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Abstract
Multiwinner voting is the study of electing a fixed-size com-
mittee given individual agents’ preferences over candidates.
Most research in this field has been limited to a static set-
ting, with only one election over a fixed set of candidates.
However, this approach overlooks the dynamic nature of real-
world elections, where candidate sets are subject to change.
We extend the study of proportionality in multiwinner voting
to dynamic settings, allowing candidates to join or leave the
election and demanding that each chosen committee satisfies
proportionality without differing too much from the previ-
ously selected committee. We consider approval preferences,
ranked preferences, and the proportional clustering setting.
Existing voting rules turn out to be flawed and we thus give
algorithms making few changes or show that such algorithms
cannot exist for various proportionality axioms. In particular,
we show that such algorithms cannot exist for ranked prefer-
ences and provide amortized and exact algorithms for several
proportionality notions in the other two settings.

1 Dynamic Committee Selection
The multiwinner voting or committee selection problem has
received considerable attention in recent years in the field
of computational social choice (Faliszewski et al. 2017;
Lackner and Skowron 2022). Given voters’ preferences, this
problem involves selecting a fixed-size subset of the candi-
dates. In particular, the study of proportionality is popular—
the goal here is that each cohesive group of voters should be
represented sufficiently by the elected committee. As a re-
sult, several voting methods and proportionality axioms have
been designed (Peters and Skowron 2020; Brill and Peters
2023), and new application domains of proportionality are
being explored (e.g., participatory budgeting (Peters, Pier-
czyński, and Skowron 2021), clustering (Kalayci, Kempe,
and Kher 2024), or sortition (Caragiannis, Micha, and Peters
2024)). However, most papers in classic multiwinner voting
assume a static, one-shot model: voter and candidate sets
are fixed, voters submit their preferences once, and precisely
one committee is selected. This, on many occasions, fails to
capture issues that arise when applying these rules. For in-
stance, as motivated by Elkind, Obraztsova, and Teh (2024),
in council elections, new candidates appear each year, while
old council members drop out. As another example, in the
Irish lower house (the Dáil Éireann), which is elected us-
ing the proportional single-transferable vote, members of

this lower house frequently need to be replaced (in case of
death or abdication) (Gallagher 1996). This replacement is
often done using a single-winner voting method and can lead
to disproportionality in the parliament. We take this as mo-
tivation to study proportional multiwinner voting with dy-
namic candidate sets. That is, can we select committees such
that after adding or removing candidates, we only need to
slightly alter our original committee to maintain proportion-
ality? For this, we examine an online model: Inspired by the
dynamic clustering (Łącki et al. 2024) and matching (Bern-
stein, Holm, and Rotenberg 2019) literature, we assume that
we have a stream of additions and deletions of candidates.
During this stream, we must maintain a proportional com-
mittee, making only minimal changes after each step.

Our Results. We study multiwinner voting rules in three
dynamic settings: ranked ballots, proportional clustering,
and approval ballots. Specifically, when voters submit linear
orders over the candidates, we show that PSC can be satis-
fied by an incremental voting rule, but decremental PSC, let
alone fully dynamic PSC, is not robustly achievable. Further,
neither incremental nor decremental algorithms can satisfy
rank-JR. When restoring either property after deletion, the
number of replacements is unbounded, with our asymptotic
lower bound for rank-JR being significantly steeper than
for PSC. In the related setting of proportional clustering,
we obtain a fully dynamic algorithm that achieves a 3.79-
proportional fair outcome. We further investigate the α-q-
core (Kellerhals and Peters 2023; Ebadian and Micha 2024)
and show that the same algorithm for proportional fairness
also gives a 5 approximation to the q-core. Surprisingly, this
meets the currently best known upper bound on the q-core
of non-dynamic algorithms. Finally, when the voters have
dichotomous preferences, a fully dynamic voting rule ex-
ists that satisfies PJR+ and requires, on average, only one
change per addition or deletion. For EJR, we give two kinds
of approximation guarantees. To satisfy an O(log(k))-EJR
approximation, we provide a fully dynamic rule that requires
amortized one change per addition or deletion. To accom-
modate constant α > 1, we provide an algorithm for α-EJR
with the average number of swaps per round being constant
and independent of k. For exact EJR, we further provide a
rule that can handle at least one addition with a single swap,
thus rendering strongly negative results like for rank-JR im-



Axiom Incremental Decremental Fully Dynamic

PSC ✓ ✗, Ω(log(log(k))) lower b. ✗, Ω(log(log(k))) lower b.
rank-JR ✗, Ω(

√
k) lower b. ✗, Ω(

√
k) lower b. ✗, Ω(

√
k) lower b.

Proportional Fairness ✓3.79-approx ✓3.79-approx ✓3.79-approx
q-Core ✓5-approx ✓5-approx ✓5-approx

PJR+ ✓ ✓(amort.) ✓(amort.)
EJR+ ✓(2,2)-approx ✓log(k)-approx (amort.) ✓log(k)-approx (amort.)

Table 1: An overview of our results. A ✓ indicates that a robust (amortized) dynamic algorithm exists for the respective problem
and input type. An ✗ indicates that no robust fully dynamic algorithm can exist.

possible in the approval setting.

Related Work. Proportionality in the static multiwinner
voting setting is well studied. In detail, we refer to Lackner
and Skowron (2022) for a recent book on approval-based
multiwinner voting and to the works of Aziz and Lee (2020,
2021, 2022) and Brill and Peters (2023) for proportionality
with ranked preferences. For proportional clustering we re-
fer to Chen et al. (2019) who introduced the concept of pro-
portional fairness in clustering as well as to several follow-
up works deepening the analysis of proportional fairness in
clustering (Micha and Shah 2020; Li et al. 2021; Kalayci,
Kempe, and Kher 2024) and relating it to multiwinner vot-
ing (Aziz et al. 2023; Kellerhals and Peters 2023).

As for related temporal or dynamic models in multiwin-
ner voting, we refer to Elkind, Obraztsova, and Teh (2024)
for a recent survey. Most notably, we are closely related to
Do et al. (2022), who study an online model of approval-
based multiwinner voting, in which candidates appear in an
online manner and have to be irrevocably chosen or rejected
at each time step. The difference is that in our model (i) the
committee needs to satisfy the proportionality notion at ev-
ery step of the online process and (ii) chosen candidates can
be taken off the committee or even off the feasible set again.
Further, Brill et al. (2023) consider a model in which they
assume that the set of candidates is known in advance, but
the actual availability of the candidates is unclear and needs
to be requested via an invite to the committee. Similarly to
Do et al. (2022), candidates are added irrevocably. Further,
the preferences over all candidates are known in advance.

In a series of works Deltl, Fluschnik, and Bredereck
(2023); Bredereck, Fluschnik, and Kaczmarczyk (2022);
Bredereck, Kaczmarczyk, and Niedermeier (2020) consid-
ered the complexity of the sequential committee selection
problem. In their model, the rules select one committee per
time step, while constantly satisfying requirements such as
optimizing egalitarian welfare or scores, subject to the com-
mittees not changing drastically over time. Most problems
studied in these works are computationally intractable and
thus the authors instead study the parameterized complexity
of several related problems.

Finally, outside of computational social choice, there is a
large body of literature on dynamic low-recourse algorithms.
For instance Matuschke, Schmidt-Kraepelin, and Verschae

(2019); Megow and Nölke (2020); Bernstein, Holm, and
Rotenberg (2019) study online matching and Łącki et al.
(2024); Bhattacharya et al. (2024a,b) study online cluster-
ing with low recourse.

2 Defining Model and Notation
We first introduce the standard settings and proportionality
notions, then expand them to be dynamic. Throughout the
paper, we are given a set N = [n] of voters and a set C =
{c1, . . . , cm} of candidates. Each voter i has preferences Pi

over the candidates with P = (Pi)i∈N being the preference
profile. We deal with two different kinds of preferences for
the standard multiwinner voting problem:
(i) with approval preferences each voter i ∈ N has an ap-

proval set Ai ⊆ C;
(ii) with ordinal preferences each voter i ∈ N has a strict

order ≻i ⊆ C2 over the candidates.
We are further given a target size k and the goal is to select

a committee W ⊆ C of size k. Together I = (N,C, P, k)
is an (approval/ordinal) instance.

Given an ordinal instance and voter i ∈ N and candidate
c ∈ C we write rank(i, c) = |{c′ ∈ C : c′ ≻ c}| + 1, e.g.,
the candidate ranked first has rank 1.

We additionally investigate the proportional clustering
problem. In this, we are instead given a (pseudo-) metric
space (N∪C, d) with the distance function d : (N ∪ C)

2 →
R≥0 satisfying (i) d(i, j) = d(j, i) (symmetry) and (ii)
d(i, j) ≤ d(i, h) + d(h, j) (triangle inequality) for all
i, j, h ∈ N ∪ C. For an agent i and subset C ′ ⊆ C we
let d(i, C ′) = minc∈C′ d(i, c) denote the distance from i to
C ′. Analogously, we define dq(i, C ′) to be the distance to
the q-th furthest away candidate in C ′ from i.

Proportionality Notions
In the following sections, we call a group N ′ ⊆ N of voters
ℓ-large if |N ′| ≥ ℓn

k .

Approval Preferences. First, we assume that we are given
an approval instance I = (N,C,A, k). For approval pref-
erences, we call a set N ′ ⊆ N of voters ℓ-cohesive if
|
⋂

i∈N ′ Ai| ≥ ℓ. We say that a committee satisfies

• JR if for every 1-cohesive and 1-large group N ′ there
exists an i ∈ N ′ with |Ai ∩W | ≥ 1 (Aziz et al. 2017).



• PJR if for every ℓ ∈ [k] and ℓ-cohesive and ℓ-large group
N ′ it holds that |

⋃
i∈N ′ Ai∩W | ≥ ℓ (Sánchez-Fernández

et al. 2017).
• PJR+ if for every ℓ ∈ [k] and 1-cohesive and ℓ-

large group N ′ it holds that |
⋃

i∈N ′ Ai ∩ W | ≥ ℓ or⋂
i∈N ′ Ai ⊆W (Brill and Peters 2023).

• EJR if for every ℓ ∈ [k] and ℓ-cohesive and ℓ-large group
N ′ there exists an i ∈ N ′ with |Ai ∩W | ≥ ℓ (Aziz et al.
2017).

• EJR+ if for every ℓ ∈ [k] and 1-cohesive and ℓ-large
group N ′ there exists an i ∈ N ′ with |Ai ∩W | ≥ ℓ or it
holds that

⋂
i∈N ′ Ai ⊆W (Brill and Peters 2023).

Further, α-EJR+ with α > 1 requires that for every ℓ ∈ [k]
and 1-cohesive and α · ℓ-large group N ′ there exists an i ∈
N ′ with |Ai ∩W | ≥ ℓ or it holds that

⋂
i∈N ′ Ai ⊆W .

Ordinal Preferences. Given ordinal preferences (N,C,≻
, k), we say that a set of voters N ′ ⊆ N is a solid coalition
over a set S ⊆ C of candidates if for any i ∈ N ′ it holds that
S ≻ C\S, i.e., S forms a prefix of that voters preferences. A
committee W satisfies Proportionality for Solid Coalitions
(PSC) (Dummett 1984) if for every ℓ-large group of voters
N ′ that is a solid coalition over some S ⊆ C, it holds that
|W ∩ S| ≥ min(ℓ, |S|). If some solid coalition N ′ over S
causes W to violate PSC, we say that N ′ (or (N ′, S)) is a
witness.

For a given approval-based proportionality notion X and
r ∈ [k] we let Ar

i = {c ∈ C : rank(i, c) ≤ r}. Let Ir =
(N,C,Ar, k) be the approval instance, in which every voter
only approves their top r choices. Given an approval-based
proportionality notion X, a committee W satisfies rank-X if
W satisfies X in each instance Ir (Brill and Peters 2023).
In the following example with n = 4 voters and k = 2, all
committees satisfy PSC, but due to r = 2, only committees
containing b satisfy rank-JR (Brill and Peters 2023).

a ≻ b ≻ e ≻ d ≻ c

d ≻ b ≻ c ≻ e ≻ a

c ≻ b ≻ e ≻ d ≻ a

e ≻ b ≻ d ≻ c ≻ a

Proportional Clustering. In proportional clustering, the
most prominent notion is that of proportional fairness (Chen
et al. 2019; Kalayci, Kempe, and Kher 2024). An out-
come (or clustering or committee) W is said to be γ-
proportionally fair for some γ ≥ 1 if there is no unselected
candidate c ∈ C \W and 1-large group N ′ ⊆ N of voters
such that

min
c′∈W

d(i, c′) > γd(i, c) for all i ∈ N ′.

Proportional fairness, however, only looks at deviations to
single candidates (akin to JR for approval preferences).
This prompted several strengthenings of proportional fair-
ness (Ebadian and Micha 2024; Kalayci, Kempe, and Kher
2024; Aziz et al. 2023) dealing with deviations to multiple

candidates instead. As it is closest in spirit to proportional
fairness, we focus here on the q-core as introduced by Eba-
dian and Micha (2024). A committee W is said to be in the
α-q-core for some q ∈ [k] if for all other candidate subsets
C ′ ⊆ C the following holds: there are strictly less than |C′|

k n
voters i ∈ N for which their q-th closest candidate in W is
α-times farther away than their q-th closest candidate in C ′.

Online Algorithms
We consider three types of dynamic settings. First, in the in-
cremental setting, we have a stream of candidates c1, . . . , cm
appearing over time, and the voters’ preferences are revealed
incrementally. For this purpose, let t ∈ {k, . . . ,m} denote
a time step and Ct = {c1, . . . , ct} be the set of available
candidates at this time step. Formally, an incremental vot-
ing rule takes as input (≻, t, k) and outputs a committee
W ⊆ Ct of target size k. Further, it is only allowed to de-
pend on≻ |Ct

, i.e., we demand that f(≻, t, k) = f(≻′, t, k)
whenever ≻|Ct

= ≻′|Ct

Next, in the decremental setting, a set of candidates C0 =
{c1, . . . , cm} is given, and the voters reveal their preferences
over the full set immediately. However, the candidates do not
reveal when they will drop out of the election. Formally, this
is modeled via a sequence (Ct)t≥0, with |Ct| = m − t and
Ct ⊂ Ct−1. Then, a decremental ABC voting rule takes as
input (≻, t, k) and outputs a committee W ⊆ Ct of target
size k. At each step t, it is allowed to use the full preference
profile, but only (Cs)s≤t. Thus f has to be independent of
the order of future deletions.

Finally, in the fully dynamic setting, the candidates can
both join and leave as they desire. We again start with C0 =
{c1, . . . , cm}, but this time only impose as constraint on the
sequence of candidate sets (Ct)t≥0 that for all t, we have
that Ct+1 is obtained from Ct by adding or removing one
candidate. A fully dynamic rule takes as input (≻, t, k) and
outputs a committee W ⊆ Ct of target size k. At time t,
it is only allowed to depend on (Cs)s≤t and ≻ restricted to⋃

s≤t Cs.
In all settings, when ≻ and k are clear from the context,

we can omit these and write f(t) instead of f(≻, t, k). Let
X be any axiom for committees. We say that f satisfies X if
f(≻, t, k) satisfies X for all k, t, and ≻. A rule f is robust,
if |f(≻, t, k) ∩ f(≻, t+ 1, k)| ≥ k − 1 for all t < m.

For example, consider the following ranked profile:

a ≻ c ≻ e ≻ b ≻ d

a ≻ e ≻ c ≻ d ≻ b

a ≻ d ≻ b ≻ e ≻ c

a ≻ e ≻ d ≻ c ≻ b.

Let the sequence be C0 = {a, b, c, d}, C1 = {b, c, d},
C2 = {b, c, d, e} and k = 2. Then, f(0) = {a, c}, f(1) =
{c, d}, f(2) = {d, e} maintains PSC at every step.

Throughout the paper, we will reference well-known rules
from the static multiwinner voting setting to illustrate that
the dynamic problems add a layer of depth that has yet to be
accounted for. Their definitions and all missing proofs and
examples are in the appendix.



3 Ordinal Preferences
In this section, we investigate ordinal preferences. In more
detail, we show that PSC can be satisfied robustly in the in-
cremental setting, while the notion of rank-JR cannot. We
further show that both notions cannot be satisfied robustly in
the decremental setting and give asymptotic lower bounds
for the number of replacements that are required to restore
proportionality after a single deletion.

As our first main result, we show that an incremental rule
satisfying PSC exists. The proof entails an even stronger
statement: for each committee W satisfying PSC and each
newly added candidate c that causes a violation, there is al-
ways a single candidate c′ ∈W who can be swapped with c
to restore PSC.

Theorem 1. There exists a robust incremental rule f that
satisfies PSC.

Proof. Let {c1, . . . , ct} = Ct denote the candidates that
joined until time step t and let f(t) denote the committee
selected at this time. For t = k, let f(t) = Ck. This com-
mittee trivially satisfies PSC w.r.t. the feasible set Ck.

For t > k, let f(t−1) satisfy PSC w.r.t. Ct−1. Throughout
the proof, we will write W ∗ = f(t − 1) ∪ {ct} for the pre-
vious committee together with ct and for c ∈W ∗ we denote
W−c = W ∗ \ {c} to be the committee with c removed. Our
goal is to show that some W−c satisfies PSC w.r.t. Ct, for
some c ∈W for which we will need the following claims.

Claim 1: For any c ∈W ∗, let W−c violate PSC on Ct due
to an ℓ-large set of voters. Then, |C ∩W ∗| ≤ ℓ.

To prove this, simply let Nc be ℓ-large and a solid coali-
tion over some C that witnesses a PSC violation of W−c.
Then, |C ∩W−c| < min(ℓ, |C|) ≤ ℓ.

Claim 2: Let c ∈ W ∗, W−c violate PSC and let (Nc, C)
be a witness of that. Then, c ∈ C.

We prove this by contraposition. Let Nc ⊆ N be an ℓ-
large, solid coalition over C, but with c /∈ C. The goal is to
show that this block does not witness a violation of PSC for
W−c. We will do so now by examining Nc for Ct−1.

Case 1 is that ct /∈ C, which implies that Nc is also a solid
coalition for C in time step t − 1. Since f(t − 1) satisfies
PSC by assumption, we have min(|C|, ℓ) ≤ |C ∩ f(t −
1)| = |C ∩ W ∗| = |C ∩ W−c|, since both ct and c do
not occur in the block. Case 2 is that ct ∈ C. Then, with
respect to Ct−1, Nc was still a solid coalition for C \ {ct}
(and ℓ-large). By assumption, f(t − 1) satisfies PSC, and
thus min(|C| − 1, ℓ) ≤ |(C \ {ct}) ∩ f(t − 1)| = |C ∩
W ∗| − 1 = |C ∩W−c| − 1, where the last equality again
follows from the assumption c /∈ C. This, however, implies
min(s, ℓ) ≤ min(s− 1, ℓ) + 1 ≤ |C ∩W−c|, which shows
that no violation can occur in Case 2 either and thus Claim
2 is proven.

Now we are ready for the main argument. Assume for
contradiction that for all c ∈ W ∗, the committee W−c does
not satisfy PSC. Then, for any c ∈ W ∗, there is some ℓc-
large solid coalition Nc over Cc witnessing a PSC violation
of W−c. We choose these witnesses (Nc, Cc) to be maximal

with respect to |Cc| first and |Nc| second. We will now it-
eratively go over all k + 1 candidates c in f(t − 1) ∪ {ct}
and injectively assign n

k of the voters in Nc to c. This leads
to the desired contradiction, as there are only k n

k voters in
total. For this, enumerate W ∗ = {d1, . . . , dk+1}. We will
assign each dj to a subset of Ndj

as follows. For d1, we
can assign it to any n

k voters of Nd1
, which must exist since

Nd1
must be at least 1-large to be a witness. For j ≥ 2, let

injective voter assignments be made for all candidates with
smaller index, i.e., dx with 1 ≤ x < j. We claim that there
are still at least n

k candidates from Ndj unassigned. If any
of these voters has been assigned already, there must exist
some other candidate dx such that Ndx ∩Ndj ̸= ∅.

Claim 3 Ndx = Ndj and Cdx = Cdj .
Since the intersection of the two voter sets is non-empty,

there exists some voter i ∈ Ndx
∩ Ndj

. Since Cdx
and Cdj

are both prefixes of the preference ≻i, one must be a subset
of the other. Without loss of generality, assume Cdx

⊆ Cdj
.

We first show that the voter set Ndj
is not only a witness

for a PSC violation of Wdj
, but also for a violation of Wdx

.
Applying Claim 2, we obtain dx ∈ Cdx

⊆ Cdj
and dj ∈

Cdj . Since Ndj is a witness for W−dj , it thus holds that

min(|Cdj
|, ℓdj

) > |Cdj
∩W−dj

| = |Cdj
∩W−djx

|,

which proves that (Ndj , Cdj ) is also a witness for the PSC
violation of W−dx . Since we chose Cdj to be maximal, it
must be that Cdj = Cdx and the prefixes coincide. Thus,
(Ndj ∪Ndx , Cdx) is also a witness for the PSC violation of
Wdx . Since we chose Ndx to be inclusion maximal, it must
be that Ndj

⊆ Ndx
. Applying the same argument to Wdj

,
we obtain Ndj

⊇ Ndx
which concludes the proof of Claim

3.

By Claim 3 and Claim 2, it follows that dx ∈ Cdj
. How-

ever, by Claim 1, ℓdj
≥ |W ∗ ∩ Cdj

|, one of which is dj
itself. Hence, at most ℓdj

− 1 different dx with x < j can
have been assigned to some voters in Ndj

. Each of these is
assigned to n

k voters. Since |Ndj | = ℓdj

n
k , there are still at

least n
k voters unchosen, which we can assign to dj . This

concludes the step from j → j + 1, thus we can injectively
assigned each c ∈W ∗ to some subset of N of size n

k , which
is not possible. This is the desired contradiction and thus
there is some c ∈W ∗ such that W−c satisfies PSC w.r.t. Ct.
This concludes the induction step t− 1→ t.

The approach of Theorem 1 does not work for deleting a
candidate—if we choose poorly, we may need to replace the
entire committee after a single deletion.

Example 1. A size k committee satisfying PSC can require
k additions to restore PSC after a single deletion. For this,
consider the following profile with n = k

a1 ≻ b1 ≻ a2 . . . ak ≻ ∗
a1 ≻ b2 ≻ a2 . . . ak ≻ ∗

...

a1 ≻ bk ≻ a2 . . . ak ≻ ∗



The committee W = {a1, . . . , ak} satisfies PSC. However,
after removing a1, all candidates bi would need to be added.

Similarly, commonly used rules that satisfy PSC fail to
distinguish between robust and non-robust committees.
Example 2. The single transferable vote (STV) and the ex-
panding approvals rule (EAR) can select committees that are
not robust to a single deletion for PSC, even when such com-
mittees exist.

While in Example 2 there exists a robust committee, there
are instances where any committee satisfying PSC is not ro-
bust and requires at least Ω(log(log(k))) changes to restore
PSC. This precludes the existence of a robust decremental—
let alone fully dynamic—PSC algorithm.
Proposition 2. There does not exist a robust decremen-
tal PSC algorithm. After a single deletion, it can be that
Ω(log(log(k))) replacements are needed to restore PSC.

For rank-JR, we show that neither incremental nor decre-
mental rules can be robust.
Theorem 3. There is no robust incremental or decremental
rank-JR algorithm.

Proof. We give the following example with n = 12 voters,
m = 13 candidates C = {c1, . . . , c6, c′1, . . . , c′6, c}, and k =
6. We show that the removal of c1 from C is incompatible
with decremental rank-JR and the addition of c1, c′1 to C \
{c1, c′1} is incompatible with incremental rank-JR:

1. c1 ≻ c2 ≻ . . .
2. c1 ≻ c3 ≻ . . .
3. c2 ≻ c5 ≻ c . . .
4. c3 ≻ c4 ≻ c . . .
5. c5 ≻ c6 ≻ c . . .
6. c4 ≻ c6 ≻ c . . .

1′. c′1 ≻ c′2 ≻ . . .
2′. c′1 ≻ c′3 ≻ . . .
3′. c′2 ≻ c′5 ≻ c . . .
4′. c′3 ≻ c′4 ≻ c . . .
5′. c′5 ≻ c′6 ≻ c . . .
6′. c′4 ≻ c′6 ≻ c . . .

Note that this instance is symmetric with regard to rank-
ing candidates ci and c′i. We first show the following claim,
which is crucial for both proofs:

Claim 1: If a committee W satisfies rank-JR on C, then
|W ∩ {c2, c3, c′2, c′3}| ≤ 1. To show this claim, first let a
committee W be given with {c2, c3} ⊆ W . Since c1, c

′
1

are top ranked twice, c1, c′1 ∈ W . Further, voters 5, 6 share
candidate c6 at position r = 2 and thus one of {c4, c5, c6}
must be contained in W . Since |W | = 6, W can only con-
tain one of the candidates {c′2, . . . , c′6}. Thus, there are al-
ways {i′, j′} ⊂ {3′, . . . , 6′} obtaining none of their three
most preferred candidates, leading to the desired violation
of rank-JR for W with r = 3. Now, let a committee W be
given with |W ∩ {c2, c3}| = 1 and |W ∩ {c′2, c′3}| = 1. We
have to show that W violates rank-JR. Again, c1, c′1 ∈ W .
Further, voters 5, 6 share candidate c6 at position r = 2 and
thus one of {c4, c5, c6} must be contained in W . Since the
same argument holds for voters 5′, 6′, the committee W al-
ready contains 6 candidates and c /∈ W . Note however, no
matter how we choose the candidates, there will be one voter
i ∈ {3, 4, 5, 6} not obtaining any of their top three ranked
candidates: If we choose c5 (c4), voter 6 (voter 5) is unhappy.
If we choose c6, voter 3 or voter 4 will be unhappy as we can

only choose one of {c2,3 }. By applying the same argument,
we obtain j ∈ {3′, 4′, 5′, 6′} for which W does not contain
any of their top three candidates. Since i, j both have c as
their third most-preferred candidate, {i, j} induces a rank-
JR violation for W and r = 3. This concludes the proof of
the claim.

The following is clearly true: Claim: If a committee W 2

on C\{c1, c′1} satisfies rank-JR, then {c2, c3, c′2, c′3} ⊂W 2.
For the incremental rank-JR violation, we see the follow-

ing: Any rule f satisfying rank-JR on C2 = C \ {c1, c′1}
must return W 2 containing {c2, c3, c′2, c′3}. For C1 = C \
{c′1}, thus |W 1 ∩ {{c2, c3, c′2, c′3}}| ≥ 3 and thus for C0 =
C we have |W 0 ∩ {{c2, c3, c′2, c′3}}| ≥ 2. This implies that
f fails rank-JR by our Claim 1.

For decremental rank-JR, apply Claim 1 to obtain that
wlog W ∩ {c2, c3} = ∅. Deleting c1 now requires the ad-
dition of both c2, c3, as desired.

We generalize this approach to show that for any t there
is an instance in which at least t changes must be made af-
ter deleting a single candidate. This provides steeper lower
bounds than for PSC.

Theorem 4. There is no incremental or decremental algo-
rithm satisfying rank-JR and making o(

√
k) changes amor-

tized per round.

As a corollary, our results imply in the language of Brill
et al. (2023) that there is no safe batch querying procedure
for rank-JR or PSC.

Corollary 5. There is no set of size k which is safe for either
rank-JR or PSC.

Theorem 4 further raises the question of whether this
bound is tight.

Open Question 1. Is there an incremental or decremen-
tal algorithm satisfying rank-JR making at most O(

√
k)

changes amortized per round?

4 Proportional Clustering
Secondly, we turn to proportional clustering. Here, candi-
dates and voters lie in a metric space (N ∪C, d). Unlike the
social choice settings, proportionality can only be approxi-
mated, not perfectly satisfied. Existing algorithms, such as
Greedy Capture (Chen et al. 2019) or the Expanding Ap-
provals Rule (Aziz et al. 2023), achieve a constant factor
approximation to proportional fairness (Kellerhals and Pe-
ters 2023) by relying on a generalization of rank-JR to pro-
portional clustering. We circumvent this and design a fully
dynamic algorithm achieving a constant factor approxima-
tion to proportional fairness. In essence, proportional clus-
tering is easier than proportional multiwinner voting, as vot-
ers share a metric space with the candidates. By clustering
similar voters into groups, we preempt the clustering of can-
didates. Using this, we obtain a fully dynamic algorithm that
is 3.79-proportionally fair and in the 5-q-core. Surprisingly
enough, the 5-q-core bound is the same as the best-known
bound obtained by Kellerhals and Peters (2023) in the of-
fline setting.



Theorem 6. There exists a robust fully dynamic algorithm
achieving a 3+

√
21

2 ∼ 3.79-proportional fair outcome and
satisfying the 5-q-core for any q ∈ [k].

Proof Sketch of proportional fairness. We begin with pre-
clustering the voters, following Aziz et al. (2023); Kalayci,
Kempe, and Kher (2024), by assign each voter i ∈ N the
same budget bi = k

n . Then we continuously increase a radius
δ from 0 on until there are sets of voters N ′ ⊆ N of diame-
ter at most δ who have a total budget of at least 1. We create
a cluster Ni for them and decrease their weights by a total
of 1. Continuing this process leads to clusters N1, . . . , Nk.

For a given cluster of voters Ni and candidate c we let
d(Ni, c) = min{d(j, c) : pj(i) > 0}. Considering the clus-
ters in order, we pick among the so far unchosen candidates
some ci minimizing d(Ni, ci). We say that a cluster Nj en-
vies another cluster Nℓ if d(Nℓ, cℓ) < d(Nj , cj) By our enu-
meration, it is clear that some Nj can only envy some Ni if
i < j. Further, the selected committee {c1, . . . , ck} contains
the distance minimizers for all k clusters Ni. This invariant
remains true if we proceed as follows.

When we delete a candidate c we either do (i) nothing if
c was not picked by any cluster or (ii) if c was picked by
some cluster, we let it repick the closest current unchosen
candidate d and consider it as the new Nk.

If a candidate c gets added, we check if there is any clus-
ter Ni prefering c to its candidate ci. Only if there are such
clusters, we assign c to the smallest such i∗ and in return set
ci∗ as the current free candidate. In order, give each cluster
the choice to swap the current free candidate with its own
candidate.

To show that this procedure is always ρ-proportional fair,
let W be any committee throughout the online process, c
be any unselected candidate, and assume some large enough
group of voters deviates to c. Then, we know that at least one
of the agents pays for a preprocessed cluster N ′′ that has a
diameter not larger than the deviating group. Let i be this
agent and let j be the agent furthest away from c in the de-
viating group. Through multiple applications of the triangle
inequalities and properties of the cluster N ′′, we obtain

min

(
d(i,W )

d(i, c)
,
d(j,W )

d(j, c)

)
≤ min

x≥0

(
3x, 3 +

1

x

)
,

implying that c improves W by at most 3+
√
21

2 .

While the initial pre-clustering is not tractable, it is pos-
sible to adapt this step to obtain a polynomial time constant
factor approximation with slightly larger constant.

5 Approval Preferences
Thirdly, we consider the setting of approval preferences,
where each voter i ∈ N submits an approval set Ai ⊆ C. We
begin with two short examples, showing that a result akin to
Theorem 1 is not possible, even for the weakest axiom of JR.

Example 3. First, we give an example of a committee sat-
isfying EJR+, for which removing any candidate from the
committee, forces at least two changes, even for JR to be sat-
isfied. For this, consider the following simple instance with

k = 2, two voters, and respective approval sets {a, b} and
{b, c}. Further, there is a candidate d approved by no one.
The committee {b, d} satisfies EJR+, but after removal of b,
only the committee {a, c} satisfies JR.

A similar example can also be created for adding
a candidate. For this, consider an instance with
k = 3 and four voters having approval sets
{a, b}, {a, c}, {a, d}, {a, e}, {f}{f}. Consider the in-
stance without candidate f and the committee {b, c, d}.
After the addition of f to the instance, we would need to
remove one of b, c, d, for whom the voter approving it,
together with the voter approving {a, e} would witness a JR
violation.

PJR+. Nonetheless, we can show that a good PJR+ al-
gorithm exists. In the following, we utilize the concept of
affordability and priceability and combine the ideas of Do
et al. (2022) and Brill et al. (2023) to design a fully dynamic
PJR+ algorithm making amortized one change per round.

Following Peters and Skowron (2020) a committee
W ⊆ C is priceable if there exists a payment system
(pi)i∈N : C → R≥0 satisfying the following constraints:

C1 pi(c) = 0 if c /∈ Ai for all c ∈ C and i ∈ N

C2
∑

c∈C pi(c) ≤ k
n for all i ∈ N

C3
∑

i∈N pi(c) = 1 for all c ∈W

C4
∑

i∈N pi(c) = 0 for all c /∈W

C5
∑

i∈Nc

(
k
n −

∑
d∈C pi(d)

)
≤ 1 for all c /∈W .

A simple weakening of priceability is affordability (Brill and
Peters 2024).

Definition 1. A committee W ⊆ C is affordable if there is a
payment system for W satisfying constraints C1–C4.

It is easy to see that any priceable committee, which sat-
isfies C5 with a strict inequality (C5<), also satisfies PJR+
(Brill and Peters 2023, Proposition 10). We call such a com-
mittee maximally affordable.

Corollary 7. Every maximally affordable committee satis-
fies PJR+.

For both incremental and decremental algorithms for
PJR+, we show how to maintain maximally affordable com-
mittees. This approach leads to a robust incremental PJR+
algorithm. It uses a similar idea to the algorithm of Do et al.
(2022), who show that PJR+ is satisfiable in their online
committee selection setting.

Theorem 8 (Do et al. 2022). There exists a robust incre-
mental PJR+ algorithm.

The proof also shows that once a maximally affordable
committee of size k has been instantiated, it will continue to
satisfy PJR+ no matter how many candidates are introduced
to the feasible set.

Taking the idea further, we use maximally affordable
committees to construct a fully dynamic PJR+ algorithm.
Our algorithm makes amortized one change per iteration.

Theorem 9. There exists a robust fully dynamic PJR+ algo-
rithm making amortized one change per iteration.



Proof. Our goal is to maintain a maximally affordable com-
mittee throughout the process. Let C be the initial candidate
set. We compute an affordable committee W of maximum
size for C. Now, for each deleted candidate c throughout the
process, we check if there are new affordable candidates. If
they are, we add them to the committee, while there is still
an affordable candidate. For each added candidate, we check
whether this candidate is affordable. If it is, we add it to the
committee.

To see that we make amortized one change per iteration,
we see that (i) for each addition we only make one change
and (ii) for each deletion we can at most add until we reach
a maximum size affordable committee. Since each added
candidate which was not added to the committee can only
increase the size of the maximum affordable committee by
one and since we started off with a maximum size afford-
able committee, we can at most add one candidate per dele-
tion and addition. Thus, we make amortized one change per
iteration.

If one is to start with a set of m > k candidates, com-
puting the maximum size affordable committee is NP-hard.
However, there is a simple fix: We can calculate any maxi-
mally affordable committee and continue with the replace-
ments as described in the algorithm. Then, we have less than
amortized 1+ m

t replacements in t steps, so if the time hori-
zon is large enough, we can get arbitrarily close to amortized
1 replacement per step in polynomial time. This algorithm,
however, only makes amortized one change per iteration.
This leads us to our next open question.

Open Question 2. Is there a robust decremental or fully
decremental algorithm satisfying PJR+?

EJR+. While our previous result shows that one can
nearly achieve PJR+ in a fully dynamic manner, PJR+ in
itself is quite a weak axiom for approval-based multiwin-
ner voting (see for instance Peters and Skowron (2020, Ex-
ample 6)). The strongest alternative to PJR+ which is still
achievable in polynomial time is EJR+. Both EJR+ and its
weaker version EJR, however, are not nearly as well under-
stood as PJR+, which is often significantly easier to achieve.
Consequentially, few rules are known to satisfy EJR(+).

As our first result we build upon an approximation re-
sult from Do et al. (2022) and show that a O(log(k))-
approximation of EJR+ is possible in a fully dynamic setting
making amortized one change per iteration. This in essence
works similar to Theorem 9.

Theorem 10. There exists a fully dynamic Θ(log(k))-EJR+
algorithm making amortized one change per iteration.

While Theorem 10 only considers an approximation fac-
tor depending on k, we also can obtain bounds for general α-
EJR+ at the cost of making more than amortized one change
per iteration. For instance, our result gives us an incremen-
tal algorithm satisfying 2-EJR+ making amortized 2 changes
per iteration.

Theorem 11. For any α > 1 there exists an incremental
α-EJR+ algorithm making amortized α

α−1 changes.

While achieving a robust algorithm satisfying exact EJR+
seems difficult, we are able to provide a committee that is
robust with respect to a single added candidate. This rules
out strongly negative results akin to Theorem 3 at least for
incremental algorithms. We achieve this by modifying the
GJCR of Brill and Peters (2023) to be “locally stable”.

Theorem 12. There exists an incremental EJR+ algorithm
that is robust with respect to a single addition.

The modification is necessary even for this single step.

Example 4. GJCR, MES, and PAV can elect committees that
are not robust with respect to a single addition.

Naturally, this leads to the open question whether there
is an incremental algorithm for EJR+ that remains robust
beyond the first step.

Open Question 3. Is there a robust (amortized) incremental
rule satisfying EJR+?

The commonly considered rules satisfying EJR+ further
all fail to distinguish between decrementally robust and un-
robust committees.1

Example 5. Consider the profile with 2 × {a1, . . . , a5, x},
2 × {a1, . . . , a5, y}, 1 × {a1, . . . , a5}, 2 × {b1, . . . , b4, x},
2×{b1, . . . , b4, y}, 1×{c1, . . . , c4, x}, 1×{c1, . . . , c4, y},
2× {c1, . . . , c4} and fix k = n = 13.

Then, MES, GJCR, and PAV can choose the committee
{a1, . . . , a5} ∪ {b1, . . . , b4} ∪ {c1, . . . , c4}. However, after
the deletion of some ai, say a1, we would need to add both
x and y to the committee to restore EJR+.

It remains unknown whether EJR+ is achievable robustly
in the decremental setting, even for a single deletion.

Open Question 4. Is there a decremental rule satisfying
EJR+ that is robust with respect to a single deletion?

6 Conclusion and Open Questions
Our work leaves open several questions and possible future
research directions. As a “meta” future research direction,
we highlight that the understanding of EJR and EJR+ as ax-
ioms is still quite narrow. For instance, despite extensive re-
search, it is still an open question whether there always ex-
ists a ranking satisfying EJR for every prefix of the ranking
(Skowron et al. 2017; Chandak, Goel, and Peters 2024) or
whether there is a safe querying procedure for EJR (Brill
et al. 2023). Furthering the understanding of EJR+ and EJR,
e.g., by developing different rules or characterizations of
rules satisfying EJR+ might shed further light on it and help
to resolve the open questions regarding EJR and EJR+.

As a further point, we restrict ourselves to dynamic can-
didate sets. A natural extension would be a setting in which
not only the candidates, but also the voters are dynamic. This
gives some additional difficulties. For instance, adding or
deleting voters, changes the quota n

k throughout the process.
Deciding whether it is feasible to deal with this, is an inter-
esting possibility for future work.

1To make the following an EJR violation, clone x and y each 5
times.
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ALGORITHM 1: Greedy Justified Candidate Rule
(GJCR) (Brill and Peters 2023)

1 W ← ∅;
2 for ℓ in k, . . . , 1 do
3 while there is c /∈W :

|{i ∈ Nc : |Ai ∩W | < ℓ}| ≥ ℓn
k do

4 Add candidate c maximizing
|{i ∈ Nc : |Ai ∩W | < ℓ}| to W ;

5 end
6 end
7 return W ;

A Appendix: Multiwinner Voting Rules
In this section, we provide brief definitions of the mentioned
rules.

Rules for approval ballots. Proportional approval voting
(PAV) is the rule that assigns a score of H(|Ai ∩ W |) to
each ballot Ai and committee W , where H(j) is the j-th
harmonic number. It then chooses the committees that max-
imize the sum of scores over the entire profile A.

The method of equal shares (MES) assigns each voter a
budget of k

n . Each candidate can be bought into the commit-
tee for a cost of 1. MES proceeds iteratively and selects the
next candidate by maximizing the minimal budget over the
buyers after the purchase.

The greedy justified candidate rule (GJCR) also proceeds
iteratively, by choosing the candidate currently causing the
largest violation of EJR+. See Algorithm 1.

Rules for ranked ballots. Single transferable vote (STV)
selects the candidates iteratively. It adds candidates that are
top ranked at least n

k times and deletes this share of support-
ers from the profile. In case that no candidate can be chosen,
instead a candidate with the lowest amount of supporters is
eliminated from the profile.

The Expanding approvals rule (EAR) also assembles the
committee step by step. It assigns each voter a budget of 1
and proceeds rank by rank. If there is a candidate, for whom
the voters giving it at most that rank have a budget of at least
n
k , that candidate is added to the committee and the budget
of these voters is decreased by n

k . Otherwise, the rank gets
increased by 1.

B Missing Proofs for Section 3
Example 2. The single transferable vote (STV) and the ex-
panding approvals rule (EAR) can select committees that are
not robust to a single deletion for PSC, even when such com-
mittees exist.

Proof. For an example of STV failing this, consider the fol-
lowing instance

a ≻ b ≻ · · ·
a ≻ c ≻ · · ·
b ≻ a ≻ x

x ≻ y ≻ · · ·
c ≻ a ≻ x

y ≻ x ≻ · · ·

Here, with k = 3 STV could first select a and delete the first
two voters who top-rank a from the profile. Then delete b,
select x, and delete voters three and four who at this time
rank x on top. Finally, delete e and choose y. Now if a with-
draws, both b and c need to be added. We note that the same
committee could also be selected by EAR. This instance,
however, admits a robust committee, for instance {a, b, x} is
robust to a single deletion.

Proposition 2. There does not exist a robust decremen-
tal PSC algorithm. After a single deletion, it can be that
Ω(log(log(k))) replacements are needed to restore PSC.

Proof. Let s < t ∈ N with r =
(
s
t

)
Consider the fol-

lowing instance over the candidate set C = {a1, . . . ar} ∪
{b1, . . . , bs}:

a1 ≻ b1

· · ·
a1 ≻ bt

a2 ≻ b2

· · ·
a2 ≻ bt+1

. . .

ar ≻ bs−t+1 ≻ · · ·
. . .

ar ≻ bs ≻ · · ·
(t− 1)× b1

. . .

(t− 1)× bs

To be more precise, for each subset of t candidates from B,
i.e., each B′ ∈

(
B
t

)
, we add one voter ranking ai(B′) first

and b ∈ B′ second. This yields tr voters. Then, for each
i ≤ s we add t− 1 voters ranking bi first. This adds further
(t − 1)s voters. Whenever s is a multiple of t, we can set
k = r + t−1

t s. Thus, a set of voters is 1-large if it has car-
dinality ≥ t. PSC now implies that a1, . . . , ar must all be
chosen. Further, if in the next time step ai is deleted, then
PSC enforces that all candidates b in the subset B′(i) ⊂ B
are chosen. Since any ai could be deleted, this means that
for the committee to guarantee PSC after one deletion, s− 1
candidates from B must already be chosen in this round.
Clearly, s − 1 + r > t−1

t s + r = k. Choose s = t2. Then,
s− 1+ r− k = 1

t s− 1 = t− 1. So at least t− 1 candidates
bi remain unchosen. If the corresponding aj gets deleted,
at least t − 2 additions are necessary to restore PSC. For
the asymptotic bound, observe k ∈ Θ(r) = Θ(st). Thus,
there is a constant c ∈ R>0 with k ≤ ct2t, which im-

plies
√

k
c ≤ tt and thus log(

√
k
c ) ≤ t log(t), and finally



W (log(
√

k
c )) ≤ t for the product log function W . Thus, the

number of additions necessary to restore PSC have a lower
bound of Ω(log(log(k))).

Theorem 4. There is no incremental or decremental algo-
rithm satisfying rank-JR and making o(

√
k) changes amor-

tized per round.

Proof. We now create a profile in which each committee
satisfying rank-JR must add t candidates b1, . . . bt after the
deletion of some candidate a to maintain rank-JR. Consider
the following instance consisting of t blocks (Bi)i≤t, each
Bi consisting of t(t + 1) voters with the following 3t voter
types (vji )j≤3t:

1× v1i : ai ≻ b1i ≻ . . .

. . .

1× vti : ai ≻ bti ≻ . . .

(t− 1)× vt+1
i : b1i ≻ c1i ≻ . . .

. . .

(t− 1)× v2ti : bti ≻ cti ≻ . . .

1× v2t+1
i : c1i ≻ d1i ≻ c ≻ . . .

. . .

1× v3ti : cti ≻ dti ≻ c ≻ . . .

We set k = t(t + 1) and thus n
k = t. For now, consider a

fixed block Bi, i ∈ [t]. First, we notice that ai needs to be
included to satisfy rank-JR, as there are t voters top ranking
it. To not need t additions after the deletion of ai, we include
some b

x(i)
i with x(i) ≤ t for each i. Further, we claim that

c cannot be chosen: for each i ∈ [t], j ∈ [t] \ {x(i)} to
satisfy the (t−1) voters vt+j

i and the voter v2t+j
i we need to

include one of bji , c
j
i , d

j
i to satisfy rank-JR. All additions so

far considered for Bi, this enforces t+1 candidates. Iterating
over all blocks, we overall enforce t(t+1) candidates, filling
the committee and leaving c unchosen. But then the set of t
voters (v2t+x(i)

i )i≤t witness a rank-JR violation, as they all
rank candidate c on rank 3.

For the incremental case consider the same profile before
the addition of (ai)i≤t

1× v1i : b1i ≻ . . .

. . .

1× vti : bti ≻ . . .

(t− 1)× vt+1
i : b1i ≻ c1i ≻ . . .

. . .

(t− 1)× v2ti : bti ≻ cti ≻ . . .

1× v2t+1
i : c1i ≻ d1i ≻ c ≻ . . .

. . .

1× v3ti : cti ≻ dti ≻ c ≻ . . .

Clearly, we must choose all bij for i, j ≤ t, i.e., t2 can-
didates. However, after adding a1, . . . , at, we can similarly
to the decremental case prove that at most < t candidates
of the form bij can be contained in a committee satisfying
rank-JR. This constitutes > t2 − t replacements in t rounds,
hence in some round there must have been t − 1 = Ω(

√
k)

replacements.

C Missing Proof for Section 4
Theorem 6. There exists a robust fully dynamic algorithm
achieving a 3+

√
21

2 ∼ 3.79-proportional fair outcome and
satisfying the 5-q-core for any q ∈ [k].

Proof. We begin with a pre-clustering phase following the
generalization of the expanding approvals rule (Aziz et al.
2023; Kalayci, Kempe, and Kher 2024). We assign each
voter i ∈ N a budget bi = k

n . Then we continuously increase
a radius δ from 0 on. If there is a set of voters N ′ ⊆ N of
diameter at most δ who have a total budget of at least 1, we
create a cluster Ni for them and decrease their weights by a
total of 1. Let pj(i) be the amount we decreased the budget
of agent j ∈ Ni by in this round.

This leads to clusters N1, . . . , Nk. For a given clus-
ter of voters Ni and candidate c we let d(Ni, c) =
min{d(j, c) : pj(i) > 0}. We now proceed as follows: We
consider the clusters N1, . . . , Nk in order. For each cluster
Ni we pick among the so far unchosen candidates some ci
minimizing d(Ni, ci). We say that a cluster Nj envies an-
other cluster Nℓ if d(Nj , cℓ) < d(Nj , cj).2 By our enumer-
ation, it is clear that for i, j ≤ n, Nj can only envy Ni if
i < j. Further, the selected committee contains the distance
minimizers for all n clusters Ni. We will in each step ensure
that this invariant remains true.

When we delete a candidate c we either do (i) nothing if
c is not picked by any cluster or (ii) if c is picked by cluster
Ni we let Ni repick the closest current unchosen candidate
d. Since every cluster Nj with j ̸= i prefers their current
candidate to d, we re-enumerate them with Ni is renamed to
Nk and the former Ni+1, . . . , Nk renamed to Ni, . . . , Nk−1.
Still, for i, j ≤ n, Nj can only envy Ni if i < j.

If a candidate c gets added, we first check if there is any
cluster Ni for which d(Ni, c) < d(Ni, ci), i.e., c is closer
than the picked candidate for this cluster. If there is not, we
do not add c. If there is, however, such a cluster Ni, we as-
sign c to such a cluster Ni∗ with the smallest index i∗ and
store ci∗ as the interim candidate. As long as the set of Nj

with j > i∗ are assigned their current choices or ci∗ , Ni∗

only envies clusters with j′ < i. Now, in ascending order,
every Nj with j > i gets to choose between keeping their
current candidate cj or exchanging it for the current interim
candidate, thus making cj the new interim candidate. If Nj

keeps cj , then it will not envy any Nr with r > j after the
process since they will be assigned to some c>j or the in-
terim candidate that Nj prefers less to cj . If Nj swaps cj for

2We now perform a procedure similar to the envy-cycle elimi-
nation from fair division, see, e.g., the survey of Amanatidis et al.
(2023).



the interim candidate, then it still will not envy any N>j af-
ter the process because each will obtain some c≥j . After Nk

made their choice, we discard the current interim candidate
and obtain a new committee containing c with just one swap
on the currently selected set, but up to k re-assignments of
clusters to selected candidates. Still, this time without re-
enumeration, for i, j ≤ n, Nj can only envy Ni if i < j.

Now we are ready to show that this procedure is always
ρ-proportional fair. Let W be any committee throughout the
online process, c be any unselected candidate, and N ′ be
a group of voters deviating to c of size at least n

k . Let δ
be the diameter of N ′. Then, in the first step of the pro-
cedure, we know that at least one of the agents pays for a
preprocessed cluster N ′′ of diameter at most δ. Let i be this
agent and let j be the agent furthest away from c in N ′.
Since N ′′ did not pick c, c is not a (unique) minimizer of
d(N ′′, ·). We know that there must be an agent h ∈ N ′′ with
d(h,W ) ≤ d(N ′′, c) ≤ d(i, c) ≤ d(j, c). Further, by the
triangle inequality we can bound the distance between any
two elements of N ′ by their respective distances to c, so it
must hold that δ ≤ 2d(j, c). Thus, we get that

min

(
d(i,W )

d(i, c)
,
d(j,W )

d(j, c)

)
≤ min

(
d(i, h) + d(h,W )

d(i, c)
,
d(j, i) + d(i,W )

d(j, c)

)
≤ min

(
3d(j, c)

d(i, c)
,
3d(j, c) + d(i, c)

d(j, c)

)
≤ min

x≥0

(
3x, 3 +

1

x

)
=

3 +
√
21

2

and therefore the improvement through c is bounded by
3+

√
21

2 .
For the α-q-core, let N ′ ⊆ N be an ℓ-large deviating

coalition and C ′ ⊆ C of size |C ′| = ℓ be the set of
candidates the coalition deviates to. Following Kellerhals
and Peters (2023, Lemma 9) there is a candidate c ∈ C ′

and a subset N ′′ ⊆ N such that c is in the top-q choices
among C ′ of everyone in N ′′ with N ′′ being of size at least
q n
k . Let i ∈ N ′′ be the agent among N ′′ with the largest

dq(i, C ′). Since the agents in N ′′ have a total budget of q
there must at least exist q clusters bought partially by agents
from N ′′. Similar to the first part of this proof, the diameter
of at least q of these clusters is smaller than the diameter of
N ′′. We know that these clusters must have chosen q of the
cluster centers in W . Since the diameter of N ′′ is at most
d(i1, i2) ≤ d(i1, c) + d(c, i2) ≤ dq(i1, C

′) + dq(i2, C
′) ≤

2dq(i, C ′) the diameter of each of these clusters is also at
most 2dq(i, C ′). Since each agent in N ′′ is also at most
dq(i, C ′) away from an unselected cluster center, the clus-
ter center selected must also be at most dq(i, C) away from
someone in the group and thus at most 3dq(i, C ′) away from
the member of N ′′. However, since the diameter of N ′′ is at
most 2dq(i, C ′) this implies that agent i is at most a distance
of 5dq(i, C ′) away from q cluster centers in W , therefore
showing that W is in the 5-q-core.

D Missing Proofs for Section 5
Example 4. GJCR, MES, and PAV can elect committees that
are not robust with respect to a single addition.

Proof. Consider the following approval profile with ap-
proval sets 1 × {a1, . . . , a4}, 3 × {a1, . . . , a4, x}, 2 ×
{b1, . . . , b5, x}, 3 × {b1, . . . , b5}, 1 × {c1, . . . , c4}, 3 ×
{c1, . . . , c4, y}, 2 × {d1, . . . , d5, y}, 3 × {d1, . . . , d5} with
n = 18 = k. Here a possible MES committee is all candi-
dates except for x and y. However, now adding a candidate
approved by the three voters voting for only b candidates and
the three voters only voting for d candidates, would require
one other candidate to be removed. If an a or c candidate is
removed that candidate witnesses an EJR+ violation. If a b
or d candidate gets removed, the corresponding voters ap-
proving x or y witness an EJR+ violation, as consist of 5
voters, but only approve 4 candidates in the outcome.

To extend this to PAV consider the same instance, consist-
ing of 6 copies of 3×{a1, . . . , a4}, 1×{a1, . . . , a4, x}, 4×
{b1, . . . , b5, x}, 1 × {b1, . . . , b5} with n = 54 = k Here,
a optimal PAV committee would choose the copies of the a
and b candidates, as adding the x candidate for an a candi-
date would decrease the PAV score by − 3

4 + 4
6 < 0 while

adding the x candidate for a b candidate would leave the PAV
score unchanged. However, adding a candidate approved ex-
actly by the {b1, . . . , b5} voters, would need this candidate
to be included, leading to the same contradiction as in the
first case.

Corollary 7. Every maximally affordable committee satis-
fies PJR+.

Proof. Let W = {c1, . . . , cℓ} be maximally affordable w.r.t
some (pi)i. Then clearly, ℓ ≤ k as the voters only have
budget k in total. Assume for contradiction there is a vio-
lation of PJR+ for W based on size-k largeness, i.e., some
c ∈ C \W with some N ′ ⊆ N such that c ∈

⋂
i∈N ′ Ai and

|
⋃

i∈N ′ Ai ∩W | < ℓ despite |N ′| ≥ ℓnk for some ℓ ∈ N.
The total amount of budget spent by N ′ is thus at most ℓ− 1
with their starting budget being at least ℓnk

k
n = ℓ. This is the

desired contradiction as C5< is violated.

Theorem 8 (Do et al. 2022). There exists a robust incre-
mental PJR+ algorithm.

Proof. The first k candidates that arrive we take into our
committee W 0 = C0. We create a partition of W 0 =
X0 ∪ Y 0 into a maximally affordable committee X0 and
a disposable part Y 0. For this, initialize both sets as empty
and assign a total budget of k equally among all voters, i.e.,
k
n to every voter. They will proceed to buy candidates, each
for the price of 1, into X0 as follows: As long as there is a
candidate c such that Nc has a total budget of ≥ 1 to afford
it, add c to X0, and subtract the budget of 1 off any of these
voters in any way such that the budgets are not exceeded.
Store this subtracted amount as pi(c). By finiteness of the
budget, this process must terminate after a finite number of
steps. Clearly, C1 to C4 are satisfied for X0. Further, C5< is
satisfied as else the candidate violating the inequality would



be bought into the committee and the process cannot have al-
ready terminated. Clearly, |X0| ≤ k as the voters only have
budget k in total. Now, set Y 0 = C0 \ X0. This concludes
the induction start.

For the induction step, let two disjoint sets Xt, Y t ⊆ Ct

given such that their union is of size k and Xt is maximally
affordable in Ct with cost function pt (and thus satisfies
PJR+ with respect to size k largeness). Let now a new can-
didate c∗ be added, i.e., Ct+1 = Ct ∪ {c∗}. If Xt is still
maximally affordable, we can set Xt+1 = Xt, Y t+1 = Y t,
and pt+1 = pt. Else, there must be c ∈ Ct+1 such that one
of the conditions is violated. Since C1 to C4 did not change,
it must be C5< and c = c∗. Thus, Nc∗ can afford to buy c∗

into the committee. Set Xt+1 = Xt ∪ {c∗}. Clearly, since
there was budget left to buy c∗, we have |Xt| < k and thus
|Y t| > 0. Thus, remove an arbitrary element y ∈ Y t, i.e.,
set Y t+1 = Y t \ {y}, Set pi(c∗) as the amount of budget
that was taken from voter i to finance c∗. It is easy to check
that W t+1 satisfies all 5 axioms and thus is maximally af-
fordable. This concludes the induction step.

Theorem 10. There exists a fully dynamic Θ(log(k))-EJR+
algorithm making amortized one change per iteration.

Proof. Let H(n) denote the n-th harmonic number. Con-
sider for the start a modified GJCR that considers groups of
size ≥ H(k)ℓnk instead of ≥ ℓnk . Again, this rule can be
modeled via a budget of k

n for each voter, which the vot-
ers then all uniformly spend when they can buy a candidate,
which all have a unit cost. To show that on C0 GJCR com-
putes at most k candidates, observe that each voter can buy
at most 1 candidate for violations with ℓ = 1, 2 for vio-
lations with ℓ ≤ 2 and so on. For a violation w.r.t. ℓ, the
price the voter pays it at most k

nℓH(k) . In total, this yields∑
ℓ≤k

k
nℓH(k) = k

n . So, no voter overspends, and since the
total budget was k, we have a committee of size≤ k. We fill
up the remaining places with placeholders. Now, if a can-
didate is added and creates a violation of H(k)-EJR+ w.r.t.
some ℓ ≤ k, then each voter that is part of this violation
can have spent at most

∑
j≤ℓ

k
njH(k) . To buy this candidate

into the committee, they spend at most ≤ k
nℓH(k) and thus

no one overdraws their budget. Especially, since the budget
was not fully used before, there are placeholders in the com-
mittee. Replace one of them with the newly added candidate,
then H(k)-EJR+ is restored. Conversely, if a candidate c is
deleted and this creates violations of H(k)-EJR+, we can re-
imburse the voters who previously bought the candidate into
the committee. With the same argument as in the instanti-
ation and the addition of a candidate, we obtain that each
voter has sufficient budget to buy the candidates causing the
violations into the committee. There can be multiple of these
changes to the committee after a single deletion. However,
note that for ℓ ≤ k changes to be made, there must have been
ℓ total budget that was not used or freed beforehand.

Theorem 11. For any α > 1 there exists an incremental
α-EJR+ algorithm making amortized α

α−1 changes.

Proof. Let α > 1 be given. For small k with k ≤ α
α−1 ,

we can replace the entire committee in each step and triv-
ially obtain the result. Else, we have k > α

α−1 , implying
k(1 − α) < −α and thus k

α < k − 1, which finally leads
to the desired ⌈ kα⌉ < k. Begin by running any EJR+ rule
for the committee size ⌈ kα⌉ and select k − ⌈ kα⌉ other can-
didates arbitrarily. For the next k − ⌈ kα⌉ steps, while there
is a candidate arriving who witnesses an α-EJR+ violation,
include them in exchange for one of the arbitrarily added
candidates. Afterwards, recompute a committee of size ⌈ kα⌉
satisfying EJR+ and add them into the committee by exclud-
ing arbitrary candidates. After k − ⌈ kα⌉ + 1 steps, we thus
have made at most k replacements. This leads to amortized

k
k−⌈ k

α ⌉+1
= k

k−(⌈ k
α ⌉−1)

< k
k− k

α

= 1
1−( 1

α )
= α

α−1 , replace-
ments per round which concludes the proof.

ALGORITHM 2: Locally Stable GJCR
1 W ← ∅;
2 Nactive ← ∅;
3 for ℓ in k, . . . , 1 do
4 Wℓ = ∅;
5 do
6 while there is c /∈W :

|{i ∈ Nc : |Ai ∩W | < ℓ}| ≥ ℓn
k do

7 Choose c maximizing
|{i ∈ Nc : |Ai ∩W | < ℓ} \Nactive| ;

8 Wℓ ←Wℓ ∪ {c};
9 W ←W ∪ {c};

10 Nactive ← Nactive ∪ {i ∈
Nc : |Ai ∩W | < ℓ}.

11 end
12 while there was a change in the last iteration;
13 for c ∈Wℓ, c′ /∈W do
14 if |{{i ∈ Nc′ : |Ai ∩W \ {c}| < ℓ}| ≥ ℓn

k
15 and |i ∈ Nc′ : |Ai ∩W \ {c}| = 0}| > |i ∈

Nc : |{Ai ∩W \ {c}| = 0}| then
16 Wℓ ←Wℓ ∪ {c′} \ {c};
17 W ←W ∪ {c′} \ {c};
18 Nactive ← {i ∈ N : |Ai ∩W | > 0};
19 end
20 end
21 end
22 return W ;

Theorem 12. There exists an incremental EJR+ algorithm
that is robust with respect to a single addition.

Proof. To show this theorem, we use Line 22. In essence,
Line 22 runs the GJCR with an additional local swapping
step at the end. This local swapping step tries to maximize
the number of voters covered in each iteration. As Line 22
produces one possible outcome of GJCR, it satisfies EJR+.

If Line 22 outputs less than k candidates, the theorem fol-
lows, as we can simply include the new candidate in the



committee with a single swap, swapping out an irrelevant
candidate. Thus, assume it outputs k candidates and let c
be the newly added candidate witnessing an EJR+ violation.
Let N ′ ⊆ Nc be the set of voters witnessing the violation
with |N ′| ≥ ℓnk and |Ai ∩ W | < ℓ for all i ∈ N ′. If
|Ai ∩ W | = 0 it is easy to see that the committee could
not have been of size k. Therefore, every voter in N ′ ap-
proves at least one candidate. Let i ∈ N ′ be any such voter
and let ℓi = |Ai ∩W |. Let c′ be any arbitrary candidate in
Ai ∩W and consider the committee W ′ := W \ {c′} ∪ {c}.
Further, assume that W ′ does not satisfy EJR+ with its vio-
lation being witnessed by candidate c′′ for threshold ℓ′′ and
set N ′′ ⊆ Nc′′ . We distinguish two cases:

Case 1: ℓ′′ > ℓi. Then, in iteration ℓ′′ some voter in N ′′

must approve at least ℓ′′ candidates, one of which must be
c′. Therefore, c′ got bought in an iteration before ℓi a con-
tradiction.restatable

Case 2: ℓ′′ < ℓi. Then, someone in N ′′ must approve of
c′. Since ℓ′′ < ℓi this voter must approve less than ℓi candi-
dates in iteration ℓi and must therefore have contributed to
buying ℓi. Thus, this voter approves at least ℓi−1 candidates
in W ′ contradicting ℓ′′ < ℓi.

Case 3: ℓ′′ = ℓi. Let N ′′
1 = {j ∈ N ′′ : c′ ∈ Aj}. If

N ′′
1 = N ′′ this set must necessarily include i who still ap-

proves ℓ′′ candidates in the outcome, a contradiction. There-
fore, there is a j ∈ N ′′ \ N ′′

1 . However, since for GJCR to
select k candidates, every “buyer” of c′ must approve exactly
ℓi candidates. Otherwise, in the price-system constructed by
GJCR, one of these “buyers” must pay less than k

n , leading
to a contradiction that we selected k candidates (see Brill
and Peters (2023, Proposition 8) for a full proof). Therefore,
we could have swapped c′′ with c′ increasing the number
of covered voters in iteration ℓi by at least 1, as there is no
voter who go down to 0 approvals after the removal of c′.
(The implicit assumption here is that ℓi is at least 2, which
must be true, as otherwise j approves nothing, and we would
not have selected k candidates.)


