorems for weak preferences, high-
lighting a sharp contrast between strict and weak preferences.
We refer to Table 1 for a complete overview of our results.

Our work points to a number of interesting and challenging
open questions: firstly, based on our results in Section 3.2, we
conjecture that no weakly strategyproof SDS satisfies both
Condorcet-consistency and ex post efficiency. If this conjec-
ture was true, this result would effectively unify several re-
sults analyzing the existence of strategyproof and Condorcet-
consistent SDSs (e.g., Lederer 2021; Brandt, Lederer, and
Suksompong 2023; Brandt and Lederer 2023). Secondly, our
negative results for the case of weak preferences lead to the
question of whether all weakly strategyproof and ex post
efficient SDSs on the domain of weak preferences only ran-
domize over the top-ranked alternatives of the voters.
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Barberà, S.; Dutta, B.; and Sen, A. 2001. Strategy-proof
social choice correspondences. Journal of Economic Theory,
101(2): 374–394.
Bogomolnaia, A.; and Moulin, H. 2001. A New Solution
to the Random Assignment Problem. Journal of Economic
Theory, 100(2): 295–328.
Botan, S.; and Endriss, U. 2021. Preserving Condorcet Win-
ners under Strategic Manipulation. In Proceedings of the
35th AAAI Conference on Artificial Intelligence (AAAI), 5202–
5210.
Brandl, F.; Brandt, F.; Eberl, M.; and Geist, C. 2018. Proving
the Incompatibility of Efficiency and Strategyproofness via
SMT Solving. Journal of the ACM, 65(2): 1–28. A prelim-
inary version of this paper appeared in the Proceedings of
IJCAI-2016.
Brandl, F.; Brandt, F.; and Suksompong, W. 2016. The Im-
possibility of Extending Random Dictatorship to Weak Pref-
erences. Economics Letters, 141: 44–47.
Brandt, F. 2015. Set-Monotonicity Implies Kelly-
Strategyproofness. Social Choice and Welfare, 45(4): 793–
804.
Brandt, F.; Bullinger, M.; and Lederer, P. 2022. On the Inde-
cisiveness of Kelly-Strategyproof Social Choice Functions.
Journal of Artificial Intelligence Research, 73: 1093–1130. A
preliminary version of this paper appeared in the Proceedings
of AAMAS-2021.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A. D., eds. 2016. Handbook of Computational Social Choice.
Cambridge University Press.
Brandt, F.; and Lederer, P. 2023. Characterizing the Top
Cycle via Strategyproofness. Theoretical Economics, 18(2):
837–883.
Brandt, F.; Lederer, P.; and Romen, R. 2024. Relaxed Notions
of Condorcet-Consistency and Efficiency for Strategyproof
Social Decision Schemes. Social Choice and Welfare. A
preliminary version of this paper appeared in the Proceedings
of AAMAS-2022.
Brandt, F.; Lederer, P.; and Suksompong, W. 2023. Incentives
in Social Decision Schemes with Pairwise Comparison Pref-
erences. Games and Economic Behavior, 142: 266–291. A
preliminary version of this paper appeared in the Proceedings
of IJCAI-2022.

Brandt, F.; Saile, C.; and Stricker, C. 2022. Strategyproof
Social Choice When Preferences and Outcomes May Contain
Ties. Journal of Economic Theory, 202: 105447. A prelim-
inary version of this paper appeared in the Proceedings of
AAMAS-2018.
Feldman, A. M. 1980. Strongly nonmanipulable multi-valued
collective choice rules. Public Choice, 35: 503–509.
Fishburn, P. C. 1972. Even-chance lotteries in social choice
theory. Theory and Decision, 3(1): 18–40.
Gärdenfors, P. 1979. On definitions of manipulation of social
choice functions. In Laffont, J. J., ed., Aggregation and
Revelation of Preferences. North-Holland.
Gibbard, A. 1973. Manipulation of Voting Schemes: A Gen-
eral Result. Econometrica, 41(4): 587–601.
Gibbard, A. 1977. Manipulation of schemes that mix voting
with chance. Econometrica, 45(3): 665–681.
Kelly, J. S. 1977. Strategy-Proofness and Social Choice
Functions Without Single-Valuedness. Econometrica, 45(2):
439–446.
Lederer, P. 2021. Strategyproof Randomized Social Choice
for Restricted Sets of Utility Functions. In Proceedings of
the 30th International Joint Conference on Artificial Intelli-
gence (IJCAI), 306–312. A preliminary version of this paper
appeared in the Proceedings of IJCAI-2021.
Mennle, T.; and Seuken, S. 2021. Partial strategyproofness:
Relaxing strategyproofness for the random assignment prob-
lem. Journal of Economic Theory, 191: 105–144.
Postlewaite, A.; and Schmeidler, D. 1986. Strategic behaviour
and a notion of Ex Ante efficiency in a voting model. Social
Choice and Welfare, 3(1): 37–49.
Procaccia, A. D. 2010. Can approximation circumvent
Gibbard-Satterthwaite? In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI), 836–841.
Satterthwaite, M. A. 1975. Strategy-Proofness and Arrow’s
Conditions: Existence and Correspondence Theorems for
Voting Procedures and Social Welfare Functions. Journal of
Economic Theory, 10(2): 187–217.
Sen, A. 2011. The Gibbard random dictatorship theorem: a
generalization and a new proof. SERIEs, 2(4): 515–527.



Draft – August 26, 2024

A Omitted Proofs
In this appendix, we present all proofs that have been omitted
from the main body. For a better readability, we put the proof
of every theorem into an own subsection.

A.1 Proof of Theorem 1
We start by discussing the full proof of Theorem 1.

Theorem 1. Every score-based SDS on LN satisfies weak
strategyproofness.

Proof. Let f denote a score-based SDS and let s denote
its corresponding score function. Moreover, consider two
strict preference profiles R and R′ that differ only in the
preference relation of a single voter i. For simplicity, we
will assume that voter i’s preference relation is given by
≿i = x1, x2, . . . , xm. Our goal is to show that f(R′) ̸≻i

f(R), which implies that f is weakly strategyproof. To this
end, we define the profiles R1, . . . , Rk by (i) R1 = R, (ii)
Rk = R′, Rk = (Rk−1)i:yx for some alternatives x, y ∈ A,
and (iii) each pair of alternatives is swapped at most once
in the sequence. In particular, condition (iii) ensures that if
x ≻i y and x ≻′

i y, then x ≻k
i y for every profile Rk in our

sequence. Moreover, we define stotal(R) =
∑

x∈A s(R, x)
and stotal(R

′) =
∑

x∈A s(R′, x) as the total scores assigned
to the alternatives in R and R′, and consider a case distinction
with respect to these parameters.

Case 1: stotal(R) < stotal(R
′). First, we assume that

stotal(R) < stotal(R
′). In particular, this means that

s(R, x) ̸= ∞ for all x ∈ A. In this case, we let x∗ denote
the most preferred alternative of voter i with s(R, x) > 0;
such an alternative exists because

∑
y∈A s(R, y) > 0 by def-

inition. Next, let h denote the index such that x∗ = xh and
note that s(R, xℓ) = 0 for all ℓ < h. To prove the theorem
in this case, we will first show that s(Rj , xℓ) = 0 for all
j ∈ {1, . . . , k} and ℓ < h. We start by considering the al-
ternative x1 and two profiles Rj , Rj+1 in our sequence, and
assume that s(Rj , x) = 0. If the swap from Rj to Rj+1 does
not involve x1, we have that s(Rj+1, x) = s(Rj , x) = 0 due
to the localizedness of s. On the other hand, if the swap from
Rj to Rj+1 involves x1, it must have been weakened as the
sequence R1, . . . , Rk swaps each pair of alternatives at most
once. The monotonicity of s thus shows that s(Rj , x1) ≥
s(Rj+1, x1), which implies that s(Rj+1, x1) = 0. Since
s(R1, x1) = 0, we can repeatedly apply these arguments to
infer that s(Rj , x1) = 0 for all profiles Rj in our sequence.

Next, we assume inductively that there is ℓ ∈ {1, . . . , h−
2} such that s(Rj , xℓ′) = 0 for all j ∈ {1, . . . , k} and ℓ′ ∈
{1, . . . , ℓ}. We will show again that that s(Rj , xℓ+1) = 0 im-
plies that s(Rj+1, xℓ+1) = 0 for all j ∈ {1, . . . , k − 1}. To
this end, consider two arbitrary profiles Rj and Rj+1 on our
sequence and assume that s(Rj , xℓ+1) = 0. If xℓ+1 is not in-
volved in the swap from Rj to Rj+1, then s(Rj+1, xℓ+1) =
s(Rj , xℓ+1) = 0 by localizedness. Next, if xℓ+1 is weakened
from Rj to Rj+1, then s(Rj+1, xℓ+1) = s(Rj , xℓ+1) = 0
due to monotonicity. Finally, if xℓ+1 is reinforced against
an alternative y when going from Rj to Rj+1, y must be
in the set {x1, . . . , xℓ}. Since s(Rj , y) = s(Rj+1, y) = 0

by the induction hypothesis and s(Rj , xℓ+1) = 0 by as-
sumption, we infer that s(Rj+1, xℓ+1) = 0 by balancedness.
Finally, by repeatedly applying this argument, we infer that
s(Rj , xℓ+1) = 0 for all j ∈ {1, . . . , k} as s(R1, xℓ+1) = 0.
This proves the induction step and hence also our auxiliary
claim.

Finally, we will show that s(R, x∗) ≥ s(R′, x∗), which
implies that f(R, x∗) = s(R,x∗)

stotal (R) > s(R′,x∗

stotal (R′) = f(R′, x∗).
Since f(R, x) = 0 = f(R′, x) for all x ∈ A with x ≻i x

∗,
this shows that f(R,U(≿i, x

∗)) > f(R′, U(≿i, x
∗)), so

voter i cannot manipulate by deviating from R to R′. To show
that s(R, x∗) ≥ s(R′, x∗), we consider again two profiles Rj

and Rj+1 in our sequence and assume that s(Rj , x∗) ̸= ∞.
If the swap from Rj to Rj+1 does not involve x∗ or weakens
x∗, we can derive that s(Rj , x∗) ≥ s(Rj+1, x∗) analogously
to the previous analysis. Finally, if x∗ is reinforced from
Rj to Rj+1, it is reinforced against an alternative y with
y ≻i x

∗. Since s(Rj , y) = s(Rj+1, y) = 0 and s(Rj , y) ̸=
∞, balancedness implies that s(Rj , x∗) = s(Rj+1, x∗). By
chaining these arguments and observing that s(R, x∗) ̸= ∞
as stotal(R) < ∞, it follows that s(R, x∗) ≥ s(R′, x∗).

Case 2: stotal(R) > stotal(R
′). For the second case,

suppose that stotal(R) > stotal(R
′), which implies that

stotal(R
′) < ∞. In this case, let x∗ and x′ denote voter

i’s least favorite alternatives in R such that s(R, x∗) >
0 and s(R′, x′) > 0, respectively. First, if x∗ ≻i x′,
voter i cannot manipulate by deviating from R to R′ as
f(R′, x′) = s(R′,x′)

stotal (R′) > 0 and thus f(R,U(≿i, x
∗)) =

1 > f(R′, U(≿i, x
∗)). Next, let h denote the index such

that x∗ = xh, which means that s(R, xℓ) = s(R′, xℓ) = 0
for all ℓ ∈ {h + 1, . . . ,m}. Our aim is to show that
s(R′, x∗) ≥ s(R, x∗) as this implies that voter i can-
not manipulate by deviating from R to R′. In more de-
tail, this means that s(R, x∗) ̸= ∞ because stotal(R) >
stotal(R

′) implies that s(R′, x∗) ̸= ∞. In turn, we infer
from s(R′, x∗) ≥ s(R, x∗) and stotal(R) > stotal(R

′) that
f(R, x∗) = s(R,x∗)

stotal (R) < s(R′,x∗)
stotal (R′) = f(R′, x∗). Because

f(R, x) = f(R′, x) = 0 for all x ∈ A with x∗ ≻i x,
this means that f(R,U(≿i, x

∗) \ {x∗}) = 1− f(R, x∗) >
1 − f(R′, x∗) = f(R′, U(≿i, x

∗) \ {x∗}), which demon-
strates that voter i cannot manipulate by deviating from R
to R′.

To prove that s(R′, x∗) ≥ s(R, x∗), we will first show
that s(Rj , xℓ) = 0 for all profiles Rj in our sequence and
alternatives xℓ ∈ {xh+1, . . . , xm}. To this end, we first con-
sider alternative xm and two profiles Rj and Rj+1 on our
sequence. Since each pair of alternatives is swapped at most
once along our sequence, xm is never weakened in our anal-
ysis, so it follows from localizedness and monotonicity that
s(Rj+1, xm) ≥ s(Rj , xm) for all j ∈ {1, . . . , k − 1}. Fi-
nally, since s(Rk, xm) = 0, this implies that s(Rj , xm) = 0
for all profiles in our sequence.

Next, assume inductively that there is ℓ ∈ {h+ 2, . . . ,m}
such s(Rj , xℓ′) = 0 for all j ∈ {1, . . . , k} and alternatives
xℓ′ with ℓ′ ∈ {ℓ, . . . ,m}. We will show that the same holds
for the alternative xℓ−1. To this end consider two profiles Rj ,
Rj+1 in the sequence and suppose that s(Rj+1, xℓ−1) = 0.
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Now, if xℓ−1 is not moved at all or reinforced when go-
ing from Rj to Rj+1, then it follows from localizedness
and monotonicity that s(Rj , xℓ−1) = 0, too. On the other
hand, if xℓ−1 is weakened against another alternative x
when going from Rj to Rj+1, then x ∈ {xℓ, . . . , xm}.
Put differently, this means that we reinforce x against xℓ−1

in this step. Since the induction hypothesis implies that
s(Rj+1, x) = s(Rj , x) = 0, it follows from balanced-
ness that s(Rj , xℓ−1) = s(Rj+1, xℓ−1) = 0. Finally, since
s(Rk, xℓ−1) = 0, we conclude that s(Rj , xℓ) = 0 for all
j ∈ {1, . . . , k} and ℓ ∈ {1, . . . , h}.

As the last step, we will show that s(R′, x∗) ≥ s(R, x∗).
To this end, we consider again two profiles Rj and Rj+1

in our sequence from R to R′. If x∗ is not swapped at all
or reinforced when going from Rj to Rj+1, it follows that
s(Rj+1, x∗) ≥ s(Rj , x∗) due to the localizedness and mono-
tonicity of s. By contrast, if x∗ is weakened against another
alternative x when going from Rj to Rj+1, then x is in
{xh+1, . . . , xm} as our sequence swaps each pair of alter-
natives at most once. Since s(Rj+1, x) = s(Rj , x) = 0 by
our previous analysis, balancedness implies that s(Rj , x∗) =
s(Rj+1, x∗). By repeatedly applying this argument, we fi-
nally infer that s(R′, x∗) = s(Rk, x∗) ≥ s(R1, x∗) =
s(R, x∗).

Case 3: stotal(R) = stotal(R
′) < ∞. Next, we suppose

that stotal(R) = stotal(R
′) < ∞. For this case, it is neces-

sary to specify the sequence R1, . . . , Rk that transforms R to
R′. In particular, consider the following sequence: for deriv-
ing Rj+1 from Rj , we identify the most-preferred alternative
x according to ≿′

i that is not ranked at its correct position,
and we reinforce x against the alternative directly above it.
Less formally, this results in the following sequence: starting
at R, we first reinforce voter i’s favorite alternative x′

1 in R′

until we arrive at a profile where x′
1 is his top-ranked alterna-

tive; next, we reinforce voter i’s second-favorite alternative
x′
2 in R′ until we arrive at a profile where x′

1 is his favorite
alternative and x′

2 is his second-favorite alternative; next, we
will repeat the same process with his third-most preferred al-
ternative x′

3 in R′ and so on. It should be easy to see that this
sequence of profiles R1, . . . , Rk indeed satisfies our three
critera stated in the beginning.

We will next prove that stotal(R) = stotal(R
′) < ∞

implies that stotal(Rj) < ∞ for all profiles in this sequence.
To this end, assume for contradiction that this is not the case
and let Rj denote the first profile in our sequence such that
stotal(R

j) = ∞. In particular, we have that stotal(Rj−1) <
∞. Now, let x∗ denote the alternative that is reinforced when
going from Rj−1 to Rj . By localizedness and monotonicity,
it must be that stotal(Rj , x∗) = ∞ because the score of
every other alternative is weakly decreasing. Furthermore,
by the definition of our sequence, we will keep reinforcing
x∗ until it is at its correct position. Monotonicity implies for
the corresponding steps that the score of x∗ has to remain
∞. Finally, since x∗ is now at its correct position, it will
not be moved anymore, so localizedness implies that it score
will always be ∞, i.e., it holds that s(Rj′ , x∗) = ∞ for all
profiles Rj′ with j′ ∈ {j, . . . , k}. However, this means that
s(R′, x∗) = ∞, which contradicts that stotal(R′) < ∞.

For the remainder of this case, we will hence assume that
stotal(R

j) < ∞ for all j ∈ {1, . . . , k}. In particular, this
means that there are no exceptions to balancedness, i.e., if
we reinforce (or weaken) an alternative x against another
alternative y when moving from a profile Rj to Rj+1 and
s(Rj , x) = s(Rj+1, x), then s(Rj , y) = s(Rj+1, y). Fur-
thermore, if s(R, x) = s(R′, x) for all x ∈ A, then f(R) =
f(R′) and voter i cannot manipulate by deviating from R to
R′. Hence, suppose that there is an alternative x ∈ A such
that s(R, x) ̸= s(R′, x) and let x∗ denote voter i’s favorite
alternative in R with s(R, x∗) ̸= s(R′, x∗). Moreover, we
let h denote the index such that x∗ = xh, which means
that s(R, xℓ) = s(R′, xℓ) for all xℓ ∈ {x1, . . . , xh−1}.
We will show that s(R, x∗) > s(R′, x∗) because then
f(R,U(≿i, x

∗)) > f(R′, U(≿i, x
∗)).

To this end, we will first show show that s(Rj , xℓ) =
s(R, xℓ) for all profiles Rj on our sequence and all alter-
natives xℓ with xℓ ∈ {x1, . . . , xh−1}. We consider first
the alternative x1. Since this is voter i’s favorite alterna-
tive in R, this alternative is never reinforced in our se-
quence. Hence, it follows from localizedness and monotonic-
ity that s(Rj , x1) ≥ s(Rj+1, x1) for all j. Due to the as-
sumption that s(R1, x1) = s(Rk, x1), we then derive that
s(Rj , x1) = s(R, x1) for all j ∈ {1, . . . , k}. Next, assume
inductively that there is an index ℓ ∈ {1, . . . , h−2} such that
s(Rj , x) = s(R, x) for all x ∈ {x1, . . . , xℓ} and all profiles
Rj in our sequence. We will show that the same holds for
xℓ+1. For this, we consider two profiles Rj and Rj+1 in our
sequence. If xℓ+1 is not moved at all or weakened in this
step, then s(Rj , xℓ+1) ≥ s(Rj+1, xℓ+1) due to localized-
ness and monotonicity. On the other hand, if xℓ+1 is rein-
forced when going from Rj to Rj+1, it must be reinforced
against an alternative x ∈ {x1, . . . , xℓ}. Since s(Rj , x) =
s(Rj+1, x) by our induction hypothesis, stotal(Rj) < ∞,
and stotal(R

j+1) < ∞, we infer from the balancedness of
s that s(Rj , xℓ+1) = s(Rj+1, xℓ+1). In summary, we have
s(Rj , xℓ+1) ≥ s(Rj+1, xℓ+1) for all j ∈ {1, . . . , k−1} and
since s(R1, xℓ+1) = s(Rk, xℓ+1), it follows again that all
these inequalities are tight. This completes the induction step.

Finally, we will show that s(R, x∗) ≥ s(R′, x∗), which
implies that s(R, x∗) > s(R′, x∗) as s(R, x∗) ̸= s(R′, x∗).
To this end, consider again two profiles Rj and Rj+1 in
our sequence. If x∗ is not moved or weakened when go-
ing from Rj to Rj+1, localizedness and monotonicity imply
that s(Rj , x∗) ≥ s(Rj+1, x∗). On the other hand, if x∗ is
reinforced in this step, it is reinforced against an alterna-
tive x ∈ {x1, . . . , xh−1}. Since s(Rj , x) = s(Rj+1, x),
stotal(R

j) < ∞, and stotal(R
j+1) < ∞, balancedness

shows that s(Rj , x∗) = s(Rj+1, x∗). This proves that
s(Rj , x∗) ≥ s(Rj+1, x∗) and inductively applying this argu-
ment then shows that s(R, x∗) ≥ s(R′, x∗).

Case 4: stotal(R) = stotal(R
′) = ∞. As the last case, we

assume that stotal(R) = stotal(R
′) = ∞. This means that

there are two alternatives x∗ and x′ such that s(R, x∗) =
∞ and s(R′, x′) = ∞. Moreover, as there is at most one
alternative with a score of infinity of a profile, it follows that
f(R, x∗) = 1 and f(R′, x′) = 1. Now, if x∗ = x′, it is
certainly no manipulation to deviate from R to R′, so we
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assume that x ̸= x∗. In this case, we will prove that x∗ ≻i x
′,

which shows that voter i cannot manipulate by deviating from
R to R′.

For this case, we will again consider a specific sequence
of profiles between R and R′. To this end, let U = {x ∈
X : x ≻i x∗}, L = {x ∈ X : x∗ ≻i x}, U ′ = {x ∈
X : x ≻′

i x
∗}, and L′ = {x ∈ X : x∗ ≻′

i x}. Now, consider
first the profile R1 where voter i reports the preference re-
lation ≿1

i defined by u ≻1
i x∗ ≻1

i ℓ for all u ∈ U , ℓ ∈ L,
u ≻1

i u′ iff u ≻′
i u

′ for all u, u′ ∈ U , and ℓ ≻1
i ℓ′ if and only

if ℓ ≻′
i ℓ

′ for all ℓ, ℓ′ ∈ L. Put less formally, we derive R1

from R by letting voter i sort the alternatives in U and L ac-
cording to ≿′

i. Now, it should be clear that we can transform
R into R1 by pairwise swaps that do not involve x∗, so we
can infer from a repeated application of localizedness that
s(R1, x∗) = ∞. Next, let R2 denote the profile derived from
R1 by reinforcing x∗ against all alternatives in U \ U ′. We
observe that these alternatives are ranked directly ahead of
x∗ in ≿1

i since U \U ′ ⊆ L′ and u ≻′
i x

∗ ≻′
i ℓ for all u ∈ U ′,

ℓ ∈ L′. Hence, we only need to reinforce x∗ in this step, so
monotonicity implies that s(R2, x∗) = ∞. We note that, in
R2, it holds that x∗ ≻2

i x for all x ∈ L ∪ L′. Hence, we now
reorder the alternatives x ∈ L ∪ L′ in voter i’s preference
relation according to ≿′

i. Localizedness implies again that
s(R3, x∗) = ∞. In particular, this means that s(R2, x) < ∞
for all other alternatives x ∈ A \ {x∗} because there can be
at most one alternative with a score of infinity.

Finally, we can now transform R3 into R′ by reinforc-
ing the alternatives in L ∩ U ′ against alternatives in (U ∩
U ′) ∪ {x∗}. In particular, we can transform R3 to R′ by
pairwise swaps such that no swaps reinforce an alternative
in U . Hence, monotonicity and localizedness imply that
s(R′, x) ≤ s(R3, x) < ∞ for all x ∈ U . Because we as-
sume that there is an alternative x′ ̸= x∗ with s(R′, x′) = ∞,
it follows that that x′ ∈ L. Thus, it is again no manipulation
for voter i to deviate from R to R′.

A.2 Proof of Theorem 2
We next will show the second claim of Theorem 2. To this
end, we recall that sP (R, x) denotes the plurality score of
alternative x in the profile R, i.e., the number of voters who
prefer x the most in R. Furthermore, for the proof of this
claim, we will view even-chance SDSs as functions that re-
turn sets of alternatives instead of lotteries. Since even-chance
lotteries randomize uniformly over a set of alternatives, this
representation is without loss of information. Furthermore,
the voters’ preferences over lotteries turn into the follow-
ing preferences over sets of alternatives: a voter i prefers a
set X to another set Y , denoted by X ≿i Y , if and only
if |X∩U(≿i,x)|

|X| ≥ |Y ∩U(≿i,x)|
|Y | for all x ∈ A. The definition

of weak strategyproofness does not change: an even-chance
SDS f (interpreted as a set-valued voting rule) is weakly strat-
egyproof if f(R′) ̸≻i f(R) for all profiles R,R′ and voters
i ∈ N with ≿j = ≿′

j . In this context, weak strategyproof-
ness is equivalent to the well-known notion of even-chance
strategyproofness (e.g., Gärdenfors 1979; Barberà, Dutta, and
Sen 2001; Brandt, Saile, and Stricker 2022).

Theorem 2. Let f denote a tops-only SDS on LN .

1) f is weakly strategyproof if and only if f(R) = f(R′) or
f(R, Ti(R)) > f(R′, Ti(R)) for all profiles R,R′ ∈ LN

and voters i ∈ N such that ≿j = ≿′
j for all j ∈ N \ {i}.

2) f is weakly strategyproof, even-chance, anonymous, and
neutral if and only if it is a parameterized omninomination
rule.

Proof. We will only show the second claim here as first
statement has been proven in the main body.

⇐= We start by showing that every parameterized omni-
nomination rule satisfies our the given axioms. To this end,
let f denote a parameterized omninomination rule and let
θ1 ∈ {⌈n+1

2 ⌉, . . . , n+1}, θ2 ∈ {0, . . . ,m−1} denote its pa-
rameters. It should be clear that f is by definition anonymous,
neutral, even-chance, and tops-only. It thus only remains to
show that it is weakly strategyproof. For showing this, let R
and R′ denote two strict preference profiles and i a voter such
that ≿j = ≿′

j for all j ∈ N \ {i}. Moreover, let x∗ denote
voter i’s favorite alternative in R and y∗ his favorite alterna-
tive in R′. We first note that, if x∗ = y∗, then f(R) = f(R′)
as f is tops-only. We will hence assume that x∗ ̸= y∗ and
consider a case distinction for this.

First, assume that sP (R, x) ≥ θ1 for some alternative x,
which means that f(R, x) = 1. Now, if x = x∗, voter i
cannot manipulate as his favorite alternative is chosen with
probability 1. On the other hand, if voter i prefers x not the
most, then sP (R

′, x) ≥ θ1 and f(R′, x) = 1 and voter i
cannot manipulate by deviating from R to R′.

Next, assume that sP (R, x) < θ1 for all x ∈ A and
|OMNI(R)| ≤ θ2. In this case, f(R) = fO(R) and hence
f(R, x∗) = 1

|OMNI(R)| . First, if there is an alternative x ∈ A

with sP (R
′, x) ≥ θ1, then f(R′, x) = 1 and f(R′, x∗) = 0

as voter i cannot increase the number of voters that top-rank
his favorite alternative and thus x ̸= x∗. Next, if f(R′, x∗) <

1
|OMNI(R)| , it is no successful manipulation to deviate to R′.
We infer from this that |OMNI(R′)| ≤ |OMNI(R)|. Further-
more, if OMNI(R′) = OMNI(R), then f(R) = f(R′) and
voter i cannot manipulate. On the other hand, if OMNI(R′) ̸=
OMNI(R) and |OMNI(R′)| ≤ |OMNI(R)|, it must be the
case that x∗ ̸∈ OMNI(R′) as this is the only alternative that
voter i can potentially remove from this set. However, it then
follows that f(R′, x∗) = 0, so f(R′) ̸≻i f(R).

Lastly, assume that sP (R, x) < θ1 for all x ∈ A and
|OMNI(R)| > θ2. In this case, we have that f(R, x) = 1

m
for all x ∈ A. If there is an alternative x with sP (R

′, x) ≥ θ1,
then f(R′, x) = 1. However, x ̸= x∗ as voter i cannot in-
crease the number of voters that improve his favorite alter-
native. Thus, f(R′, x∗) = 0 and no manipulation is possible.
Similarly, if maxx∈A sP (R

′, x) < θ1 and |OMNI(R′)| ≤
θ2, then x∗ ̸∈ OMNI(R′) and f(R′, x∗) = 0. Finally,
if maxx∈A sP (R

′, x) < θ1 and |OMNI(R′)| > θ2, then
f(R) = f(R′) and again no manipulation is possible. Hence,
we conclude that f is weakly strategyproof.

=⇒ Let f denote a tops-only even-chance SDS that sat-
isfies weak strategyproofness, anonymity, and neutrality. We
will prove in four steps that f is a parameterized omninomina-
tion rule. To this end, we define N(R, x) as the set of voters
that prefer x the most and note that sP (R, x) = |N(R, x)|.
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Moreover, we treat f in this proof as a set-valued voting rule,
as described in the beginning of this section. Now, we will
first prove that if sP (R, x) ≥ sP (R, y) and y ∈ f(R), then
x ∈ f(R), too. Next, we assume that there is a profile R
and a voter i such that x ̸∈ f(R) even though N(R, x) ̸= ∅.
If such a profile does not exist, we can set θ1 = n + 1 and
proceed to the last step. We then infer that there is a value
θ1 such that f(R) = {x} whenever θ1 or more voters top-
rank x. As third step, we then prove that OMNI(R) ⊆ f(R)
for all profiles R with maxy∈A sP (R, y) < θ1. Hence, a
single alternative is chosen if it is top-ranked by at least θ1
voters, and f otherwise chooses OMNI(R) or A. For the
latter, we note that if OMNI(R) ⊊ f(R), then there is an
alternative x ∈ f(R) with sP (R, x) = 0, so the first step
implies that all alternatives need to be chosen. Finally, we
show that, if f(R) = OMNI(R) for some profile R with
OMNI(R) ̸= A, then the same holds for all profiles R′ with
|OMNI(R′)| < |OMNI(R)| and maxx∈A sP (R

′, x) < θ1.
This implies that there is a parameter θ2 ∈ {0, . . . ,m− 1}
such that f(R) = OMNI(R) if maxy∈A sP (R, y) < θ1
and |OMNI(R)| ≤ θ2 and f(R, x) = 1

m for all x ∈ A if
maxy∈A sP (R, y) < θ1 and |OMNI(R)| > θ2.

Step 1: Consider a profile R and two alternatives x, y ∈ A
such that sP (R, x) ≥ sP (R, y). We will show that y ∈ f(R)
implies that x ∈ f(R). If sP (R, x) = sP (R, y), this follows
immediately from tops-onlyness, anonymity, and neutrality,
because x and y are symmetric if we only consider the vot-
ers’ favorite alternatives. Hence, assume that sP (R, x) >
sP (R, y). In this case, we let the voters i ∈ N(R, x) one af-
ter another change their preference relation to one where they
top-rank y. This results in a sequence of profiles R1, R2, . . .
such that R1 = R and sP (R

i, x) = sP (R
i+1, x) + 1 and

sP (R
i, y) = sP (R

i, y)− 1 for all profiles Ri. If x ̸∈ f(Ri)
for some profile Ri, then it follows from Claim 1 of this
theorem that f(Ri) = f(Ri+1) as it is impossible that the
probability of x decreases. Because x ̸∈ f(R1), this means
that f(R1) = f(Ri) for all profiles Ri in our sequence.
Now, if there is a profile Ri such that sP (Ri, x) = sP (R

i, y)
(which happens if sP (R, x)− sP (R, y) is a multiple of 2), it
follows again from anonymity, neutrality, and tops-onlyness
that x ∈ f(Ri) if and only if y ∈ f(Ri). However, this
contradicts that f(R) = f(Ri). On the other hand, if no
such profile exists in our sequence, then there is an index
i such that sP (Ri, x) = sP (R

i, y) + 1 and sP (R
i+1, x) =

sP (R
i+1, y)−1. This implies that sP (Ri, x) = sP (R

i+1, y)
because sP (R

i, x)− 1 = sP (R
i+1, x) = sP (R

i+1, y)− 1,
and that sP (Ri, y) = sP (R

i+1, x) because sP (Ri, y)+1 =
sP (R

i, x) = sP (R
i+1, x)+1. Hence, by anonymity, neutral-

ity, and tops-onlyness, we have that y ∈ f(Ri) if and only if
x ∈ f(Ri+1), which conflicts again with the observation that
f(R) = f(Ri) = f(Ri+1). Since we exhausted all cases,
we conclude that x ∈ f(R) if sP (R, x) ≥ sP (R, y) and
y ∈ f(R).

Step 2: Next, we will show that there is a parameter θ1 ∈
{⌈n+1

2 ⌉, . . . , n+1} such that f(R) = {x} whenever x is top-
ranked by at least θ1 voters. To this end, we assume that there
is a profile R such that OMNI(R) ̸⊆ f(R). Otherwise, we
can simply set θ1 = n+ 1. Without loss of generality, we or-

der the alternatives according to the plurality score, i.e., we as-
sume that sP (R, x1) ≥ sP (R, x2) ≥ · · · ≥ sP (R, xm). By
Step 1, there is an index i such that f(R) = {x1, . . . , xi}. We
note that this also means that sP (R, xi) > sP (R, xi+1) ≥ 1,
where the last inequality follows as there is an alternative
x ∈ OMNI(R) \ f(R). Now, consider the profile R′ that is
derived from R by making x1 into the favorite alternative of
a voter in N(R, xi). First, if xi ̸∈ f(R′), then f(R′) ⊊ f(R)
since sP (R

′, xi) ≥ sP (R
′, xj) for all j > i. On the other

hand, if xi ∈ f(R′), it must hold that f(R′) = f(R). Other-
wise, Step 1 implies that f(R) ⊆ f(R′), which means that
the probability of x1 in R′ is less than in R. However, this
conflicts with Claim 1 of this theorem because the probability
of x1 is not allowed to decrease when it is made into a voter’s
favorite alternative. In summary, it holds that f(R′) ⊆ f(R).
Finally, we can repeat this process until xi is no longer cho-
sen because we will eventually arrive at a profile R′′ such
that sP (R′′, xi) = sP (R

′′, xi+1). Assuming that xi is cho-
sen in all profiles before R′′, our previous analysis shows that
f(R′′) ⊆ f(R). However, if xi ∈ f(R′′), Step 1 implies that
xi+1 ∈ f(R′′), too. Hence, xi ̸∈ f(R′′) and our process will
indeed find a profile R̄ such that f(R̄) ⊊ f(R).

Next, we can repeat the process in the previous paragraph
until we arrive at a profile R̂ with f(R̂) = {x} ⊊ OMNI(R̂)
by repeatedly removing the chosen alternative with minimal
plurality score from the choice set. Since such a profile exists,
we can define R∗ and x∗ as the profile-alternative pair that
minimizes sP (R

∗, x∗) subject to f(R∗) = {x∗}. We then
define θ1 = sP (R

∗, x∗) and we will next show that f(R) =
{x} for all profiles R and alternatives x such that sP (R, x) ≥
θ1. To this end, consider first a profile R where x∗ is top-
ranked by at least θ1 voters. By anonymity, we can assume
that N(R∗, x∗) ⊆ N(R, x∗) as we can permute the voters
without changing the outcome. Hence, we can derive the
profile R from R∗ by only changing the favorite alternatives
of the voters i ∈ N \N(R∗, x∗). Since these alternatives are
not chosen, Claim 1 of this theorem implies that the outcome
is not allowed to change. Hence, we have that f(R) = {x∗}
for all profiles R in which alternative x∗ is top-ranked by at
least θ1 voters. Finally, neutrality generalizes this insight to
all alternatives. This then implies that θ1 ≥ ⌈n+1

2 ⌉; otherwise
there can be multiple alternatives that are top-ranked by θ1
voters.

Step 3: We will next show that, if maxx∈A sP (R, x) < θ1,
then all top-ranked alternatives must be chosen. To this end,
we assume for contradiction that there is a profile R such that
maxx∈A sP (R, x) < θ1 but OMNI(R) ̸⊆ f(R). By Step 2,
we then infer that θ1 < n and that |f(R)| > 1 as there is
no profile R′ and alternative x such that f(R′) = {x} and
sP (R

′, x) < θ1. Next, we again order the alternatives accord-
ing to their plurality score, i.e., we assume that sP (R, x1) ≥
sP (R, x2) ≥ · · · ≥ sP (R, xm). Step 1 shows that there is
an index i such that f(R) = {x1, . . . , xi} and sP (R, xi) >
sP (R, xi+1). Now, let N−(R) = {i ∈ N : Ti(R) ̸⊆ f(R)}
and note that N−(R) ̸= ∅ by assumption. The central insight
for this step is that sP (R, x1) + |N−(R)| < θ1. Otherwise
(i.e., if sP (R, x1) + |N−(R)| ≥ θ1), the voters in N−(R)
can one after another deviate to a preference relation where
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x1 is their favorite alternative. Claim 1 of this theorem im-
plies for every step that the outcome is not allowed to change,
so it holds for the final profile R′ that f(R) = f(R′). How-
ever, x1 is top-ranked by at least θ1 voters in R′. Hence,
Step 2 implies that f(R′) = {x1}. These two observations
contradict each other as |f(R)| > 1, so we conclude that
sP (R, x1) + |N−(R)| < θ1.

We will next focus on the case that sP (R, x1) +
|N−(R)| < θ1. To this end, let R′ denote the pro-
file derived from R by letting making x1 into the fa-
vorite alternative of a voter in N(R, x2). First, we ob-
serve that sP (R′, x1) ≤ sP (R, x1) + |N−(R)| < θ1, so
|f(R′)| > 1. Furthermore, sP (R′, x2) ≥ sP (R

′, xi+1) be-
cause sP (R, x2) > sP (R, xi+1). Hence, f(R) ⊊ f(R′)
if xi+1 ∈ f(R′) by Step 1. However, this means that the
probability of x1 decreases when making it into the fa-
vorite alternative of a voter. This conflicts with Claim 1,
so xi+1 ̸∈ f(R) and f(R′) ⊆ f(R). In particular, this
shows that N−(R) ⊆ N−(R′). Moreover, it holds by
construction that sP (R

′, x1) = sP (R, x1) + 1 and thus
sP (R

′, x1) + |N−(R′)| > sP (R, x1) + |N−(R)|. Now,
if sP (R′, x1) + |N−(R′)| ≥ θ1, we derive the same con-
tradiction as in the last paragraph. On the other hand, if
sP (R

′, x1) + |N−(R′)| < θ1, we can set R = R′, rede-
fine x1, x2, . . . , xm, and repeat this step. Since θ1 < n, we
will eventually arrive at a profile R′′ such that sP (R′′, x1) +
|N−(R′′)| ≥ θ1 and |f(R′′)| > 1. For this profile, we have
the same contradiction as in the last paragraph, thus showing
that the assumption that OMNI(R) ̸⊆ f(R) is wrong.

Step 4: Steps 2 and 3 imply that f(R) = {x} when-
ever x is top-ranked by at least θ1 voters in R and
OMNI(R) ⊆ f(R) if no such alternative exists. It thus
remains to specify the second parameter θ2 of f to com-
plete the proof. We observe for this that, for all pro-
files R with maxx∈A sP (R, x) < θ1, it holds by Steps
1 and 3 that f(R) = OMNI(R) or f(R) = A. First,
if OMNI(R) = A, both of these cases coincide. To de-
rive the parameter θ2, we will show that if f(R) =
OMNI(R) for some profile R with |OMNI(R)| < m, then
f(R′) = OMNI(R′) for all profiles R′ with |OMNI(R′)| ≤
|OMNI(R)| and maxx∈A sP (R

′, x) < θ1. We can then de-
fine θ2 by θ2 = |OMNI(R∗)|, where R∗ is a profile that
maximizes |OMNI(R∗)| subject to f(R∗) = OMNI(R∗) and
f(R∗) ̸= A. (If no such profile exists, we can simply de-
fine θ2 = 0.) By our auxiliary claim, the previous insights,
and the definition of θ2, it holds that f(R) = OMNI(R)
if maxx∈A sP (R, x) < θ1 and |OMNI(R)| ≤ θ2 and that
f(R) = A if maxx∈A sP (R, x) < θ1 and |OMNI(R)| > θ2,
thus showing that f is indeed a parameterized omninomina-
tion rule.

It remains to prove the claim that if f(R) =
OMNI(R) for some profile R with OMNI(R) ̸= A,
then f(R′) = OMNI(R′) for all profiles R′ with
|OMNI(R′)| ≤ |OMNI(R)| and maxx∈A sP (R

′, x) < θ1.
First, if |OMNI(R)| = 1, this claim follows directly from
neutrality and tops-onlyness. The reason for this is that
|OMNI(R)| = 1 implies that all voters top-rank the same
alternative, and all such profiles are symmetric to each other

when restricting the attention to the voters’ favorite alterna-
tives. Hence, we assume that |f(R)| = |OMNI(R)| > 1,
which implies that maxx∈A sP (R, x) < θ1.

We will first show that f(R′) = OMNI(R′) for all pro-
files R′ with maxx∈A sP (R, x) < θ1 and OMNI(R) =
OMNI(R′). In this case, let R1, . . . , Rk denote a sequence of
profiles such that (i) R1 = R and (ii) Ri+1 is derived from
Ri by identifying two alternatives x, y with sP (R

i, x) >
sP (R

′, x) and sP (R
i, y) < sP (R

′, y) and making y into
the favorite alternative of a voter in N(Ri, x). We first note
that, unless sP (R

i, z) = sP (R
′, z) for all z ∈ A, such al-

ternatives x, y are guaranteed to exist as
∑

z∈A sP (R
i, z) =∑

z∈A sP (R
′, z). Hence, our sequence terminates in a pro-

file Rk such that sP (R̄k, z) = sP (R
′, z) for all z ∈ A.

Anonymity then shows that f(R′) = f(Rk), so it suf-
fices to prove that f(Rk) = f(R) = OMNI(R). For this,
we observer that min(sP (R, z), sP (R

′, z)) ≤ sP (R
i, z) ≤

max(sP (R, z), sP (R
′, z)) for all profiles Ri in our sequence

and alternatives z ∈ A. This implies that OMNI(Ri) =
OMNI(R) and that maxz∈A sP (R

i, z) < θ1. By Step 3, it
thus holds that OMNI(Ri) ⊆ f(Ri) for all profiles in our se-
quence. Finally, if f(Ri) = OMNI(Ri) for some profile Ri,
then f(Ri+1) = OMNI(Ri+1). In more detail, if f(Ri+1) ̸=
OMNI(Ri+1), it follows that f(Ri+1) = A. Next, let y de-
note the alternative such that sP (Ri+1, y) = sP (R

i, y) + 1.
Since OMNI(Ri) = OMNI(R) ̸= A, the probability of
y decreases when going from Ri to Ri+1 even though
N(Ri, y) ⊊ N(Ri+1, y). this contradicts Claim 1 of this
theorem, thus showing that the assumption that f(Ri+1) ̸=
OMNI(Ri+1) is wrong. Finally, since f(R1) = OMNI(R1),
we conclude that f(Rk) = OMNI(Rk) = OMNI(R). This
proves that f(R′) = f(Rk) = OMNI(R′).

By the discussion in the last paragraph, it holds that
f(R′) = OMNI(R′) for all profiles R′ with OMNI(R′) =
OMNI(R) and maxz∈A sP (R

′, z) < θ1. Moreover, by neu-
trality, this argument generalizes to all profiles R′′ with
|OMNI(R′′)| = |OMNI(R)| and maxz∈A sP (R

′′, z) < θ1.
Next, we assume that R′ is a profile such that |OMNI(R′)| =
|OMNI(R)| − 1 and maxz∈A sP (R

′, z) < θ1, and we will
prove that f(R′) = OMNI(R′). By repeatedly applying
this argument (and the insights of the last paragraph), it
then follows that f(R̂) = OMNI(R̂) for all profiles R̂

with |OMNI(R̂)| ≤ |OMNI(R)| and maxz∈A sP (R̂, z) <
θ1. To show that f(R′) = OMNI(R′) for the consid-
ered profile R′, let x and y denote an alternatives with
N(R′, x) = ∅ and |N(R′, y)| > 1. Such alternatives exist as
|OMNI(R′)| < |OMNI(R)| is otherwise impossible. Since
maxz∈A sP (R

′, z) < θ1, we have that OMNI(R′) ⊆ f(R′)
by Step 3, and Step 1 implies in turn that f(R′) = A if
f(R′) ̸= OMNI(R′). Now, let R′′ denote the profile de-
rived from R′ by letting a voter who top-ranks y make
x into his favorite alternative. By construction, we have
that |OMNI(R′′)| = |OMNI(R)| and maxz∈A sP (R

′′, z) ≤
maxz∈A sP (R

′, z) < θ1. Hence, we conclude that f(R′′) =
OMNI(R′′). However, since |OMNI(R)| < m, this means
that the probability of y increases when going from R′ to
R′′, which conflicts with Claim 1 of this theorem. Hence,
f(R′′) = OMNI(R′′) implies that f(R′) = OMNI(R′),
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which completes the proof of this step.

A.3 Proof of Theorem 3
In this section, we provide the proof of Theorem 3 and more-
over show a variant of this result for the case that n is even.
To this end, we will interpret even-chance SDSs as set-valued
voting rules (see Appendix A.2 for details). Befoer show-
ing Theorem 3, we will prove two auxiliary lemmas that
analyze when an even-chance SDS that satisfies weak strate-
gyproofness, ex post efficiency, and Condorcet-consistency is
allowed to return choice sets of size 1 or 2. In more detail, we
show next that, if the number of voters n is odd, every weakly
strategyproof and Condorcet-consistent SDS chooses a single
winner if and only if it is the Condorcet winner. We note for
the subsequent lemma that the even-chance condition is not
required here.

Lemma 1. Assume that the number of voters n is odd and let
f denote an SDS on LN that satisfies Condorcet-consistent
and weak strategyproofness. It holds for all preference pro-
files R that f(R, x) = 1 if and only if x is the Condorcet
winner in R.

Proof. Let f denote a Condorcet-consistent and weakly strat-
egyproof even-chance SDS and assume that the number of
voters n is odd. Since f is Condorcet-consistent, it holds by
definition that f(R, x) = 1 if x is the Condorcet winner in
R. We hence focus on the converse direction and assume for
contradiction that there is a profile R and an alternative x
such that f(R, x) = 1 even though x is not the Condorcet
winner in R. Since the number of voters n is odd and x is
not the Condorcet winner in R, there is another alternative
y such that y ≻M x. Moreover, let I ⊆ N denote a set of
voters such that y ≻i x for all i ∈ I and |I| = n+1

2 .
We will now start to modify the profile R. In particular,

we first let the voters i ∈ N \ I deviate one after another
to a preference relation where x is their most preferred al-
ternative and y their second-most preferred one. By weak
strategyproofness, it follows that, if x is chosen with prob-
ability 1 before this manipulation, x also needs to be with
probability 1 after the manipulation; otherwise the deviating
voter can manipulate by undoing this step. Hence, it holds
for the profile R′ derived by this process that f(R′, x) = 1.

Finally, we let a voter i∗ ∈ I deviate to a preference
relation where y is top-ranked. In the resulting profile R′′,
alternative y is the Condorcet winner, so f(R′′, y) = 1 by
Condorcet-consistency. In more detail, in R′′, the n−1

2 voters
in N \ I all prefer only x to y and the voter i∗ top-ranks y.
Hence, y ≻′′

M z for every alternative z ∈ A \ {x, y}. On
the other hand, all voters in I still prefer y to x, so y ≻′′

M x.
Finally, the observations that f(R′′, y) = 1 and f(R′, x) = 1
conflict with weak strategyproofness as voter i∗ prefers y to
x in R′. This is the desired contradiction, so the assumption
that f(R, x) = 1 even though x is not the Condorcet winner
in R must be wrong.

Next, we will show that an even-chance SDS f that sat-
isfies weak strategyproofness, Condorcet-consistency, and
ex post efficiency can only choose a set of size 2 if the two
chosen alternatives are in a majority tie. In particular, if n is

odd, this means that such an SDS can never choose a choice
set of size 2 as majority ties are impossible.
Lemma 2. Let f denote an even-chance SDS on LN that
satisfies weak strategyproofness, ex post efficiency, and
Condorcet-consistency. It holds for all profiles R and distinct
alternatives x, y ∈ A that f(R) = {x, y} implies x ∼M y.

Proof. Let f denote an even-chance SDS that satisfies all
given axioms and assume for contradiction that there is a
profile R and two distinct alternatives x, y ∈ A such that
f(R) = {x, y} and not x ∼M y. Without loss of generality,
we suppose that x ≻M y. Now, let i ∈ N denote an arbitrary
voter and let R1 be the profile derived from R by making
x and y into the two favorite alternative of voter i without
reordering them. In particular, this means that x ≻1

i y if and
only if x ≻i y. We will show that f(R1) = {x, y}, too. To
this end, we assume without loss of generality that x ≻i y
and observe that f(R1) ̸= {x} as voter i can otherwise
manipulate by deviating from R to R1. Moreover, if x ̸∈
f(R1) voter 1 can manipulate by deviating from R1 to R as
x is his favorite alternative in R1. As third point, if y ̸∈ f(R1)
and f(R1) ̸= {x}, then voter 1 can manipulate by deviating
from R1 to R because his two favorite alternatives are chosen
in R but not in R1. Finally, if f(R) ⊊ f(R1), voter 1 can
again manipulate by deviating from R1 to R. Hence, the only
valid choice set for R1 is {x, y}.

It is now easy to see that we can repeat this argument
for one voter after another to arrive at a profile R′, where
all voters report x and y as their favorite two alternatives
and f(R′) = {x, y}. However, x is the Condorcet winner
in R′ because x ≻M y by assumption and we never re-
ordered x and y in the preference relations of the voters.
Hence, f(R′) = {x, y} contradicts Condorcet-consistency.
This shows that our original assumption is wrong and f(R) =
{x, y} is indeed only possible if x ∼M y.

We are now ready to prove Theorem 3.
Theorem 3. Assume that m ≥ 5 and n ≥ 5 is odd. No
even-chance SDS on LN satisfies weak strategyproofness,
Condorcet-consistency, and ex post efficiency.

Proof. In this proof, we focus on the case that m = 5 because
we can simply add further alternatives that are bottom-ranked
by all voters to extend our result to m > 5. These universally
bottom-ranked alternatives are Pareto-dominated and thus do
not affect our analysis. Now, assume for contradiction that
there is an even-chance SDS that satisfies all given axioms
for m = 5 and an odd number of voters n ≥ 5. We will focus
on the following two profiles R1 and R̂1 in our proof.
R1: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

R̂1: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c
We observe that profiles there is no Condorcet winner

in both profiles. In more detail, for both profiles, it can
be checked that a ≻M b, b ≻M c, b ≻M d, b ≻M e,
and d ≻1

M a. Moreover, e Pareto-dominates d in R1 and
b Pareto-dominates c in R̂1. Consequently, e ̸∈ f(R1) and
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c ̸∈ f(R̂1) by ex post efficiency. Subsequently, we will show
that f(R1) = {a, b, c, e} and f(R̂1) = {a, b, d, e}. This im-
plies that voter 3 can manipulate by deviating from R1 to R̂1

as he prefers d to c.

Claim 1: f(R1) = {a, b, c, e}
First, we will prove that f(R1) = {a, b, c, e}. To this end,

we first note that |f(R1)| ≥ 3 due to Lemmas 1 and 2. Since
d ̸∈ f(R1) by ex post efficiency, we can hence show that
f(R1) = {a, b, c, e} by proving that |f(R1)| ≠ 3. We do so
by considering each possible subset of size 3 individually.

Case 1.1: f(R1) ̸= {b, c, e}. Assume for contradic-
tion that f(R1) = {b, c, e} and consider the profile R2 shown
below, which is derived from R1 by swapping a and b in the
preference relation of voter 2. It can be checked that b is the
Condorcet winner in R2 because the set {1, 2}∪{4, . . . n+3

2 }
contains more than half of the voters and all of these vot-
ers top-rank b. Thus, Condorcet-consistency requires that
f(R2) = {b}. However this means that voter 2 can manipu-
late by deviating from R1 to R2 since he prefers b to both c
and e. Hence, the assumption that f(R1) = {b, c, e} conflicts
with weak strategyproofness.
R2: 1: b, e, d, c, a 2: b, a, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Case 1.2: f(R1) ̸= {a, c, e}. Assume for contra-
diction that f(R1) = {a, c, e} and consider the profile R3

shown below, which is derived from R1 by swapping b and
e in the preference relation of voter 1. Analogously to the
last case, it can be checked that e is top-ranked by more than
half of the voters, so Condorcet-consistency requires that
f(R3) = {e}. However, since f(R1) = {a, c, e} by assump-
tion, we derive that voter 1 can manipulate because he prefers
{e} to {a, c, e}. This contradicts weak strategyproofness, so
the assumption that b ̸∈ f(R1) must have been wrong.
R3: 1: e, b, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Case 1.3: f(R1) ̸= {a, b, e}. Assume for contra-
diction that f(R1) = {a, b, e} and consider the profile R4

shown below, where voter n deviates to a, e, d, b, c. We first
note that there is no Condorcet winner in R4. Moreover, d
is still Pareto-dominated by e in R4, so f(R4) ⊆ {a, b, c, e}.
Since there is no Condorcet winner in R4, it follows from
Lemmas 1 and 2 that |f(R4)| ≥ 3. Now, if c ∈ f(R4), voter
4 prefers f(R1) = {a, b, e} to f(R4) as c is his least pre-
ferred alternative in R4. In more detail, if |f(R4)| = 3 and
c ∈ f(R4), then we only substitute c with another alternative
x, which makes voter n better off since x ≻4

n c. On the other
hand, if |f(R4)| = 4, then f(R4) = {a, b, c, e} and voter n
prefers f(R3) as c is his least preferred alternative. Hence,
we have that f(R4) = {a, b, e}.

By repeatedly applying this argument for one voter after
another, we can also derive for the profile R5 shown below
that f(R5) = {a, b, e}. In particular, we note that a is still
not the Condorcet winner in R5 as c ≻5

M a.
Finally, consider the profile R6, which is derived from R5

by swapping a and c in the preference relation of voter 1.

Since a is the Condorcet winner in R6, it holds that f(R6) =
{a}. However, this means that voter 1 can manipulate by
deviating from R6 to R5 since he prefers {a, b, e} to {a}
according to ≿6

1. This contradicts weak strategyproofness, so
the assumption that f(R1) = {a, b, e} must be wrong.

R4: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d n: a, e, d, b, c

{n+5
2 , . . . , n−1}: e, d, a, b, c

R5: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: a, e, d, b, c

R6: 1: b, e, d, a, c 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: a, e, d, b, c

Case 1.4: f(R1) ̸= {a, b, c}. For our last step, we
suppose that f(R1) = {a, b, c}. Now, consider the profile
R7 that arises from R1 by swapping b and c in the prefer-
ence relation of voter 4. We note that if n = 5, then the set
{5, . . . , n+3

2 } is empty and there is no voter in R7 reports
b, c, a, e, d. There is no Condorcet winner in R7 and e still
Pareto-dominates d. We can hence conclude that d ̸∈ f(R7)
due to ex post efficiency and that |f(R7)| ≥ 3 due to Lem-
mas 1 and 2. Moreover, if |f(R7)| ≥ 3 and e ∈ f(R7),
voter 4 can manipulate by deviating from R7 to R1. Hence,
it follows that f(R7) = {a, b, c}. By repeating this argument
for one voter after another in {4, . . . , n+3

2 }, we can infer the
same for the profile R8 shown below, i.e., f(R8) = {a, b, c}.

For the next step, we consider the profile R9 derived from
R8 by swapping b and c in the preference relation of voter 2.
There is still no Condorcet winner in R9 since e ≻9

M c. As a
consequence, essentially the same arguments as for R7 show
that f(R9) = {a, b, c}.

Finally, we consider the profile R10 which is derived
from R9 by changing the preference relation of voter 3 to
c, e, d, a, b. It can be checked that c is the Condorcet win-
ner in R10, so f(R10) = {c} due to Condorcet-consistency.
However, this means that voter 5 can manipulate by deviating
from R9 to R10, which contradicts the weak strategyproof-
ness of f . Hence, the assumption that f(R1) = {a, b, c}
must have been wrong.

R7: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

4: c, b, a, e, d {5, . . . , n+3
2 }: b, c, a, e, d

{n+5
2 , . . . , n}: e, d, a, b, c

R8: 1: b, e, d, c, a 2: a, b, c, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: c, b, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

R9: 1: b, e, d, c, a 2: a, c, b, e, d 3: e, d, c, a, b

{4, . . . , n+3
2 }: c, b, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

R10: 1: b, e, d, c, a 2: a, c, b, e, d 3: c, e, d, a, b

{4, . . . , n+3
2 }: c, b, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Claim 2: f(R̂1) = {a, b, d, e}
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We now turn attention to our second claim, i.e., that
f(R̂1) = {a, b, d, e}. To this end, we note that Lemmas 1
and 2 imply that |f(R̂1)| ≥ 3 and that c ̸∈ f(R̂1) since it
is Pareto-dominated by b. Hence, we will again show that
no choice set of size 3 is a valid outcome for f(R̂1). For the
reader’s convenience, we display the profile R̂1 again.

R̂1: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Case 2.1: f(R̂1) ̸= {b, d, e}. Assume for contradic-
tion that f(R̂1) = {b, d, e}. In this case, consider the profile
R̂2 derived from R̂1 by swapping a and b in the preference re-
lation of voter 2. In the profile R̂2, b is the Condorcet winner
as it is top-ranked by a majority of the voters. So, Condorcet-
consistency requires that f(R̂2) = {b}. However, when
f(R̂1) = {b, d, e}, this means that voter 3 can manipulate by
deviating from R̂1 to R̂2. This contradicts the weak strate-
gyproofness of f , so the assumption that f(R̂1) = {b, d, e}
must be wrong.

R̂2: 1: b, e, d, c, a 2: b, a, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Case 2.2: f(R̂1) ̸= {a, b, e}. For our second case,
we assume for contradiction that f(R̂1) = {a, b, e}. Now,
consider the profile R̂3 derived from R̂1 by swapping a and d
in the preference relation of voter 3. In this profile, alternative
a is the Condorcet winner, so f(R̂3) = {a} due to Condorcet-
consistency. However, since f(R̂1) = {a, b, e}, this means
that voter 3 can manipulate by deviating from R̂1 to R̂3. This
is a contradiction to the weak strategyproofness of f , and it
therefore follows that f(R̂1) ̸= {a, b, e}.

R̂3: 1: b, e, d, c, a 2: a, b, c, e, d 3: a, d, e, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

Case 2.3: f(R̂1) ̸= {a, b, d}. Assume for contradic-
tion that f(R̂1) = {a, b, d}. We first consider the profile
R̂4, which is derived from R̂1 by making d into the favorite
alternative of voter 4. There is no Condorcet winner in R̂4,
so |f(R̂4)| ≥ 3 by Lemmas 1 and 2. Moreover, c is still
Pareto-dominated by b, so c ̸∈ f(R̂4). Finally, if e ∈ f(R̂4)

and |f(R̂4)| ≥ 3, voter 4 can manipulate by deviating from
R̂4 to R̂1 as e is his least preferred alternative in R̂4. Hence,
f(R̂4) = {a, b, d}.

Furthermore, we can apply the same argument for every
voter i ∈ {5, . . . , n+3

2 } to infer the same for profile R̂5

shown below. In particular, we note that there is a majority of
voters who prefers e to d in R̂5, which verifies that d is not
the Condorcet winner in this profile.

Next, let R̂6 denote the profile derived from R̂5 by letting
voter n make d into his favorite alternative. Alternative d
is the Condorcet winner in R̂6, so f(R̂6) = {d}. However,
this is means that voter n can manipulate by deviating from
R̂5 to R̂6 as he prefers {d} to {a, b, d}. This contradicts the

weak strategyproofness of f , so the assumption that f(R̂1) =
{a, b, d} must have been wrong.

R̂4: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

4: d, b, c, a, e {5, . . . , n+3
2 }: b, c, a, e, d

{n+5
2 , . . . , n}: e, d, a, b, c

R̂5: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: d, b, c, a, e {n+5

2 , . . . , n}: e, d, a, b, c

R̂6: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, a, e, b, c

{4, . . . , n+3
2 }: d, b, c, a, e n: d, e, a, b, c

{n+5
2 , . . . , n−1}: e, d, a, b, c

Case 2.4: f(R̂1) ̸= {a, d, e}. For the last step, we
assume for contradiction that f(R̂1) = {a, d, e}. In this case,
we first consider the profile R̂7 which is derived from R̂1

by letting voter 3 swap a and e. We first note that there is
no Condorcet winner in R̂7 and that b still Pareto-dominates
c. Hence, f(R̂7) ⊆ {a, b, d, e} due to ex post efficiency and
|f(R̂7)| ≥ 3 because of Lemmas 1 and 2. Now, since b is
the least preferred alternative of voter 3 among the Pareto-
optimal ones, we infer from weak strategyproofness that b ̸∈
f(R̂7) as this voter can otherwise manipulate by deviating
from R̂7 to R̂1. So, f(R̂7) = {a, d, e}.

Finally, let R̂8 denote the profile derived from R̂7 by letting
voter 1 swap b and e. It can be checked that e is the Condorcet
winner in R̂8, so f(R̂8) = {e} by Condorcet-consistency.
However, this means that voter 1 can manipulate by deviating
from R̂7 to R̂8 as he prefers {e} to {a, d, e} in R̂7.

R̂7: 1: b, e, d, c, a 2: a, b, c, e, d 3: d, e, a, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c

R̂8: 1: e, b, d, c, a 2: a, b, c, e, d 3: d, e, a, b, c

{4, . . . , n+3
2 }: b, c, a, e, d {n+5

2 , . . . , n}: e, d, a, b, c
This completes the proof of this theorem.

As the last point in this section, we will prove a variant
of Theorem 3 for the case that n is even. To this end, we
will use strong Condorcet-consistency instead of Condorcet-
consistency, which requires that an SDS assigns probability 1
to an alternative if and only if it is the Condorcet winner.

Proposition 1. Assume that m ≥ 5 and n ≥ 8 is even. There
is no even-chance SDS that satisfies weak strategyproofness,
strong Condorcet-consistency, and ex post efficiency.

Proof. Just as for the case that n is odd, we will again as-
sume that m = 5 as it is straightforward to generalize our
analysis to a larger number of alternatives by using ex post
efficiency. Moreover, we also assume that there are precisely
n = 8 voters; it can be checked that the impossibility can be
generalized to every even n > 8 by adding pairs of voters
who report a, b, c, d, e and d, e, b, c, a.

Now, we assume for contradiction that there is an even-
chance SDS that satisfies weak strategyproofness, strong
Condorcet-consistency, and ex post efficiency for m = 5
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alternatives and n = 8 voters. Our proof will focus on the
following preference profiles.
R1: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c

7: e, d, b, c, a 8: e, d, c, b, a

R̂1: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, d, b, c, a 8: d, e, b, c, a

Just as for Theorem 3, we will show that f(R1) =

{a, b, c, e} and f(R̂1) = {a, b, d, e}. This means that voter 8
can manipulate by deviating from R1 to R̂1, thus showing
that f fails weak strategyproofness.

Claim 1: f(R̂1) = {a, b, d, e}
We will first show that f(R̂1) = {a, b, d, e}. To this end,

we note that there is no Condorcet winner or majority tie in
R1, so strong Condorcet-consistency and Lemma 2 imply
that |f(R̂1)| ≥ 3. Moreover, c is Pareto-dominated by b, so
c ̸∈ f(R̂1) by ex post efficiency. We can thus prove our claim
by showing that no choice set of size 3 is chosen for R̂1.

Case 1.1: f(R̂1) ̸= {a, d, e} and f(R̂1) ̸= {b, d, e}.
As the first point, we will show that f(R̂1) ̸= {a, d, e}

and f(R̂1) ̸= {b, d, e}. Towards this end, we first assume for
contradiction that f(R̂1) = {b, d, e}. In this case, we let the
voters 6, 5, and 4 one after another deviate to the preference
relation e, a, d, b, c, which results in the profiles R̂2, R̂3, and
R̂4 shown below. For R̂2, we first note |f(R̂2)| ≠ 1 as there
is no Condorcet winner in this profile. Moreover, Lemma 2
shows that |f(R̂2)| ≠ 2 as there is no majority tie in R̂2.
Finally, if |f(R̂2)| ≥ 3 and a ∈ f(R̂2), voter 6 can manip-
ulate by deviating from R̂1 to R̂2, so we conclude now that
f(R̂2) = {b, d, e}.

Next, for R̂3, there is still no Condorcet winner, so
|f(R̂3)| ̸= 1. Moreover, f(R̂3) ̸= {a, e} as voter 5 can oth-
erwise manipulate by deviating from R̂2 to R̂3. Since a ∼̂3 e

is the only majority tie in R̂3, we now infer that |f(R̂3)| ≠ 2

due to Lemma 2. Finally, it follows now analogously to R̂2

that f(R̂3) = {b, d, e} as voter 5 prefers every set X with
a ∈ X , c ̸∈ X , and |X| ≥ 3 to {b, d, e}.

Lastly, we observe that e is the Condorcet winner in R̂4,
so strong Condorcet-consistency requires that f(R̂3) = {e}.
This, however, conflicts with weak strategyproofness as voter
4 prefers {e} to {b, d, e}. This shows that our assumption
that f(R̂1) = {b, d, e} was wrong.

R̂2: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: e, a, d, b, c 7: e, d, b, c, a 8: d, e, b, c, a

R̂3: {1, 2, 3}: b, c, a, e, d 4: a, e, d, b, c
{5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: d, e, b, c, a

R̂4: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: e, a, d, b, c
7: e, d, b, c, a 8: d, e, b, c, a

Finally, the case that f(R̂1) = {a, d, e} can be excluded
by a symmetric argument when letting voters 1 and 2 deviate
to a, b, c, e, d.

Case 1.2: f(R̂1) ̸= {a, b, d}. Assume for contradic-
tion that f(R̂1) = {a, b, d}. First, we let voter 7 deviate
to the preference relation e, b, d, c, a to derive the profile
R̂5. We note for this profile that there is no Condorcet win-
ner, so |f(R̂5)| ̸= 1 by strong Condorcet-consistency. Next,
f(R̂5) ̸= {b, d} as voter 7 can otherwise manipulate by de-
viating from R̂1 to R̂5. Since b ∼̂5

M d is the only majority
tie in R̂5, we infer from Lemma 2 that |f(R̂5)| ̸= 2. As a
consequence, it holds that |f(R̂5)| ≥ 3, which implies that
e ̸∈ f(R̂5). Otherwise, voter 7 can manipulate by deviating
from R̂1 to R̂5. This proves that f(R̂5) = {a, b, d}

As the second step, we consider the profile R̂6 de-
rived from R̂4 by assigning voter 6 the preference relation
a, b, d, e, c. Once again, strong Condorcet-consistency im-
plies that |f(R̂6)| ≠ 1 as there is no Condorcet winner in R̂6.
Moreover, f(R̂6) ̸= {b, e} because voter 6 can otherwise
manipulate by deviating from R̂6 to R̂5. As a consequence,
we derive from Lemma 2 that |f(R̂6)| ≠ 2 because b ∼̂6

M e

is the only majority tie in R̂6. As the last point on R̂6, we
observe that, if |f(R̂6)| ≥ 3, then e ̸∈ f(R̂6) as voter 6 can
otherwise manipulate by deviating from R̂6 back to R̂5. This
implies that f(R̂6) = {a, b, d}.

Finally, voter 7 can now manipulate by swapping b and e.
This step results in the profile R̂7, where b is the Condorcet
winner and therefore uniquely chosen. However, voter 7
prefers the set {b} to the set {b, d, e}, so this violates weak
strategyproofness. This shows that our assumption that
f(R̂1) = {a, b, d} must have been wrong.

R̂5: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, b, d, c, a 8: d, e, b, c, a

R̂6: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: a, b, d, e, c 7: e, b, d, c, a 8: d, e, b, c, a

R̂7: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: a, b, d, e, c 7: b, e, d, c, a 8: d, e, b, c, a

Case 1.3: f(R̂1) ̸= {a, b, e}. We assume for con-
tradiction that f(R̂1) = {a, b, e}. In this case, we first
let voter 8 swap b and e, which results in the profile R̂8.
Since there is no Condorcet winner in R̂8, strong Condorcet-
consistency necessitates that |f(R̂8)| ≠ 1. Moreover, it holds
that f(R̂8) ̸= {b, e} as voter 8 can otherwise manipulate by
deviating from R̂1 to R̂8. Since b ∼̂8

M e is the only majority
tie in R̂8, it follows from Lemma 2 that |f(R̂8)| ≠ 2. Finally,
if |f(R̂8)| ≥ 3, then d ̸∈ f(R̂8) as every ex post efficient
outcome with d ∈ f(R̂8) and |f(R̂7)| ≥ 3 means that voter
8 can manipulate by deviating from R̂1 to R̂8. Hence, we
conclude that f(R̂8) = {a, b, e}.

As second step, we consider the profile R̂9 which is de-
rived from R̂8 by assigning voter 6 the preference relation
a, b, e, d, c. First, we note once again that there is no Con-
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dorcet winner in R̂9, so no singleton set can be chosen. More-
over, f(R̂9) ̸= {b, d} as voter 6 can otherwise manipulate
by deviating back to R̂8. Consequently, Lemma 2 shows
now that |f(R̂9)| ̸= 2 as b ∼̂9

M d is the only majority tie
in R̂9. This proves that |f(R̂9)| ≥ 3. In turn, it follows that
d ̸∈ f(R̂9) as voter 6 can otherwise manipulate by deviating
from R̂9 to R̂8. Hence, the only valid outcome for this profile
is f(R̂9) = {a, b, e}.

Finally, that means that voter 8 can manipulate by swap-
ping b and d. In the resulting profile R̂10, b is the Condorcet
winner, so strong Condorcet-consistency requires that the set
{b} is chosen. As voter 8 prefers b to both a and e in R̂9, this
is a manipulation and hence proves that f(R̂1) ̸= {a, b, e}.

R̂8: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, d, b, c, a 8: d, b, e, c, a

R̂9: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: a, b, e, d, c 7: e, d, b, c, a 8: d, b, e, c, a

R̂10: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: a, b, e, d, c 7: e, d, b, c, a 8: b, d, e, c, a

Claim 2: f(R̂1) = {a, b, c, e}
As our second claim, we will show that f(R1) =

{a, b, c, e}. To this end, we first note that there is no Con-
dorcet winner and no majority tie in R1, so strong Condorcet-
consistency and Lemma 2 imply that |f(R1)| ≥ 3. Moreover,
d is Pareto-dominated by e in R1, so d ̸∈ f(R1) by ex post ef-
ficiency. Hence, we will again show that f(R1) = {a, b, c, e}
by ruling out the four remaining sets of size 3.

Case 2.1: f(R1) ̸= {a, b, c}. Assume for contra-
diction that f(R1) = {a, b, c}. In this case, we first let
voter 8 manipulate by reporting the preference relation
e, d, b, c, a. In the resulting profile R2, b Pareto-dominates
c and e Pareto-dominates d, so f(R2) ⊆ {a, b, e} by ex
post efficiency. In turn, weak strategyproofness rules out
that f(R2) ∈ {{e}, {b, e}, {a, b, e}} as voter 8 can oth-
erwise manipulate by deviating from R1 to R2, and that
f(R2) ∈ {{a}, {a, b}} as voter 8 can otherwise manipulate
by deviating from R2 to R1. Thus, the only valid outcome
is {b}, i.e., f(R2) = {b}. However, this contradicts strong
Condorcet-consistency as b is not the Condorcet winner in
R2, so the assumption that f(R1) = {a, b, c} is wrong.

R2: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, d, b, c, a 8: e, d, b, c, a

Case 2.2: f(R1) ̸= {b, c, e}. For our second case,
we suppose for contradiction that f(R1) = {b, c, e}. We
consider the profiles R3, R4, and R5 derived from R1 by
letting voters 6, 5, and 4 swap a and e. Using analogous
reasoning as in Case 1.1, it can be shown that f(R4) =
{b, c, e}. However, this means that voter 6 can manipulate by
deviating from R4 to R5 as e is the Condorcet winner in R5.
Thus, strong Condorcet-consistency postulates that f(R5) =
{e}, which means that voter 4 can manipulate by deviating
from R5 to R6. Hence, weak strategyproofness conflicts with
Condorcet-consistency, thus proving that f(R1) ̸= {b, c, e}.

R3: {1, 2, 3}: b, c, a, e, d {4, 5}: a, e, d, b, c
6: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

R4: {1, 2, 3}: b, c, a, e, d 4: a, e, d, b, c
{5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

R5: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: e, a, d, b, c
7: e, d, b, c, a 8: e, d, c, b, a

Case 2.3: f(R1) ̸= {a, c, e}. For our third case, we
assume for contradiction that f(R1) = {a, c, e}. In this case,
we derive the profiles R6 and R7 from R1 by letting vot-
ers 1 and 2 reinforce a against c. We first note for R6 that
|f(R6)| ≠ 1 due to strong Condorcet-consistency and the
absence of a Condorcet winner. Moreover, f(R5) ̸= {a, c}
as voter 1 can otherwise manipulate f by deviating from R1

to R6. Since a ∼6
M c is the only majority tie in R6, it follows

from Lemma 2 that |f(R6)| ≠ 2, too. Hence, |f(R6)| ≥ 3
and, because voter 1 prefers each set X with b ∈ X , d ̸∈ X ,
and |X| ≥ 3 to {a, c, e}, we conclude that f(R6) = {a, c, e}.
Furthermore, analogous arguments between R6 and R7 show
that f(R7) = {a, c, e}.

Next, we consider the profile R8 and R9 derived from R7

by letting voters 1 and 2 also reinforce a against b. First, we
note again that |f(R8)| ≠ 1 as there is still no Condorcet
winner in this profile. Moreover, f(R8) ̸= {a, b} because
voter 1 can otherwise manipulate by deviating from R7 to
R8. In turn, Lemma 2 implies that |f(R8)| ≠ 2 as a ∼8

M b is
the only majority tie in R8. This means that |f(R8)| ≥ 3 and
it can be verified that every such outcome with b ∈ f(R8)
allows voter 1 to manipulate by going from R7 to R8. Hence,
we conclude that f(R8) = {a, c, e}. However, this means
that voter 2 can manipulate by deviating from R8 to R9: in
the latter profile a is the Condorcet winner, so f(R9) = {a}
due to Condorcet-consistency. However, voter 2 prefers a to
both c and e, so deviating from R8 to R9 makes him better
off. This proves that f(R1) ̸= {a, c, e}.

R6: 1: b, a, c, e, d {2, 3}: b, c, a, e, d
{4, 5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

R7: {1, 2}: b, a, c, e, d 3: b, c, a, e, d
{4, 5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

R8: 1: a, b, c, e, d 2: b, a, c, e, d 3: b, c, a, e, d
{4, 5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

R7: {1, 2}: a, b, c, e, d 3: b, c, a, e, d
{4, 5, 6}: e, a, d, b, c 7: e, d, b, c, a 8: e, d, c, b, a

Case 2.4: f(R1) ̸= {a, b, e}. As the last case, sup-
pose for contradiction that f(R1) = {a, b, e}. We first con-
sider the profile R10 that is derived from R1 by swapping
a and b in the preference relation of voter 8. For this pro-
file, no singleton set is chosen as there is no Condorcet
winner. Moreover, f(R10) ̸= {a, b} because voter 8 can
otherwise manipulate by going from R10 to R1. We then
derive from Lemma 2 that |f(R10)| ≠ 2 as a ∼10

M b is the
only majority tie in R10. Consequently, |f(R10)| ≥ 3. Now,
if f(R10) = {a, c, e} or f(R10) = {b, c, e}, then voter 8
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can manipulate by deviating from R1 to R10. By contrast,
if f(R10) = {a, b, c}, then voter 8 can manipulate by go-
ing into the other direction. Hence, the only valid choice
set of size 3 is f(R10) = {a, b, e}. Finally, we note that
f(R10) ̸= {a, b, c, e} as voter 8 can otherwise manipulate
to the profile R̂1 for which f(R̂1) = {a, b, d, e}. Hence, the
only valid outcome is f(R10) = {a, b, e}.

Next, we let voter 7 change his preference relation to
e, d, a, b, c to derive the profile R11. We note that there is still
no Condorcet winner in R11, so |f(R11)| ≠ 1 due to strong
Condorcet-consistency. Furthermore, f(R11) ̸= {a, c} as
voter 5 can otherwise manipulate by deviating to f(R10).
Since a ∼11

M c is the only majority tie in R11, this means
that |f(R11)| ̸= 2 due to Lemma 2. Finally, it follows that
f(R11) ̸= X for every Pareto-optimal set X with |X| ≥ 3
and c ∈ X because voter 7 can otherwise manipulate by
deviating back to R11. Hence, the only valid outcome for
R11 is f(R11) = {a, b, e}.

Finally, we consider the profile R12 derived from R11

by assigning voter 1 the preference relation b, e, a, c, d. In
this profile a is the Condorcet winner, so strong Condorcet-
consistency requires that f(R12) = {a}. However, this
means that voter 1 can manipulate by reverting back to R11 as
he prefers the set {a, b, e} to {a} according to his preferences
in R12. Consequently, we now infer that f(R1) ̸= {a, b, e}.

R10: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, d, b, c, a 8: e, d, c, a, b

R11: {1, 2, 3}: b, c, a, e, d {4, 5, 6}: a, e, d, b, c
7: e, d, a, b, c 8: e, d, c, a, b

R6: 1: b, e, a, c, d {2, 3}: b, c, a, e, d
{4, 5, 6}: e, a, d, b, c 7: e, d, a, b, c 8: e, d, c, a, b

This completes the proof of this proposition.

A.4 Proof of Theorem 4
We next turn to the proof of Theorem 4. To this end, we
recall that we consider for this result the domain L∗ =⋃
{LN : N ⊆ N is finite and non-empty} containing all

strict preference profiles, regardless of the number of vot-
ers. As first step to prove Theorem 4, we show that every
pairwise and weakly strategyproof SDS on L∗ satisfies a
property known as set-monotonicity (Brandt 2015): if a voter
weakens an alternative that is assigned probability 0, then
the outcome does not change. To formally state this result,
we recall that Ri:yx is the profile derived from R by only
reinforcing y against x in the preference relation of voter i.

Lemma 3. Let f denote a weakly strategyproof and pairwise
SDS on L∗. It holds that f(R) = f(Ri:yx) for all profiles R
with f(R, x) = 0.

Proof. Let f denote a weakly strategyproof and pairwise
SDS and suppose for contradiction that there is a profile R
such that f(R) ̸= f(Ri:yx) even though f(R, x) = 0. In this
case, we define U+ = {z ∈ A \ {x, y} : f(Ri:yx, z) ≥
f(R, z)} and U− = {z ∈ A \ {x, y} : f(Ri:yx, z) <
f(R, z)}. Now, consider the profile R′ derived from R by
adding two voters i∗, j∗ whose preference relations satisfy

that (i) u ≻∗
i x ≻∗

i y ≻∗
i v for all u ∈ U+, v ∈ U− and

(ii) u ≻∗
i v if and only if v ≻∗

j u for all u, v ∈ A. Since the
preference relations of voter i∗ and j∗ are completely inverse,
pairwiseness requires that f(R′) = f(R). Next, let R̂ denote
the profile derived from R′ by reinforcing y against x in the
preference relation of voter i∗. It is easy to see that |{i ∈
NR̂ : u ≻i v}|− |{i ∈ NR̂ : v ≻i u}| = |{i ∈ NRi:yx : u ≻i

v}| − |{i ∈ NRi:yx : v ≻i u}| for all u, v ∈ A, so pairwise-
ness implies that f(R̂) = f(Ri:yx). Finally, we claim that
voter i∗ prefers f(R̂) to f(R′), which means that he can ma-
nipulate by deviating from R̂ to R′. To see this, we note for
every z ∈ U+∪{x} that f(R̂, U(≿∗

i , z)) ≥ f(R′, U(≿∗
i , z))

as the alternatives in U+ only gain probability and x cannot
lose probability as f(R′, x) = f(R, x) = 0. On the other
hand, if z ∈ U− ∪ {y}, we define L = {w ∈ A : z ≻i∗ , w}
and observe that f(R̂, U(≿∗

i , z)) = 1 − f(R̂, L) ≥ 1 −
f(R′, L) = f(R′, U(≿∗

i , z)) as L ⊆ U−. Finally, since
f(R̂) ̸= f(R′), one of these inequalities must be strict,
which proves that voter i∗ can indeed manipulate by deviat-
ing from R′ to R̂. Hence, our initial assumption is wrong and
f(R) = f(Ri:yx).

We will now prove Theorem 4.

Theorem 4. Assume that m ≥ 5. No pairwise, neutral, and
weakly strategyproof SDS on L∗ satisfies ex post efficiency.

Proof. In this proof, we will focus on the case that m = 5
and n = 3. To generalize the result to more alternatives, we
can simply append the extra alternatives at the bottom of the
preference relations of all voters as ex post efficiency then
implies that these alternatives are chosen with probability 0
and they hence do not affect our results. To add more voters,
we can just add voters with completely inverse preferences.
These voters do not change the majority margins, so pairwise-
ness requires that the outcome is not allowed to change.

Now, assume for contradiction that there is a neutral and
pairwise SDS f on L∗ for m = 5 alternatives that satisfies
strategyproofness and ex post efficiency. We will consider
the following six profiles.

R1: 1: a, b, e, d, c 2: b, c, e, d, a 3: e, d, c, a, b
R2: 1: a, b, e, c, d 2: b, c, e, a, d 3: e, c, a, b, d
R̂1: 1: a, b, e, d, c 2: b, c, e, d, a 3: d, e, a, b, c
R̂2: 1: a, b, e, d, c 2: b, e, d, a, c 3: d, e, a, b, c
R3: 1: a, b, e, c, d 2: b, c, e, a, d 3: e, a, c, b, d
R4: 1: a, b, e, c, d 2: b, c, a, e, d 3: e, c, a, b, d

We first note that d is Pareto-dominated by e in R1 and
R2, and c is Pareto-dominated by b in R̂1 and R̂2. Hence,
ex post efficiency shows that f(R1, d) = f(R2, d) = 0

and f(R̂1, c) = f(R̂2, c) = 0. Moreover, Lemma 3 im-
plies that f(R1) = f(R2) and f(R̂1) = f(R̂2). Next,
we consider the majority margins of R2 and R̂2, which
are depicted in Figure 1. In particular, we observe that
|{i ∈ NR2 : x ≻i y}| − |{i ∈ NR2 : y ≻i x}| = |{i ∈
NR̂2 : τ(x) ≻i τ(y)}| − |{i ∈ NR̂2 : τ(y) ≻i τ(x)}| for all
x, y ∈ A, where τ is the permutation defined by τ(a) = a,
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Figure 1: Weighted majority relations for the profiles R2, R̂2, R3, and R4 in the proof of Theorem 4. An arrow from x to y with
weight w means that w more voters prefer x to y than y to x. Pareto-dominated alternatives and their corresponding edges are
colored in gray to improve readability.

τ(b) = b, τ(c) = d, τ(d) = c, and τ(e) = e. Hence, neu-
trality and pairwiseness imply that f(R2, x) = f(R̂2, x)

for x ∈ {a, b, e}, f(R2, c) = f(R̂2, d), and f(R2, d) =

f(R̂2, c) = 0. Combined with our previous observation, we
now infer that f(R1, x) = f(R̂1, x) for x ∈ {a, b, c} and
f(R1, c) = f(R̂1, d). Hence, if f(R1, c) > 0, voter 3 can
manipulate by deviating from R1 to R2 as he prefers d to c.

We thus suppose from now on that f(R1, c) = f(R2, c) =
0 and consider the profile R3 which is derived from R2 by
letting voter 3 swap a and c. Since f(R2, c) = 0, Lemma 3
implies that f(R2) = f(R3), so f(R3, c) = f(R3, d) = 0.
Next, a, b, and e are symmetric in the weighted majority
relation of R3 (see Figure 1), so neutrality and pairwiseness
require that f(R3, a) = f(R3, b) = f(R3, e). Thus, we con-
clude that f(R2, x) = f(R3, x) = 1

3 for all x ∈ {a, b, e}.
As last point, consider the profile R4 that arises from R2

by letting voter 2 swap a and e. The corresponding weighted
majority relation is depicted in R4 and it can be checked that
this relation can be derived from the one of R2 by permuting
the alternatives according to the permutation τ defined by
τ(a) = b, τ(b) = e, τ(c) = a, τ(d) = d, and τ(e) = c. By
neutrality from R2 to R4, it hence follows that f(R4, a) =
f(R4, b) = f(R4, c) = 1

3 . However, this means that voter 2
can manipulate by deviating from R2 to R4 as he prefers c to
e. This contradicts the properties of f , so the assumption that
an SDS satisfies all axioms of this theorem is wrong.

A.5 Proof of Theorem 5
As the fourth point, we present here our simplified proof of
Theorem 5. In particular, our proof only reasons about 13
profiles (note here also that R1 can be turned into R7 and R8

by permuting alternatives, and R2 can be turned into R13 by
permuting alternatives and voters, so our proofs only needs
10 “canonical” profiles). By contrast, the computer-generated
proof by Brandl et al. (2018) needs 47 canonical profiles and
relates them in an convoluted way.
Theorem 6 (Brandl et al. (2018)). Assume n ≥ 4 and m ≥ 4.
There is no anonymous and neutral SDS on RN that satisfies
ex ante efficiency and weak strategyproofness.

Proof. We focus on the case that m = n = 4; to extend the
result to larger numbers of voters or alternatives, we can use

standard inductive arguments that add completely indifferent
voters and universally bottom-ranked alternatives. Hence,
suppose for contradiction that there is an anonymous and
neutral SDS that satisfies weak strategyproofness and ex ante
efficiency when m = n = 4. To derive a contradiction, we
consider the preference profiles in Figure 2. Moreover, we
will proceed in three steps and first show that f(R6, b) +
f(R6, c) = 1, then that f(R6, b) = 1, and finally infer the
contradiction.

Step 1: We will first show that f(R6, b) + f(R6, c) = 1.
To this end, we first consider the profile R1, where a is
symmetric to c and b is symmetric to d. Hence, anonymity and
neutrality require that f(R1, a) = f(R1, c) and f(R1, b) =
f(R1, d). Moreover, every lottery p with p(a) = p(c) and
p(b) = p(d) > 0 is ex ante dominated by the lottery q with
q(a) = q(c) = 1

2 . Consequently, f(R1, a) = f(R1, c) = 1
2 .

Next, let R2 denote the profile derived from R1 by replac-
ing the preference relation of voter 4 with c, {a, d}, b. It holds
that f(R2, c) ≥ 1

2 as otherwise, voter 4 can manipulate by
deviating from R2 to R1, so f(R2, a)+f(R2, b) ≤ 1

2 . More-
over, d is Pareto-dominated by a in R2, so f(R2, d) = 0.

The profile R3 is derived from R2 by changing the pref-
erence relation of voter 3 to b, a, {c, d}. Since a still Pareto-
dominates d, it follows that f(R3, d) = 0. In turn, weak
strategyproofness shows that f(R3, a) + f(R3, b) ≤ 1

2 as
voter 3 can otherwise manipulate by deviating from R2 to
R3. This implies that f(R3, c) ≥ 1

2 .
As the fourth step, we analyze the profile R4 which

arises from R3 by assigning voter 4 the preference rela-
tion c, d, {a, b}. First, we note that b is symmetric to c
and a is symmetric to d in R4, so f(R4, b) = f(R4, c)
and f(R4, a) = f(R4, d). Next, if f(R4, c) < 1

2 , then
voter 4 can manipulate by deviating from R4 to R3

since f(R3, c) > f(R4, c) and f(R3, c) + f(R3, d) ≥
1
2 = f(R4, c) + f(R4, d) (as f(R4, b) = f(R4, c) and
f(R4, a) = f(R4, d)). By our symmetry conditions, it fol-
lows that f(R4, b) = f(R4, c) = 1

2 .
The profile R5 arises from R4 by letting voter 1 change

his preference relation to {b, c}, d, a. Based on weak strat-
egyproofness to R4, it is easy to infer that f(R5, b) +
f(R5, c) = 1 as voter 1 could otherwise manipulate to R4.
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R1: 1: {b, c}, {a, d} 2: {a, d}, {b, c} 3: {a, b}, c, d 4: {c, d}, a, b
R2: 1: {b, c}, {a, d} 2: {a, d}, {b, c} 3: {a, b}, c, d 4: c, {a, d}, b
R3: 1: {b, c}, {a, d} 2: {a, d}, {b, c} 3: b, a, {c, d} 4: c, {a, d}, b
R4: 1: {b, c}, {a, d} 2: {a, d}, {b, c} 3: b, a, {c, d} 4: c, d, {a, b}
R5: 1: {b, c}, d, a 2: {a, d}, {b, c} 3: b, a, {c, d} 4: c, d, {a, b}
R6: 1: {b, c}, d, a 2: d, {a, b}, c 3: b, a, {c, d} 4: c, d, {a, b}
R7: 1: {a, b}, {c, d} 2: {c, d}, {a, b} 3: {a, c}, b, d 4: {b, d}, c, a
R8: 1: {a, b}, {c, d} 2: {c, d}, {a, b} 3: {a, d}, b, c 4: {b, c}, d, a
R9: 1: {a, b}, {c, d} 2: {c, d}, {a, b} 3: {b, c}, d, a 4: {b, d}, c, a
R10: 1: {a, b}, {c, d} 2: c, d, {a, b} 3: {b, c}, d, a 4: {b, d}, c, a
R11: 1: b, a, {c, d} 2: c, d, {a, b} 3: {b, c}, d, a 4: {b, d}, c, a
R12: 1: {b, c}, d, a 2: d, {a, b}, c 3: {a, b}, {c, d} 4: c, d, {a, b}
R13: 1: {b, c}, d, a 2: d, {a, b}, c 3: {a, b}, {c, d} 4: {c, d}, {a, b}

Figure 2: Profiles used in the proof of Theorem 5. Preference relations highlighted in red indicate manipulations and horizontal
lines indicate the three steps of the proof.

Finally, the profile R6 is derived from R5 by letting voter 2
manipulate to d, {a, b}, c. Since f(R5, b)+f(R5, c) = 1 and
b and c are voter 2’s least preferred alternatives in R5, weak
strategyproofness requires that f(R6, b) + f(R6, c) = 1.

Step 2: We will next show that f(R6, b) = 1. To this end,
consider the profiles R7 and R8. It can be checked that these
profiles are symmetric to R1: R7 arises from R1 by mapping
a to c, b to a, c to b, and d to d; R8 arises from R1 by mapping
a to d, b to a, c to b, and d to c. Hence, symmetric arguments
as for R1 show that f(R7, b) = f(R7, c) = f(R8, b) =
f(R8, d) = 1

2 .
The profile R9 arises from R7 when replacing the prefer-

ence relation of voter 3 with {b, c}, d, a. Since f(R7, b) +
f(R7, c) = 1, strategyproofness hence requires that
f(R9, b) + f(R9, c) = 1, too, because otherwise voter 3 can
manipulate by deviating from R9 to R7. Moreover, we can
derive the profile R9 from R8 by assigning the third voter in
this profile the preference relation {b, d}, c, a (and swapping
the third and fourth voter). Since f(R8, b) + f(R8, d) = 1,
we infer that f(R9, b) + f(R9, d) = 1 because of strate-
gyproofness. Combining these two equations implies that
f(R9, b) = 1.

The profile R10 is derived from R9 by letting voter 2
change his preference relation to c, d, {a, b}. First, we note
that f(R9, a) = 0 as b Pareto-dominates a. As a consequence,
strategyproofness requires that f(R10, b) = 1 as every other
outcome constitutes a manipulation for voter 2.

Next, the profile R11 follows from R10 by assigning voter
1 the preference relation b, a, {c, d}. It is easy to verify that
f(R11, b) = 1; otherwise, voter 1 can manipulate by deviat-
ing from R11 to R10.

Finally, the profile R6 arises now from R11 by assigning
voter 4 the preference relation d, {a, b}, c (and reordering the
voters). By Step 1, we know that f(R6, b) + f(R6, c) = 1.
Hence, if f(R6, c) > 0, voter 4 could manipulate by deviat-
ing from R6 to R11 as he prefers b to c, so we conclude now
that f(R6, b) = 1.

Step 3: Finally, we will derive a contradiction. To this
end, we consider the profile R12 which is derived from R6

by assigning voter 3 the preference relation {b, a}, {c, d}.
Alternative b Pareto-dominates a in R12, so f(R12, a) = 0.
In turn, weak strategyproofness shows that f(R12, b) = 1 as
voter 3 can manipulate by deviating back to R6 otherwise.

Finally, the profile R13 arises from R12 by letting voter 4
change his preference relation to {c, d}, {a, b}. Since b still
Pareto-dominates a, we can infer analogously to the last step
that f(R13, b) = 1. However, voter 2 can now manipulate
to the profile R8 by reporting {a, d}, b, c (and reordering the
voters). Since f(R8, b) = f(R8, d) = 1

2 and voter 2 prefers
d to b, this constitutes a manipulation, which contradicts our
assumptions on f .

A.6 Proof of Theorem 6
Finally, we will discuss the proof of Theorem 6 in detail.
To this end, we will interpret even-chance SDSs again as
set-valued voting rules; see Appendix A.2 for details.

For the proof of Theorem 6, we need additional terminol-
ogy. Following Brandt, Bullinger, and Lederer (2022), we
say that a group of voters G ⊆ N is decisive for an SDS f if
f(R) ⊆ Ti(R) for all voters i ∈ G and all preference profiles
R such that ≿i = ≿j for all i, j ∈ G. Similarly, a group of
voters G is nominating for an SDS f if f(R) ∩ Ti(R) ̸= ∅
for all voters i ∈ G and profiles R such that ≿i = ≿j for all
i, j ∈ G. Finally, a voter i is a weak dictator for f if {i} is a
nominating group for f . Less formally, a group of voters is
decisive if it can enforce that a subset of their top-ranked alter-
natives is chosen when all voters in the group report the same
preference relation, and it is nominating if it can enforce that
at least one of their top-ranked alternatives is chosen. Based
on this notation, Brandt, Bullinger, and Lederer (2022) have
shown the following result.1

1In fact, Brandt, Bullinger, and Lederer (2022) show an even
stronger result as they use a strategyproofness notion that is weaker
than our weak strategyproofness.
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Lemma 4 (Brandt, Bullinger, and Lederer (2022)). Assume
that m ≥ 3 and n ≥ 2, and let f denote a weakly strate-
gyproof and ex post efficient even-chance SDS. A group of
voters G with ∅ ⊊ G ⊊ N is decisive for f if and only if
N \G is not nominating for f .

Lemma 4 is of interest to us as the notion of bidictatorial
SDSs is closely related to dictating groups of voters. We
thus analyze the structure of the decisive groups in the next
lemma.
Lemma 5. Assume that m ≥ 3 and n ≥ 2, and let f denote
a weakly strategyproof and ex post efficient even-chance SDS.
Moreover, suppose there are two decisive groups I , J for f
such that 1 < |I| = |J | < n and |I \ J | = |J \ I| = 1. The
group I ∩ J is also decisive for f .

Proof. Let f denote an weakly strategyproof and ex post ef-
ficient even-chance SDS and let I and J denote two decisive
groups as given by the lemma. We moreover define i as the
voter in I\J , j as the voter in J\I and H as N\(I∪J). In the
subsequent proof, we will focus on the case that m = 3 as it
is straightforward to generalize the lemma to larger values of
m by adding dummy alternatives that are universally bottom-
ranked. These dummy alternatives will be Pareto-dominated
and therefore do not affect our analysis.

We will prove the lemma in three steps and start with the
central part. To this end, consider the following six profiles.

R1: i: b, a, c I∩J : c, {a, b} j: a, c, b H: a, b, c
R2: i: {a, b}, c I∩J : c, {a, b} j: a, c, b H: a, b, c
R3: i: {a, b}, c I∩J : c, {a, b} j: a, b, c H: a, b, c
R4: i: b, c, a I∩J : c, {a, b} j: a, b, c H: a, b, c
R5: i: b, a, c I∩J : c, {a, b} j: a, b, c H: a, b, c
R6: i: a, b, c I∩J : c, {a, b} j: a, b, c H: a, b, c

For the start of our analysis, we will assume that f(R1) =
{a, c} and f(R4) = {b, c}; we will show later why this holds.
Now, consider the profile R2 which is derived from R1 by
letting voter i manipulate. All voters prefer a to b in R2, so b
is Pareto-dominated. Consequently, f(R2) ⊆ {a, c} due to
ex post efficiency. If f(R2) = {a}, voter i can manipulate by
deviating from R1 to R2. Conversely, if f(R2) = {c}, voter
i can manipulate by deviating from R2 to R1. Hence, the
only valid outcome for f(R2) = {a, c}. Next, the profile R3

is derived from R2 by letting voter j swap b and c. Since a
still Pareto-dominates b, we have f(R3) ⊆ {a, c}. Moreover,
a similar analysis as for R2 shows that f(R3) = {a, c}.

Next, we will determine the outcome for R5. To this end,
we first note that voter i can deviate from R3 to R5 by break-
ing the tie between a and b. Since f(R3) = {a, c}, strat-
egyproofness from R3 to R5 requires that c ∈ f(R5) and
f(R5) ̸= {a, b, c}. This leaves us with three possible out-
comes: f(R5) = {a, c}, f(R5) = {b, c}, or f(R5) = {c}.
Now, if f(R5) = {b, c}, then voter j can manipulate to R1

as f(R1) = {a, c} and voter j prefers a to b. On the other
hand, if f(R5) = {a, c}, then voter i can manipulate by
deviating to R4 as f(R4) = {b, c} by assumption. Hence,
f(R5) = {c}.

Finally, consider the profile R6 that arises from R5 by
letting voter i swap a and b. Since f(R5) = {c}, f(R6) =

{c} as any other outcome constitutes a manipulation for voter
i. Finally, in R6, all voters in N \ (I ∩ J) have the same
preference relation but a ̸∈ f(R5). This shows that the group
N\(I∩J) is not nominating, so I∩J is decisive by Lemma 4.

We next prove our claims for R1 and R4.

Claim 1: f(R1) = {a, c}
Tor prove this claim, we first consider the profile R̂1 de-

fined below.

R̂1: i: a, b, c I∩J : {b, c}, a j: c, a, b H: a, b, c

We will show that f(R̂1) = {c} or f(R̂1) = {b, c}. To
this end, we first note that if f(R̂1) = {b}, then voter j can
deviate to the preference relation a, b, c and strategyproofness
requires for the resulting profile R̂1,1 that f(R̂1,1) = {b}.
However, all voters in N \ (I ∩ J) report a, b, c in R̂1,1 and
a ̸∈ f(R2), so the set N \ (I ∩ J) is not nominating. By
Lemma 4, it then follows that the group I ∩ J is decisive
and the lemma would follow at this point. Hence, we sup-
pose that f(R̂1) ̸= {b}. Moreover, suppose for contradiction
that a ∈ f(R̂1). Then, the voters k ∈ I ∩ J can one after
another deviate to the preference relation c, a, b. By strat-
egyproofness, it follows for every step that, if a is chosen
before the manipulation, it must be chosen after the manipula-
tion; otherwise, we would choose a subset of the voter’s most
preferred alternative after the manipulation but not before,
which contradicts weak strategyproofness. Since a ∈ f(R̂1),
this means for the profile R̂1,2, where all voters k ∈ I ∩ J

report c, a, b, that a ∈ f(R̂1,2). However, in this profile, all
voters k ∈ J report c, a, b, so the decisiveness of J implies
that f(R̂1,2) = {c}. This is a contradiction, so a ̸∈ f(R̂1)

and f(R̂1) = {c} or f(R̂1) = {b, c}.
Next, let R̂2 and R̂3 denote the two subsequent profiles.

R̂2: i: b, a, c I∩J : {b, c}, a j: c, a, b H: a, b, c
R̂3: i: b, a, c I∩J : {b, c}, a j: a, c, b H: a, b, c

First, it follows that a ̸∈ f(R̂2) and a ̸∈ f(R̂3). Otherwise,
we can let the voters in I ∩ J one after another deviate to
b, a, c. For each step, strategyproofness implies that a stays
chosen, but all voters in I report b, a, c in the final profile.
Hence the decisiveness of the voters in I requires that b is
uniquely chosen, which contradicts that a ∈ f(R̂2) (resp.
a ∈ f(R̂3)), so f(R̂2) ⊆ {b, c} and f(R̂3) ⊆ {b, c}. More-
over, f(R̂2) ̸= {b} as voter i can otherwise manipulate by
deviating from R̂1 to R̂2. This means that f(R̂2) = {b, c}
or f(R̂2) = {c}. From this, we infer that f(R̂3) ̸= {b} as
otherwise voter j can manipulate by deviating from R̂3 to
R̂2. Hence, f(R̂3) = {c} or f(R̂3) = {b, c}.

Next, we suppose that I ∩ J = {i1, . . . , iℓ} and consider
the following profiles R̂3,k for k ∈ {0, . . . , ℓ}. In particular,
R̂3,k arises from R̂3,k−1 by assigning voter ik the preference
relation c, {a, b}.

R̂3,k: i: b, a, c j: a, c, b H: a, b, c
{i1, . . . , ik}: c, {a, b} {ik+1, . . . , iℓ}: {b, c}, a
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Now, if f(R̂3,k−1) = {c}, then weak strategyproof-
ness implies that f(R̂3,k) = {c}. On the other hand, if
f(R̂3,k−1) = {b, c}, weak strategyproofness requires that
c ∈ f(R̂3,k) and that f(R̂3,k) ̸= {a, b, c} as voter ik
can otherwise manipulate by deviating to R̂3,k−1. Hence,
f(R̂3,k) = {c}, f(R̂3,k) = {b, c}, or f(R̂3,k) = {a, c} in
this case. Finally, if f(R̂3,k−1) = {a, c}, then a ∈ f(R̂3,k)
as voter ik can otherwise manipulate by deviating from
R̂3,k−1 to R̂k. Moreover, c ∈ f(R̂3,k) and f(R̂3,k) ̸=
{a, b, c} because voter ik can otherwise manipulate by devi-
ating from R̂3,k to R̂3,k−1. Consequently, f(R̂3,k) = {a, c}
in this case. Since f(R̂3,0) = {b, c} or f(R̂3,0) = {c} (as
R̂3,0 = R̂3), this means for the profile R̂4 = R̂3,ℓ that
f(R̂4) ∈ {{c}, {b, c}, {a, c}}.

R̂4: i: b, a, c I∩J : c, {a, b} j: a, c, b H: a, b, c

Now, if f(R̂4) = {b, c}, then voter j can manipulate by
deviating to c, {a, b}. In the resulting profile R̂4,1, all voters
in J report c, {a, b}, so c must be uniquely chosen due to the
decisiveness of J . So, f(R̂4) ̸= {b, c}. Next, if f(R̂4) = {c},
then voter i can manipulate to a, b, c and strategyproofness
requires for the resulting profile R̂4,2 that f(R̂4,2) = {c}
as c is his least-preferred alternative in R̂4. Moreover, let
R̂4,3 denote the preference profile derived from R̂4,2 by also
assigning voter j the preference relation a, b, c. All voters
in N \ (I ∩ J) report a, b, c in this profile, so b is now
Pareto-dominated. Moreover, since voter j prefers a to c,
the outcomes f(R̂4,3) = {a, c} and f(R̂4,3) = {a} consti-
tute manipulations for him. This implies that f(R̂4,3) = {c}.
However, this means that the group N \ (I ∩ J) is not nomi-
nating, so the group I ∩ J is decisive and the lemma follows
again. Hence, we suppose that f(R̂4) = {a, c}. Finally, we
note that R1 = R̂4, so this proves our first auxiliary claim.

Claim 2: f(R4) = {b, c}
We note that the proof of this claim is very similar to

the last one, so we will keep the explanations short. First,
consider the profile R̄1 shown below.

R̄1: i: c, b, a I∩J : {a, c}, b j: b, a, c H: b, a, c

We note that the profile R̄1 is symmetric to the profile R̂1

from the last claim: we only need to exchange voters i and j

and alternatives a and b to transform R̄1 to R̂1. Consequently,
we can use symmetric arguments to infer that f(R̄1) ⊆ {a, c}
and that I ∩ J is decisive if f(R̄1) = {a}. Hence, we focus
on the case that f(R̄1) ∈ {{c}, {a, c}}.

Next, let H = {j1, . . . , jℓ′} and consider the profiles R̄1,k

which are defined by R̄1,0 = R̄1 and R̄1,k is derived from
R̄1,k−1 by assigning voter jk the preference relation a, b, c.

R̄1,k: i: c, b, a I∩J : {a, c}, b j: b, a, c
{j1, . . . , jk}: a, b, c {jk+1, . . . , jℓ′}: b, a, c

First, it holds for every profile R̄1,k that f(R̄1,k) ⊆ {a, c}.
Otherwise, b ∈ f(R̄1,k) and the voters I ∩J can one after an-
other deviate to the preference relation c, b, a. For each step,
strategyproofness requires that b is chosen after the deviation

if it was chosen before. Hence, even if all voters in I report
c, b, a, b still must be chosen. However, this conflicts with
the decisiveness of I , which postulates that c is uniquely
chosen if all voters in I report c, b, a. This proves that
f(R̄1,k) ⊆ {a, c}. Next, we note that if f(R̄1,k−1) ̸= {a},
then f(R̄1,k) ̸= {a}. In more detail, by our previous in-
sight, if f(R̄1,k−1) ̸= {a}, then f(R̄1,k−1) = {c} or
f(R̄1,k−1) = {a, c}. Since voter jk prefers a to c in R̂1,k−1,
strategyproofness excludes that f(R̄1,k) = {a}. By combin-
ing these insights and the fact that f(R̄1,0) = {{c}, {a, c}},
it follows that f(R̄1,ℓ′) ∈ {{c}, {a, c}}.

Next, let R̄2 and R̄3 denote the following profiles.
R̄2: i: c, b, a I∩J : {a, c}, b j: a, b, c H: a, b, c
R̄3: i: b, c, a I∩J : {a, c}, b j: a, b, c H: a, b, c

Using the decisiveness of J , it can be shown that f(R̄2) ⊆
{a, c} and f(R̄3) ⊆ {a, c}. Moreover, strategyproofness
from R̄1,ℓ′ to R̄2 implies that f(R̄2) ̸= {a} as voter j can
otherwise manipulate by deviating from R̄1,ℓ′ to R̄2. Hence,
f(R̄2) = {c} or f(R̄2) = {a, c}. In turn, this implies that
f(R̄3) ̸= {a}, too; otherwise, voter i can manipulate by devi-
ating from R̄3 to R̄2. This shows that f(R̄3) ∈ {{c}, {a, c}}.

For the next step, we recall that ℓ = |I ∩ J | and I ∩ J =
{i1, . . . , iℓ}. Moreover, let R̄3,k denote profiles such that
R̄3,0 = R̄3 and R̄3,k arises from R̄3,k−1 by assigning voter
ik the preference relation c, {a, b}.
R̄3,k: i: b, c, a j: a, b, c H: a, b, c

{i1, . . . , ik}: c, {a, b} {ik+1, . . . , iℓ}: {a, c}, b
We investigate the relationship between f(R̄3,k−1) and

f(R̄3,k). First, if f(R̄3,k−1) = {c}, then f(R̄3,k) = {c},
too, as voter ik can otherwise manipulate by deviating
back to f(R̄3,k−1). Second, if f(R̄3,k−1) = {a, c}, then
c ∈ f(R̄3,k) and f(R̄3,k) ̸= {a, b, c} as voter ik can
otherwise manipulate back to R̄3,k−1. This proves that
f(R̄3,k) ∈ {{a, c}, {b, c}, {c}} if f(R̄3,k−1) = {a, c}. Fi-
nally, if f(R̄3,k−1) = {b, c}, we can again conclude that
c ∈ f(R̄3,k) and f(R̄3,k) ̸= {a, b, c} by weak strategyproof-
ness from R̄3,k to R̄3,k−1. Moreover, weak strategyproof-
ness in the other direction implies that f(R̄3,k) ̸⊆ {b, c}.
Hence, in this case, only f(R3,k) = {a, c} is possible.
In summary, these insights combined with the fact that
f(R̄3,0) ∈ {{c}, {b, c}} imply for the profile R̄4 = R̄3,ℓ

that f(R̄4) ∈ {{c}, {b, c}, {a, c}}.
R̄4: i: b, c, a I∩J : c, {a, b} j: a, b, c H: a, b, c

Now, if f(R̄4) = {a, c}, voter i can manipulate by de-
viating to c, {a, b}. In the resulting profile, all voters of I
report c, {a, b}, so the decisiveness of I implies that {c} is
chosen. Since voter i prefers {c} to {a, c}, this shows that
f(R̄4) ̸= {a, c}. Next, if f(R̄4) = {c}, then I ∩ J is de-
cisive. This follows by letting the voter H ∪ {j} one after
another deviate to b, c, a. Strategyproofness implies for every
step that c stays the unique winner. However, in the resulting
profile all voters in N \ (I ∩J) report b, c, a, but b is not cho-
sen. Consequently, the set N \ (I ∩ J) is not nominating, so
I ∩ J must be decisive by Lemma 4. Hence, if f(R̄4) = {c},
the lemma follows. Finally, this means that f(R̄4) = {b, c},
which proves our claim as R̄4 = R4.
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Based on Lemmas 4 and 5, we next show that there are at
least one and at most two weak dictators and that the set of
weak dictators is decisive for f .

Lemma 6. Assume that m ≥ 3 and n ≥ 2, and let f denote
a weakly strategyproof and ex post efficient even-chance SDS.
Moreover, let G denote the set of weak dictators of f . It holds
that 1 ≤ |G| ≤ 2 and that G is decisive for f .

Proof. Let f denote an even-chance SDS that satisfies all ax-
ioms of the lemma and let G denote the set of weak dictators
of f . We will split up the lemma in three separate claims.

Claim 1: G ̸= ∅
Assume for contradiction that G = ∅, i.e., that there is

no weak dictator for f . This means that no singleton set is
nominating for f , so Lemma 4 implies that every set G ⊆ N
with |G| = n − 1 is decisive. Using Lemma 5, it therefore
follows that every set of size n−2 is also decisive. Moreover,
we can repeat this argument to infer that every set of size 1 is
decisive. However, this is impossible as two disjoints sets of
voters cannot be simultaneously decisive. Hence, G ̸= ∅.

Claim 2: |G| ≤ 2
Suppose for contradiction that |G| ≥ 3, let i, j, k ∈ G

denote three different weak dictators of f , and let N− =
N \ {i, j, k} be the set of remaining voters. Furthermore,
consider the following two preference profiles; as usual, all
additional alternatives are bottom-ranked by all voters.
R1: i: a, b, c j: b, c, a k: c, {a, b} N−: {a, b, c}
R2: i: a, b, c j: {a, b}, c k: c, {a, b} N−: {a, b, c}
First, only a, b, and c can be chosen in R1 and R2 due

to ex post efficiency. Next, since voters i, j, and k are weak
dictators for f , it follows that f(R1) = {a, b, c}. Similarly,
f(R2) = {a, c} as voter i top-ranks a, voter k top-ranks c,
and a Pareto-dominates b in R2. However, this means that
voter j can manipulate by deviating from R2 to R1 as he
prefers {a, b, c} to {a, c}. This is the desired contradiction,
so |G| ≤ 2.

Claim 3: G is decisive for f
Finally, we show that G is decisive for f . To this end,

we note that the voters in N \ G are no weak dictators for
f , which means that the sets {i} for i ∈ N \ G are not
nominating. By Lemma 4, it thus follows that the sets N \{i}
are decisive for all i ∈ N \G. Now, if G = N \ {i} for some
i ∈ N , this shows that G is decisive. On the other hand,
if |G| ≤ n − 2, Lemma 4 shows that every set H1 with
G ⊆ H1 and |H1| = n− 1 that H1 is decisive. Now, using
Lemma 5, it also follows for all sets H2 with G ⊆ H2 and
|H2| = n − 2 that H2 is decisive. In more detail, we can
choose two arbitrary voters i, j ∈ N \H2 to infer that the
sets H2 ∪ {i} and H2 ∪ {j} are decisive. Lemma 5 then
implies that H2 is decisive. Moreover, it is easy to see that
one can continue this type of reasoning to show that every set
Hk with G ⊆ Hk is decisive. In particular, this shows that
G is decisive, too.

Finally, we are ready to prove Theorem 6. In particular, we
will show that only alternatives from the set of weak dictators

can be chosen by a weakly strategyproof and ex post efficient
even-chance SDS.
Theorem 6. Assume m ≥ 3 and n ≥ 3. Every ex post
efficient and weakly strategyproof even-chance SDS on RN

is dictatorial or bidictatorial.

Proof. Let f denote an even chance SDS that satisfies weak
strategyproofness and ex post efficiency, and let G denote the
set of weak dictators of f . By Lemma 6, the set G has size 1
or 2 and is decisive. Now, if G = {i} for some voter i, this
means that i is a dictator for f , so f is dictatorial in this case.
Hence, suppose that G = {i, j} for two distinct voters i, j.
We will show that f(R) ⊆ Ti(R) ∪ Tj(R) for all profiles
R. For this, we consider multiple cases that depend on the
relation between Ti(R) and Tj(R).

Case 1: Tj(R) ∩ Ti(R) = ∅
For the first case, we consider an arbitrary profile R such

that Ti(R) ∩ Tj(R) = ∅. In this case, we aim to show that
|f(R) ∩ Ti(R)| ≥ |f(R) \ Ti(R)|. Because a symmetric
argument also shows that |f(R)∩ Tj(R)| ≥ |f(R) \ Tj(R)|,
we can the deduce that f(R) ⊆ Ti(R) ∪ Tj(R). In more
detail, if there is an alternative x ∈ f(R) \ (Ti(R) ∪ Tj(R)),
our inequalities implies that

|f(R) ∩ Ti(R)| ≥ |f(R) \ Ti(R)|
> |f(R) ∩ Tj(R)|
≥ |f(R) \ Tj(R)|
> |f(R) ∩ Ti(R)|.

This is a contradiction, so proving that |f(R) ∩ Ti(R)| ≥
|f(R) \ Ti(R)| implies that f(R) ⊆ Ti(R) ∪ Tj(R).

To prove that |f(R) ∩ Ti(R)| ≥ |f(R) \ Ti(R)|, we as-
sume for contradiction that |f(R)∩Ti(R)| < |f(R)\Ti(R)|.
In particular, we note that this inequality is true if and
only if |f(R)\Ti(R)|

|f(R)| > 1
2 . Next, we enumerate the vot-

ers N \ {i} by j1, . . . , jn−1 (note that the weak dicta-
tor j is among these voters). Moreover, we define the se-
quence of profiles R0, . . . , Rn−1 by R0 = R and Rk differs
from Rk−1 by assigning voter jk the preference relation
A \ Ti(R), Ti(R). By weak strategyproofness, it is easy to
infer that |f(Rk)\Ti(R)|

|f(Rk)| ≥ |f(Rk−1)\Ti(R)|
|f(Rk−1)| because voter jk

otherwise can manipulate by deviating from Rk to Rk−1.
Since |f(R0)\Ti(R)|

|f(R0)| > 1
2 , it follows that |f(Rn−1)\Ti(R)|

|f(Rn−1)| > 1
2 ,

too. Equivalently, this means that |f(Rn−1) \ Ti(R)| >
|f(Rn−1) ∩ Ti(R)|.

For the last step, let X denote the set of alternatives
that voter i ranks second. By ex post efficiency, it fol-
lows that f(Rn−1) ⊆ X ∪ Ti(R) because x ≻i y and
x ∼k y for all k ∈ N \ {i} and alternatives x ∈ X ,
y ∈ A \ (X ∪ Ti(R)). Finally, let a denote an arbitrary
alternative in Ti(R) and b denote an arbitrary alternative in
X , and consider the profile R′ derived from Rn−1 by as-
signing voter i a preference relation where a is his uniquely
most preferred alternative and b his uniquely second-most
preferred alternative. By ex post efficiency, it follows that
f(R′) ⊆ {a, b} because a Pareto-dominates every other al-
ternative in Ti(R) and b Pareto-dominates every other alter-
native in A \ Ti(R). Moreover, since voters i and j are weak
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dictators for f , we can conclude that f(R′) = {a, b}. How-
ever, this means that voter i can manipulate by deviating from
Rn−1 to R because |f(R′)∩Ti(R)|

|f(R′)| = 1
2 > |f(Rn−1)∩Ti(R)|

|f(Rn−1)|

and |f(R′)∩(Ti(R)∪X)|
|f(R′)| = 1 = |f(Rn−1)∩(Ti(R)∪X)|

|f(Rn−1)| . This
contradicts the strategyproofness of f , so the initial assump-
tion that |f(R) ∩ Ti(R)| < |f(R) \ Ti(R)| is wrong.

Case 2: Ti(R) ⊆ Tj(R) or Tj(R) ⊆ Ti(R)
For the second case, consider an arbitrary profile R such

that Ti(R) ⊆ Tj(R) (we note that the case that Tj(R) ⊆
Ti(R) is symmetric). Moreover, assume for contradiction
that there is an alternative x ∈ f(R) \ Tj(R). In this case,
let R′ denote the profile derived from R by assigning voter j
the same preference relation of voter i. By the decisiveness
of G = {i, j} for f , it follows that f(R′) ⊆ Ti(R) ⊆ Tj(R).
However, this means that voter j can manipulate by deviating
from R to R′ because a subset of voter j’ favorite alternatives
is chosen for R′ but not for R. Hence, the initial assumption
that f(R) ̸⊆ Tj(R) is wrong, which proves for this case that
f is bidictatorial.

Case 3: Ti(R) \ Tj(R) ̸= ∅, Tj(R) \ Ti(R) ̸= ∅, and
Ti(R) ∩ Tj(R) ̸= ∅

For the last case, we consider a profile R such that Ti(R)\
Tj(R) ̸= ∅, Tj(R) \ Ti(R) ̸= ∅, and Ti(R) ∩ Tj(R) ̸= ∅.
In this case, let R′ denote a profile such that (i) voter i top-
ranks the alternatives in Ti(R) ∩ Tj(R), (ii) voter j reports
the same preference relation as in R, and (iii) all voters j ∈
N \{i, j} bottom-rank Ti(R)∪Tj(R). We note for the profile
R′ that Ti(R

′) ⊆ Tj(R
′), so Case 2 requires that f(R′) ⊆

Tj(R). Moreover, the alternatives x ∈ Ti(R)∩Tj(R) Pareto-
dominate the alternatives y ∈ (Ti(R) ∪ Tj(R)) \ (Ti(R) ∩
Tj(R)), so f(R′) ⊆ Ti(R) ∩ Tj(R). Next, let R̂ denote
the profile derived from R′ by assigning voter i the same
preference relation as in R. Strategyproofness requires that
f(R̂) ⊆ Ti(R) as otherwise, voter i can manipulate from
R̂ to R′. Finally, we can now let the voters k ∈ N \ {i, j}
one after another deviate to the preference relation that they
report in R. Since all these voters bottom-rank Ti(R)∪Tj(R),
weak strategyproofness requires for each step that a subset
of Ti(R) ∪ Tj(R) is chosen after the manipulation if it was
before the manipulation. Since this sequence results in the
profile R, we derive that f(R) ⊆ Ti(R) ∪ Tj(R).


