Collaborative Giving Effective Distribution of Individual Contributions

Felix Brandt

Algorithmics of Fair Division and Social Choice NUS/IMS Singapore, December 2024

I will present results from these papers:

- Aziz, Bogomolnaia, and Moulin. Fair mixing: the case of dichotomous preferences. Presented at ACM-EC 2019 (ACM Transactions on Economics and Computation, 2020).
- Aziz, Brandl, and B. Universal Pareto dominance and welfare for plausible utility functions. Presented at ACM-EC 2014 (Journal of Mathematical Economics, 2015).
- Bogomolnaia, Moulin, and Stong: Collective Choice under Dichotomous Preferences. Journal of Economic Theory, 2005.
- Brandl, B., Greger, Peters, Stricker, and Suksompong. Funding Public Projects—A Case for the Nash Product Rule.
 Presented at WINE 2021 (Journal of Mathematical Economics, 2022).
- Brandl, B., Peters, and Stricker. Distribution rules under dichotomous preferences: Two out of three ain't bad. Presented at ACM-EC 2021.
- B., Greger, Segal-Halevi, and Suksompong. Optimal budget aggregation with single-peaked preferences. Presented at ACM-EC 2024.
- B., Greger, Segal-Halevi, and Suksompong. Coordinating charitable donations. 2024. Presented at ACM-EC 2023.
- Duddy. Fair sharing under dichotomous preferences. Mathematical Social Sciences, 2015.
- Freeman, Pennock, Peters, and Vaughan. Truthful aggregation of budget proposals. Presented at ACM-EC 2019 (Journal of Economic Theory, 2021).

Potential Applications

Cinque per mille

- Italian citizens can select one of over 70k non-profit organizations.
- Revenue Agency will divert 0.5% of citizen's income tax to this organization.
- Decision 2022: €510m

AmazonSmile

- Customers can select one of over 1m non-profit organizations.
- Amazon donates 0.5% of customer's purchase price to this organization.
- 2013–2023: \$400m
- Employee charity matching programs
 - Microsoft (2022): \$250m to 32k organizations
 - Apple (2011–2022): \$880m to 44k organizations
- Private charity by groups of donors

Felix Branc

Application Scenarios

Fully centralized

- Central authority owns individual contributions, collects preferences,
- then distributes endowment.

Centralized

- Authority collects preferences and contributions,
- then distributes endowment.

Decentralized

- Authority collects preferences,
- then advises donors how to distribute their contributions.

Fully decentralized

Donors independently distribute their contributions by observing previous donations.

The Model

- $N = \{1, ..., n\}$ is a set of agents.
- A is a set of m public goods (e.g., charities).
 - Public goods are non-excludable and non-rivalrous.
- Each agent $i \in N$ contributes amount $C_i > 0$ of a divisible and homogeneous resource (e.g., money) to a common pool.
 - $C = \sum_{i \in \mathcal{N}} C_i$ is called the endowment.
- An individual distribution $\delta_i \in [0, C_i]^A$ is a function with $\sum_{x \in A} \delta_i(x) = C_i$.
 - The set of all distributions of C_i is denoted by $\Delta(C_i)$.
- $\delta = \sum_{i \in \mathbb{N}} \delta_i \in \Delta(C)$ is the collective distribution of the endowment C.

The Model (ctd.)

- Agent *i* receives utility $u_i(\delta) \in \mathbb{R}$ from collective distribution δ .
 - $\mathcal{U} \subseteq \mathbb{R}^{\Delta(C)}$ denotes the set of admissible utility functions.
 - $u_i \in \mathcal{U}$ for all $i \in N$.
- A distribution rule f maps a utility profile $U = (u_i)_{i \in N} \in \mathcal{U}$ to $(\delta_i)_{i \in N}$.
 - We will often refer to the collective distribution δ implicitly returned by f(U).

Related Models

- Private provision of public goods (e.g., Bergstrom, Blume, and Varian, 1986)
 - agents distribute their wealth between a private and a public good
 - no preferences over different public goods
- Probabilistic social choice/ fair mixing (e.g., Gibbard, 1977; Bogomolnaia et al., 2005)
 - ordinal, linear, or dichotomous preferences
 - exogenous fixed "endowment" of probability mass 1
- Participatory budgeting (e.g., Cabannes, 2004)
 - typically fixed costs for projects, which are either fully funded or not at all
 - exogenous endowment
- Budget aggregation (e.g., Freeman et al., 2021)
 - norm-based preferences (typically, ℓ_1)
 - exogenous endowment

Four Desirable Properties

- The collective distribution δ returned by f is efficient.
 - There is no $\delta' \in \Delta(C)$ with $u_i(\delta') \ge u_i(\delta)$ for all $i \in N$ and $u_i(\delta') > u_i(\delta)$ for some $i \in N$.
 - Example: Utilitarian rule. δ maximizes $\sum_{i \in N} C_i \cdot u_i(\delta)$.
- ► f is strategyproof if $u_i(f(u_1, ..., u_n)) \ge u_i(f(u_1, ..., u_i', ..., u_n))$ for all $i \in N$ and $u_1, ..., u_n, u_i' \in \mathcal{U}$.
 - Examples: Dictatorial rules. δ maximizes $u_i(\delta)$ for some fixed $i \in N$.

Four Desirable Properties (ctd.)

- The individual distributions $(\delta_i)_{i\in N}$ returned by f form a Nash equilibrium.
 - $u_i(\delta) = \max_{\delta_i^* \in \Delta(C_i)} u_i(\delta \delta_i + \delta_i^*) \text{ for all } i \in N \text{ and.}$
 - crucial for settings where the authority merely issues recommendations
 - Equilibrium distributions exist under fairly general assumptions (Debreu, 1952).
- f is contribution incentive-compatible.
 - Agents should be better off participating than abstaining and spending their contribution optimally.
 - $u_i(f(U)) \ge \max_{\delta_i^* \in \Delta(C_i)} u_i(f_{-i}(U) + \delta_i^*) \text{ for all } U \in \mathcal{U}^N \text{ and } i \in N.$
 - $f_{-i}(U)$ distributes the amount $\sum_{j \in N \setminus \{i\}} C_j$ based on $(u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n)$
 - crucial for settings with voluntary participation

Potential Utility Functions

Felix Brand

Linear Utilities

$$u_i(\delta) = \sum_{x \in A} \delta(x) \cdot v_i(x)$$

- Charities are substitutes with constant marginal rates of substitution.
- Example:

V; (x)= -		uncoordinated									
		a	b	C	$/C_i$	Ui					
	δ_1	0.5	0.5		1	1.5					
	δ_2		0.5	0.5	1	1.5					
	δ	0.5	1	0.5	2						

	efficient									
	а	b	C	C_i	Ui					
δ_1		1		1	2					
δ_2		1		1	2					
δ		2		2						

Uncoordinated rule: Each δ_i independently maximizes $u_i((C/C_i) \cdot \delta_i)$.

Limitations under Linear Utilities

- Theorem (Hylland, 1980): Only dictatorial rules are strategyproof and efficient.
- Proposition: Unique equilibrium distributions can be inefficient.

$V_{i}(x) = 1.5$		a	b	С	C_i	Ui
V; (X)-12	δ_1	1			1	1.5
	δ_2			1	1	1.5
	δ	1		1		

	а	b	С	C_i	Ui
$\boldsymbol{\delta}_1$		1		1	2
δ_2		1		1	2
δ		2			

- **Theorem (Gibbard, 1977)**: When agents have unique top-ranked charities, then only the *uncoordinated rule* is anonymous, unanimous, and strategyproof.
- Proposition (Brandl et al., 2022): No efficient rule satisfies contribution incentive-compatibility.

Proof

- **Proposition (Brandl et al., 2022)**: No efficient rule satisfies contribution incentive-compatibility when $m \ge 4$ and $n \ge 3$.
- Proof by contradiction:
 - Contribution incentive-compatibility: $u_i(\delta) \ge 1.6$ for all $i \in N$.

		a	b	С	d	C_i	Ui
$V_i(x) = 1.6$	δ_1	3				1	≥3.2
	δ_2					1	≥3.2
	δ_3					1	≥3.2
	δ	>0	>0				

Assume w.l.o.g. $u_3(\delta) = \min_{i \in N} u_i(\delta)$
$\delta(a) > 0 \land \delta(b) > 0$. Efficiency is violated!

	а	b	С	d	C_i	Ui
δ'_1					1	
$\boldsymbol{\delta}'_2$					1	≥1.6
δ'		0		≥1.6		

Efficiency:
$$\delta(a) = 0 \lor \delta(b) = 0$$

W.l.o.g.
$$\delta(b) = 0$$

$$\delta'(d) \ge 1.6$$

Dichotomous Utilities

- A linear utility function u_i is dichotomous if $v_i(x) \in \{0,1\}$ for all $x \in A$.
 - Each agent i approves a non-empty set of projects $A_i \subseteq A$ and $u_i(\delta) = \sum_{x \in A_i} \delta(x)$.
- Positive share: $u_i(f(U)) > 0$ for all $i \in N$ and $U \in \mathcal{U}^N$.
 - much weaker than both contribution incentive-compatibility and being in equilibrium
 - minimal requirement to incentivize customers to participate in Amazon Smile:
 Amazon should donate money to at least one approved charity of each customer.

UTIL											
a b c d C _i u _i											
δ_1	1				1	5					
δ_2	1				1	5					
δ_3	1				1	0					
δ_4	1				1	O					
δ_5	1				1	5					
δ	5										

	CUT									
	а	b	C	d	C_i	U_i				
δ_1	1				1	3.5				
δ_2	1				1	3.5				
δ_3		0.5	0.5		1	1.5				
$oldsymbol{\delta}_4$		0.5		0.5	1	1.5				
δ_5	1				1	3				
δ	3	1	0.5	0.5						

21

violates positive share!

	NASH										
	a	b	C	d	C_i	Ui					
$oldsymbol{\delta}_1$	1				1	3					
δ_2	1				1	3					
δ_3		1			1	2					
$oldsymbol{\delta}_4$		1			1	2					
δ_5	1				1	3					
δ	3	2									

- Utilitarian rule (UTIL)
 - δ maximizes $\sum_{i \in N} C_i \cdot u_i(\delta)$
- Conditional utilitarian rule (CUT) violates efficiency!
 - among all δ_i that maximize $u_i((C/C_i) \cdot \delta_i)$, pick those that maximize $\sum_{j \in N \setminus \{i\}} C_j \cdot u_j((C/C_i) \cdot \delta_i)$
- Nash product rule (NASH) violates strategyproofness!
 - δ maximizes $\prod_{i \in N} u_i(\delta)^{C_i}$ (or, equivalently, $\sum_{i \in N} C_i \log u_i(\delta)$)

	а	b	С	d	C_i	Ui
δ_1	1				1	4.4
δ_2	1				1	3.8
δ_3		0.4	0.6		1	1.2
δ_4	8.0	0.2			1	4.4
δ_5	1				1	3.8
δ	3.8	0.6	0.6			

Two Out of Three Ain't Bad

	UTIL	CUT	NASH
efficient	√	_	√
strategyproof	√	\checkmark	_
positive share	_	\checkmark	

- ► Theorem (Brandl et al., 2021): No distribution rule satisfies efficiency, strategyproofness, and positive share when $m \ge 4$, $n \ge 6$.
 - confirms a conjecture by Bogomolnaia, Moulin, and Stong (2005)
 - significantly weaker notion of strategyproofness suffices: manipulation only "counts" if $u_i(\delta') = C$.

A FULL PROOF OF THEOREM

A.1 Assuming $f(\mathcal{A}_1)$ has support bc or abc leads to contradiction.

	A_1	A_2	A_3	A_4	A_5	A_6	possible supports	dominated supports
Profile 1	b	\boldsymbol{c}	ab	ac	bd	cd	$\underline{bc}, \underline{abc}, bcd$	$ad \longleftrightarrow bc$
Profile 2	b	C	abc	ac	bd	cd	\underline{bc} , bcd	$a \longleftrightarrow c, \ ab \longleftrightarrow bc, \ ad \longleftrightarrow bc$
Profile 3	b	C	bc	ac	bd	cd	\underline{bc} , bcd	$a \longleftrightarrow c, \ ab \longleftrightarrow bc, \ ad \longleftrightarrow bc$
Profile 4	bc	C	bc	ac	bd	cd	cd, \underline{bc}, bcd	$a \longleftrightarrow c, ab \longleftrightarrow bc, ad \longleftrightarrow bc$
Profile 5	bc	C	bc	ac	bd	acd	$cd, \underline{bc}, \underline{bcd}$	$a \longleftrightarrow c, \ ab \longleftrightarrow bc, \ ad \longleftrightarrow cd$
Profile 6	bc	\boldsymbol{c}	bc	ac	bd	ad	cd , acd , \underline{bcd}	$ab \leftarrow\!$
Profile 7	bc	C	bc	ac	bcd	ad	ac, \underline{cd}, acd	$b \longleftrightarrow c, ab \longleftrightarrow ac, bd \longleftrightarrow cd$
Profile 8	bc	C	bc	ac	cd	ad	ac, \underline{cd}, acd	$b \longleftrightarrow c, ab \longleftrightarrow ac, bd \longleftrightarrow ac$
Profile 9	bc	\boldsymbol{c}	cd	ac	cd	ad	ac, \underline{cd}, acd	$b \longleftrightarrow c, ab \longleftrightarrow ac, bd \longleftrightarrow ac$
Profile 10	bc	$\boldsymbol{\mathcal{C}}$	cd	abc	cd	ad	$ac, \underline{cd}, \underline{acd}$	$b \longleftrightarrow c, ab \longleftrightarrow ac, bd \longleftrightarrow ac$
Profile 11	bc	C	cd	ab	cd	ad	ac, \underline{acd}, abc	$bd \longleftrightarrow ac$
Profile 12	bc	C	cd	ah	cd	acd	ac bc abc	$d \longleftrightarrow c \ ad \longleftrightarrow ac \ bd \longleftrightarrow ac$

A Weaker Impossibility

- ► **Theorem (Brandl et al., 2021)**: No anonymous and neutral distribution rule satisfies efficiency, strategyproofness, and positive share when $m \ge 4$, $n \ge 5$.
 - Proof:

	а	b	С	d	C_i	Ui
δ_1					1	
δ_2					1	
δ_3					1	>0
$oldsymbol{\delta}_4$					1	<c< td=""></c<>
δ_5					1	
δ		>0	>0			

Anonymity and neutrality: $\delta(b) = \delta(c)$.

Positive share: $\delta(b)$, $\delta(c) > 0$. Hence, $u_4(\delta) < C$

Anonymity and neutrality: $\delta'(c) = \delta'(d)$.

Efficiency: $\delta'(c)$, $\delta'(d) = 0$. Hence, $u_4(\delta') = C > u_4(\delta)$.

Further Results

- Core fair share
 - $\forall S \subseteq N \not\exists \delta' \in \Delta \left(\sum_{j \in S} C_j \right) \forall \delta'' \in \Delta \left(\sum_{j \in N \setminus S} C_j \right) \text{ s.t.} \qquad \forall i \in N \colon u_i(\delta' + \delta'') \geq u_i(\delta) \text{ and}$ $\exists i \in N \colon u_i(\delta' + \delta'') > u_i(\delta).$
- Theorem (Aziz et al., 2020): NASH satisfies core fair share, CUT does not.
 - Theorem (Duddy, 2015): CUT satisfies group fair share, a weakening of core fair share.
 - **Theorem (Brandl et al., 2022)**: A distribution rule satisfies group fair share iff it returns equilibrium distributions.
 - Positive share is weaker than group fair share.
- **Theorem (Brandl et al., 2022)**: *NASH* and *CUT* always return equilibrium distributions and satisfy contribution incentive-compatibility.

Summary and Open Problems

	UTIL	CUT	NASH	No rule!
efficiency	√	-	√	4
strategyproofness	√		_	4
contribution incentive-compatibility	_		\checkmark	
core fair share	_	—	√	
group fair share (=in equilibrium)	_	√		
positive share	_	√	\checkmark	4

- Quantify efficiency failures of CUT and strategyproofness failures of NASH
- Pending axiomatic characterizations:
 - CUT using contribution incentive-compatibility and strategyproofness
 - NASH using contribution incentive-compatibility and efficiency
 - NASH using core fair share

Potential Utility Functions

Felix Brand

Leontief Utilities

$$u_i(\delta) = \min_{x \in A: v_i(x) > 0} \frac{o(x)}{v_i(x)}$$

- $v_i(x) \ge 0$ for all $x \in A$ and $v_i(x) > 0$ for some $x \in A$.
- Charities are complements rather than substitutes.
- **Theorem (B. et al., 2023)**: Each utility profile admits a unique equilibrium. This distribution maximizes Nash welfare and thus is efficient.
- *EDR* (equilibrium distribution rule) returns the equilibrium distribution.
- Example:

	а	b	С	C_i	Ui
δ_1	1	0.5		1.5	1
δ_2		0.5	1	1.5	1
δ	1	1	1	3	

Healthcare example

- Charity a supports patients with common disease
- \triangleright Each charity b_i supports patients with some rare disease.
- Unique equilibrium for linear utilities.

 $V_{i}(b_{i})=|V_{i}(a)=2$

	a b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	C_i
δ_1	30										30
δ_2	30										30
δ_3	30										30
δ_4	30										30
δ_5	30										30
δ_6	30										30
δ_7	30										30
δ_8	30										30
δ_9	30										30
δ_{10}	30										30
δ	300										

- Healthcare example
 - Charity a supports patients with common disease
 - Each charity b_i supports patients with some rare disease.
- Uncoordinated rule for Leontief utilities

	а	<i>b</i> ₁	b_2	<i>b</i> ₃	<i>b</i> ₄	b_5	b_6	<i>b</i> ₇	<i>b</i> ₈	<i>b</i> ₉	b ₁₀	C_i
δ_1	20	10										30
δ_2	20		10									30
δ_3	20			10								30
δ_4	20				10							30
δ_5	20					10						30
δ_6	20						10					30
δ_7	20							10				30
δ_8	20								10			30
δ_9	20									10		30
δ_{10}	20										10	30
δ	200	10	10	10	10	10	10	10	10	10	10	

- Healthcare example
 - Charity a supports patients with common disease
 - Each charity b_i supports patients with some rare disease.
- EDR (unique equilibrium for Leontief utilities)

	а	<i>b</i> ₁	b_2	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	b_6	<i>b</i> ₇	<i>b</i> ₈	<i>b</i> ₉	b ₁₀	C_i
$\overline{\delta_1}$	5	25										30
δ_2	5		25									30
δ_3	5			25								30
δ_4	5				25							30
δ_5	5					25						30
$\mathbf{\delta}_{6}$	5						25					30
δ_7	5							25				30
$\mathbf{\delta}_8$	5								25			30
δ_9	5									25		30
δ_{10}	5										25	30
δ	50	25	25	25	25	25	25	25	25	25	25	

Equilibrium Distribution Rule

- The tradeoffs present in the case of linear and dichotomous utilities vanish!
- Theorem (B. et al., 2023): EDR is (group-)strategyproof.
- ► **Theorem** (·): The equilibrium is rational-valued and can be computed in polynomial time via convex programming and a separation oracle.
- Theorem (·): EDR has nice monotonicity properties:
 - Agent increases contribution ⇒ funding of no charity decreases
 - Agent increases weight for charity \Rightarrow funding of charity does not decrease
 - For dichotomous utilities, both properties are violated by NASH.

Further Results

- ► **Theorem (B. et al., 2024)**: *EDR* is the only rule that satisfies group-strategyproofness, core fair share, and continuity.
- For all $U \in \mathcal{U}^N$ and $i \in N$:
 - $u_i(f(U)) \ge \max_{\delta_i^* \in \Delta(C_i)} u_i(f_{-i}(U) + \delta_i^*) \quad \text{(Contribution incentive-compatibility)}$
 - $u_i(f(U)) > \min_{\delta_i^* \in \Delta(C_i)} u_i(f_{-i}(U) + \delta_i^*)$ (Strict participation)
 - $f_{-i}(U)$ distributes the amount $\sum_{j\in N\setminus\{i\}} C_j$ based on $(u_1,\ldots,u_{i-1},u_{i+1},\ldots,u_n)$.
- Strict participation is weaker than contribution incentive-compatibility.
- Theorem (B. et al., 2023): EDR satisfies strict participation.
- Proposition: No distribution rule satisfies contribution incentive-compatibility for Leontief utilities.

Proof

- Proposition: No distribution rule satisfies contribution incentivecompatibility.
- Proof by contradiction:

	а	b	С	d	C_i	Ui
$-\delta_1$					6	<u>≥4</u>
δ_2					6	≥ 3
δ	<u>≥</u> 4	<u>≥</u> 4	≥3	≥3		

$$u_1(\delta) \ge 4$$
 and $u_2(\delta) \ge 3$
 $4 + 4 + 3 + 3 = 14 \ge C = 6 + 6 = 12$ 4

	а	b	С	d	C_1	U 1
δ_1	3	3			6	3

Binary Weights

- A Leontief utility function u_i has binary weights if $v_i(x) \in \{0,1\}$ for all $x \in A$.
- **Theorem (B. et al., 2023)**: For binary weights, *EDR* coincides with egalitarian rules:

Among all $\delta \in \Delta(C)$ with $\sum_{x \in A: \ v_i(x) > 0} \delta_i(x) = C_i$, EDR lexicographically maximizes both

- $\min_{x \in A} \delta(x)$ (the minimal contribution to a charity), and
- $\min_{i \in N} u_i(\delta)$ (the minimal utility of an agent).
- For binary weights, *EDR* can thus be computed via linear programming.

Spending Dynamics

- Each agent has set aside a, say, monthly budget for charitable activities.
- Agents become active in round-robin order.
- Each agent observes the accumulated distribution of the last n-1 rounds and then distributes her own contribution myopically optimal.
- ► **Theorem (B. et al., 2023)**: The collective distribution of the last *n* rounds converges to *EDR*.
- Even with occasional changes to preferences and contributions, the relative overall distribution keeps converging towards the equilibrium distribution.

	а	b	С	d	C_i	Ui
δ_1	18	18			36	18
δ_2		6	24	24	54	24
δ_3			18		18	42
$\boldsymbol{\delta}_1$	21	15			36	21
δ_2		14	11	29	54	29
δ_3			18		18	29
$\boldsymbol{\delta}_1$	25	11			36	25
	•	•	•	•		
δ	27	27	27	27	108	

Potential Utility Functions

Felix Brand

Cobb-Douglas Utilities

$$u_i(\delta) = \prod_{x \in A} \delta(x)^{v_i(x)}$$
 (Equivalently, $u_i(\delta) = \sum_{x \in A} v_i(x) \cdot \log \delta(x)$)

- $v_i(x) \ge 0$ for all $x \in A$ and $v_i(x) > 0$ for some $x \in A$.
- Theorem (B. et al., 2023): Each utility profile admits a unique equilibrium, which coincides with the equilibrium for Leontief utility functions using the same weights.
- Convergence of the spending dynamics also holds for Cobb-Douglas.
- However, efficiency and strategyproofness break down.

A Prisoners' Dilemma

- The equilibrium distribution can be inefficient for Cobb-Douglas utilities.
 - There is $\delta' \in \Delta(C)$ with $u_i(\delta') > u_i(\delta)$ for all $i \in N$.

	equilibrium									
	а	b	C	C_i	Ui					
δ_1	4	2		6	16					
δ_2		2	4	6	16					
δ	4	4	4	12						

	unco	ordii	nated	<i>rule</i>	1
	а	b	C	C_i	Ui
δ_{1}'	3	3		6	18
$\boldsymbol{\delta}_{2}'$		3	3	6	18
δ'	3	6	3	12	

For Leontief utility functions, equilibrium distributions are always efficient!

	(0,3,3)	(0,2,4)
(3,3,0)	(3,6,3)	(3,5,4)
(4,2,0)	(4,5,3)	(4,4,4)

Cobb-Douglas	(0,3,3)	(0,2,4)
(3,3,0)	18,18	15,20
(4,2,0)	20,15	16,16

Leontief	(0,3,3)	(0,2,4)
(3,3,0)	3,3	3,4
(4,2,0)	4,3	4,4

Potential Utility Functions

21 Disutilities

$$u_i(\delta) = -\sum_{x \in A} |v_i(x) - \delta(x)|$$

- $v_i(x) \ge 0$ for all $x \in A$ and $\sum_{x \in A} v_i(x) = C$.
- Theorem (Linder et al., 2008): The utilitarian rule (with careful tie-breaking) satisfies efficiency and strategyproofness.
- Theorem (Freeman et al., 2021): The "independent markets" rule satisfies strategyproofness and proportionality (a weakening of core fair share) but fails efficiency.
- Theorem (B. et al., 2024): No distribution rule satisfies efficiency, strategyproofness, and proportionality.

Summary

- Donor coordination can increase the efficiency of charitable giving.
- For linear utilities, results are mostly negative.
- For dichotomous utilities, desirable properties need to be traded off and CUT and NASH are attractive rules.
- For Leontief utilities, EDR satisfies virtually all desirable properties.
- Equilibrium existence, uniqueness, and convergence extend to Cobb-Douglas utility functions.
 - Efficiency and strategyproofness break down.
- ► Early mixed results for ℓ₁ disutilities.
 - Equilibrium distributions and spending dynamics for ℓ 1 are largely unexplored.

References

- Aziz, Bogomolnaia, and Moulin. Fair mixing: the case of dichotomous preferences. Presented at ACM-EC 2019
 (ACM Transactions on Economics and Computation, 2020).
- Aziz, Brandl, and B. Universal Pareto dominance and welfare for plausible utility functions. Presented at ACM-EC 2014 (Journal of Mathematical Economics, 2015).
- Bogomolnaia, Moulin, and Stong: Collective Choice under Dichotomous Preferences. Journal of Economic Theory, 2005.
- Brandl, B., Greger, Peters, Stricker, and Suksompong. Funding Public Projects—A Case for the Nash Product Rule.
 Presented at WINE 2021 (Journal of Mathematical Economics, 2022).
- Brandl, B., Peters, and Stricker. Distribution rules under dichotomous preferences: Two out of three ain't bad. Presented at ACM-EC 2021.
- B., Greger, Segal-Halevi, and Suksompong. Optimal budget aggregation with single-peaked preferences.
 Presented at ACM-EC 2024.
- B., Greger, Segal-Halevi, and Suksompong. Coordinating charitable donations. 2024. Presented at ACM-EC 2023.
- Duddy. Fair sharing under dichotomous preferences. Mathematical Social Sciences, 2015.
- Freeman, Pennock, Peters, and Vaughan. Truthful aggregation of budget proposals. Presented at ACM-EC 2019 (Journal of Economic Theory, 2021).

