A Natural Adaptive Process for Collective Decision-Making

Felix Brandt

(joint work with Florian Brandl)

Symposium on Artificial Intelligence and the Social Sciences
Hi! Paris, June 2022

Voting

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
a	a	b
b	c	c
c	b	a

- Consider an ongoing dynamic voting process that aims for
- Myopic strategyproofness
- each round one voter chooses between two alternatives
- Minimal preference elicitation
- isolated pairwise comparisons, privacy protection
- Verifiability
- simple physical procedure, no trusted authority
- Flexibility
- voters may arrive, leave, and change their preferences

中妕

A B

A A

中虭中

C

- What can be said about the sequence of winners?
- How about the empirical distribution of winners?
- What about the distribution of balls in the urn?

Urn-Based Voting Process

- Urn filled with N balls, each carrying the label of an alternative.
- Initial distribution of balls in urn is irrelevant.
- Repeat for each round:

1. A randomly selected voter i will draw two balls from urn.

- Assume the labels of these balls are x and y and $x \succ_{i} y$.

2. x is declared the winner of this round.
3. Voter i will change the label of the second ball to x and put both balls (now carrying the same label) back into the urn.
4. With some small probability r (called mutation rate), a randomly drawn ball is re-labelled with a random alternative.

$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$
a	a	b
b	c	c
c	b	a

$\mathrm{N}=50$ balls

- Mutation rate $\mathrm{r}=0.02$
- 1000 rounds

100	100	100
a	b	c
b	c	a
c	a	b

$\mathrm{N}=5,000$ balls
Mutation rate $\mathrm{r}=0.04$
500,000 rounds

Convergence Result

- The empirical distribution of winners $W^{(N, r)}$ almost surely converges.
- Let $\delta>0$. Then there is $r_{0}>0$ such that for all $0<r \leq r_{0}$, there is $N_{0} \in \mathbb{N}$ such that for all $N \geq N_{0}$ and initial distributions s_{0},

$$
\mathbb{P}\left(\left|\lim _{n \rightarrow \infty} W^{(N, r)}\left(n, s_{0}\right)-p^{*}\right| \leq \delta\right)=1
$$

where p^{*} is a maximal lottery of the preference profile.

- More generally, we show that the relative urn distribution $X^{(N, r)}$ is almost surely close to a maximal lottery most of the time.
- The probability that the relative urn distribution is close to a maximal lottery gets arbitrarily close to 1 and converges exponentially fast.
- Let $\delta, \varepsilon>0$. Then there is $r_{0}>0$ such that for all $0<r \leq r_{0}$, there is $N_{0} \in \mathbb{N}$ and $C>0$ such that for all $N \geq N_{0}, s_{0}$, and $n \in \mathbb{N}$,

$$
\mathbb{P}\left(\left|X^{(N, r)}\left(n, s_{0}\right)-p^{*}\right| \leq \delta\right) \geq 1-\varepsilon-e^{-\lfloor C n\rfloor}
$$

Maximal Lotteries

- Randomized voting rule proposed independently by Kreweras (1965) and Fishburn (1984).
- Let $M_{x, y}$ be the fraction of voters who prefer x to y.
- Matrix M induces a skew-symmetric matrix $\tilde{M}=M-M^{\top}$.
- A lottery p is maximal if $p^{\top} \tilde{M} \geq \mathbf{0}$.
- mixed equilibrium strategy of the symmetric zero-sum game \tilde{M}
- no other lottery q is preferred by an expected majority
($p^{\top} \tilde{M} q \geq 0$)
- randomized Condorcet winner
- almost always unique
- e.g., for odd number of voters (Laffond et al., 1997)

Maximal Lotteries

4	3	5
a	b	c
b	c	a
c	a	b

$$
\left.M=\begin{array}{c}
\\
a \\
b \\
c
\end{array} \begin{array}{ccc}
a & b & c \\
0 & 3 / 4 & 1 / 3 \\
1 / 4 & 0 & 7 / 12 \\
2 / 3 & 5 / 12 & 0
\end{array}\right)
$$

$$
\underbrace{\left(\begin{array}{l}
1 / 6 \\
1 / 3 \\
1 / 2
\end{array}\right)^{\top}}_{\text {maximal lottery }} \underbrace{\left(\begin{array}{ccc}
0 & 1 / 2 & -1 / 3 \\
-1 / 2 & 0 & 1 / 6 \\
1 / 3 & -1 / 6 & 0
\end{array}\right)}_{\tilde{M}=M-M^{\top}}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \geq \mathbf{0}
$$

Stochastic Choice

- Comparison matrices appear in various contexts and maximal lotteries have been repeatedly identified as attractive choice rules.
- Tournament Solutions: Bipartisan set (Laffond et al., 1993), Essential set (Dutta \& Laslier, 1999)
- Voting: Maximal lottery (Fishburn, 1984), Game theory procedure (Felsenthal \& Machover, 1992), Game theory method (Rivest and Shen, 2010)
- Matching Markets: Popular mixed matching (Kavitha et al., 2011)
- Multi-Armed Bandits: von Neumann winner (Dudík et al., 2015)
- Google DeepMind's AlphaStar: Nash averaging (Balduzzi et al., 2018)

Desirable Properties

- A lottery remains maximal when removing unchosen alternatives or changing the dominance probabilities between such alternatives.
- A lottery that is maximal for two comparison matrices is also maximal for any convex combination of both matrices.
- The selection probability of an alternative is unaffected by cloning other alternatives.
- Classic social choice impossibilities have been turned into complete axiomatic characterizations of maximal lotteries, e.g.,
\rightarrow Brandl \& B., Arrovian Aggregation of Convex Preferences (ECMA 2020)
\rightarrow Brandl et al., Consistent Probabilistic Social Choice (ECMA 2016)
\rightarrow Brandl et al., Welfare Maximization Entices Participation (GEB 2018)
a
$b\left(\begin{array}{ccc}a & b & c \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 3 & 0 & 2 / 3 \\ 2 / 3 & 1 / 3 & 0\end{array}\right)$

- Similar dynamic processes with equilibrium convergence
- Population biology: coexistence of species
- Quantum physics: condensation of bosons
- Chemical kinetics: reactions of molecules
- Plasma physics: scattering of plasmons
- E.g., Allesina and Levine (PNAS 2011), Knebel et al. (Nat Commun 2015), Laslier \& Laslier (Ann Appl Probab 2017), Grilli et al. (Nature 2017)
- Differences of our model and result
- discrete (not continuous)
- stochastic (not deterministic) interactions between pairs (not triples)
- mutations
- bound on sojourn time (rather than only convergence of time avg.)

Conclusion

- Advantages of urn process
- Myopic strategyproofness
- each round a randomly selected voter chooses between 2 alternatives
- Minimal preference elicitation
- isolated pairwise comparisons, privacy protection
- Verifiability
- simple physical procedure, no trusted authority
- Flexibility
- voters may arrive, leave, and change their preferences
- Alternative descriptive interpretation: opinion formation
- Agents come together in random pairwise interactions, in which they try to convince each other of their opinion.
- The urn process approximately solves a linear program.

