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Voting

‣ Consider an ongoing dynamic voting process that aims for 
‣ Myopic strategyproofness 

- each round one voter chooses between two alternatives 

‣ Minimal preference elicitation 
- isolated pairwise comparisons, privacy protection 

‣ Verifiability  
- simple physical procedure, no trusted authority 

‣ Flexibility 
- voters may arrive, leave, and change their preferences
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‣ What can be said about the sequence of winners? 

‣ How about the empirical distribution of winners? 

‣ What about the distribution of balls in the urn?
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Urn-Based Voting Process

‣ Urn filled with  balls, each carrying the label of an alternative. 
‣ Initial distribution of balls in urn is irrelevant. 

‣ Repeat for each round: 
1. A randomly selected voter  will draw two balls from urn. 

‣ Assume the labels of these balls are  and  and . 

2.  is declared the winner of this round. 

3. Voter  will change the label of the second ball to  and put both balls 
(now carrying the same label) back into the urn. 

4. With some small probability  (called mutation rate), a randomly 
drawn ball is re-labelled with a random alternative.
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‣ N=50 balls 

‣ Mutation rate r=0.02 

‣ 1000 rounds
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Convergence Result
‣ The empirical distribution of winners  almost surely converges. 

‣ Let . Then there is  such that for all , there is  
such that for all  and initial distributions , 

 

where  is a maximal lottery of the preference profile. 

‣ More generally, we show that the relative urn distribution  is 
almost surely close to a maximal lottery most of the time. 

‣ The probability that the relative urn distribution is close to a maximal 
lottery gets arbitrarily close to 1 and converges exponentially fast. 
‣ Let . Then there is  such that for all , there is 

 and  such that for all , , and , 

.

W(N,r)

δ > 0 r0 > 0 0 < r ≤ r0 N0 ∈ ℕ
N ≥ N0 s0

ℙ ( lim
n→∞

W(N,r)(n, s0) − p* ≤ δ) = 1

p*

X(N,r)

δ, ε > 0 r0 > 0 0 < r ≤ r0
N0 ∈ ℕ C > 0 N ≥ N0 s0 n ∈ ℕ
ℙ ( X(N,r)(n, s0) − p* ≤ δ) ≥ 1 − ε − e−⌊Cn⌋
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‣ N=50,000 balls 

‣ Mutation rate r=0.01 

‣ 10,000,000 rounds
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Maximal Lotteries
‣ Randomized voting rule proposed independently by  

Kreweras (1965) and Fishburn (1984). 

‣ Let  be the fraction of voters who prefer  to . 

‣ Matrix  induces a skew-symmetric matrix . 

‣ A lottery  is maximal if . 
‣ mixed equilibrium strategy of the symmetric zero-sum game  

‣ no other lottery  is preferred by an expected majority 
( ) 

‣ randomized Condorcet winner 
‣ almost always unique 

- e.g., for odd number of voters (Laffond et al., 1997) 

Mx,y x y

M M̃ = M − M𝖳

p p𝖳M̃ ≥ 0
M̃

q
p𝖳M̃ q ≥ 0
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Maximal Lotteries
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The term maximal lottery goes to back to Fishburn (1984) who introduced this concept
in the context of social choice theory. The idea to circumvent the Condorcet paradox—
which lies at the heart of Arrow’s impossibility theorem—by introducing the notion of a
randomized Condorcet winner can be traced back to Kreweras (1965). Maximal lotteries
have been rediscovered several times under various names. Depending on whether the
comparison matrix is binary or not, the support of maximal lotteries has been analyzed
under the name bipartisan set (a term proposed by Roger Myerson) or essential set

(Laffond et al., 1993; Dutta and Laslier, 1999). Felsenthal and Machover (1992) refer
to maximal lotteries as the game theory procedure and Rivest and Shen (2010) as the
game theory method. More recently, maximal lotteries have been rediscovered again in
the context of machine learning, where they are called von Neumann winners when
analyzing dueling multi-armed bandits (Dudík et al., 2015; Balsubramani et al., 2016)
or Nash averaging when evaluating the performance of players (Balduzzi et al., 2018;
Vinyals et al., 2019).

Uniqueness and Support Size

Fisher and Ryan (1992) and Laffond et al. (1993) have shown independently that there
is a unique maximal lottery when M is binary. This statement was strengthened by
Laffond et al. (1997) who extended it to matrices whose entries are fractions with odd
denominators. An even weaker sufficient condition based on congruencies was provided
by Le Breton (2005). In a more abstract sense, maximal lotteries are almost always
unique since the set of all matrices M that admit multiple maximal lotteries has mea-
sure zero and is nowhere dense in [0, 1]A⇥A. This follows from considering the dimension

4

Draft – December 11, 2021

4 3 5

a b c
b c a
c a b

M =

0

@

a b c

a 0 3/4 1/3
b 1/4 0 7/12
c 2/3 5/12 0

1

A

a

bc

3/4

7/12

2/3

0

@
1/6
1/3
1/2

1

A
T

| {z }
maximal lottery

0

@
0 1/2 �1/3

�1/2 0 1/6
1/3 �1/6 0

1

A

| {z }
M̃=M�MT

=
�
0 0 0

�
� 0

Figure 2: Example for presentation.

since

pTM̃ =

0

@
1/6
1/3
1/2

1

A
T0

@
0 1 �2/3

�1 0 1/3
2/3 �1/3 0

1

A =
�
0 0 0

�
� 0.

The term maximal lottery goes to back to Fishburn (1984) who introduced this concept
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Fisher and Ryan (1992) and Laffond et al. (1993) have shown independently that there
is a unique maximal lottery when M is binary. This statement was strengthened by
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Stochastic Choice

‣ Comparison matrices appear in various contexts and 
maximal lotteries have been repeatedly identified as 
attractive choice rules. 
‣ Tournament Solutions: Bipartisan set (Laffond et al., 1993), Essential set (Dutta & Laslier, 1999) 

‣ Voting: Maximal lottery (Fishburn, 1984), Game theory procedure (Felsenthal & Machover, 1992), 
Game theory method (Rivest and Shen, 2010) 

‣ Matching Markets: Popular mixed matching (Kavitha et al., 2011) 

‣ Multi-Armed Bandits: von Neumann winner (Dudík et al., 2015) 

‣ Google DeepMind’s AlphaStar: Nash averaging (Balduzzi et al., 2018)
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Figure 1: Example of a comparison matrix M (center), its corresponding directed graph (left), and the
induced skew-symmetric matrix M̃ = M �MT (right).

comparisons between alternatives. For two alternatives x and y, Mxy 2 [0, 1] says how
much x is preferred to y (1/2 represents indifference). By convention, Mxx = 0 and
Mxy + Myx = 1 for all x, y 2 A. These numbers could, for example, be interpreted
as dominance probabilities, relative strengths of pairwise comparisons, or as fractions
of voters who prefer one alternative to another. I will refer to them as dominance
probabilities here. The important special case where M is a binary matrix, i.e., all entries
of M are either 0 or 1, corresponds to complete and antisymmetric relations and thus
to tournament graphs. The matrix M induces a skew-symmetric matrix M̃ = M �MT,
i.e., M̃xy = �M̃yx for all x, y 2 A.

Maximal Lotteries

Obviously, there need not be a “maximal” alternative x 2 A in the sense that it defeats
every other alternative with a comparison probability of at least 1/2, i.e., M̃xy � 0 for all
y 2 A. However, it follows from the minimax theorem (von Neumann, 1928) that there
has to be a “maximal” lottery p 2 � such that pTM̃q � 0 for all lotteries q 2 �, i.e., p
performs at least as well as any other lottery. This amounts to maxp2�minq2� pTM̃q =
0, which holds because

max
p2�

min
q2�

pTM̃q = min
q2�

max
p2�

pTM̃q = min
q2�

max
p2�

�qTM̃p

= �max
q2�

min
p2�

qTM̃p = �max
p2�

min
q2�

pTM̃q,

where the first equality follows from the minimax theorem and the second one from the
skew-symmetry of M̃ . In game-theoretic terms, M̃ can be interpreted as a symmetric
zero-sum game. The value of any such game is 0 and the maximal lotteries described
above are the probability distributions of the maximin or Nash equilibrium strategies of
M̃ . It does not matter whether one takes the equilibrium strategies of the row or column
player since the game is symmetric. In summary,

a lottery p 2 � is maximal if pTM̃ � 0

and every comparison matrix M admits at least one maximal lottery.
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Consider, for example, pairwise comparisons among three alternatives A = {a, b, c}
given in Figure 2. The matrix M̃ admits a unique maximal lottery p = (1/6, 1/3, 1/2)T
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The term maximal lottery goes to back to Fishburn (1984) who introduced this concept
in the context of social choice theory. The idea to circumvent the Condorcet paradox—
which lies at the heart of Arrow’s impossibility theorem—by introducing the notion of a
randomized Condorcet winner can be traced back to Kreweras (1965). Maximal lotteries
have been rediscovered several times under various names. Depending on whether the
comparison matrix is binary or not, the support of maximal lotteries has been analyzed
under the name bipartisan set (a term proposed by Roger Myerson) or essential set

(Laffond et al., 1993; Dutta and Laslier, 1999). Felsenthal and Machover (1992) refer
to maximal lotteries as the game theory procedure and Rivest and Shen (2010) as the
game theory method. More recently, maximal lotteries have been rediscovered again in
the context of machine learning, where they are called von Neumann winners when
analyzing dueling multi-armed bandits (Dudík et al., 2015; Balsubramani et al., 2016)
or Nash averaging when evaluating the performance of players (Balduzzi et al., 2018;
Vinyals et al., 2019).

Uniqueness and Support Size

Fisher and Ryan (1992) and Laffond et al. (1993) have shown independently that there
is a unique maximal lottery when M is binary. This statement was strengthened by
Laffond et al. (1997) who extended it to matrices whose entries are fractions with odd
denominators. An even weaker sufficient condition based on congruencies was provided
by Le Breton (2005). In a more abstract sense, maximal lotteries are almost always
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comparisons between alternatives. For two alternatives x and y, Mxy 2 [0, 1] says how
much x is preferred to y (1/2 represents indifference). By convention, Mxx = 0 and
Mxy + Myx = 1 for all x, y 2 A. These numbers could, for example, be interpreted
as dominance probabilities, relative strengths of pairwise comparisons, or as fractions
of voters who prefer one alternative to another. I will refer to them as dominance
probabilities here. The important special case where M is a binary matrix, i.e., all entries
of M are either 0 or 1, corresponds to complete and antisymmetric relations and thus
to tournament graphs. The matrix M induces a skew-symmetric matrix M̃ = M �MT,
i.e., M̃xy = �M̃yx for all x, y 2 A.

Maximal Lotteries

Obviously, there need not be a “maximal” alternative x 2 A in the sense that it defeats
every other alternative with a comparison probability of at least 1/2, i.e., M̃xy � 0 for all
y 2 A. However, it follows from the minimax theorem (von Neumann, 1928) that there
has to be a “maximal” lottery p 2 � such that pTM̃q � 0 for all lotteries q 2 �, i.e., p
performs at least as well as any other lottery. This amounts to maxp2�minq2� pTM̃q =
0, which holds because

max
p2�

min
q2�

pTM̃q = min
q2�

max
p2�

pTM̃q = min
q2�

max
p2�

�qTM̃p

= �max
q2�

min
p2�

qTM̃p = �max
p2�

min
q2�

pTM̃q,

where the first equality follows from the minimax theorem and the second one from the
skew-symmetry of M̃ . In game-theoretic terms, M̃ can be interpreted as a symmetric
zero-sum game. The value of any such game is 0 and the maximal lotteries described
above are the probability distributions of the maximin or Nash equilibrium strategies of
M̃ . It does not matter whether one takes the equilibrium strategies of the row or column
player since the game is symmetric. In summary,

a lottery p 2 � is maximal if pTM̃ � 0

and every comparison matrix M admits at least one maximal lottery.
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Desirable Properties
‣ A lottery remains maximal when removing unchosen 

alternatives or changing the dominance probabilities between 
such alternatives. 

‣ A lottery that is maximal for two comparison matrices is also 
maximal for any convex combination of both matrices. 

‣ The selection probability of an alternative is unaffected by 
cloning other alternatives. 

‣ Classic social choice impossibilities have been turned into 
complete axiomatic characterizations of maximal lotteries, e.g., 
➔ Brandl & B., Arrovian Aggregation of Convex Preferences (ECMA 2020) 
➔ Brandl et al., Consistent Probabilistic Social Choice (ECMA 2016) 
➔ Brandl et al., Welfare Maximization Entices Participation (GEB 2018)
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‣ Similar dynamic processes with equilibrium convergence  
‣ Population biology: coexistence of species 
‣ Quantum physics:  condensation of bosons 
‣ Chemical kinetics: reactions of molecules 
‣ Plasma physics:  scattering of plasmons 
‣ E.g., Allesina and Levine (PNAS 2011), Knebel et al. (Nat Commun 2015), 

Laslier & Laslier (Ann Appl Probab 2017), Grilli et al. (Nature 2017) 

‣ Differences of our model and result 
‣ discrete (not continuous)  
‣ stochastic (not deterministic) interactions between pairs (not triples)  
‣ mutations 
‣ bound on sojourn time (rather than only convergence of time avg.)
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Figure 2: Example for presentation.
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The term maximal lottery goes to back to Fishburn (1984) who introduced this concept
in the context of social choice theory. The idea to circumvent the Condorcet paradox—
which lies at the heart of Arrow’s impossibility theorem—by introducing the notion of a
randomized Condorcet winner can be traced back to Kreweras (1965). Maximal lotteries
have been rediscovered several times under various names. Depending on whether the
comparison matrix is binary or not, the support of maximal lotteries has been analyzed
under the name bipartisan set (a term proposed by Roger Myerson) or essential set

(Laffond et al., 1993; Dutta and Laslier, 1999). Felsenthal and Machover (1992) refer
to maximal lotteries as the game theory procedure and Rivest and Shen (2010) as the
game theory method. More recently, maximal lotteries have been rediscovered again in
the context of machine learning, where they are called von Neumann winners when
analyzing dueling multi-armed bandits (Dudík et al., 2015; Balsubramani et al., 2016)
or Nash averaging when evaluating the performance of players (Balduzzi et al., 2018;
Vinyals et al., 2019).

Uniqueness and Support Size

Fisher and Ryan (1992) and Laffond et al. (1993) have shown independently that there
is a unique maximal lottery when M is binary. This statement was strengthened by
Laffond et al. (1997) who extended it to matrices whose entries are fractions with odd
denominators. An even weaker sufficient condition based on congruencies was provided
by Le Breton (2005). In a more abstract sense, maximal lotteries are almost always
unique since the set of all matrices M that admit multiple maximal lotteries has mea-
sure zero and is nowhere dense in [0, 1]A⇥A. This follows from considering the dimension
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Conclusion
‣ Advantages of urn process 

‣ Myopic strategyproofness 
- each round a randomly selected voter chooses between 2 alternatives 

‣ Minimal preference elicitation 
- isolated pairwise comparisons, privacy protection 

‣ Verifiability  
- simple physical procedure, no trusted authority 

‣ Flexibility 
- voters may arrive, leave, and change their preferences 

‣ Alternative descriptive interpretation: opinion formation 
‣ Agents come together in random pairwise interactions, in which 

they try to convince each other of their opinion. 

‣ The urn process approximately solves a linear program. 
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