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A B S T R A C T

Many methods to aggregate voters’ preferences into a collective choice
are based on the majority relation derived from the original prefer-
ences by taking pairwise majority comparisons. Whenever there are
no majority ties, this induces a complete directed asymmetric graph,
i.e., a tournament. This thesis deals with various aspects of majoritar-
ian social choice and is divided into two parts. The first part focuses
on structural features of majority relations and lays ground for subse-
quent studies on tournament solutions in the second part.

A common assumption in the area of computational social choice
is that the number of voters may be arbitrarily large. In this work,
effects of restricting the electorate size to a small constant are exam-
ined. Results include a strong expressive power of a small set of vot-
ers and computational intractability of several well-known concepts
even for small electorates. On the other hand, winner determination
may become easier when there is more homogeneity on the side of
the alternatives. It is shown that a recursive procedure, coupled with
an efficient decomposition method, gives theoretical and computa-
tional benefits. In a next step, the winner determination problem is
extended to ask for possible and necessary winners in partially spec-
ified tournaments. In contrast to earlier work on partial preferences,
it was found that most of the variants are computationally tractable.

The thesis contributes to a better understanding of the choice sets
returned by the numerous tournament solutions considered here, com-
plementing earlier theoretical work on inclusion relations. It is ob-
served that the theoretical results on the lack of discriminative power
of these set-valued concepts are far more negative than empirical and
experimental results. In this context, illustrative and minimal exam-
ples where concepts differ are provided.

As a follow-up on a recent counterexample to a long-standing con-
jecture, several open questions in Social Choice Theory are addressed
by settling the axiomatic properties of the solution concept ME. Lastly,
we are concerned with several properties of tournament solutions
that center around stability and identify the bipartisan set as a, from
our perspective, most desirable tournament solution.
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1
I N T R O D U C T I O N

Situations of collective choice where individual preferences of mul-
tiple agents have to be aggregated to make a decision of the group
arise in many different fields. Some people are motivated by the
idea of having a group of autonomous robots, each equipped with
limited resources and programmed to try to fulfill certain objectives,
automatically determine their joint next moves. Others are concerned
with the need for decisions of several interdependent pieces of soft-
ware. In contrast, the work presented in this thesis was not driven
by possible applications but rather by theoretical curiosity. Follow-
ing the usual terminology in social choice, we speak of voters having
preferences over alternatives and call the method of aggregating the
preferences into a decision a social choice function.

Obviously, there are infinitely many possibilities to define such a
social choice function and it is immediate that some are more ap-
pealing than others. For example, it is generally accepted that, in a
democracy, a function that always only takes the preferences of a dis-
tinguished single voter into account is not very desirable. The reason
is that we feel that such a function should be impartial towards the
voters, i.e., it should be anonymous. Similarly, we would not want a
social choice function that does not treat all alternatives equally, it
would not be neutral. Still, there is a universe of possible social choice
functions and we will look at more involved properties later on.

When the number of alternatives to vote on is limited to two, the two alternatives

most natural social choice function to think of is majority rule where
an alternative that is preferred over the other by a majority of the
voters is declared the group’s choice.1 In fact, in symmetric settings
where there is no bias towards an alternative, e.g., by a status quo,
there is overwhelming academic consensus that majority rule should
be employed for two alternatives as it has many desirable properties.2

For example, it is anonymous because it just counts the number of
voters in favor of each alternative without making any distinctions
between the voters and it also satisfies neutrality as the names of the
alternatives do not affect the outcome of the rule.

1 For mathematical convenience, it is usually assumed that the number of voters is
odd and that the voters have strict preferences to guarantee the existence of a strict
majority in favor of one of the alternatives.

2 May (1952)

1



2 introduction

majority relations

The idea of taking pairwise majority comparisons first and use the
resulting binary majority relation as the base for the final decision—in
case of majority rule, take the maximal element—has been extended
to any number of alternatives. Under the assumption of an odd num-
ber of voters and strict preferences, the resulting majority relation has
to be asymmetric and complete, making the corresponding digraph
a tournament. The interesting change when moving from two to more
alternatives is that the majority relation does no longer necessarily
have maximal elements. This was already observed in the 18th cen-

a

b c

tury and is now known as the Condorcet paradox.3 Actually, it wasCondorcet’s Paradox

shown that every tournament can represent the majority relation of
voters’ preferences—given that there are enough voters.

2 1 1 1

a b d c

b d e b

c f a e
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e a f f

f c b a

Preference profile R
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3

3

1

1

3

3

5
3

Weighted majority graph induced by R

Figure 1.1: An example of a preference profile and the corresponding
weighted majority graph.

In order to illustrate and give a bit of intuition for a good part of
the concepts that feature prominent roles in this thesis, we start with
an example. Consider the preference profile given on the left in Fig-Example

ure 1.1. It shows the preference rankings of five agents over a set of
alternatives {a,b, c,d, e, f}. The numbers indicate how many agents
are having a particular preference ranking, e.g., there are two voters
who have lexicographic preferences. From such a profile, we get a
weighted majority graph by making pairwise comparisons between
every two alternatives. For instance, the first three voters prefer b
over c and the other two c over b. This gives a (net) weighted ma-
jority of 1 in favor of b over c. The full weighted majority graph for
the profile is depicted on the right in Figure 1.1. In most of this the-
sis, we are concerned with unweighted majority graphs. Those graphs
stem from the strict majority relation that indicates which of two al-
ternatives is preferred by a majority (or dominates) the other. Since
the number of voters in the example is odd, the majority relation is

3 Condorcet (1785)
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complete and the corresponding tournament is depicted on the left
in Figure 1.2.

a

b

c

O
d

e

f

Tournament T induced by pro-
file R

1 1 1

a d f

b e c

c a b

d b e

e c d

f f a

A minimal profile inducing T .

Figure 1.2: The unweighted majority graph from the profile R in Figure 1.1.
Since the majority relation is complete in this case, the graph is
a tournament and omitted edges point downwards. The grey
ellipse indicates that both d and e dominate a. On the right, a
minimal profile inducing the same majority graph.

Generally, we are interested in the existence or non-existence of
structure in majority relations. To this end, we investigated which
relations can be induced by small preference profiles. For the example
given here, there is a three-voter profile, shown in right of Figure 1.2
that gives the very same tournament. As it cannot be induced by less
than three voters, we call it a 3-majority digraph.

When the number of voters is limited to a small constant, the space
of possible majority relations is a little less rich.

contribution 1

We address the significance of a restriction on the number of
voters with respect to the possible majority relations. In particu-
lar, we define the majority dimension of a directed graph to be the majority dimension

smallest number of voters that can induce it through a majority
relation. We also examine real-world preference profiles with
respect to the complexity of their induced majority relations.

Coming back to the tournament on the left in Figure 1.2, we see
that alternatives d and e, drawn together in a grey ellipse just to in-
dicate that they both dominate alternative a, do in fact have identical
relations to all other alternatives. They are indistinguishable from
the perspective of the other alternatives and we say that, together,
they form a component in the tournament. A closer inspection reveals component

that this tournament contains two additional non-trivial components,
namely {a , b , c , d , e} which all dominate f as well as {b , c}. All
components of a graph can nicely be represented in a tree. For this
tournament, the decomposition tree is depicted in Figure 1.3.

contribution 2

We examine the decomposability of tournaments and define the
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A

{a , b , c , d , e}

{a} {b , c}

{b} {c}

{d , e}

{d} {e}

{f}

Figure 1.3: The decomposition tree of the example tournament.

decomposition degree as the maximum number of children of any
node in the decomposition tree. We find that while random
tournaments rarely exhibit any components, more natural tour-
naments (from stochastic simulations) very often are decompos-
able.

tournament solutions

The idea of abstracting away from individual preferences and work
on the derived (weighted) majority relation instead has spurred a
number of interesting results in the past. Effectively, the new ques-
tion has become how to choose from a tournament. Many solutionchoice from a

tournament concepts of this type have been proposed. Common examples are the
top cycle, the uncovered set, or the Banks set for unweighted tourna-
ment solutions and maximin, Borda, and ranked pairs for weighted
concepts. In this thesis, we are mainly but not exclusively concerned
with unweighted concepts.

While there is no clear-cut “best” concept—neither among the un-
weighted nor the weighted concepts—there are still plenty of criteria
to assess them with.

A popular approach among social choice theorists is the axiomatic
method that classifies solution concepts by the properties they satisfy.axiomatic method

Ideally, concepts are even uniquely characterized by a set of appeal-
ing (and somewhat natural) properties. Practitioners on the other
hand are mainly interested in the applicability of concepts. At this
point, computational social choice has formed a new and thriving disci-computational social

choice pline over the last two decades, bringing methods and perspectives
from computer science to the academic world of social choice.

Among the problems that have attracted the interest of computer
scientists are complexity-theoretic questions. In particular, it is rele-
vant for all concepts how they are actually computed.4 For most of
the common concepts, polynomial-time algorithms or some variant

4 Other popular questions for theoretical computer scientists are in the area of manip-
ulation or compact representation.
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of computational hardness has been shown. Since many of these re-
sults rely on the assumption of having an arbitrary number of voters,
it was open whether the hardness results still hold for the restricted
case of a small constant number of voters.

contribution 3

We use our insights on the majority relations of few voters to
adapt existing hardness constructions for scenarios with only
few voters. This way, we are able to show that hardness of
several winner determination problems prevails even when the
number of voters is limited to a small constant.

In other words, seeking to exploit structural limitations on the majo-
rity relations due to small electorates offers no remedy for hard win-
ner determination problems. Complementing these rather negative
results, we seek to utilize the existence of components in tournaments
to effectively shrink instances size for tournament solutions that treat tournament

decompositioncomponents in a well-defined consistent way. For this approach, it is
helpful that all components of a tournament can be recognized effi-
ciently.

contribution 4

We show how decomposing a tournament can be exploited to
speed up the computation of winning sets for concepts that sat-
isfy the property of composition-consistency and provide sup-
plementary simulation results.

When preferences are not fully available yet, one may be interested
in which alternatives still can possibly win and which alternatives
will be winners for sure. These PossibleWinner and Necessary-
Winner problems have been studied in the past for partial preference
profiles.

contribution 5

We extend this study to partial tournaments assuming that not
all pairwise comparisons have yet been made. In addition to
the classical possible and necessary winner problems, we also
consider the problem of determining possible winning sets and
give complexity results for the most common weighted and un-
weighted tournament solutions.

Any social choice function that satisfies very basic symmetry cri-
teria (neutrality and anonymity) cannot be resolute, i.e., it has to be
set-valued. But obviously, choice sets are of limited use if they are very
large. After all, if only few alternatives remain unchosen, not much
of a choice has been made. On the other hand, it is easier to define
tournament solutions that make a consistent choice across different
situations when the solution is less discriminative and only excludes
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alternatives from the choice set under rare circumstances.5 In conclu-
sion, a trade-off has to be made between discriminative power and
axiomatic appeal.

To illustrate, we look at the choices of three common tournament
solutions on the tournament in Figure 1.2. The top cycle of a tourna-top cycle

ment consists of all alternatives that can reach all other alternatives on
some path. In case of the example tournament, the top cycle equals
{a , b , c , d , e}. In fact, the only unchosen alternative f is dominated
by every other alternative6 and we feel that no reasonable tournament
solution should ever choose it. The uncovered set is a refinement of theuncovered set

top cycle and chooses all alternatives that reach every other alterna-
tive on a path of length at most 2. It is easy to verify that {a,b,d} is
the uncovered set of this tournament, i.e., alternatives c and e have
been ruled out in comparison to the top cycle. An even more discrim-
inative concept is the Copeland set that returns only those alternativesCopeland set

that win a maximum number of pairwise comparisons. For the tour-
nament in question, this is alternative b only as it is the only one that
dominates four other alternatives. Therefore, the Copeland set is the
singleton {b}. It can be shown in full generality, that the Copeland
set always is contained in the uncovered set which in turn always
chooses alternatives that are also in the top cycle. Several of such
inclusion relations were already known but it was open from which
tournament sizes on which tournament solutions may start to differ
or even be disjoint.

contribution 6

We present our findings on the smallest tournaments for which
choice sets of tournament solutions actually differ. These re-
sults were achieved by means of exhaustively examining all
tournaments of increasing size and computing each tournament
solution which we have implemented for these kinds of ques-
tions. We also add new theoretical results and show that two
well-known tournament solutions do not always have to be con-
tained in each other.

Regarding the actual size of choice sets, theoretical results indicated
that even supposedly “small” tournament solutions have a strong ten-
dency to not discriminate at all. This is in strong contrast to empir-
ical results which showed that in real-world instances, the top cycle
(which contains all other tournament solutions we are interested in)
very rarely contains more than three alternatives.

contribution 7

We fill this gap by running simulations with more realistic dis-

5 Without going into details, it is obvious that a solution concept easily satisfies, e.g.,
independence of unchosen alternatives if there “never” are unchosen alternatives.

6 We say that f is a Condorcet loser.
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tributions than those used for the theoretical findings. Our re-
sults include a nice classifications of tournament solutions into
groups of similar discriminative power.

Knowing about the trade-off between discriminativity and fulfill-
ment of good properties, appealing tournament solutions are often
characterized as being the smallest concept fulfilling a set of desir-
able properties. The tournament equilibrium set (or short TEQ) was
conjectured to have such a characterization but the problem whether
this was actually the case or whether TEQ was severely flawed was
open for more than two decades. In the meantime, Brandt7 proposed
a related tournament solution called ME which would also have been
a new smallest desirable refinement of existing concepts—but the
corresponding conjecture remained unproven as well. In 2011, both
of the conjectures were proven to be incorrect by non-constructively
showing the existence of a counterexample of enormous size.8 While
the devastating consequences of this on TEQ were immediate, many
questions regarding ME were now open again.

contribution 8

We give a concrete and much, much smaller counterexample
to the TEQ conjecture. Also, we address the consequences for
ME which, unfortunately, are mostly negative. We also take the
opportunity to engage in a discussion on the validness of the
axiomatic method in cases where violations are very sparsely
distributed.

Among the desirable properties a solution concept in general or a
tournament solution specifically could satisfy, we focus on stability. stability

The underlying idea is that there needs to be a reason for every cho-
sen alternative why it cannot be excluded from the choice set as well
as a justification for every unchosen alternative why it should not be
added to the choice set.9 Stability was shown to be satisfied by a num-
ber of common tournament solutions and to have nice implications
regarding satisfaction of desirable basic properties.

contribution 9

We explore the connection of stability to other properties and
identify the bipartisan set as a, from our perspective, most desir- bipartisan set

able tournament solution.

overview of this thesis

This thesis is divided into two parts. In the first part, we cover
majority relations and discuss structural aspects of induced majo-

7 Brandt (2011b)
8 Brandt et al. (2013a)
9 Wilson (1970) considered this property as natural as calling it the solution property.
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rity graphs. Chapter 2 contains basic definitions and a treatment
of various stochastic models that will be employed for numerous ex-
periments throughout this thesis. In Chapter 3, we examine the de-
composability of tournaments whereas Chapter 4 is concerned with
majority relations under a restriction to only few voters.

The second part generally deals with various computational as-
pects of tournament solutions. After properly defining all concepts
considered in this thesis in Chapter 5, we first turn to the computa-
tional complexity of winner determination problems. In Chapter 6,
we show that several well-known tournament solutions remain com-
putationally intractable even when the number of voters is a small
constant. In contrast, Chapter 7 explores possibilities to speed up
the computation of composition-consistent tournament solutions by
theoretical insight and extensive simulations. Possible and necessary
winner problems for partially specified tournaments are the topic of
Chapter 8. In Chapter 9, we take two different looks at the differences
of choice sets returned by different tournament solutions. Lastly, in
Chapter 10 we deliberate on the implications of a recently found
counter-example to a long-standing graph-theoretic conjecture, solv-
ing a number of open questions regarding the tournament solution
ME and also touch on several properties centered around stability.

underlying publications

This thesis is based on a number of joint publications and working
papers, some of which have been presented at conferences and work-
shops. A full list was already given on page vii. Referring to this list,
both Chapter 4 and Chapter 6 are based on [7], [3], and [9] whereas
Chapter 3 and Chapter 7 are both based on [1]. Chapter 8, parts of
which also appeared in the thesis of Brill (2012, Chapter 9) is based on
[2]. Chapter 9 is based on material from [4] and [8]. Lastly, Chapter 10

is based on [5], [6], and [10].

excluded work

In addition, my work contributed to several other publications and
working papers that did not fit the theme of this thesis and whose
results are therefore omitted. They are listed here for completeness.

• Optimal partitions in additively separable hedonic games. In
T. Walsh, editor, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI), 43–48. AAAI Press, 2011

(with H. Aziz and F. Brandt).
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• Stable partitions in additively separable hedonic games. In
P. Yolum and K. Tumer, editors, Proceedings of the 10th Inter-
national Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), 183–190. IFAAMAS, 2011 (with H. Aziz and
F. Brandt).

• Computing Desirable Partitions in Additively Separable Hedo-
nic Games. Artificial Intelligence, 195:316–334, 2013 (with H. Aziz
and F. Brandt).

• Consistent Probabilistic Social Choice. 2014 (with F. Brandl
and F. Brandt), Working paper.

• On the Susceptibility of the Deferred Acceptance Algorithm.
2014 (with H. Aziz and J. von Wedel), Working paper.





Part I

M A J O R I T Y R E L AT I O N S





2
F U N DA M E N TA L S

An understanding of majority rule, of democracy,
of liberalism which does without utilitarianism,
and which does more than assert that rights are
right, must travel a more mysterious space, must
walk up odder stairs, and must employ a more
intricate altimeter than transitive consistency.

Douglas W. Rae, 1980

In this chapter, we introduce the main objects of our study in this
thesis, i.e., majority relations, majority graphs, and tournaments as
well as related notation with a summarizing list at the end of the
chapter. We also describe and compare the different stochastic prefer-
ence models that we will use throughout the thesis.

2.1 majority relations

2.1.1 Preferences

As a basic assumption, we presume individual voters to have linear
preferences over a set of alternatives. Formally, let A be a set of
m alternatives and N = {1, . . . ,n} a set of voters, also called an elec- alternatives

voterstorate. The preferences of voter i ∈ N are represented by a linear
(i.e., reflexive, complete, transitive, and antisymmetric) preference rela-
tion %i ⊆ A×A. The interpretation of (a,b) ∈ %i, usually denoted preference relation

by a %i b, is that voter i values alternative a at least as much as alter-
native b. Occasionally, we will also use Ri synonymously with %i in
cases when the interpretation as a preference ranking is more natural.

A preference profile R = (%1, . . . ,%n) is an n-tuple containing a pref- preference profile

erence relation %i for each agent i ∈ N. For a preference profile R
and two alternatives a,b ∈ A, the majority margin gR(a,b) is defined majority margin

as the difference between the number of voters who prefer a to b and
the number of voters who prefer b to a, i.e.,

gR(a,b) = |{i ∈ N | a %i b}|− |{i ∈ N | b %i a}| .

Thus, gR(b,a) = −gR(a,b) for all a,b ∈ A.
The majority relation %R of a given preference profile R is defined as majority relation

a %R b ⇔ gR(a,b) > 0

13
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where we write % if R is clear from the context. We denote the strict
part of %R by �R and whenever a �R b, we say that a dominates b ordominance

is majority-preferred over b.
One observation regarding strict majority relations is immediate:

whenever the number of voters is odd, the majority margin betweenodd number of
voters two alternatives can never be zero and the strict majority relation has

to be complete.
The majority relation can be extended to sets of alternatives by

writing A % B when a % b for all a ∈ A and b ∈ B. Moreover,
for a subset of alternatives B ⊆ A, we will sometimes consider the
restriction of the majority relation %B= %∩ (B×B).

2.1.2 Majority Graphs and Tournaments

Every majority relation %R is fully represented by an (asymmetric)
digraph G where a strict majority preference a �R b corresponnds to
a edge from a to b in G, and vice versa. We say that G is the majority
graph of R and that R induces G. If R has k voters, we say that G ismajority graph

k-inducible, or, equivalently, that G is a k-majority digraph.k-majority digraph
If �R is complete, G is as well and therefore a tournament, i.e., an

asymmetric and complete digraph. We denote the set of all majo-tournament

rity graphs by G and the set of all tournaments by T which we will
use in case an argument is only made for tournaments. Often times
throughout this thesis, we will argue over the majority graphs instead
of the majority relations when statements are more intuitive or more
easily formulated in graph-theoretic terms. In such cases, we also re-
fer to alternatives as vertices and to majority preferences (a,b) ∈ �R
as edges.

Occasionally, we will also come to consider weighted graphs (A, w),weighted graphs

where w : A×A→ Z is a weight function associating edge (a,b) with
a weight. With a slight abuse of notation we also refer to weighted
graphs as a pair (A,�), where the weight function is subsumed and
it is understood that

�= {(a,b) :w(a,b) > 0}.

We say that a weighted graph (A, w) is induced by R if for all a,b ∈ A,
w(a,b) = gR(a,b). In this case, (A, w) is a weighted k-majority digraph.

Let G = (A,%) be a majority graph. The order |G| of G refers to theorder

cardinality of A and we let Gm (or Tm) denote the set of all majority
graphs (or tournaments) of order m. By D(a,G) we denote the set of
all alternatives that a dominates in G, i.e.,

D(a,G) = {b ∈ A : a � b}

and call this set the dominion of a in G. Similarly, let D(a,G) denotedominion

the dominators of a in G, i.e.,dominators

D(a,G) = {b ∈ A : b � a}.
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A non-empty subset B ⊆ A of alternatives is dominant if B � A \ B. dominant set

The size of the dominion of an alternative defines its score which is score

equivalent to its out-degree in G. Formally,

s(a,G) = |D(a,G)| .

If the score of all vertices is identical, the graph is regular. If an al- regular

ternative is majority-preferred over all other alternatives, the corre-
sponding vertex has degree m− 1 and we call such an alternative a
Condorcet winner (Condorcet, 1785). We denote the set of Condorcet Condorcet winner

winners by CW(G). Note that CW(G) is either empty or a singleton.
For a subset B ⊂ A, we write GB to denote the subgraph (A,�B) subgraph

of G.
Now let G ′ = (A ′,% ′) be a second majority graph. A bijective

mapping π : A→ A ′ is a digraph isomorphism if it holds that a % b if isomorphism

and only if π(a) % ′ π(b). In this case, G and G ′ are isomorphic to each
other. Similarly, an automorphism π on G is an isomorphism from A to
itself. An orbit of a digraph contains all vertices that can be mapped orbit

to one another by an automorphism. Intuitively, two vertices are in
the same orbit if they are indistinguishable in an unlabeled graph and
we denote the set of all orbits of G by OG.

Now, let T = (A,�) be a tournament. The set of all linear orders
on some set A is denoted by L(A) and the maximal element of A
according to a linear order L ∈ L(A) is denoted by max(L). A set of
vertices B ⊂ A forms a transitive subset if (B,�B) is a linear order. Let transitive subset

BT denote the set of all transitive subsets of T and we will also write
BB for BTB . Also, define

BT (a) = {B ⊆ BT : max(�B) = a}

as the set of all transitive subsets with maximal element a. For B ∈
BT , an alternative a extends B if a � B, implying B∪ {a} ∈ BT (a).

A subset B of A is a component of T if for all a ∈ A \B either B � a component

or a � B. Components and the decomposition of a tournament will
be introduced thoroughly in Chapter 3.

2.2 stochastic preference models

If certain phenomena in social choice—such as intransitivity of the
majority relation, unintuitive outcomes of social choice functions, or
opportunities for strategic manipulation—are known to occur in the-
ory, a natural follow-up is to ask for their likelihood. Study of real-
world data would be preferred but limited data availability is an al-
most unescapable problem10 along with the fact that real-world data

10 The situation is currently improving due to the growing PrefLib library, established
and maintained by Mattei and Walsh (2013), to which scholars can contribute their
data sets.
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may for the most part not exhibit the prerequisites for a meaningful
study of the effect in question.

A remedy in such cases is to resort to stochastic analyses where
stochastic models are used to create individual preferences in an
electorate of a chosen size. Such simulations with stochastic pref-analysis by

simulation erence models have been used for the analysis of several problems in
(computational) social choice. For example, Laslier (2010) generated
voting instances to derive estimates for the frequency of Condorcet
winners and to compare the results of different voting rules such as
plurality, Borda, approval voting, and Copeland’s rule to each other.
In his work, he has used a Rousseauist model, capturing the idea
of a pre-existing truth, as well as spatial and redistributive models.
Earlier, McCabe-Dansted and Slinko (2006) have used computational
experiments to obtain a hierarchical clustering of voting rules. To
this end, they considered the number of times two voting rules coin-
cide on a sample set as a measure for their similarity. They used the
same setting as Shah (2003) with 5 alternatives and 85 voters and em-
ployed the Pólya-Eggenberger urn model by Berg (1985) to generate
preferences. Recent work employing stochastic preference models for
comparison with empirical data include the papers by Tideman and
Plassmann (2012) and Mattei et al. (2012).

In this section, we will cover several stochastic models for linear
preferences that have been proposed in the literature and that we will
employ for our experiments in later chapters. Our choice of mod-choice of stochastic

models els was guided by our intent to use them for generating individual
preferences and combine them into majority relations. Therefore, an
efficient sampling procedure was necessary. Also, we favored mod-
els with few parameters over those with many parameters. The lat-
ter give more versatile models that are well-suited when it is asked
whether given preferences can be modeled through a model. In our
case, the huge number of parameters, e.g., in Thurstonian, Babington
Smith, and multi-stage ranking models, is problematic as they need to
be chosen in some reasonable manner for our sampling procedure.11

We refer to Critchlow et al. (1991) and Marden (1995) for a more
in-depth treatment of stochastic models.

For most of the models we consider, we sample preference profiles
and work with the tournament induced by the majority relation of
an odd number of voters. The term culture has been coined for prob-culture

abilistic preference models where the draws for each voter are inde-
pendent from each other. Cultures are defined by the probabilities
they put on each possible preference ranking.

11 Also, sampling from a general Babington Smith model is a very tedious task. To
our knowledge, there is no more efficient algorithm than to sample all m(m−1)/2

pairwise comparison with equally many non-identically distributed Bernoulli trials,
return the resulting ranking if the outcome is transitive and start over if not.
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2.2.1 Cultures of indifference

The most widely-studied culture is the impartial culture model (IC), impartial culture

where every possible ranking of the alternatives has the same proba-
bility of 1/m!. IC is a member of the family of dual cultures, defined by
the property that each ranking has the same probability as its inverse.
Dual cultures have been criticized for being too unrealistic as they do
not impose any structure on the preferences (see, e.g., Tsetlin et al.,
2003; Regenwetter et al., 2006). Nevertheless, they are relevant for
their susceptibility to analytical methods that helped to improve the
understanding of voting phenomena (see, e.g., DeMeyer and Plott,
1970). If we add anonymity by having indistinguishable voters, the
set of profiles is partitioned into equivalence classes. In the impartial
anonymous culture (IAC), each of these equivalence classes is chosen impartial

anonymous culturewith equal probability. Technically, this is not a culture in the static
sense mentioned above.

2.2.2 Distance-based models

There are several models that assume a pre-existing truth in the form
of reference rankings such that each agent reports a noisy estimate
of said truth as his preferences. For these models, Laslier (2010)
has introduced the term Rousseauist cultures. Such models are usu-
ally parameterized by a homogeneity parameter that scales the nois-
iness of individual perceptions. In its arguably simplest form, every
agent i provides possibly intransitive preferences Ri where each pair-
wise preference a Ri b is ‘correct’, i.e., coincides with the reference
ranking R0 with a probability p where 0.5 6 p 6 1. This model
has been studied, for example, by Frank (1968), Nowicki (1989), and
Łuczak et al. (1996) and since it is sometimes attributed to Condorcet
(see, e.g., Young, 1988), we call it the Condorcet noise model.12 This Condorcet noise

modelis the only model we consider in which individual preferences can
be intransitive. For p = 0.5, the Condorcet noise model with any
odd number of voters coincides with the model of uniform random
tournaments.13

In Mallows-φ model (Mallows, 1957), the distance to a reference Mallows-φ model

ranking is measured by means of the Kendall-tau distance (Kendall, Kendall-tau distance

1938) which counts the number of pairwise disagreements. Let R0 be

12 A practically useful aspect of this model is that all pairwise majority comparisons
are independent of each other and can be computed directly by

Pr(a �R b | a R0 b) =

n∑
v=n

2
+1

(
n

v

)
pv(1− p)n−v.

13 A similar example for a Rousseauist culture would be the two-parameter model used
in Drissi-Bakhkhat and Truchon (2004) where the probabilities of correct assessments
may depend on the distance of the alternatives in the reference ranking.
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the reference ranking. Then, the Kendall-tau distance of a preference
ranking Ri to R0 is

τ(Ri,R0) =
(
m

2

)
− (|Ri ∩ R0|−m) .

According to the model, this induces the probability of a voter having
Ri as his preferences to be

PrM(Ri,φ,R0) =
φτ(Ri,R0)

C

where C is a normalization constant and φ ∈ (0, 1] is a dispersion
parameter. Small values for φ put most of the probability on rankings
very close to R0 whereas for φ = 1 the model coincides with IC.

Obviously, one can define a number of such distance-based models.
Besides the Kendall-tau distance, Spearman’s rho distance has been
considered (resulting in Mallows-θ model), as well as the distance
measures named after Cayley, Hammond, and Ulam. See Critchlow
et al. (1991) for a discussion.

A property that makes distance-based models less appealing for
this particular study is their bias towards transitive majority relations
which makes the issue of choosing trivial. In fact, Mallows-φ model
even satisfies strong unimodality as defined in Critchlow et al. (1991)unimodality

since a single preference ranking has maximum probability and rank-
ing probabilities are non-increasing as we move along a path of rank-
ings, where in each step two adjacent alternatives are swapped caus-
ing an increase in the Kendall-tau distance to the modal ranking.

To overcome this unimodality of the preference distribution to some
extent, mixtures of models have been considered. A mixture modelmixture models

consists of several ordinary models with a probability distribution
over them. While this idea could theoretically be applied to any
set of models that may just differ in their parameterization or even
belong to different model families, it has been considered the most
with respect to the Mallows-φ model. For simplicity and to reduce
the number of free parameters, we consider uniform mixtures over
k Mallows-φ models with a shared parameter φ and refer to this as
Mallows k-mixtures. The probability of a preference ranking %i to beMallows k-mixtures

chosen under a Mallows k-mixture is then

PrMM
(
%i,φ, (R10, . . . ,Rk0)

)
=

k∑
j=1

1

k
· PrM(Ri,φ,Rj0).

Sampling from Mallows-φ (or Mallows mixtures) is conveniently
possible by a repeated insertion model (Doignon et al., 2004; Lu and
Boutilier, 2011).

2.2.3 Other models

In the Pólya-Eggenberger urn model, each possible preference rankingurn model
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is thought to be represented by a ball in an urn from which individual
preferences are drawn. After each draw, the chosen ball is put back
and α ∈ N0 new balls of the same kind are added to the urn (Berg,
1985). This models the effect of an interdependence of multiple voters’
preferences as the next voter chooses from a modified distribution.
Therefore, it does not fall under our definition of a culture. Still, the
urn model subsumes both IC (α = 0) and IAC (α = 1).

A very different kind of model is the spatial model. Here, alterna- spatial model

tives and voters are uniformly at random placed in a multi-dimensional
space and the voters’ preferences are determined by the (Euclidean)
distances to the alternatives. The spatial model has played an impor-
tant role in political and social choice theory where the dimensions
are interpreted as different aspects or properties of the alternatives
(see, e.g., Ordeshook, 1993; Austen-Smith and Banks, 2000). For a
fixed natural number d of issues, we assume that candidates as well
as voters are located in the space [0, 1]d. The position of candidates
and voters can be thought of as their stance on the d issues. Voters’
preferences over candidates are given by the proximity to their own
position according to the Euclidian distance. The one-dimensional
case coincides with the well-studied model of single-peaked prefer-
ences. We generate tournaments by drawing the positions of candi-
dates and voters uniformly at random from [0, 1]d.

The uniform random tournament model was used in previous analy- uniform random
tournamentsis of the discriminativity of tournament solutions (Fisher and Reeves,

1995; Fey, 2008; Scott and Fey, 2012). It assigns the same probability
to each labeled tournament T of equal size, i.e.,

Pr(T) =
1

2(
m
2 )

for each T with |T | = m.

Note that it differs from all other models mentioned in the sense
that it samples the tournament directly and does not construct it as a
majority relation from a collection of sampled preference rankings.

2.3 comparison of stochastic models

To get a better understanding of the majority relation typically pro-
duced by the stochastic models, we ran some experiments to assess
their tendency towards majority relations that are transitive or exhibit
a Condorcet winner.

2.3.1 Degree of Transitivity

A complete relation is transitive if and only if it does not contain any
cycles. In fact, whenever a complete relation exhibits a cycle it does
also contain a 3-cycle. We follow Kendall and Babington Smith (1940) 3-cycle
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who consider c3(T), the number of 3-cycles in a tournament T a valid
measure of its transitivity:

In discussing inconsistences, therefore, it seems best to
confine attention to circular triads, which, so to speak, con-
stitute the inconsistent elements of the configuration.

Computing c3(T) only requires the score sequence (s1, . . . , s|T |) of T
(Moon, 1968, p. 11) since

c3(T) =

(
m

3

)
−

m∑
i=1

(
si
2

)
.

Kendall and Babington Smith (1940) observed that the maximum pos-
sible number of 3-cycles c3(T) in a tournament T of order m is

m3 −m

24
if m is odd

and

m3 − 4m

24
if m is even

and that both of these bounds are met by regular tournaments.14 Con-
sequently, they define

ζ(T) =

{
1− c3(T) · 24

m3−m
if |T | is odd

1− c3(T) · 24
m3−4m

if |T | is even

as a measure of consistence (or transitivity) of a tournament T .15measure of
transitivity We generated tournaments as complete majority relations for sce-

narios with 5 to 305 voters and a varying number of alternatives up
to 30. The resulting values of ζ for the different models are shown as
a heat map in Figure 2.1. Higher values of ζ are displayed in green,
corresponding to higher degree of transitivity.

We see that the number of voters does not seem to have a significant
effect for the urn models (including IC and IAC), at least in this range
of n. For the distance-based models, we see that an increase in the
number of voters induces a higher degree of transitivity. The highest
tendency towards rather transitive majority relations is observed for
the spatial model.

14 For even m, a regular tournament has only scores m2 and m
2 − 1. These tournaments

are also called semi-regular.
15 A second measure that comes to mind is the size of a minimum feedback arc set.

One problem of this measure is that its computation is NP-hard (Alon, 2006; Charbit
et al., 2007).
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m	  \	  n 5 35 125 215 305
5 0.83 0.60 0.75 0.67 0.76 0.62 0.71 0.71 0.67 0.73 0.73
10 0.36 0.34 0.29 0.21 0.25 0.31 0.28 0.27 0.32 0.31 0.31

0.17 0.14 0.11 0.11 0.12 0.14 0.14 0.13 0.09 0.11 0.11
20 0.12 0.05 0.05 0.05 0.03 0.05 0.05 0.06 0.06 0.06 0.08

0.06 0.04 0.03 0.02 0.05 0.02 0.03 0.03 0.02 0.03 0.03
30 0.05 0.03 0.02 0.02 0.01 0.03 0.03 0.02 0.01 0.02 0.02

impartial culture

m	  \	  n 5 35 125 215 305
5 0.98 0.92 0.96 0.98 0.98 1.00 0.96 0.98 1.00 1.00 1.00
10 0.57 0.86 0.82 0.91 0.93 0.93 0.91 0.91 0.97 0.97 0.94

0.72 0.66 0.83 0.88 0.85 0.87 0.86 0.91 0.86 0.88 0.90
20 0.54 0.69 0.73 0.78 0.81 0.84 0.84 0.81 0.87 0.83 0.85

0.50 0.62 0.71 0.69 0.72 0.82 0.82 0.80 0.84 0.85 0.85
30 0.52 0.54 0.61 0.68 0.71 0.75 0.74 0.82 0.78 0.81 0.82

spatial model (dim = 2)

m	  \	  n 5 35 125 215 305
5 0.75 0.79 0.69 0.71 0.63 0.71 0.70 0.67 0.66 0.68 0.73
10 0.36 0.28 0.30 0.29 0.28 0.25 0.26 0.33 0.28 0.26 0.27

0.17 0.10 0.13 0.12 0.11 0.12 0.14 0.08 0.10 0.10 0.10
20 0.11 0.05 0.06 0.04 0.07 0.05 0.04 0.06 0.07 0.05 0.05

0.06 0.04 0.03 0.03 0.03 0.04 0.03 0.02 0.04 0.02 0.05
30 0.04 0.02 0.03 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.01

impartial anonymous culture

m	  \	  n 5 35 125 215 305
5 0.83 0.70 0.68 0.88 0.81 0.64 0.65 0.71 0.77 0.65 0.70
10 0.34 0.33 0.29 0.27 0.28 0.26 0.33 0.24 0.31 0.28 0.30

0.16 0.11 0.13 0.10 0.10 0.10 0.11 0.12 0.07 0.12 0.14
20 0.10 0.06 0.07 0.06 0.05 0.05 0.05 0.06 0.05 0.04 0.06

0.06 0.04 0.04 0.04 0.03 0.02 0.02 0.04 0.04 0.02 0.04
30 0.05 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02

urn (α = 10)

m	  \	  n 5 35 125 215 305
5 0.81 0.66 0.71 0.73 0.72 0.78 0.72 0.58 0.77 0.76 0.76
10 0.42 0.50 0.39 0.46 0.52 0.45 0.60 0.56 0.60 0.65 0.68

0.23 0.20 0.29 0.33 0.44 0.53 0.53 0.65 0.56 0.67 0.69
20 0.10 0.15 0.23 0.34 0.39 0.57 0.58 0.65 0.65 0.68 0.67

0.08 0.20 0.26 0.41 0.49 0.59 0.57 0.69 0.71 0.73 0.69
30 0.06 0.15 0.21 0.41 0.57 0.58 0.64 0.69 0.71 0.75 0.77

Mallows-φ (φ = 0.95)

m	  \	  n 5 35 125 215 305
5 0.79 0.68 0.65 0.67 0.73 0.79 0.72 0.75 0.76 0.78 0.79
10 0.37 0.45 0.38 0.43 0.48 0.58 0.51 0.52 0.52 0.60 0.65

0.22 0.23 0.29 0.34 0.40 0.51 0.38 0.52 0.51 0.52 0.56
20 0.13 0.21 0.22 0.34 0.34 0.41 0.44 0.50 0.46 0.52 0.55

0.08 0.11 0.19 0.31 0.37 0.42 0.46 0.49 0.46 0.54 0.55
30 0.08 0.11 0.20 0.23 0.34 0.39 0.46 0.47 0.50 0.55 0.58

Mallows 4-mixture (φ = 0.9)

m	  \	  n 5 35 125 215 305
5 0.49 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.06 0.54 0.95 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.49 0.82 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 0.00 0.23 0.65 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.17 0.60 0.85 0.99 1.00 1.00 1.00 1.00 1.00 1.00
30 0.00 0.14 0.42 0.75 0.96 0.97 1.00 1.00 1.00 1.00 1.00

Condorcet noise (p = 0.65)

Figure 2.1: Degree of transitivity ζ for tournaments obtained from different
stochastic models. The more green, the higher the value of ζ,
corresponding to a lower number of 3-cycles in the generated
tournaments.
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2.3.2 Frequency of Condorcet winners

In anticipation of Part II where most of the functions considered all
coincide on tournaments with a Condorcet winner, the frequency of
which Condorcet winners exist is a second meaningful criterion for
comparing the different models. The results of our simulations (this
time for up to 50 alternatives to show a curious non-monontonicity
in Mallows’ models) are depicted in Figure 2.2.

Again, we see that for urn-based based models, the number of vot-
ers does not have a noteworthy effect on the criterion in question. For
the distance-based and the spatial model, larger number of voters
more frequently induce tournaments with Condorcet winners. Per-
haps unsurprisingly, there obviously is a strong correlation between
the degree of transitivity and the frequency of Condorcet winners.

2.4 summary

This chapter covered basic definitions and terminology, and discussed
the stochastic preference models we will use for the experiments in
the rest of the thesis. We compared the models by means of their ten-
dency to produce transitive majority relations or majority graphs with
Condorcet winners. The most notable insights are that the number
of voters does have little effect on the majority graphs obtained from
urn models, including the impartial and the impartial anonymous
culture. Among the models considered, the spatial model tends the
most towards transitivity in the majority relation and Condorcet win-
ners, only matched by the distance-based models when the number
of voters becomes very large.

A short comment on the effects of varying the chosen parameters
in our models is in order. Changes that increase homogeneity in the
the electorate—such as increasing p in the Condorcet noise model,
decreasing φ in Mallows-φ model, or increasing α in the urn model—
increase the degree of transitivity and the frequency of Condorcet
winners. For the spatial model, we have not found the dimension to
have a large impact on the results as long as it is at least 2 (data not
shown).

We summarize introduced notation on majority graphs in Table 2.1
for future reference.
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m	  \	  n 3 5 15 25 35 45 51
3 0.98 0.91 0.90 0.96 0.92 0.94 0.95 0.93 0.91 0.89 0.86 0.95 0.94 0.94 0.89 0.94 0.94 0.87 0.88 0.86 0.90 0.90 0.87 0.90 0.90

0.87 0.79 0.91 0.91 0.87 0.89 0.84 0.88 0.84 0.79 0.80 0.84 0.90 0.88 0.83 0.86 0.89 0.83 0.85 0.89 0.82 0.82 0.80 0.84 0.81
0.83 0.75 0.85 0.72 0.85 0.77 0.81 0.83 0.76 0.74 0.77 0.80 0.69 0.77 0.84 0.69 0.76 0.72 0.80 0.72 0.79 0.81 0.69 0.73 0.74
0.85 0.77 0.72 0.69 0.72 0.71 0.70 0.69 0.75 0.70 0.63 0.61 0.68 0.71 0.65 0.72 0.64 0.61 0.73 0.72 0.75 0.78 0.66 0.72 0.70
0.69 0.69 0.57 0.69 0.70 0.62 0.62 0.68 0.56 0.66 0.53 0.58 0.69 0.67 0.73 0.71 0.62 0.66 0.58 0.64 0.62 0.60 0.68 0.62 0.60
0.69 0.59 0.64 0.56 0.63 0.68 0.67 0.59 0.63 0.60 0.55 0.68 0.57 0.66 0.64 0.63 0.53 0.60 0.62 0.61 0.55 0.60 0.54 0.60 0.58
0.75 0.59 0.62 0.66 0.48 0.51 0.49 0.52 0.61 0.64 0.57 0.60 0.63 0.57 0.59 0.61 0.60 0.55 0.49 0.62 0.62 0.61 0.47 0.54 0.55
0.62 0.70 0.64 0.44 0.56 0.58 0.46 0.62 0.56 0.55 0.44 0.54 0.61 0.54 0.55 0.62 0.57 0.44 0.66 0.60 0.58 0.47 0.48 0.56 0.55
0.67 0.58 0.55 0.48 0.52 0.46 0.49 0.56 0.45 0.61 0.42 0.47 0.49 0.48 0.59 0.45 0.46 0.44 0.48 0.50 0.48 0.46 0.39 0.50 0.55
0.63 0.54 0.49 0.50 0.58 0.48 0.55 0.59 0.60 0.44 0.37 0.56 0.55 0.45 0.41 0.54 0.43 0.40 0.48 0.56 0.45 0.53 0.50 0.41 0.51
0.67 0.56 0.46 0.39 0.46 0.44 0.55 0.63 0.32 0.47 0.47 0.34 0.48 0.52 0.39 0.50 0.45 0.31 0.46 0.42 0.46 0.44 0.40 0.34 0.50
0.63 0.51 0.55 0.46 0.41 0.44 0.46 0.43 0.42 0.42 0.42 0.44 0.47 0.42 0.42 0.37 0.43 0.44 0.37 0.35 0.36 0.39 0.47 0.46 0.40
0.59 0.42 0.48 0.52 0.47 0.39 0.45 0.38 0.45 0.43 0.43 0.41 0.47 0.42 0.42 0.35 0.44 0.41 0.40 0.45 0.42 0.49 0.36 0.42 0.44
0.54 0.50 0.52 0.39 0.42 0.38 0.41 0.39 0.40 0.33 0.39 0.40 0.39 0.38 0.39 0.40 0.35 0.40 0.43 0.43 0.35 0.30 0.32 0.41 0.38
0.55 0.50 0.45 0.49 0.46 0.43 0.31 0.40 0.37 0.32 0.40 0.36 0.46 0.27 0.45 0.42 0.40 0.35 0.40 0.48 0.42 0.39 0.36 0.36 0.40
0.62 0.41 0.40 0.44 0.33 0.48 0.42 0.31 0.39 0.41 0.38 0.34 0.31 0.30 0.41 0.25 0.25 0.28 0.37 0.38 0.34 0.48 0.33 0.31 0.31
0.47 0.46 0.38 0.39 0.41 0.35 0.35 0.34 0.36 0.39 0.27 0.35 0.30 0.34 0.33 0.24 0.28 0.32 0.34 0.35 0.35 0.32 0.29 0.28 0.33
0.42 0.38 0.47 0.41 0.37 0.45 0.35 0.39 0.33 0.32 0.38 0.23 0.36 0.34 0.29 0.36 0.33 0.39 0.31 0.40 0.38 0.36 0.33 0.30 0.30
0.38 0.33 0.37 0.27 0.30 0.30 0.38 0.39 0.32 0.31 0.43 0.34 0.39 0.26 0.34 0.35 0.40 0.40 0.34 0.37 0.30 0.35 0.30 0.36 0.36
0.45 0.42 0.43 0.36 0.30 0.41 0.36 0.47 0.31 0.27 0.39 0.25 0.35 0.28 0.29 0.28 0.27 0.29 0.37 0.24 0.40 0.31 0.37 0.28 0.34
0.48 0.51 0.39 0.34 0.36 0.34 0.31 0.31 0.25 0.41 0.32 0.32 0.30 0.32 0.37 0.17 0.31 0.38 0.26 0.26 0.34 0.33 0.27 0.24 0.36
0.47 0.46 0.27 0.30 0.34 0.32 0.33 0.27 0.33 0.23 0.33 0.23 0.36 0.27 0.25 0.28 0.19 0.27 0.30 0.34 0.36 0.26 0.32 0.28 0.32
0.42 0.39 0.33 0.25 0.31 0.29 0.27 0.34 0.30 0.34 0.34 0.24 0.28 0.37 0.30 0.34 0.39 0.31 0.20 0.24 0.38 0.41 0.23 0.23 0.26
0.47 0.36 0.33 0.37 0.36 0.33 0.30 0.30 0.20 0.21 0.30 0.26 0.32 0.29 0.34 0.32 0.25 0.25 0.28 0.28 0.32 0.25 0.33 0.27 0.25
0.50 0.29 0.32 0.27 0.31 0.27 0.29 0.34 0.17 0.31 0.27 0.35 0.25 0.30 0.29 0.31 0.28 0.32 0.30 0.18 0.33 0.26 0.21 0.29 0.29
0.45 0.35 0.29 0.28 0.27 0.25 0.28 0.22 0.30 0.22 0.23 0.24 0.24 0.28 0.28 0.28 0.29 0.25 0.24 0.18 0.24 0.33 0.36 0.22 0.26
0.42 0.37 0.27 0.34 0.22 0.26 0.18 0.29 0.29 0.20 0.27 0.24 0.29 0.31 0.26 0.28 0.28 0.21 0.31 0.24 0.21 0.28 0.31 0.24 0.23
0.50 0.39 0.25 0.25 0.22 0.25 0.24 0.19 0.28 0.27 0.33 0.26 0.26 0.23 0.25 0.16 0.28 0.28 0.22 0.22 0.31 0.32 0.26 0.29 0.22
0.39 0.27 0.33 0.28 0.16 0.29 0.23 0.30 0.21 0.29 0.20 0.24 0.17 0.23 0.23 0.24 0.26 0.15 0.19 0.18 0.19 0.28 0.24 0.22 0.21
0.37 0.31 0.30 0.25 0.22 0.24 0.22 0.26 0.28 0.30 0.27 0.27 0.20 0.29 0.20 0.25 0.26 0.24 0.24 0.16 0.22 0.21 0.24 0.19 0.22
0.48 0.33 0.26 0.29 0.30 0.29 0.28 0.26 0.27 0.27 0.24 0.20 0.28 0.24 0.35 0.22 0.26 0.19 0.17 0.28 0.18 0.22 0.23 0.23 0.21
0.44 0.27 0.30 0.25 0.25 0.31 0.24 0.20 0.26 0.26 0.25 0.27 0.30 0.20 0.17 0.16 0.29 0.20 0.18 0.29 0.22 0.23 0.23 0.22 0.16
0.44 0.33 0.31 0.30 0.28 0.27 0.21 0.24 0.23 0.24 0.28 0.22 0.13 0.18 0.23 0.27 0.21 0.25 0.20 0.15 0.16 0.18 0.19 0.20 0.17
0.35 0.22 0.28 0.22 0.27 0.20 0.23 0.17 0.28 0.17 0.14 0.21 0.24 0.18 0.21 0.14 0.24 0.27 0.19 0.27 0.21 0.16 0.20 0.24 0.16
0.38 0.26 0.25 0.22 0.25 0.21 0.22 0.19 0.19 0.22 0.20 0.24 0.22 0.20 0.25 0.21 0.20 0.27 0.27 0.19 0.23 0.18 0.23 0.16 0.26
0.42 0.29 0.31 0.23 0.27 0.27 0.23 0.19 0.24 0.17 0.25 0.25 0.16 0.20 0.19 0.25 0.14 0.18 0.18 0.22 0.20 0.20 0.21 0.19 0.16
0.42 0.31 0.29 0.20 0.21 0.20 0.29 0.26 0.18 0.15 0.18 0.14 0.19 0.21 0.20 0.24 0.17 0.19 0.21 0.20 0.21 0.23 0.22 0.18 0.21
0.48 0.33 0.17 0.24 0.17 0.22 0.23 0.13 0.27 0.22 0.20 0.22 0.25 0.26 0.20 0.24 0.16 0.13 0.18 0.16 0.20 0.21 0.22 0.22 0.16
0.43 0.28 0.24 0.26 0.22 0.25 0.14 0.23 0.23 0.18 0.14 0.24 0.17 0.20 0.21 0.21 0.18 0.25 0.18 0.21 0.17 0.17 0.17 0.23 0.20
0.34 0.29 0.24 0.27 0.22 0.14 0.28 0.14 0.14 0.18 0.23 0.23 0.24 0.23 0.23 0.20 0.14 0.19 0.21 0.15 0.17 0.19 0.15 0.19 0.24
0.34 0.26 0.20 0.27 0.16 0.15 0.21 0.20 0.23 0.21 0.16 0.16 0.27 0.20 0.21 0.23 0.29 0.26 0.22 0.27 0.22 0.18 0.23 0.19 0.22
0.43 0.15 0.26 0.20 0.19 0.25 0.17 0.17 0.20 0.20 0.20 0.24 0.18 0.18 0.17 0.20 0.20 0.18 0.15 0.17 0.22 0.18 0.22 0.19 0.19
0.35 0.24 0.29 0.27 0.24 0.23 0.17 0.16 0.21 0.22 0.22 0.24 0.16 0.19 0.14 0.13 0.17 0.20 0.18 0.24 0.19 0.19 0.25 0.18 0.18
0.32 0.35 0.30 0.12 0.21 0.18 0.20 0.24 0.19 0.21 0.22 0.11 0.19 0.21 0.19 0.18 0.16 0.13 0.10 0.15 0.17 0.15 0.22 0.14 0.15
0.30 0.30 0.20 0.22 0.21 0.23 0.15 0.21 0.23 0.18 0.20 0.17 0.12 0.16 0.22 0.15 0.18 0.22 0.19 0.14 0.15 0.14 0.20 0.18 0.06
0.42 0.25 0.24 0.22 0.20 0.26 0.12 0.27 0.12 0.17 0.19 0.15 0.17 0.13 0.12 0.14 0.19 0.16 0.19 0.13 0.17 0.19 0.16 0.19 0.16
0.42 0.25 0.16 0.21 0.20 0.20 0.19 0.20 0.21 0.22 0.16 0.14 0.13 0.21 0.21 0.13 0.20 0.14 0.09 0.21 0.09 0.10 0.15 0.19 0.21
0.36 0.18 0.17 0.14 0.17 0.18 0.18 0.25 0.23 0.22 0.10 0.21 0.13 0.22 0.11 0.13 0.16 0.21 0.14 0.22 0.17 0.16 0.14 0.13 0.18
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impartial culture

m	  \	  n 3 5 15 25 35 45 51
3 0.97 0.99 0.98 0.96 0.98 0.97 0.98 0.98 1.00 0.99 1.00 0.99 1.00 1.00 0.97 1.00 0.99 0.97 1.00 1.00 0.99 0.96 1.00 1.00 0.99

0.96 0.99 0.97 0.96 0.98 1.00 0.96 1.00 0.97 0.98 0.98 0.98 1.00 0.99 0.97 0.98 0.98 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99
0.93 0.90 0.94 0.98 0.95 0.96 0.93 0.94 0.97 0.93 0.95 0.98 0.99 0.96 0.98 0.98 1.00 0.97 0.99 0.96 1.00 0.97 1.00 0.99 0.96
0.96 0.90 0.94 0.95 0.93 0.94 0.91 0.96 0.95 0.97 0.96 0.98 0.95 0.94 1.00 0.99 0.99 0.98 0.97 0.98 0.98 1.00 0.97 0.99 0.98
0.90 0.87 0.87 0.91 0.96 0.90 0.94 0.96 0.97 0.94 0.92 0.93 0.94 0.92 0.96 0.97 0.99 0.96 0.93 0.97 0.98 0.97 0.96 0.99 0.97
0.88 0.92 0.85 0.90 0.95 0.95 0.95 0.93 0.95 0.92 0.90 0.89 0.92 0.95 0.94 0.97 0.96 0.93 0.97 0.96 0.96 0.97 0.98 0.98 0.96
0.82 0.86 0.94 0.91 0.90 0.88 0.90 0.91 0.91 0.97 0.91 0.92 0.89 0.97 0.91 0.95 0.95 0.96 0.94 0.98 0.95 0.94 0.98 0.98 0.95
0.87 0.86 0.85 0.89 0.86 0.89 0.85 0.91 0.91 0.90 0.89 0.91 0.92 0.94 0.93 0.89 0.94 0.92 0.95 0.93 0.94 0.97 0.94 0.93 0.96
0.76 0.85 0.78 0.87 0.84 0.91 0.83 0.88 0.96 0.86 0.92 0.88 0.92 0.92 0.90 0.96 0.89 0.94 0.94 0.95 0.95 0.91 0.95 0.97 0.92
0.88 0.78 0.84 0.83 0.85 0.90 0.87 0.89 0.87 0.89 0.94 0.90 0.95 0.90 0.89 0.90 0.94 0.90 0.90 0.95 0.93 0.97 0.94 0.93 0.96
0.80 0.79 0.75 0.80 0.86 0.88 0.87 0.86 0.89 0.89 0.93 0.88 0.92 0.89 0.92 0.94 0.95 0.95 0.95 0.93 0.92 0.95 0.96 0.97 0.99
0.72 0.80 0.79 0.90 0.88 0.81 0.85 0.88 0.87 0.89 0.85 0.91 0.87 0.93 0.89 0.91 0.95 0.87 0.93 0.92 0.96 0.94 0.90 0.94 0.99
0.78 0.73 0.83 0.74 0.82 0.85 0.80 0.82 0.81 0.86 0.88 0.85 0.93 0.92 0.87 0.89 0.91 0.94 0.92 0.91 0.97 0.94 0.90 0.92 0.91
0.82 0.74 0.77 0.77 0.72 0.81 0.84 0.91 0.83 0.89 0.80 0.85 0.89 0.89 0.92 0.91 0.91 0.89 0.86 0.94 0.90 0.92 0.93 0.92 0.92
0.85 0.79 0.76 0.70 0.80 0.80 0.82 0.76 0.77 0.85 0.88 0.89 0.87 0.92 0.87 0.88 0.93 0.85 0.91 0.91 0.92 0.90 0.97 0.94 0.93
0.75 0.64 0.64 0.79 0.73 0.73 0.82 0.80 0.82 0.84 0.88 0.91 0.80 0.83 0.88 0.89 0.86 0.87 0.93 0.92 0.91 0.95 0.88 0.93 0.97
0.68 0.69 0.68 0.78 0.74 0.87 0.83 0.78 0.81 0.88 0.85 0.86 0.93 0.84 0.87 0.89 0.86 0.86 0.89 0.91 0.89 0.90 0.89 0.94 0.92
0.71 0.64 0.68 0.71 0.76 0.75 0.78 0.80 0.83 0.79 0.83 0.83 0.90 0.84 0.84 0.85 0.86 0.95 0.91 0.95 0.91 0.89 0.91 0.96 0.87
0.72 0.65 0.70 0.70 0.76 0.80 0.73 0.77 0.85 0.82 0.85 0.82 0.84 0.89 0.87 0.93 0.90 0.91 0.87 0.88 0.92 0.86 0.94 0.92 0.88
0.69 0.63 0.60 0.77 0.83 0.68 0.81 0.85 0.80 0.85 0.78 0.85 0.80 0.89 0.82 0.89 0.82 0.86 0.91 0.85 0.81 0.90 0.90 0.89 0.91
0.77 0.69 0.72 0.70 0.77 0.73 0.79 0.70 0.78 0.80 0.81 0.75 0.87 0.85 0.88 0.88 0.88 0.91 0.87 0.95 0.85 0.85 0.87 0.93 0.95
0.74 0.69 0.66 0.65 0.75 0.73 0.77 0.78 0.81 0.82 0.85 0.91 0.82 0.84 0.87 0.77 0.90 0.91 0.91 0.79 0.91 0.90 0.90 0.88 0.88
0.71 0.51 0.60 0.61 0.77 0.76 0.71 0.68 0.73 0.76 0.69 0.88 0.81 0.84 0.90 0.87 0.86 0.87 0.87 0.87 0.88 0.92 0.84 0.87 0.88
0.69 0.72 0.68 0.65 0.69 0.72 0.72 0.75 0.70 0.77 0.75 0.78 0.78 0.82 0.80 0.81 0.87 0.92 0.84 0.93 0.83 0.85 0.84 0.95 0.92
0.74 0.58 0.64 0.67 0.68 0.74 0.72 0.76 0.72 0.86 0.86 0.83 0.76 0.87 0.80 0.80 0.81 0.87 0.86 0.89 0.92 0.90 0.87 0.83 0.89
0.64 0.54 0.66 0.57 0.66 0.60 0.64 0.74 0.77 0.74 0.79 0.78 0.82 0.84 0.81 0.85 0.90 0.83 0.88 0.86 0.90 0.86 0.82 0.91 0.89
0.70 0.66 0.63 0.74 0.67 0.71 0.76 0.70 0.74 0.76 0.82 0.84 0.80 0.78 0.86 0.89 0.82 0.82 0.86 0.85 0.85 0.93 0.85 0.89 0.91
0.68 0.47 0.59 0.53 0.63 0.72 0.67 0.83 0.70 0.72 0.60 0.80 0.88 0.86 0.85 0.78 0.85 0.84 0.84 0.90 0.86 0.84 0.86 0.87 0.85
0.66 0.61 0.68 0.72 0.70 0.69 0.70 0.70 0.69 0.71 0.71 0.78 0.73 0.79 0.87 0.77 0.80 0.86 0.83 0.83 0.80 0.88 0.83 0.87 0.90
0.60 0.49 0.60 0.65 0.60 0.65 0.64 0.71 0.78 0.74 0.79 0.78 0.77 0.77 0.85 0.75 0.82 0.84 0.84 0.82 0.85 0.83 0.92 0.85 0.84
0.64 0.51 0.53 0.63 0.59 0.62 0.70 0.65 0.77 0.67 0.87 0.73 0.78 0.79 0.83 0.84 0.77 0.79 0.80 0.76 0.81 0.89 0.88 0.83 0.86
0.65 0.58 0.51 0.56 0.64 0.71 0.70 0.67 0.66 0.67 0.79 0.74 0.78 0.82 0.79 0.83 0.80 0.80 0.88 0.86 0.85 0.82 0.87 0.84 0.89
0.62 0.60 0.59 0.51 0.63 0.66 0.62 0.67 0.70 0.66 0.68 0.73 0.73 0.79 0.81 0.84 0.81 0.82 0.83 0.87 0.80 0.83 0.90 0.85 0.88
0.63 0.49 0.43 0.56 0.61 0.67 0.74 0.70 0.69 0.85 0.82 0.74 0.76 0.84 0.81 0.77 0.82 0.81 0.75 0.83 0.84 0.82 0.81 0.88 0.79
0.70 0.56 0.52 0.49 0.56 0.64 0.61 0.66 0.71 0.68 0.69 0.82 0.80 0.77 0.82 0.82 0.84 0.85 0.80 0.78 0.80 0.82 0.81 0.84 0.82
0.56 0.51 0.50 0.61 0.66 0.64 0.64 0.65 0.70 0.76 0.71 0.69 0.76 0.77 0.74 0.84 0.81 0.80 0.83 0.82 0.86 0.85 0.89 0.81 0.79
0.74 0.53 0.63 0.59 0.62 0.67 0.59 0.66 0.68 0.64 0.74 0.76 0.75 0.77 0.84 0.80 0.82 0.75 0.81 0.80 0.84 0.81 0.81 0.78 0.91
0.66 0.60 0.66 0.50 0.50 0.58 0.65 0.67 0.67 0.71 0.74 0.70 0.75 0.73 0.75 0.67 0.83 0.83 0.75 0.85 0.89 0.81 0.89 0.90 0.73
0.57 0.40 0.54 0.46 0.67 0.56 0.63 0.71 0.64 0.70 0.70 0.75 0.68 0.75 0.73 0.76 0.76 0.78 0.79 0.75 0.81 0.83 0.86 0.79 0.90
0.58 0.50 0.45 0.54 0.65 0.58 0.63 0.50 0.68 0.67 0.66 0.73 0.75 0.75 0.70 0.81 0.79 0.75 0.81 0.80 0.81 0.87 0.74 0.83 0.86
0.53 0.56 0.49 0.44 0.49 0.57 0.59 0.62 0.73 0.64 0.70 0.70 0.76 0.74 0.86 0.76 0.81 0.81 0.80 0.81 0.82 0.79 0.79 0.83 0.83
0.62 0.54 0.54 0.48 0.43 0.55 0.68 0.64 0.68 0.67 0.67 0.78 0.79 0.76 0.82 0.76 0.72 0.71 0.74 0.77 0.84 0.81 0.84 0.81 0.82
0.54 0.44 0.49 0.49 0.60 0.52 0.60 0.61 0.63 0.70 0.63 0.61 0.74 0.72 0.69 0.68 0.78 0.73 0.76 0.71 0.76 0.85 0.85 0.87 0.75
0.54 0.56 0.51 0.55 0.60 0.59 0.61 0.71 0.63 0.68 0.69 0.68 0.72 0.76 0.70 0.79 0.78 0.74 0.80 0.72 0.83 0.82 0.73 0.79 0.83
0.65 0.57 0.45 0.49 0.50 0.44 0.62 0.61 0.59 0.74 0.69 0.78 0.65 0.77 0.68 0.72 0.71 0.72 0.79 0.75 0.78 0.80 0.78 0.85 0.89
0.49 0.46 0.49 0.49 0.57 0.58 0.60 0.62 0.56 0.65 0.59 0.64 0.75 0.75 0.78 0.80 0.77 0.79 0.82 0.78 0.79 0.81 0.77 0.85 0.81
0.51 0.53 0.37 0.46 0.46 0.60 0.59 0.60 0.52 0.62 0.76 0.65 0.75 0.70 0.75 0.65 0.69 0.78 0.66 0.74 0.77 0.72 0.80 0.86 0.77
0.51 0.57 0.50 0.51 0.53 0.58 0.59 0.60 0.64 0.69 0.64 0.63 0.74 0.64 0.74 0.68 0.73 0.73 0.78 0.83 0.70 0.87 0.86 0.76 0.84
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spatial model (dim = 2)
m	  \	  n 3 5 15 25 35 45 51
3 0.99 0.91 0.94 0.95 0.93 0.96 0.93 0.92 0.94 0.95 0.90 0.97 0.92 0.92 0.96 0.95 0.96 0.92 0.98 0.95 0.93 0.92 0.96 0.95 0.96

0.92 0.90 0.80 0.90 0.90 0.79 0.85 0.87 0.88 0.77 0.78 0.85 0.89 0.78 0.88 0.85 0.87 0.88 0.86 0.85 0.83 0.88 0.82 0.89 0.82
0.86 0.75 0.80 0.84 0.75 0.72 0.81 0.82 0.82 0.87 0.73 0.71 0.70 0.78 0.66 0.73 0.82 0.79 0.82 0.76 0.73 0.75 0.68 0.78 0.81
0.78 0.74 0.80 0.74 0.73 0.70 0.62 0.72 0.79 0.65 0.61 0.77 0.63 0.70 0.67 0.70 0.71 0.66 0.71 0.64 0.74 0.65 0.66 0.71 0.69
0.76 0.76 0.61 0.61 0.65 0.65 0.66 0.70 0.60 0.62 0.64 0.70 0.63 0.67 0.70 0.60 0.71 0.65 0.55 0.65 0.65 0.63 0.59 0.66 0.65
0.77 0.62 0.66 0.57 0.66 0.61 0.56 0.65 0.65 0.65 0.66 0.62 0.62 0.62 0.62 0.46 0.55 0.64 0.64 0.59 0.53 0.64 0.61 0.69 0.63
0.70 0.67 0.68 0.55 0.52 0.57 0.60 0.66 0.54 0.52 0.58 0.61 0.62 0.59 0.60 0.57 0.56 0.60 0.56 0.56 0.59 0.59 0.51 0.51 0.47
0.74 0.60 0.55 0.55 0.56 0.46 0.54 0.51 0.55 0.51 0.52 0.51 0.56 0.50 0.44 0.60 0.48 0.50 0.46 0.53 0.48 0.56 0.51 0.55 0.42
0.57 0.51 0.65 0.57 0.57 0.46 0.52 0.51 0.62 0.51 0.53 0.45 0.40 0.46 0.47 0.46 0.49 0.44 0.54 0.43 0.52 0.51 0.54 0.51 0.49
0.67 0.50 0.54 0.64 0.51 0.50 0.56 0.43 0.60 0.57 0.35 0.48 0.48 0.55 0.44 0.49 0.49 0.40 0.48 0.56 0.41 0.42 0.52 0.43 0.42
0.54 0.58 0.61 0.56 0.41 0.47 0.51 0.44 0.44 0.41 0.41 0.43 0.52 0.39 0.40 0.40 0.42 0.43 0.46 0.45 0.44 0.42 0.42 0.45 0.43
0.51 0.45 0.48 0.51 0.41 0.42 0.40 0.39 0.45 0.46 0.48 0.36 0.49 0.38 0.32 0.50 0.54 0.45 0.43 0.46 0.44 0.45 0.39 0.32 0.49
0.58 0.38 0.43 0.52 0.51 0.52 0.46 0.45 0.34 0.39 0.39 0.35 0.43 0.37 0.32 0.41 0.38 0.50 0.43 0.40 0.41 0.43 0.45 0.40 0.38
0.53 0.54 0.44 0.42 0.46 0.36 0.38 0.47 0.41 0.43 0.40 0.34 0.54 0.35 0.49 0.45 0.38 0.39 0.43 0.43 0.39 0.42 0.37 0.50 0.45
0.50 0.50 0.43 0.45 0.43 0.39 0.50 0.37 0.40 0.33 0.43 0.43 0.38 0.41 0.47 0.35 0.36 0.32 0.34 0.43 0.51 0.35 0.32 0.36 0.36
0.49 0.41 0.35 0.40 0.44 0.28 0.38 0.41 0.35 0.43 0.29 0.30 0.43 0.34 0.36 0.36 0.50 0.39 0.30 0.32 0.35 0.35 0.31 0.35 0.36
0.49 0.45 0.34 0.40 0.34 0.46 0.39 0.44 0.27 0.31 0.30 0.30 0.34 0.39 0.36 0.36 0.36 0.36 0.34 0.38 0.35 0.38 0.39 0.38 0.36
0.58 0.45 0.44 0.41 0.31 0.36 0.41 0.39 0.33 0.35 0.35 0.26 0.38 0.32 0.35 0.29 0.22 0.25 0.44 0.39 0.41 0.34 0.40 0.32 0.29
0.49 0.46 0.38 0.41 0.30 0.34 0.31 0.33 0.25 0.35 0.34 0.34 0.35 0.39 0.31 0.33 0.37 0.30 0.30 0.38 0.31 0.30 0.40 0.27 0.32
0.50 0.43 0.41 0.32 0.39 0.30 0.33 0.26 0.36 0.28 0.35 0.35 0.33 0.25 0.27 0.23 0.31 0.26 0.25 0.29 0.31 0.30 0.32 0.26 0.32
0.58 0.34 0.39 0.33 0.39 0.33 0.30 0.41 0.40 0.31 0.31 0.41 0.34 0.32 0.23 0.31 0.27 0.30 0.31 0.23 0.26 0.30 0.31 0.27 0.26
0.52 0.31 0.38 0.25 0.38 0.31 0.41 0.30 0.26 0.36 0.31 0.35 0.24 0.27 0.27 0.29 0.28 0.26 0.33 0.27 0.29 0.32 0.22 0.28 0.26
0.51 0.42 0.43 0.29 0.43 0.30 0.28 0.28 0.29 0.25 0.28 0.29 0.34 0.32 0.28 0.26 0.30 0.27 0.35 0.23 0.29 0.26 0.31 0.25 0.26
0.50 0.47 0.33 0.29 0.24 0.26 0.28 0.24 0.30 0.31 0.29 0.28 0.18 0.19 0.26 0.27 0.25 0.17 0.26 0.28 0.22 0.37 0.30 0.20 0.31
0.50 0.30 0.27 0.26 0.23 0.30 0.35 0.30 0.21 0.31 0.21 0.30 0.24 0.35 0.24 0.25 0.27 0.22 0.33 0.23 0.29 0.28 0.21 0.27 0.26
0.43 0.43 0.32 0.29 0.28 0.39 0.18 0.28 0.30 0.28 0.37 0.28 0.25 0.25 0.33 0.21 0.24 0.29 0.20 0.24 0.24 0.25 0.25 0.28 0.21
0.51 0.32 0.34 0.31 0.21 0.20 0.24 0.31 0.32 0.32 0.22 0.31 0.17 0.25 0.23 0.25 0.28 0.22 0.24 0.32 0.18 0.26 0.23 0.24 0.24
0.43 0.37 0.31 0.25 0.37 0.36 0.24 0.30 0.23 0.35 0.24 0.24 0.27 0.21 0.32 0.27 0.23 0.19 0.16 0.25 0.27 0.33 0.26 0.28 0.25
0.44 0.35 0.33 0.27 0.27 0.27 0.27 0.20 0.23 0.28 0.28 0.29 0.16 0.23 0.22 0.29 0.20 0.22 0.30 0.28 0.20 0.19 0.24 0.15 0.27
0.38 0.28 0.31 0.25 0.34 0.26 0.26 0.24 0.25 0.19 0.29 0.22 0.31 0.28 0.16 0.25 0.21 0.25 0.25 0.20 0.25 0.24 0.23 0.19 0.21
0.44 0.26 0.31 0.19 0.26 0.23 0.31 0.22 0.25 0.23 0.18 0.23 0.24 0.31 0.25 0.15 0.23 0.24 0.31 0.26 0.23 0.21 0.23 0.19 0.24
0.41 0.32 0.25 0.21 0.33 0.22 0.21 0.24 0.34 0.28 0.30 0.25 0.33 0.33 0.24 0.23 0.14 0.21 0.21 0.19 0.20 0.23 0.26 0.31 0.16
0.43 0.29 0.22 0.28 0.22 0.28 0.21 0.16 0.19 0.28 0.31 0.22 0.25 0.26 0.18 0.25 0.24 0.20 0.28 0.23 0.28 0.19 0.25 0.27 0.19
0.46 0.37 0.26 0.38 0.27 0.27 0.21 0.26 0.22 0.24 0.19 0.24 0.25 0.25 0.21 0.18 0.24 0.14 0.25 0.18 0.21 0.22 0.15 0.22 0.19
0.40 0.38 0.27 0.26 0.26 0.26 0.16 0.29 0.27 0.28 0.25 0.33 0.21 0.19 0.22 0.20 0.33 0.24 0.28 0.24 0.22 0.29 0.26 0.20 0.23
0.34 0.33 0.25 0.26 0.29 0.31 0.13 0.33 0.22 0.23 0.14 0.18 0.16 0.18 0.24 0.23 0.18 0.20 0.30 0.24 0.22 0.27 0.31 0.21 0.26
0.45 0.30 0.21 0.26 0.27 0.24 0.21 0.25 0.21 0.18 0.24 0.27 0.27 0.19 0.20 0.17 0.15 0.19 0.25 0.25 0.26 0.26 0.21 0.16 0.19
0.43 0.34 0.37 0.20 0.18 0.29 0.20 0.15 0.22 0.22 0.14 0.16 0.21 0.12 0.21 0.12 0.18 0.19 0.19 0.25 0.28 0.19 0.23 0.17 0.22
0.38 0.24 0.22 0.25 0.18 0.18 0.23 0.19 0.16 0.18 0.20 0.23 0.23 0.19 0.20 0.17 0.22 0.21 0.19 0.15 0.25 0.17 0.21 0.19 0.16
0.36 0.33 0.26 0.25 0.18 0.25 0.15 0.20 0.19 0.24 0.22 0.18 0.16 0.30 0.15 0.16 0.16 0.16 0.24 0.11 0.24 0.15 0.24 0.25 0.20
0.35 0.30 0.24 0.21 0.19 0.22 0.16 0.20 0.21 0.29 0.23 0.18 0.17 0.15 0.17 0.20 0.15 0.22 0.18 0.18 0.17 0.19 0.18 0.12 0.18
0.43 0.21 0.25 0.26 0.25 0.26 0.24 0.20 0.15 0.19 0.20 0.21 0.20 0.18 0.13 0.12 0.15 0.18 0.17 0.11 0.12 0.16 0.18 0.24 0.20
0.33 0.25 0.23 0.21 0.24 0.24 0.19 0.15 0.14 0.19 0.15 0.14 0.21 0.18 0.23 0.11 0.16 0.24 0.16 0.17 0.11 0.21 0.22 0.21 0.18
0.36 0.26 0.32 0.24 0.20 0.17 0.17 0.18 0.17 0.19 0.22 0.15 0.16 0.16 0.22 0.15 0.20 0.17 0.17 0.16 0.15 0.17 0.17 0.14 0.17
0.37 0.24 0.22 0.22 0.15 0.18 0.20 0.23 0.19 0.14 0.12 0.20 0.20 0.23 0.09 0.15 0.20 0.15 0.17 0.17 0.14 0.16 0.15 0.14 0.23
0.44 0.27 0.26 0.21 0.24 0.15 0.19 0.16 0.17 0.22 0.15 0.22 0.13 0.11 0.24 0.17 0.16 0.17 0.21 0.21 0.19 0.11 0.21 0.16 0.14
0.40 0.24 0.24 0.30 0.26 0.12 0.21 0.22 0.17 0.13 0.16 0.15 0.18 0.23 0.15 0.12 0.18 0.23 0.14 0.16 0.21 0.16 0.14 0.23 0.16
0.30 0.32 0.18 0.21 0.17 0.22 0.12 0.23 0.20 0.17 0.18 0.09 0.13 0.14 0.19 0.18 0.23 0.17 0.22 0.17 0.12 0.25 0.17 0.20 0.15
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impartial anonymous culture

m	  \	  n 3 5 15 25 35 45 51
3 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.97 1.00 1.00

0.96 0.98 0.94 0.96 0.95 0.96 0.90 0.96 0.93 0.91 0.94 0.89 0.87 0.92 0.91 0.93 0.96 0.91 0.96 0.91 0.98 0.92 0.90 0.86 0.89
0.83 0.84 0.79 0.75 0.77 0.74 0.86 0.74 0.77 0.81 0.80 0.75 0.78 0.81 0.82 0.76 0.71 0.77 0.73 0.84 0.82 0.76 0.79 0.79 0.86
0.83 0.68 0.66 0.76 0.78 0.68 0.65 0.80 0.65 0.71 0.73 0.80 0.66 0.70 0.75 0.72 0.72 0.63 0.70 0.70 0.70 0.69 0.70 0.65 0.65
0.81 0.69 0.64 0.72 0.60 0.62 0.62 0.63 0.55 0.70 0.62 0.69 0.61 0.64 0.68 0.60 0.73 0.65 0.64 0.72 0.73 0.63 0.64 0.75 0.66
0.76 0.66 0.68 0.69 0.65 0.60 0.55 0.60 0.60 0.67 0.59 0.58 0.57 0.56 0.63 0.59 0.59 0.58 0.58 0.56 0.60 0.55 0.56 0.66 0.59
0.71 0.63 0.59 0.55 0.57 0.54 0.60 0.61 0.60 0.56 0.58 0.54 0.61 0.49 0.55 0.54 0.52 0.52 0.55 0.59 0.54 0.54 0.66 0.58 0.60
0.70 0.65 0.53 0.58 0.50 0.55 0.60 0.60 0.58 0.60 0.49 0.54 0.49 0.48 0.50 0.57 0.59 0.52 0.52 0.52 0.60 0.49 0.54 0.54 0.45
0.71 0.67 0.57 0.56 0.54 0.52 0.48 0.49 0.58 0.56 0.56 0.52 0.45 0.53 0.45 0.55 0.58 0.47 0.42 0.55 0.45 0.42 0.53 0.45 0.45
0.68 0.44 0.52 0.50 0.52 0.51 0.40 0.52 0.51 0.44 0.45 0.57 0.54 0.45 0.47 0.46 0.55 0.42 0.50 0.46 0.54 0.46 0.47 0.45 0.34
0.62 0.53 0.56 0.49 0.44 0.48 0.48 0.50 0.41 0.37 0.40 0.42 0.46 0.45 0.48 0.50 0.38 0.42 0.41 0.46 0.44 0.46 0.47 0.39 0.46
0.67 0.45 0.47 0.50 0.42 0.39 0.50 0.51 0.44 0.41 0.43 0.45 0.47 0.44 0.48 0.36 0.28 0.43 0.35 0.34 0.43 0.45 0.38 0.44 0.41
0.60 0.53 0.54 0.49 0.41 0.42 0.46 0.46 0.44 0.40 0.40 0.42 0.40 0.41 0.36 0.42 0.41 0.35 0.37 0.35 0.42 0.45 0.39 0.39 0.36
0.54 0.49 0.45 0.46 0.34 0.46 0.47 0.45 0.44 0.38 0.38 0.33 0.43 0.38 0.41 0.38 0.40 0.44 0.43 0.38 0.38 0.42 0.36 0.29 0.32
0.58 0.51 0.45 0.34 0.43 0.38 0.46 0.38 0.42 0.48 0.34 0.28 0.33 0.39 0.36 0.40 0.32 0.33 0.34 0.35 0.43 0.36 0.35 0.29 0.35
0.53 0.39 0.37 0.40 0.40 0.45 0.41 0.30 0.45 0.37 0.37 0.41 0.35 0.36 0.34 0.45 0.24 0.36 0.29 0.37 0.30 0.35 0.37 0.35 0.39
0.61 0.39 0.38 0.45 0.30 0.30 0.42 0.43 0.34 0.29 0.32 0.31 0.33 0.33 0.34 0.33 0.43 0.27 0.32 0.45 0.34 0.31 0.26 0.31 0.27
0.56 0.43 0.33 0.35 0.38 0.35 0.32 0.32 0.44 0.36 0.32 0.38 0.33 0.37 0.33 0.28 0.32 0.25 0.30 0.32 0.34 0.33 0.28 0.34 0.45
0.62 0.37 0.44 0.48 0.29 0.40 0.31 0.35 0.34 0.30 0.37 0.37 0.41 0.44 0.31 0.34 0.33 0.24 0.31 0.36 0.32 0.34 0.30 0.29 0.25
0.56 0.35 0.40 0.43 0.26 0.28 0.32 0.29 0.29 0.42 0.34 0.28 0.24 0.33 0.37 0.27 0.32 0.32 0.33 0.29 0.28 0.26 0.32 0.29 0.31
0.42 0.43 0.33 0.40 0.32 0.33 0.19 0.33 0.37 0.37 0.35 0.43 0.26 0.38 0.28 0.23 0.29 0.30 0.24 0.27 0.31 0.34 0.34 0.30 0.26
0.48 0.37 0.36 0.30 0.28 0.29 0.27 0.27 0.33 0.28 0.33 0.27 0.31 0.36 0.33 0.34 0.35 0.28 0.26 0.19 0.33 0.30 0.34 0.36 0.30
0.48 0.41 0.29 0.27 0.32 0.30 0.33 0.30 0.29 0.35 0.24 0.24 0.33 0.32 0.21 0.30 0.23 0.25 0.31 0.28 0.31 0.22 0.33 0.26 0.31
0.54 0.39 0.37 0.27 0.32 0.28 0.33 0.31 0.21 0.32 0.21 0.35 0.22 0.32 0.30 0.27 0.21 0.26 0.28 0.30 0.40 0.27 0.24 0.22 0.26
0.42 0.30 0.32 0.26 0.29 0.29 0.22 0.35 0.31 0.29 0.23 0.27 0.34 0.25 0.29 0.29 0.27 0.19 0.28 0.32 0.27 0.30 0.25 0.26 0.35
0.43 0.42 0.31 0.31 0.37 0.29 0.25 0.27 0.35 0.28 0.20 0.26 0.34 0.30 0.31 0.25 0.23 0.21 0.24 0.21 0.18 0.36 0.31 0.23 0.23
0.45 0.37 0.32 0.38 0.39 0.20 0.28 0.18 0.37 0.27 0.25 0.29 0.28 0.23 0.22 0.26 0.24 0.22 0.31 0.30 0.31 0.27 0.27 0.21 0.30
0.39 0.36 0.35 0.31 0.21 0.31 0.20 0.17 0.23 0.32 0.27 0.26 0.25 0.27 0.28 0.21 0.23 0.25 0.27 0.23 0.22 0.23 0.28 0.25 0.17
0.53 0.35 0.26 0.33 0.26 0.27 0.28 0.31 0.32 0.34 0.31 0.24 0.30 0.16 0.25 0.27 0.20 0.19 0.20 0.24 0.22 0.26 0.26 0.24 0.23
0.41 0.31 0.27 0.26 0.30 0.30 0.28 0.21 0.33 0.24 0.30 0.29 0.28 0.25 0.28 0.29 0.27 0.26 0.25 0.31 0.25 0.18 0.28 0.22 0.20
0.43 0.39 0.32 0.23 0.23 0.23 0.23 0.28 0.21 0.19 0.24 0.28 0.35 0.20 0.26 0.25 0.16 0.22 0.24 0.22 0.20 0.24 0.26 0.24 0.25
0.39 0.37 0.33 0.29 0.25 0.28 0.25 0.25 0.29 0.20 0.24 0.28 0.24 0.29 0.15 0.16 0.19 0.23 0.25 0.26 0.16 0.18 0.26 0.28 0.20
0.46 0.31 0.36 0.33 0.26 0.24 0.24 0.20 0.21 0.25 0.23 0.20 0.22 0.26 0.25 0.19 0.23 0.24 0.20 0.15 0.16 0.27 0.24 0.20 0.25
0.34 0.38 0.30 0.35 0.24 0.26 0.25 0.18 0.19 0.24 0.21 0.27 0.20 0.18 0.27 0.29 0.17 0.21 0.17 0.17 0.18 0.21 0.24 0.23 0.28
0.38 0.26 0.21 0.29 0.24 0.23 0.20 0.22 0.30 0.22 0.27 0.27 0.17 0.22 0.24 0.25 0.18 0.26 0.17 0.18 0.26 0.20 0.12 0.16 0.22
0.34 0.27 0.22 0.22 0.29 0.15 0.24 0.16 0.23 0.24 0.20 0.18 0.26 0.20 0.22 0.15 0.23 0.19 0.26 0.19 0.23 0.19 0.19 0.22 0.21
0.37 0.33 0.27 0.28 0.26 0.24 0.19 0.20 0.26 0.21 0.22 0.21 0.23 0.18 0.18 0.27 0.26 0.19 0.17 0.14 0.21 0.15 0.22 0.24 0.29
0.44 0.30 0.26 0.20 0.23 0.29 0.20 0.22 0.16 0.21 0.22 0.22 0.19 0.20 0.15 0.20 0.17 0.10 0.20 0.19 0.24 0.19 0.20 0.17 0.22
0.34 0.27 0.23 0.19 0.27 0.31 0.19 0.20 0.24 0.18 0.20 0.15 0.20 0.17 0.24 0.19 0.22 0.17 0.15 0.28 0.21 0.18 0.27 0.25 0.17
0.40 0.24 0.25 0.24 0.21 0.16 0.24 0.19 0.25 0.20 0.20 0.23 0.18 0.14 0.26 0.20 0.17 0.16 0.17 0.11 0.17 0.22 0.17 0.19 0.14
0.42 0.26 0.25 0.23 0.18 0.25 0.25 0.17 0.18 0.18 0.19 0.19 0.17 0.20 0.21 0.21 0.20 0.16 0.17 0.14 0.19 0.24 0.22 0.21 0.20
0.45 0.28 0.26 0.24 0.21 0.14 0.21 0.15 0.12 0.11 0.17 0.26 0.18 0.18 0.22 0.16 0.21 0.12 0.19 0.13 0.19 0.18 0.16 0.24 0.19
0.37 0.27 0.22 0.22 0.23 0.15 0.19 0.18 0.20 0.23 0.18 0.18 0.20 0.15 0.16 0.26 0.20 0.18 0.16 0.20 0.14 0.25 0.21 0.24 0.16
0.30 0.30 0.20 0.20 0.19 0.19 0.26 0.19 0.19 0.14 0.19 0.21 0.22 0.26 0.12 0.17 0.15 0.14 0.13 0.17 0.17 0.20 0.13 0.14 0.21
0.35 0.30 0.32 0.20 0.26 0.18 0.21 0.15 0.17 0.16 0.21 0.16 0.16 0.17 0.18 0.18 0.16 0.22 0.16 0.20 0.20 0.19 0.16 0.18 0.30
0.43 0.26 0.22 0.17 0.17 0.17 0.22 0.19 0.21 0.19 0.13 0.14 0.24 0.22 0.17 0.16 0.18 0.16 0.16 0.21 0.10 0.13 0.25 0.18 0.11
0.37 0.22 0.19 0.22 0.11 0.21 0.12 0.20 0.21 0.21 0.25 0.14 0.15 0.15 0.19 0.15 0.18 0.21 0.15 0.09 0.16 0.09 0.21 0.12 0.16
0.38 0.19 0.23 0.22 0.18 0.24 0.17 0.20 0.15 0.16 0.22 0.15 0.14 0.23 0.16 0.18 0.23 0.15 0.25 0.15 0.15 0.21 0.18 0.24 0.20
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urn (α = 10)
m	  \	  n 3 5 15 25 35 45 51
3 0.95 0.91 0.95 0.87 0.91 0.93 0.94 0.93 0.95 0.92 0.86 0.93 0.91 0.89 0.91 0.92 0.94 0.90 0.87 0.92 0.91 0.87 0.92 0.93 0.97

0.90 0.85 0.84 0.80 0.88 0.85 0.81 0.81 0.90 0.84 0.84 0.84 0.88 0.82 0.88 0.87 0.85 0.82 0.82 0.84 0.82 0.89 0.77 0.80 0.86
0.85 0.78 0.78 0.80 0.76 0.77 0.87 0.78 0.64 0.80 0.76 0.84 0.80 0.75 0.71 0.74 0.84 0.72 0.79 0.75 0.69 0.75 0.79 0.86 0.79
0.79 0.73 0.80 0.73 0.66 0.68 0.71 0.70 0.73 0.74 0.82 0.73 0.71 0.74 0.69 0.69 0.77 0.77 0.74 0.78 0.73 0.77 0.79 0.76 0.71
0.81 0.67 0.62 0.58 0.73 0.66 0.73 0.74 0.62 0.67 0.62 0.61 0.71 0.66 0.62 0.59 0.68 0.72 0.70 0.64 0.71 0.62 0.73 0.54 0.70
0.69 0.66 0.62 0.66 0.62 0.68 0.74 0.61 0.60 0.69 0.66 0.61 0.55 0.66 0.73 0.66 0.64 0.56 0.65 0.60 0.69 0.58 0.70 0.65 0.62
0.66 0.60 0.67 0.66 0.62 0.57 0.56 0.58 0.63 0.64 0.54 0.67 0.52 0.60 0.66 0.58 0.54 0.64 0.66 0.53 0.63 0.70 0.61 0.65 0.67
0.61 0.58 0.65 0.51 0.66 0.59 0.56 0.60 0.62 0.69 0.59 0.57 0.60 0.61 0.60 0.64 0.64 0.60 0.60 0.70 0.69 0.55 0.60 0.63 0.62
0.65 0.63 0.64 0.55 0.66 0.50 0.53 0.53 0.55 0.57 0.57 0.65 0.56 0.61 0.56 0.62 0.65 0.64 0.66 0.61 0.58 0.60 0.58 0.65 0.62
0.67 0.61 0.64 0.54 0.54 0.59 0.60 0.55 0.57 0.46 0.40 0.58 0.58 0.53 0.50 0.59 0.62 0.64 0.63 0.50 0.63 0.55 0.47 0.66 0.64
0.61 0.58 0.60 0.53 0.59 0.57 0.51 0.52 0.47 0.58 0.55 0.51 0.58 0.50 0.56 0.64 0.50 0.62 0.57 0.55 0.63 0.54 0.61 0.53 0.49
0.58 0.53 0.50 0.42 0.46 0.49 0.57 0.53 0.47 0.58 0.54 0.59 0.54 0.55 0.46 0.52 0.60 0.53 0.58 0.53 0.61 0.67 0.57 0.63 0.64
0.55 0.46 0.48 0.44 0.44 0.54 0.43 0.50 0.48 0.46 0.48 0.46 0.55 0.49 0.52 0.57 0.56 0.48 0.59 0.58 0.58 0.64 0.59 0.57 0.53
0.54 0.50 0.51 0.47 0.53 0.47 0.51 0.49 0.50 0.55 0.56 0.54 0.45 0.50 0.62 0.50 0.52 0.63 0.59 0.60 0.63 0.63 0.63 0.60 0.58
0.52 0.48 0.49 0.54 0.41 0.45 0.49 0.50 0.39 0.51 0.55 0.47 0.46 0.62 0.60 0.51 0.47 0.50 0.58 0.64 0.63 0.59 0.60 0.66 0.62
0.55 0.36 0.49 0.47 0.56 0.51 0.47 0.55 0.50 0.48 0.45 0.50 0.61 0.67 0.53 0.52 0.57 0.62 0.58 0.58 0.59 0.53 0.57 0.60 0.61
0.49 0.56 0.50 0.51 0.49 0.55 0.44 0.44 0.46 0.53 0.43 0.56 0.50 0.63 0.61 0.53 0.48 0.67 0.58 0.52 0.49 0.56 0.55 0.54 0.65
0.39 0.41 0.52 0.42 0.43 0.57 0.52 0.47 0.46 0.52 0.54 0.50 0.49 0.59 0.54 0.52 0.61 0.53 0.61 0.58 0.54 0.56 0.60 0.68 0.60
0.52 0.48 0.52 0.44 0.42 0.43 0.51 0.42 0.45 0.51 0.47 0.54 0.49 0.55 0.42 0.47 0.53 0.50 0.57 0.50 0.56 0.58 0.57 0.51 0.56
0.46 0.46 0.43 0.37 0.43 0.39 0.53 0.44 0.40 0.51 0.47 0.47 0.54 0.52 0.60 0.57 0.49 0.50 0.59 0.58 0.49 0.65 0.49 0.53 0.64
0.49 0.50 0.49 0.46 0.50 0.43 0.53 0.41 0.46 0.48 0.52 0.49 0.53 0.46 0.50 0.57 0.56 0.54 0.58 0.56 0.61 0.53 0.60 0.64 0.54
0.60 0.51 0.44 0.53 0.45 0.47 0.45 0.47 0.48 0.45 0.57 0.55 0.54 0.50 0.56 0.54 0.62 0.56 0.56 0.64 0.59 0.60 0.58 0.52 0.59
0.55 0.54 0.47 0.41 0.42 0.46 0.51 0.43 0.37 0.48 0.50 0.49 0.44 0.47 0.53 0.54 0.62 0.53 0.57 0.53 0.58 0.56 0.55 0.54 0.67
0.69 0.41 0.50 0.44 0.45 0.46 0.44 0.46 0.43 0.52 0.54 0.52 0.57 0.52 0.48 0.50 0.45 0.44 0.59 0.62 0.54 0.63 0.56 0.63 0.62
0.52 0.46 0.41 0.37 0.45 0.45 0.49 0.45 0.53 0.44 0.57 0.53 0.50 0.60 0.48 0.61 0.47 0.50 0.65 0.44 0.58 0.61 0.61 0.67 0.60
0.57 0.41 0.38 0.45 0.42 0.31 0.51 0.46 0.51 0.48 0.51 0.51 0.57 0.51 0.52 0.60 0.58 0.62 0.61 0.57 0.60 0.56 0.54 0.60 0.55
0.54 0.47 0.37 0.44 0.45 0.45 0.38 0.53 0.54 0.54 0.52 0.51 0.57 0.49 0.52 0.57 0.58 0.56 0.57 0.60 0.57 0.51 0.63 0.61 0.59
0.43 0.41 0.39 0.36 0.48 0.35 0.46 0.44 0.57 0.45 0.47 0.42 0.45 0.45 0.55 0.56 0.52 0.53 0.58 0.56 0.53 0.53 0.51 0.63 0.57
0.57 0.45 0.41 0.37 0.40 0.47 0.44 0.48 0.47 0.48 0.50 0.54 0.50 0.46 0.58 0.59 0.57 0.59 0.51 0.59 0.57 0.58 0.47 0.61 0.54
0.56 0.51 0.45 0.42 0.47 0.37 0.46 0.50 0.45 0.49 0.47 0.42 0.56 0.67 0.48 0.57 0.51 0.54 0.62 0.61 0.58 0.54 0.60 0.59 0.55
0.51 0.43 0.47 0.38 0.43 0.43 0.46 0.46 0.38 0.56 0.52 0.42 0.49 0.49 0.64 0.62 0.50 0.58 0.55 0.49 0.54 0.65 0.58 0.57 0.59
0.52 0.35 0.43 0.40 0.48 0.48 0.46 0.52 0.34 0.48 0.58 0.53 0.49 0.48 0.48 0.60 0.52 0.54 0.62 0.55 0.56 0.61 0.49 0.42 0.55
0.47 0.47 0.40 0.38 0.38 0.51 0.40 0.44 0.40 0.41 0.50 0.44 0.56 0.50 0.61 0.48 0.51 0.54 0.62 0.58 0.55 0.60 0.63 0.52 0.62
0.38 0.45 0.35 0.40 0.39 0.38 0.43 0.47 0.51 0.47 0.40 0.50 0.44 0.53 0.57 0.58 0.48 0.51 0.63 0.59 0.57 0.62 0.58 0.55 0.55
0.45 0.51 0.35 0.41 0.39 0.50 0.40 0.55 0.49 0.43 0.53 0.50 0.54 0.51 0.55 0.64 0.48 0.53 0.58 0.54 0.55 0.54 0.65 0.57 0.59
0.40 0.36 0.38 0.35 0.44 0.41 0.47 0.58 0.52 0.53 0.49 0.53 0.50 0.55 0.53 0.56 0.54 0.61 0.56 0.56 0.57 0.60 0.57 0.60 0.58
0.51 0.41 0.47 0.43 0.42 0.42 0.47 0.43 0.47 0.45 0.55 0.50 0.53 0.52 0.61 0.57 0.57 0.59 0.51 0.58 0.61 0.64 0.55 0.64 0.49
0.46 0.44 0.31 0.44 0.45 0.41 0.43 0.52 0.52 0.44 0.43 0.62 0.52 0.48 0.52 0.55 0.55 0.53 0.48 0.60 0.54 0.51 0.69 0.57 0.58
0.35 0.46 0.41 0.46 0.36 0.50 0.42 0.52 0.41 0.44 0.46 0.56 0.49 0.57 0.51 0.53 0.59 0.63 0.55 0.44 0.57 0.60 0.54 0.62 0.56
0.43 0.42 0.44 0.41 0.53 0.42 0.45 0.45 0.49 0.47 0.47 0.59 0.51 0.52 0.54 0.58 0.54 0.58 0.64 0.52 0.59 0.51 0.67 0.64 0.59
0.38 0.39 0.46 0.48 0.42 0.37 0.41 0.60 0.45 0.48 0.50 0.48 0.51 0.48 0.49 0.58 0.59 0.57 0.65 0.57 0.62 0.51 0.62 0.60 0.62
0.47 0.35 0.51 0.46 0.45 0.43 0.40 0.50 0.46 0.45 0.52 0.58 0.63 0.54 0.52 0.52 0.46 0.58 0.63 0.66 0.49 0.65 0.62 0.55 0.65
0.44 0.38 0.50 0.48 0.42 0.49 0.45 0.38 0.55 0.45 0.54 0.49 0.54 0.48 0.48 0.53 0.54 0.60 0.44 0.53 0.57 0.60 0.60 0.62 0.55
0.48 0.49 0.39 0.38 0.40 0.41 0.38 0.52 0.47 0.52 0.40 0.56 0.61 0.53 0.51 0.55 0.61 0.58 0.52 0.55 0.53 0.52 0.61 0.62 0.54
0.43 0.41 0.37 0.49 0.48 0.47 0.45 0.54 0.46 0.46 0.45 0.50 0.41 0.50 0.46 0.58 0.52 0.58 0.51 0.57 0.54 0.54 0.56 0.58 0.55
0.39 0.39 0.35 0.39 0.48 0.47 0.48 0.42 0.45 0.53 0.57 0.43 0.55 0.57 0.54 0.56 0.45 0.57 0.58 0.55 0.64 0.58 0.63 0.61 0.63
0.47 0.35 0.41 0.41 0.41 0.56 0.47 0.49 0.48 0.51 0.53 0.47 0.55 0.56 0.58 0.52 0.64 0.57 0.58 0.56 0.55 0.47 0.57 0.62 0.52
0.46 0.39 0.39 0.41 0.32 0.36 0.51 0.41 0.57 0.51 0.46 0.44 0.51 0.57 0.47 0.59 0.57 0.57 0.66 0.52 0.55 0.61 0.49 0.48 0.57
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Mallows-φ (φ = 0.95)

m	  \	  n 3 5 15 25 35 45 51
3 0.93 0.94 0.91 0.93 0.94 0.92 0.93 0.93 0.94 0.96 0.88 0.88 0.92 0.91 0.94 0.93 0.87 0.95 0.94 0.98 0.89 0.93 0.98 0.91 0.93

0.93 0.82 0.85 0.86 0.87 0.90 0.75 0.80 0.88 0.84 0.82 0.87 0.88 0.79 0.91 0.81 0.90 0.83 0.85 0.88 0.87 0.88 0.82 0.89 0.82
0.87 0.82 0.76 0.80 0.84 0.79 0.79 0.72 0.79 0.85 0.83 0.82 0.74 0.82 0.75 0.80 0.81 0.73 0.76 0.74 0.78 0.77 0.76 0.83 0.86
0.79 0.73 0.71 0.83 0.65 0.72 0.76 0.75 0.63 0.72 0.71 0.77 0.60 0.74 0.80 0.69 0.76 0.72 0.64 0.74 0.79 0.77 0.75 0.77 0.73
0.80 0.80 0.67 0.70 0.63 0.63 0.63 0.64 0.66 0.57 0.62 0.65 0.63 0.73 0.70 0.64 0.60 0.65 0.67 0.76 0.70 0.69 0.69 0.60 0.75
0.71 0.72 0.72 0.67 0.69 0.73 0.62 0.65 0.65 0.66 0.57 0.67 0.69 0.64 0.63 0.71 0.57 0.59 0.67 0.67 0.63 0.70 0.59 0.62 0.64
0.75 0.59 0.60 0.60 0.72 0.57 0.65 0.65 0.59 0.63 0.55 0.61 0.58 0.60 0.58 0.69 0.69 0.57 0.59 0.69 0.60 0.66 0.61 0.66 0.63
0.67 0.58 0.59 0.60 0.63 0.55 0.55 0.64 0.64 0.59 0.59 0.49 0.59 0.64 0.60 0.59 0.63 0.63 0.65 0.49 0.65 0.54 0.64 0.64 0.62
0.72 0.62 0.55 0.59 0.52 0.57 0.53 0.59 0.58 0.46 0.54 0.53 0.57 0.59 0.65 0.58 0.69 0.53 0.56 0.62 0.65 0.62 0.63 0.59 0.65
0.68 0.59 0.58 0.62 0.53 0.43 0.51 0.44 0.62 0.51 0.49 0.59 0.60 0.59 0.56 0.57 0.63 0.44 0.69 0.61 0.60 0.57 0.59 0.62 0.55
0.62 0.53 0.53 0.59 0.50 0.49 0.50 0.54 0.44 0.60 0.45 0.58 0.51 0.57 0.52 0.51 0.61 0.53 0.62 0.59 0.61 0.54 0.62 0.62 0.66
0.62 0.50 0.55 0.54 0.47 0.55 0.53 0.46 0.54 0.52 0.48 0.55 0.53 0.47 0.49 0.61 0.50 0.57 0.53 0.58 0.49 0.59 0.53 0.55 0.56
0.59 0.53 0.45 0.56 0.47 0.50 0.48 0.53 0.56 0.52 0.53 0.53 0.53 0.55 0.49 0.58 0.63 0.62 0.60 0.52 0.57 0.56 0.55 0.57 0.58
0.65 0.50 0.50 0.50 0.58 0.48 0.49 0.49 0.54 0.44 0.55 0.44 0.61 0.52 0.58 0.42 0.58 0.50 0.58 0.61 0.63 0.60 0.56 0.63 0.62
0.52 0.46 0.51 0.48 0.46 0.40 0.53 0.45 0.47 0.56 0.51 0.47 0.54 0.48 0.47 0.56 0.49 0.55 0.59 0.62 0.61 0.59 0.60 0.59 0.67
0.59 0.50 0.53 0.53 0.43 0.47 0.46 0.47 0.58 0.55 0.48 0.53 0.59 0.46 0.52 0.56 0.56 0.52 0.63 0.50 0.59 0.59 0.48 0.57 0.57
0.58 0.54 0.45 0.48 0.50 0.51 0.38 0.51 0.44 0.50 0.52 0.49 0.58 0.55 0.59 0.52 0.50 0.65 0.63 0.57 0.62 0.54 0.55 0.66 0.48
0.58 0.36 0.51 0.51 0.51 0.54 0.59 0.49 0.47 0.49 0.57 0.46 0.44 0.62 0.56 0.52 0.50 0.61 0.59 0.60 0.57 0.61 0.59 0.63 0.62
0.46 0.39 0.53 0.32 0.43 0.43 0.43 0.44 0.53 0.48 0.44 0.59 0.55 0.56 0.57 0.47 0.48 0.66 0.59 0.63 0.60 0.70 0.68 0.65 0.58
0.54 0.40 0.47 0.47 0.50 0.41 0.51 0.52 0.37 0.39 0.56 0.52 0.62 0.53 0.61 0.44 0.63 0.57 0.55 0.62 0.49 0.65 0.60 0.60 0.62
0.43 0.40 0.38 0.45 0.47 0.47 0.54 0.44 0.41 0.39 0.49 0.55 0.53 0.52 0.49 0.49 0.53 0.60 0.57 0.69 0.65 0.54 0.45 0.66 0.62
0.55 0.53 0.46 0.51 0.54 0.48 0.46 0.52 0.45 0.38 0.47 0.44 0.62 0.43 0.58 0.57 0.57 0.50 0.57 0.61 0.58 0.70 0.56 0.63 0.71
0.51 0.40 0.35 0.43 0.42 0.43 0.38 0.54 0.52 0.61 0.47 0.54 0.54 0.56 0.54 0.55 0.53 0.54 0.65 0.67 0.58 0.55 0.68 0.72 0.63
0.53 0.43 0.41 0.42 0.55 0.47 0.49 0.49 0.53 0.51 0.47 0.51 0.49 0.62 0.54 0.55 0.53 0.50 0.68 0.68 0.61 0.64 0.60 0.60 0.73
0.49 0.47 0.43 0.45 0.37 0.51 0.45 0.44 0.50 0.54 0.51 0.54 0.54 0.56 0.64 0.55 0.62 0.61 0.56 0.54 0.60 0.62 0.67 0.53 0.66
0.57 0.42 0.47 0.43 0.49 0.45 0.39 0.49 0.53 0.44 0.55 0.51 0.55 0.61 0.43 0.51 0.61 0.57 0.58 0.54 0.63 0.67 0.58 0.62 0.70
0.53 0.47 0.32 0.52 0.49 0.44 0.42 0.56 0.54 0.53 0.61 0.45 0.48 0.51 0.52 0.61 0.67 0.64 0.60 0.57 0.58 0.59 0.63 0.58 0.71
0.47 0.42 0.40 0.46 0.41 0.40 0.42 0.49 0.57 0.44 0.46 0.50 0.54 0.55 0.53 0.59 0.54 0.58 0.67 0.63 0.75 0.65 0.55 0.61 0.63
0.42 0.40 0.41 0.47 0.46 0.44 0.42 0.43 0.42 0.50 0.51 0.54 0.49 0.61 0.56 0.58 0.59 0.55 0.58 0.62 0.54 0.67 0.53 0.74 0.61
0.37 0.39 0.36 0.53 0.47 0.51 0.52 0.53 0.48 0.48 0.52 0.62 0.57 0.53 0.59 0.58 0.48 0.60 0.65 0.66 0.66 0.69 0.69 0.73 0.61
0.53 0.46 0.38 0.37 0.28 0.43 0.50 0.55 0.52 0.48 0.61 0.55 0.57 0.64 0.43 0.59 0.68 0.58 0.63 0.73 0.71 0.67 0.73 0.59 0.79
0.52 0.38 0.47 0.37 0.48 0.44 0.50 0.50 0.59 0.53 0.53 0.61 0.54 0.56 0.66 0.60 0.64 0.64 0.69 0.66 0.66 0.67 0.67 0.65 0.58
0.49 0.39 0.36 0.35 0.45 0.38 0.55 0.46 0.49 0.41 0.51 0.64 0.54 0.59 0.50 0.56 0.59 0.64 0.59 0.62 0.61 0.78 0.73 0.66 0.74
0.37 0.54 0.39 0.40 0.38 0.38 0.34 0.47 0.57 0.46 0.50 0.54 0.63 0.54 0.58 0.70 0.66 0.67 0.69 0.65 0.63 0.65 0.67 0.70 0.68
0.47 0.35 0.37 0.43 0.48 0.49 0.53 0.49 0.51 0.47 0.56 0.48 0.56 0.62 0.59 0.64 0.61 0.66 0.63 0.61 0.71 0.67 0.66 0.69 0.70
0.54 0.42 0.41 0.43 0.44 0.37 0.41 0.49 0.51 0.59 0.54 0.62 0.67 0.50 0.60 0.62 0.63 0.63 0.64 0.61 0.64 0.73 0.68 0.68 0.70
0.44 0.41 0.47 0.42 0.53 0.45 0.47 0.49 0.55 0.61 0.65 0.53 0.60 0.61 0.61 0.56 0.71 0.59 0.65 0.58 0.66 0.69 0.72 0.70 0.65
0.38 0.41 0.41 0.37 0.42 0.41 0.46 0.47 0.57 0.56 0.55 0.52 0.64 0.66 0.70 0.61 0.72 0.63 0.59 0.60 0.80 0.70 0.70 0.70 0.69
0.40 0.39 0.36 0.38 0.31 0.47 0.46 0.56 0.48 0.60 0.62 0.48 0.58 0.64 0.57 0.57 0.60 0.66 0.63 0.69 0.62 0.70 0.74 0.62 0.66
0.48 0.47 0.41 0.50 0.43 0.44 0.41 0.49 0.51 0.48 0.51 0.55 0.59 0.61 0.70 0.70 0.69 0.67 0.66 0.67 0.71 0.62 0.66 0.70 0.68
0.45 0.43 0.32 0.39 0.43 0.54 0.52 0.49 0.53 0.53 0.53 0.65 0.58 0.56 0.61 0.62 0.68 0.63 0.72 0.67 0.67 0.69 0.62 0.77 0.75
0.48 0.48 0.45 0.44 0.45 0.38 0.48 0.58 0.56 0.51 0.57 0.52 0.61 0.65 0.56 0.61 0.65 0.58 0.68 0.73 0.69 0.72 0.68 0.75 0.75
0.40 0.42 0.42 0.47 0.37 0.55 0.49 0.48 0.41 0.53 0.59 0.67 0.52 0.55 0.59 0.68 0.66 0.62 0.69 0.65 0.77 0.71 0.57 0.58 0.66
0.43 0.38 0.37 0.40 0.45 0.41 0.60 0.57 0.43 0.63 0.56 0.53 0.63 0.58 0.51 0.60 0.68 0.68 0.63 0.72 0.56 0.63 0.66 0.71 0.75
0.47 0.41 0.36 0.46 0.33 0.48 0.40 0.47 0.49 0.50 0.54 0.57 0.66 0.62 0.57 0.71 0.59 0.75 0.69 0.64 0.62 0.61 0.64 0.79 0.68
0.48 0.35 0.34 0.38 0.40 0.42 0.50 0.55 0.50 0.54 0.59 0.60 0.55 0.62 0.59 0.59 0.60 0.62 0.72 0.68 0.73 0.67 0.78 0.65 0.63
0.44 0.33 0.50 0.33 0.40 0.39 0.48 0.58 0.48 0.46 0.53 0.56 0.51 0.57 0.62 0.67 0.70 0.62 0.60 0.65 0.60 0.70 0.73 0.68 0.68
0.53 0.31 0.42 0.37 0.43 0.44 0.45 0.45 0.50 0.46 0.59 0.70 0.54 0.64 0.58 0.61 0.60 0.59 0.72 0.64 0.59 0.65 0.72 0.70 0.73
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Mallows 4-mixture (φ = 0.95)
m	  \	  n 3 5 15 25 35 45 51
3 0.80 0.82 0.84 0.86 0.87 0.89 0.90 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99

0.60 0.64 0.68 0.72 0.75 0.77 0.80 0.82 0.84 0.86 0.87 0.89 0.90 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.97
0.43 0.49 0.55 0.59 0.64 0.67 0.71 0.74 0.77 0.79 0.81 0.83 0.85 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96
0.31 0.38 0.44 0.49 0.54 0.59 0.63 0.67 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.86 0.87 0.89 0.90 0.91 0.92 0.93 0.93 0.94 0.95
0.23 0.29 0.35 0.41 0.46 0.51 0.56 0.60 0.64 0.67 0.71 0.74 0.76 0.79 0.81 0.83 0.84 0.86 0.87 0.89 0.90 0.91 0.92 0.93 0.93
0.16 0.22 0.28 0.34 0.39 0.45 0.49 0.54 0.58 0.62 0.66 0.69 0.72 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.88 0.89 0.90 0.91 0.92
0.12 0.17 0.22 0.28 0.33 0.39 0.44 0.49 0.53 0.57 0.61 0.65 0.68 0.71 0.74 0.77 0.79 0.81 0.83 0.84 0.86 0.87 0.89 0.90 0.91
0.08 0.13 0.18 0.23 0.28 0.34 0.39 0.44 0.49 0.53 0.57 0.61 0.65 0.68 0.71 0.74 0.76 0.78 0.81 0.82 0.84 0.86 0.87 0.88 0.90
0.06 0.10 0.14 0.19 0.24 0.29 0.34 0.39 0.44 0.49 0.53 0.57 0.61 0.65 0.68 0.71 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.87 0.88
0.04 0.08 0.11 0.16 0.21 0.26 0.31 0.36 0.40 0.45 0.50 0.54 0.58 0.62 0.65 0.68 0.71 0.74 0.76 0.79 0.81 0.82 0.84 0.86 0.87
0.03 0.06 0.09 0.13 0.18 0.22 0.27 0.32 0.37 0.42 0.46 0.51 0.55 0.59 0.62 0.66 0.69 0.72 0.74 0.77 0.79 0.81 0.83 0.84 0.86
0.02 0.04 0.07 0.11 0.15 0.19 0.24 0.29 0.34 0.38 0.43 0.48 0.52 0.56 0.60 0.63 0.66 0.69 0.72 0.75 0.77 0.79 0.81 0.83 0.85
0.02 0.03 0.06 0.09 0.13 0.17 0.21 0.26 0.31 0.35 0.40 0.45 0.49 0.53 0.57 0.61 0.64 0.67 0.70 0.73 0.76 0.78 0.80 0.82 0.84
0.01 0.03 0.05 0.07 0.11 0.15 0.19 0.23 0.28 0.33 0.37 0.42 0.46 0.51 0.55 0.58 0.62 0.65 0.68 0.71 0.74 0.76 0.79 0.81 0.82
0.01 0.02 0.04 0.06 0.09 0.13 0.17 0.21 0.26 0.30 0.35 0.39 0.44 0.48 0.52 0.56 0.60 0.63 0.67 0.70 0.72 0.75 0.77 0.79 0.81
0.01 0.02 0.03 0.05 0.08 0.11 0.15 0.19 0.23 0.28 0.32 0.37 0.42 0.46 0.50 0.54 0.58 0.61 0.65 0.68 0.71 0.73 0.76 0.78 0.80
0.00 0.01 0.02 0.04 0.07 0.10 0.13 0.17 0.21 0.26 0.30 0.35 0.39 0.44 0.48 0.52 0.56 0.60 0.63 0.66 0.69 0.72 0.75 0.77 0.79
0.00 0.01 0.02 0.04 0.06 0.08 0.12 0.15 0.19 0.24 0.28 0.33 0.37 0.42 0.46 0.50 0.54 0.58 0.61 0.65 0.68 0.71 0.73 0.76 0.78
0.00 0.01 0.02 0.03 0.05 0.07 0.10 0.14 0.18 0.22 0.26 0.31 0.35 0.40 0.44 0.48 0.52 0.56 0.60 0.63 0.66 0.69 0.72 0.75 0.77
0.00 0.01 0.01 0.02 0.04 0.06 0.09 0.12 0.16 0.20 0.24 0.29 0.33 0.38 0.42 0.46 0.51 0.54 0.58 0.62 0.65 0.68 0.71 0.73 0.76
0.00 0.00 0.01 0.02 0.04 0.06 0.08 0.11 0.15 0.19 0.23 0.27 0.32 0.36 0.40 0.45 0.49 0.53 0.57 0.60 0.64 0.67 0.70 0.72 0.75
0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.17 0.21 0.25 0.30 0.34 0.39 0.43 0.47 0.51 0.55 0.59 0.62 0.65 0.68 0.71 0.74
0.00 0.00 0.01 0.01 0.03 0.04 0.06 0.09 0.12 0.16 0.20 0.24 0.28 0.33 0.37 0.41 0.46 0.50 0.54 0.57 0.61 0.64 0.67 0.70 0.73
0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.11 0.15 0.18 0.22 0.27 0.31 0.35 0.40 0.44 0.48 0.52 0.56 0.60 0.63 0.66 0.69 0.72
0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.10 0.14 0.17 0.21 0.25 0.30 0.34 0.38 0.43 0.47 0.51 0.55 0.58 0.62 0.65 0.68 0.71
0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.09 0.12 0.16 0.20 0.24 0.28 0.33 0.37 0.41 0.45 0.49 0.53 0.57 0.61 0.64 0.67 0.70
0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.09 0.12 0.15 0.19 0.23 0.27 0.31 0.35 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.66 0.69
0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.08 0.11 0.14 0.18 0.21 0.26 0.30 0.34 0.38 0.43 0.47 0.51 0.55 0.58 0.62 0.65 0.68
0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.16 0.20 0.24 0.29 0.33 0.37 0.41 0.46 0.50 0.53 0.57 0.61 0.64 0.67
0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.09 0.12 0.15 0.19 0.23 0.27 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.63 0.66
0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.11 0.15 0.18 0.22 0.26 0.30 0.35 0.39 0.43 0.47 0.51 0.55 0.59 0.62 0.65
0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.08 0.10 0.14 0.17 0.21 0.25 0.29 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.61 0.64
0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.16 0.20 0.24 0.28 0.32 0.37 0.41 0.45 0.49 0.53 0.57 0.60 0.63
0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.09 0.12 0.15 0.19 0.23 0.27 0.31 0.36 0.40 0.44 0.48 0.52 0.56 0.59 0.62
0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.15 0.18 0.22 0.26 0.30 0.34 0.39 0.43 0.47 0.51 0.55 0.58 0.62
0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.11 0.14 0.17 0.21 0.25 0.29 0.33 0.38 0.42 0.46 0.50 0.54 0.57 0.61
0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.16 0.20 0.24 0.28 0.32 0.37 0.41 0.45 0.49 0.53 0.56 0.60
0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.16 0.19 0.23 0.27 0.31 0.36 0.40 0.44 0.48 0.52 0.56 0.59
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.09 0.12 0.15 0.19 0.22 0.26 0.31 0.35 0.39 0.43 0.47 0.51 0.55 0.58
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.18 0.22 0.25 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.57
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.14 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49 0.53 0.57
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.16 0.19 0.23 0.27 0.31 0.35 0.39 0.44 0.48 0.51 0.55
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.09 0.12 0.15 0.18 0.22 0.26 0.30 0.34 0.39 0.43 0.47 0.51 0.54
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.14 0.18 0.21 0.25 0.29 0.34 0.38 0.42 0.46 0.50 0.54
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.06 0.08 0.11 0.14 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49 0.53
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.08 0.10 0.13 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.16 0.19 0.23 0.27 0.31 0.35 0.40 0.44 0.48 0.51
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Condorcet noise (p = 0.65)

Figure 2.2: Frequency of Condorcet winners in tournament generated from
different stochastic preference models with 3 to 51 voters (left
to right on horizontal axis) and 3 to 50 alternatives (top to bot-
tom on vertical axis). Green entries indicate a high frequency
of tournaments with Condorcet winners. Values for the first six
models are taken over 100 samples whereas the probabilities for
the Condorcet noise model were computed directly.
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A = (a1, . . . ,am) set of alternatives

N set of voters, electorate

%i,Ri individual preferences, preference ranking

R = (%1, . . . ,%n) preference profiles

% (weak) majority relation

� strict majority relation

G = (A,%) a majority graph

G set of all majority graphs

Gm set of all majority graphs of size m

D(a) dominion of a

D(a) dominators of a

OG set of all orbits of G

G = (A, w) a weighted majority graph

T = (A,�) a tournament

T set of all tournaments

Tm set of all tournaments of size m

BT set of all transitive sets in T

Table 2.1: Notation for majority graphs
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D E C O M P O S I T I O N O F TO U R N A M E N T S

Decomposition allows the subdivision of the
explanatory task so that the task becomes
manageable and the system intelligible.

William Bechtel and Robert C. Richardson, 2010

Decomposition techniques have seen numerous applications to re-
duce the complexity of a system at hand. They have been imple-
mented in fields as diverse as sequence optimization (Sidney and
Steiner, 1986), network reliability (Shogan, 1986), graph drawing (Pa-
padopoulos and Voglis, 2007), and protein interaction (Gagneur et al.,
2004). In our case, we are interested in identifying sets of similar
alternatives in a tournament with the intention to exploit this knowl-
edge about the tournament’s structure later for computational prob-
lems. Section 3.1 gives the general definitions of components and
decompositions. In Section 3.2, we discuss decomposition trees and
introduce the decomposition degree of a tournament. Decomposition
trees can be efficiently computed as reviewed in Section 3.3. Finally,
Section 3.4 contains the results of simulations regarding the decom-
posability of tournaments generated by various stochastic preference
models. Section 3.5 summarizes our findings.

3.1 components and decompositions

A natural structural concept in the context of tournaments is that
of a component which is a subset of alternatives that bear the same
relationship to all alternatives not in the set.

Definition 3.1
Let T = (A,�) be a tournament. A non-empty subset B of A
is a component of T if for all a ∈ A \ B either B � a or a � B. component

A decomposition of T is a set of pairwise disjoint components decomposition
{B1, . . . ,Bk} of T such that A =

⋃k
i=1 Bi.

The null decomposition of a tournament T = (A,�) is {A}; the trivial de-
composition consists of all singletons of A. Any other decomposition
is called proper. A tournament is said to be decomposable if it admits
a proper decomposition. Given a particular decomposition, the sum-
mary of a tournament is defined as the tournament on the individual
components rather than the alternatives.

25
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Definition 3.2
Let T = (A,�) be a tournament and B̃ = {B1, . . . ,Bp} a decom-
position of T . The summary of T with respect to B̃ is defined assummary

the tournament TB = ({1, . . . ,p}, �̃), where

i �̃ j if and only if Bi � Bj.

A tournament is called reducible if it admits a decomposition intoinducible
tournament two components. Otherwise, it is irreducible. Laslier (1997) has shown

that there exist a natural unique way to decompose any tournament.
Call a decomposition B̃ finer than another decomposition B̃ ′ if B̃ 6= B̃ ′
and for each B ∈ B̃ there exists B ′ ∈ B̃ ′ such that B ⊆ B ′. B̃ ′ is said
to be coarser than B̃. A decomposition is minimal if its only coarserminimal

decomposition decomposition is the null decomposition.

Proposition 3.3 (Laslier, 1997, Thm. 1.3.11)
Every irreducible tournament with more than one alternative
admits a unique minimal decomposition.

This is obviously not true for reducible tournaments, as witnessed
by the tournament T = ({a,b, c},�) with a � b, a � c, and b � c,
which admits two minimal decompositions, namely {{a}, {b, c}} and
{{a,b}, {c}}. Nevertheless, there is a unique way to decompose any re-
ducible tournament. A scaling decomposition is a decomposition withscaling

decomposition a transitive summary.

Proposition 3.4 (Laslier, 1997, Thm. 1.3.13)
Every reducible tournament admits a unique scaling decompo-
sition such that each component is irreducible.

This scaling decomposition into irreducible components is also the
finest scaling decomposition. In graph-theoretic terms, this decompo-
sition partitions the tournament into its strongly connected compo-
nents.

3.2 decomposition trees and decomposition
degree

Propositions 3.3 and 3.4 offer a straightforward method to iteratively
decompose tournaments. If the tournament is reducible, take the
finest scaling decomposition. If it is irreducible, take the minimal
decomposition. The repeated application of these decompositions
leads to the decomposition tree of a tournament.

Definition 3.5
The decomposition tree D(T) of a tournament T = (A,�) is de-decomposition tree

fined as a rooted tree whose nodes are non-empty subsets of
A. The root of D(T) is A and for each node B with |B| > 2, the
children of B are defined as follows:
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• If T |B is reducible, the children of B are the components
of the finest scaling decomposition of T |B.

• If T |B is irreducible, the children of B are the components
of the minimal decomposition of T |B.

It follows from Propositions 3.3 and 3.4 that every tournament has
a unique decomposition tree. By definition, each node in D(T) is a
component of T and each leaf is a singleton. However, not all com-
ponents of T need to appear as nodes in D(T). An example of a
decomposition tree is provided in Figure 3.1.

a
b

c

d

e
f

g

A

{a,d, e,g}

{a} {d, e}

{d} {e}

{g}

{b} {f, c}

{f} {c}

Figure 3.1: Example tournament with corresponding decomposition tree.
Nodes {f, c} and {d, e} are reducible, all other nodes are irre-
ducible.

An internal (i.e., non-leaf) node B of D(T) with children B1, . . . ,Bk
corresponds to the tournament TB = ({1, . . . ,k}, �̃) where i �̃ j if and
only if Bi � Bj, i.e., TB is the summary of T |B with respect to the min-
imal decomposition {B1, . . . ,Bk}. The order of TB is thus equal to the
number of children of node B. Moreover, we call an internal node B
reducible (respectively, irreducible) if the tournament TB is reducible (re-
spectively, irreducible).16 If B is reducible, we assume without loss of
generality that the children B1, . . . ,Bk are labeled according to their
transitive summary, i.e., Bi � Bj if and only if i < j. In particular, the
maximum of TB is 1.

With the help decomposition tree D(T), we can argue that the
complexity of the original tournament has been split up into its irre-
ducible components. With this in mind, we define the decomposition
degree of T as the size of the largest irreducible component.

Definition 3.6
Let Irr(D(T)) be the set of irreducible internal nodes of D(T).
The decomposition degree δ(T) of a tournament T is defined as decomposition

degree

δ(T) =

{
max{|TB| :B ∈ Irr(D(T))}, if Irr(D(T)) 6= ∅
0, otherwise.

The decomposition degree of the example tournament in Figure 3.1
is 3, attained by the nodes A and {a,d, e,g}.

16 T |B is reducible (respectively, irreducible) if and only if its summary TB is.
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3.3 computing the decomposition tree of
a tournament

Our aim, which we will pursue further in Chapter 7 it to beneficially
use the decomposition tree to speed up the computation of functions
defined on tournaments. A necessary prerequisite for this approach
is that the decomposition tree can be computed efficiently in a pre-
processing step. Fortunately, it was recently shown that that the full
decomposition tree of a tournament can be computed in linear time.17

Proposition 3.7 (McConnell and de Montgolfier, 2005)
The decomposition tree of a tournament T can be computed in
time O(|T |2).

In fact, the results by McConnell and de Montgolfier and the re-
lated paper by Capelle et al. (2002) even hold for general digraphs.
The idea is to first find a factorizing permutation σ, a permutation offactorizing

permutation the alternatives in which each component of the digraph forms a con-
secutive block. Then, with the help of σ, construct an approximation
to the decomposition tree called the fracture tree. This tree might have
some nodes in excess and may not properly represent all transitive
components. After taking care of these, this gives the decomposition
tree.

As a corollary to Proposition 3.7, δ(T) can be computed efficiently.

3.4 experiments: decomposability

Similarly to our measuring of transitivity in Section 2.3, we experi-
mentally studied the degree of decomposability of tournaments from
the different stochastic models. We measure this in terms of the fre-
quency of reducible tournaments and by the average (normalized)
decomposition degree of the generated tournaments.

The results of our experiments are again shown as heat maps in
Figures 3.2 and 3.4. For the reducibility criterion, we find that for
the urn models (including IC and IAC), the results are essentially the
same as for the frequency of Condorcet winners, cf. Figure 2.2.18 For
the distance-based models, we see that the sampled tournaments are
often times reducible even when they do not exhibit a Condorcet win-
ner.19 Spatial models, which had the highest frequency of Condorcet
winners already, almost always induce reducible tournaments.

17 The size of the representation of a tournament is already quadratic in the number of
its alternatives.

18 Note that every tournament that admits a Condorcet winner is also reducible.
19 A small caveat: We used a different value for the parameter in the Condorcet noise

model (p = 0.65 here compared to p = 0.55 in Figure 2.2) to capture the different
phase transitions.
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For the decomposability, the picture changes a bit as Condorcet
winners not necessarily imply small decomposition degrees which is
most notable for the spatial model. The results for distance-based
models strongly resemble those for the degree of transitivity in Fig-
ure 2.1. With their strong tendency towards a particular reference
ranking (or, in case of Mallows mixtures, a combination of few refer-
ence rankings), the decomposability of the obtained tournaments is
tightly linked to their degree of transitivity.

3.5 summary

We discussed the decomposition tree of a tournament and defined
the decomposition degree that informally captures the complexity
reduction obtained through the decomposition. We examined the
decomposability of tournaments generated through stochastic prefer-
ence models. For the distance-based models, decompositions seem to
be a valid technique to reduce complexity. Unsurprisingly, we found
that models that do not impose any or little structure on the pref-
erences will not give highly decomposable tournaments. In fact, it
is not difficult to show that under the uniform random tournament
model, the probability that just a single non-trivial component exists
goes to zero (McKay, personal communication).

Overall, we can argue that all but the urn models (including IC and
IAC) on average give tournaments that are properly decomposable.
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m	  \	  n 5 35 125 215 305
5 0.93 0.77 0.90 0.73 0.83 0.90 0.90 0.87 0.93 0.97 0.93
10 0.87 0.77 0.83 0.90 0.60 0.90 0.70 0.90 0.83 0.77 0.87

0.83 0.80 0.87 0.70 0.70 0.77 0.93 0.70 0.63 0.67 0.70
20 0.70 0.50 0.60 0.70 0.50 0.57 0.43 0.57 0.60 0.47 0.57

0.67 0.47 0.53 0.40 0.37 0.37 0.40 0.37 0.43 0.50 0.33
30 0.50 0.43 0.33 0.53 0.40 0.20 0.50 0.40 0.47 0.40 0.53

impartial culture

m	  \	  n 5 35 125 215 305
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

spatial model (dim = 2)
m	  \	  n 5 35 125 215 305
5 0.97 0.93 0.90 0.90 0.90 0.93 0.93 0.83 0.83 0.93 0.93
10 0.80 0.87 0.77 0.77 0.87 0.80 0.87 0.73 0.70 0.80 0.80

0.77 0.83 0.63 0.80 0.40 0.67 0.67 0.70 0.63 0.47 0.73
20 0.70 0.60 0.60 0.60 0.53 0.57 0.63 0.33 0.60 0.53 0.47

0.67 0.53 0.33 0.47 0.47 0.33 0.30 0.40 0.40 0.50 0.43
30 0.47 0.33 0.53 0.50 0.37 0.57 0.50 0.47 0.37 0.37 0.40

impartial anonymous culture

m	  \	  n 5 35 125 215 305
5 0.93 0.90 1.00 0.87 0.83 0.93 0.87 0.93 0.90 0.93 0.93
10 0.87 0.87 0.77 0.73 0.80 0.87 0.80 0.87 0.83 0.67 0.60

0.70 0.73 0.70 0.70 0.87 0.67 0.73 0.63 0.63 0.63 0.73
20 0.80 0.43 0.50 0.60 0.80 0.73 0.63 0.60 0.50 0.63 0.60

0.73 0.63 0.43 0.53 0.60 0.43 0.63 0.37 0.50 0.50 0.40
30 0.53 0.33 0.43 0.43 0.47 0.33 0.27 0.47 0.43 0.47 0.47

urn (α = 10)
m	  \	  n 5 35 125 215 305
5 1.00 0.83 0.93 1.00 0.93 0.97 0.90 0.93 0.97 0.93 0.93
10 0.83 0.87 0.90 0.93 0.97 0.97 1.00 1.00 1.00 1.00 1.00

0.63 0.67 0.93 0.93 0.97 1.00 1.00 1.00 1.00 1.00 1.00
20 0.73 0.77 0.90 0.93 1.00 0.97 1.00 0.97 1.00 1.00 1.00

0.67 0.80 0.90 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00
30 0.67 0.87 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mallows-φ (φ = 0.95)

m	  \	  n 5 35 125 215 305
5 0.93 1.00 0.90 0.90 0.93 0.87 0.93 0.97 0.90 0.97 0.97
10 0.83 0.80 0.93 1.00 0.97 0.93 1.00 1.00 1.00 1.00 0.93

0.77 0.80 0.87 0.90 1.00 1.00 1.00 1.00 0.97 1.00 1.00
20 0.73 0.83 0.97 0.97 1.00 1.00 1.00 0.97 1.00 1.00 0.97

0.63 0.73 0.87 0.93 0.97 1.00 1.00 1.00 1.00 1.00 1.00
30 0.60 0.87 0.97 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00

Mallows 4-mixture (uniform, φ = 0.95)
m	  \	  n 5 35 125 215 305
5 0.40 0.67 0.83 0.83 0.83 0.93 0.83 0.90 0.97 0.93 0.90
10 0.00 0.20 0.27 0.37 0.47 0.70 0.80 0.60 0.87 0.83 0.93

0.00 0.07 0.03 0.10 0.30 0.47 0.63 0.60 0.63 0.77 0.87
20 0.00 0.00 0.00 0.03 0.07 0.23 0.27 0.53 0.57 0.60 0.83

0.00 0.00 0.03 0.03 0.13 0.10 0.23 0.37 0.43 0.70 0.70
30 0.00 0.00 0.03 0.00 0.07 0.10 0.27 0.47 0.30 0.40 0.43

Condorcet noise (p = 0.55)

Figure 3.2: Experimental results regarding the frequency of reducible tour-
naments obtained from various stochastic models. Green entries
correspond to a high turnout of reducible tournaments.

m	  \	  n 5 35 125 215 305
5 0.78 0.65 0.69 0.70 0.61 0.67 0.69 0.67 0.67 0.69 0.70
10 0.38 0.37 0.28 0.26 0.32 0.27 0.37 0.22 0.22 0.35 0.24

0.16 0.14 0.10 0.12 0.12 0.15 0.12 0.12 0.14 0.14 0.12
20 0.08 0.05 0.04 0.06 0.05 0.06 0.05 0.05 0.04 0.05 0.05

0.06 0.05 0.04 0.04 0.04 0.02 0.04 0.03 0.03 0.03 0.02
30 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03

impartial culture

m	  \	  n 5 35 125 215 305
5 0.96 0.95 0.99 0.99 0.98 1.00 1.00 0.99 0.98 0.99 0.97
10 0.72 0.84 0.89 0.90 0.93 0.92 0.91 0.94 0.96 0.95 0.95

0.68 0.68 0.79 0.81 0.85 0.87 0.90 0.89 0.89 0.92 0.94
20 0.57 0.65 0.73 0.78 0.79 0.84 0.84 0.83 0.86 0.87 0.88

0.51 0.62 0.69 0.73 0.76 0.80 0.79 0.82 0.84 0.86 0.83
30 0.46 0.53 0.60 0.68 0.74 0.75 0.78 0.78 0.80 0.81 0.83

spatial model (dim = 2)
m	  \	  n 5 35 125 215 305
5 0.74 0.69 0.65 0.69 0.77 0.69 0.67 0.74 0.64 0.63 0.75
10 0.36 0.29 0.23 0.28 0.33 0.22 0.34 0.29 0.28 0.26 0.21

0.27 0.13 0.11 0.11 0.11 0.14 0.12 0.10 0.12 0.11 0.10
20 0.13 0.05 0.06 0.07 0.04 0.04 0.05 0.06 0.06 0.07 0.04

0.06 0.03 0.03 0.04 0.04 0.03 0.02 0.03 0.04 0.03 0.04
30 0.03 0.02 0.03 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.02

impartial anonymous culture

m	  \	  n 5 35 125 215 305
5 0.77 0.75 0.61 0.67 0.69 0.69 0.72 0.63 0.69 0.64 0.76
10 0.41 0.27 0.24 0.28 0.25 0.30 0.27 0.33 0.20 0.30 0.26

0.17 0.11 0.12 0.12 0.10 0.12 0.13 0.10 0.12 0.09 0.11
20 0.08 0.07 0.03 0.09 0.07 0.06 0.04 0.05 0.04 0.05 0.06

0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.03
30 0.04 0.03 0.03 0.04 0.02 0.02 0.02 0.02 0.03 0.02 0.02

urn (α = 10)
m	  \	  n 5 35 125 215 305
5 0.75 0.71 0.73 0.73 0.78 0.79 0.67 0.69 0.79 0.77 0.73
10 0.40 0.32 0.31 0.46 0.49 0.51 0.59 0.57 0.54 0.69 0.67

0.20 0.22 0.30 0.43 0.44 0.48 0.52 0.57 0.63 0.65 0.71
20 0.10 0.21 0.29 0.34 0.47 0.55 0.59 0.66 0.68 0.69 0.75

0.11 0.12 0.27 0.42 0.45 0.52 0.66 0.65 0.66 0.74 0.74
30 0.04 0.10 0.28 0.39 0.47 0.62 0.63 0.70 0.73 0.74 0.78

Mallows-φ (φ = 0.95)

m	  \	  n 5 35 125 215 305
5 0.70 0.62 0.80 0.66 0.78 0.77 0.71 0.73 0.75 0.83 0.71
10 0.34 0.47 0.36 0.47 0.52 0.49 0.48 0.58 0.58 0.57 0.70

0.20 0.22 0.35 0.39 0.39 0.34 0.51 0.51 0.55 0.49 0.58
20 0.11 0.16 0.20 0.29 0.33 0.42 0.47 0.48 0.53 0.56 0.50

0.07 0.13 0.21 0.26 0.32 0.43 0.46 0.49 0.53 0.58 0.58
30 0.09 0.09 0.18 0.23 0.36 0.45 0.44 0.51 0.49 0.51 0.57

Mallows 4-mixture (φ = 0.95)
m	  \	  n 5 35 125 215 305
5 0.39 0.46 0.43 0.54 0.60 0.69 0.74 0.74 0.75 0.87 0.86
10 0.03 0.04 0.09 0.15 0.20 0.22 0.37 0.41 0.48 0.43 0.57

0.00 0.00 0.02 0.03 0.06 0.10 0.12 0.20 0.23 0.29 0.31
20 0.00 0.00 0.00 0.01 0.02 0.02 0.06 0.09 0.11 0.17 0.22

0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.13
30 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.09

Condorcet noise (p = 0.55)

Figure 3.4: Experimental results on the decomposability of tournaments
generated by various stochastic models. The numbers corre-
spond to 1− δ(T)/|T |. Green entries corresponds to a high degree
of decomposability with the maximum being achieved by tran-
sitive tournaments; red entries indicate that either no or only
large components exist.



4
O N M A J O R I T Y R E L AT I O N S O F F E W V OT E R S

[C]ontrary to what common sense might expect,
even societies having millions of voters (and
whose voters have millions of distinct preference
orderings over the alternatives) can often be
faithfully represented by a relatively small group
of representatives.

Scott L. Feld and Bernard Grofman, 1986

In many scenarios, such as voting in a committee, the number of
voters is limited to a small constant. In this chapter, we study to
which extent structured or arbitrary digraphs can be induced as the
majority graph of a small electorate.

4.1 majority dimension and expressiveness

Given a (weighted) digraph we are interested in the minimal num-
ber of voters needed such that the digraph represents the (weighted)
majority relation of the voters’ preferences. This is captured in the
majority dimension of the digraph.20 Formally, the majority dimension majority dimension

of a digraph G = (V ,E) or a weighted digraph G = (V , w) is the
smallest number of voters in a profile that induces G, i.e.,

dim(G) = min{k ∈N :G is a (weighted) k-majority digraph}.

Also, let kmaj(m) denote the minimum electorate size required to in-
duce all digraphs of size m, i.e.,

kmaj(m) = min{k : dim(G) 6 k for all G ∈ Gm}.

If we restrict our attention to tournaments, we will write kTmaj(m)

instead. Note that kTmaj(m) 6 kmaj(m) since T ⊂ G.
Conversely, define the majoritarian expressiveness of (electorates of majoritarian

expressivenesssize) k to be the maximum integer mT(k) such that every complete
majority relation on up to mT(k) alternatives is k-inducible. Since the
work by Erdős and Moser (1964) that we will discuss in more detail
in the following, it is known that mT(k) is finite for every k. Note
that this implies that the smallest tournament that cannot be induced
by k voters is of size mT(k) + 1.

McGarvey (1953) showed that every digraph can be induced by McGarvey’s result

20 This complexity measure of digraphs can also be interpreted as a complexity mea-
sure for preference profiles.

31
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some preference profile and gave a construction that requires exactly
two voters per edge in the digraph. In our notation, this implies that
kmaj(m) 6 m(m − 1) < ∞ for all m. Our first observation about
dim(G) is that it has to be odd or even, depending on whether G is a
tournament or not.

Lemma 4.1
The majority dimension dim(G) is odd if G is a tournament and
even otherwise.

Proof. Due to McGarvey’s result, dim(G) has to be finite for every
digraph G. Let T be a tournament and assume that dim(T) = k

was even. Then there exists a preference profile R with k voters that
induces T . Since k is even, the majority margin must be even for
every pair of alternatives and can furthermore never be zero as T is
a tournament. Therefore, removing any single voter from R gives a
profile R ′ with just k− 1 voters that still induces T , a contradiction.

For non-complete digraphs, the statement follows directly from the
fact that for all preference profiles R with an odd number of voters k,
the majority relation %R is complete and anti-symmetric (as no majo-
rity ties can occur).

The work by McGarvey has been followed up by Stearns (1959)
who showed that kmaj(m) 6 m+ 2 which was later improved by Fiolbounds on kmaj(m)

(1992) to kmaj(m) 6 m− blogmc+ 1. For larger m, Erdős and Moser
(1964) gave the asymptotically better bound kmaj(m) 6 c · m

logm for
some constant c. Their work nicely complemented a second result by
Stearns (1959) who proved that kmaj(m) > 0.55 · m

logm for large m. To-
gether, this gives that kmaj(m) is in Θ( m

logm). Note that the lower
bound on dim(G) gives an upper bound to mT(k), i.e., it proves
that for every electorate size k, there exist digraphs that are not k-
inducible. Still, kTmaj(m) could be bounded by a constant and all tour-
naments could be inducible by some constant electorate size. The
following lemma shows that this is not the case by an argument sim-
ilar to the one by Stearns.

Lemma 4.2
If kTmaj(m) = k > 3, then

(
m

2

)
· ln(2) 6 k ·

(
ln(2) +

m∑
i=2

ln(i)

)
− ln(k!). (1)

Proof. If every tournament on m vertices can be induced by k voters,
then for every T ∈ T, there needs to be at least one anonymous k-
voter profile that induces T . There are m! possible preference orders
over m alternatives, and the number of anonymous k-voter profiles
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k 3 5 7 9 11 13 15 17 19 21

mT(k) 19 42 67 94 123 153 184 217 250 283

Table 4.1: Upper bounds on the size mT(k) of the smallest tournament that
is not k-majority for small odd k.

a

b

c

d

e

f

g

h

Figure 4.1: A tournament on 8 vertices with majority dimension 5. This is
a smallest tournament that cannot be induced by three voters.
Omitted edges point downwards.

is
(
m!+k−1

k

)
. Also, the number of labeled tournaments on m vertices

is 2(
m
2 ) implying that

2(
m
2 ) 6

(
m! + k− 1

k

)
6

(2(m!))k

k!

where the last inequality follows from Fiol’s bound stated before. The
result follows immediately.

Using the lemma, we can search for an upper bound on mT(k)

for a given k efficiently by finding the minimal m such that (1) is
violated. The results, for some small k can be found in Table 4.1. It
shows, for example, that there exists a tournament of size 42 that is
not 5-inducible.21

It is clear, however, that these bounds are not tight. For example,
the results in the table imply there has to exist a tournament of size 19
that is not 3-inducible. In fact, Shepardson and Tovey (2009) proved
that every tournament that contains a certain 8-vertex digraph as a
subgraph is not 3-inducible. In section 4.4.1, we will argue that there
are no smaller tournaments with this property. An example of such
a tournament is shown in Figure 4.1.

Also, our bounds for the size of the smallest tournament that is
not k-inducible are obtained non-constructively. Alon (2006) pursued
a systematic approach to construct tournaments with high majority
dimension by analyzing dominating sets. His argument goes as fol- construct

tournaments with
high majority
dimension

21 A slightly tighter analysis even gives the existence of such a tournament of size 41.
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lows.
A dominating set of a digraph G = (V ,E) is a set U ⊆ V such that

for all v ∈ V \ U, there exists a u ∈ U such that (u, v) ∈ E. Alon
(2006) showed that the size of the smallest dominating set of any k-
majority graph for odd k is bounded from above by a function F(k)

with F(k) ∈ O(k logk) and F(k) ∈ Ω( k
logk) with rather large constants

hidden in the Landau notation (80 for O). This means that if a given
tournament T does not have a dominating set of size F(k), then T is
not inducible by k voters.

This can be leveraged to construct a tournament not inducible by
k voters due to the following constructive result by Graham and
Spencer (1971). Let f(x) = p > x222x−2 where x is a positive inte-
ger and p is the smallest prime congruent to 3 mod 4 satisfying the
inequality (the construction works for any such p). Then, the quadratic
residue tournament Qp of size p does not exhibit a dominating set ofquadratic residue

tournament size x.22

Together, this gives us a construction for a tournament on (f ◦F)(k)
vertices that is not a k-majority graph for any odd k. Unfortunately,
f(x) is exponential in x, and the value of F(k) is known precisely
only for k = 3 where we have F(3) = 3. To our knowledge, the
best currently available bound for k = 5 is F(5) 6 12 (Fidler, 2011).
Together, we get that for the smallest (or any other) prime p congruent
to 3 (mod 4) fulfilling the inequality

p > 122 · 22·12−2 = 603, 979, 776

Qp is not inducible by 5 voters. Bounds on F(k) for larger odd k give
wildly worse values: for 7 voters, we already have F(7) 6 44 due to
Fidler (2011).

4.2 majority relations of few voters

In this section, we analyze the structure of digraphs that are k-majority
digraphs for a constant k. Building on earlier work by Dushnik and
Miller (1941) that implied a characterization of 2-majority digraphs,
we give a characterization for the case of three voters. In addition, we
present sufficient conditions for larger majority dimensions.

4.2.1 Two and Three Voters

Given a preference profile R, the Pareto relation holds between twoPareto relation

alternatives v and w if all voters prefer v over w. Dushnik and Miller
(1941) specified sufficient and necessary conditions for relations to becharacterization of

2-majority digraphs
22 Qp = (A,�) with A = (a1, . . . ,ap) and ai � aj if and only if

(i− j)
p−1
2 ≡ 1 mod p
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induced as the Pareto relation of a 2-voter preference profile. As for
two voters the majority relation and the Pareto relation coincide, we
can rephrase their result for majority graphs as follows.

Lemma 4.3 (Dushnik and Miller, 1941)
A majority graph (V ,E) is induced by a 2-voter preference pro-
file if and only if it is transitive and its incomparability graph
(V , Ẽ) is transitively orientable. Moreover, the weight of every
edge is 2.

See Figure 4.2a for an example of a digraph that is not 2-inducible
even though it is transitive. If it was 2-inducible there would have to
exist a transitive reorientation E ′ of Ẽ. We can assume w.l.o.g. that
(b,d) ∈ E ′. But then (a,d) and (b, e) also have to be in E ′ leaving no
option to orient {a, e} without getting a contradiction to the assumed
transitivity of E ′.

a

b

c

e

d

f

(a) This digraph cannot be in-
duced by a 2-voter profile. Dot-
ted edges denote the incompa-
rability graph.

(b) Every forest of directed stars is
2-inducible.

Figure 4.2: Examples of transitive digraphs.

If, on the other hand, a graph (V ,E) is in fact induced by a 2-voter
profile (R1,R2), then R1 and R2 coincide on E and are opposed on Ẽ,
i.e., R1 ∩ R2 = E. As R1 and R2 are both transitive, so is E. If E ′ is the
respective reorientation of Ẽ, then R1 = E∪E ′ and R2 = E∪E ′, or vice
versa. As a useful notational convention we adopt ‖E‖ = E∪E, where
E is the converse of E, i.e., E = {(w, v) : (v,w) ∈ E}. converse

A graph (V ,E) is a unidirected star if there is some v∗ ∈ V such that unidirected star

either E or E equals {v∗}× (V \ {v∗}). Clearly, (V ,E) is transitive as
there are no v,w,u ∈ V such that both (v,w), (w,u) ∈ E. Moreover,
every transitive relation over the leaves of (V ,E) serves as a transitive
orientation of Ẽ. With Lemma 4.3 this gives us the following which is
a special case of a result by Erdős and Moser (1964, Lemma 1).

Lemma 4.4
Every unidirected star is 2-inducible.
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Another insight that follows from Lemma 4.3, is that the union of
pairwise disjoint graphs that are induced by 2-voter profiles is also
induced by a 2-voter profile.

Lemma 4.5
Let V1, . . . ,Vk be pairwise disjoint and (V1,E1), . . . , (Vk,Ek) ma-
jority graphs induced by 2-voter profiles. Then, (V1 ∪ · · · ∪
Vk,E1 ∪ · · · ∪ Ek) is also induced by a 2-voter profile.

Proof. Let V = V1 ∪ · · · ∪ Vk and E = E1 ∪ · · · ∪ Ek and consider the
graph (V ,E). As each of (V1,E1), . . . , (Vk,Ek) is induced by a 2-voter
profile, by Lemma 4.3, each of E1, . . . ,Ek is transitive and each of
Ẽ1, . . . , Ẽk is transitively orientable. Let E ′1, . . . ,E ′k be the respective
transitive reorientations of Ẽ1, . . . , Ẽk. Since V1, . . . ,Vk are pairwise
disjoint, E1 ∪ · · · ∪ E2 can readily be seen to be transitive as well. Let
furthermore E∗ =

⋃
16i<j6k(Vi × Vj). Observe that Ẽ = Ẽ1 ∪ · · · ∪

Ẽk ∪ E∗ and that E ′1 ∪ · · · ∪ E ′k ∪ E∗ is a transitive reorientation of Ẽ.
The claim then follows by another application of Lemma 4.3.

Consequently, every forest of (unidirected) stars such as the one
shown in Figure 4.2b is 2-inducible.23

Apart from a family of tournaments of order eight that are not 3-
majority (Shepardson and Tovey, 2009), little was known about the
majority graphs that are induced by 3-voter profiles. In a much sim-
ilar vein as Lemma 4.3, we now provide a characterization of thesecharacterization of

3-majority digraphs graphs.

Lemma 4.6
A tournament (V ,E) is induced by a 3-voter profile if and only
if there are disjoint sets E1,E2 with E = E1 ∪ E2 such that E1
is transitive and E2 is both acyclic and transitively reorientable.
Then, the weight of every edge in E1 is either 1 or 3 and that of
each edge in E2 is 1.

Proof. For the if-direction, assume that there are disjoint sets E1,E2
with E = E1 ∪ E2 such that E1 is transitive and E2 is both acyclic
and transitively reorientable. Consider the graph (V ,E1) and observe
that for the corresponding incomparability graph (V , Ẽ1), Ẽ1 = ‖E2‖.
It follows that Ẽ1 is transitively orientable and, by Lemma 4.3, that
(V ,E1) is induced by a 2-voter profile (R1,R2) and that all edges in E1
have weight 2. As E2 is acyclic, there is a (strict) preference relation R3
with E2 ⊆ R3. Now consider the majority graph induced by the
preference profile (R1,R2,R3), which apparently coincides with (V ,E).
E1 is determined by R1 and R2 and each of its edges obtains weight 1

23 Erdős and Moser (1964) gave a different class of graphs that are 2-inducible which
they call bilevel graphs. A bilevel graph is the union of a finite number of vertex-
disjoint digraphs (V1,E1), (V2,E2), · · · such that each (Vi,Ei) is complete bipartite
and unidirected, i.e., there is a partition into vertex sets Vi,1,Vi,2 such that Ei =
Vi,1 × Vi,2.
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or 3 depending on whether R3 agrees with both R1 and R2 or not.
Moreover, E2 is determined by R3, as R1 and R2 can be assumed to
specify contrary preferences on this part.

For the only-if-direction, assume that (V ,E) is the majority graph
induced by the 3-voter preference profile (R1,R2,R3). Let further-
more (V ,E1) be the majority graph induced by (R1,R2) and E2 =

R3 ∩ ((V × V) \ ‖E1‖). By Lemma 4.3, (V ,E1) is transitive and Ẽ1 is
transitively (re)orientable, where (V , Ẽ1) is the incomparability graph
of (V ,E1). As R3 is transitive (and strict) E2 is obviously acyclic. Ob-
serve furthermore that ‖R3 ∩ ((V × V) \ ‖E1‖)‖ = ‖Ẽ1‖. It follows
that E2 is transitively reorientable.

4.2.2 More than Three Voters

Extensions of these results provide useful sufficient conditions for a
graph to be induced by a constant larger number of voters. We say
that two edge sets E1 and E2 are orientation compatible if orientation

compatibility
E1 ∩ (‖E1‖ ∩ ‖E2‖) = E2 ∩ (‖E1‖ ∩ ‖E2‖).

We show that if the edge set of a graph can be decomposed into
pairwise orientation compatible sets such that each satisfies the con-
ditions of Lemma 4.3, the graph is induced by a profile with two
voters per set.

Lemma 4.7
Let (V ,E1), . . . , (V ,Ek) be majority graphs induced by 2-voter
profiles such that E1, . . . ,Ek are pairwise orientation compati-
ble. Then, (V ,E1 ∪ · · · ∪ Ek) is induced by a 2k-voter profile.

Proof. Let for each i with 1 6 i 6 k, (Ri1,Ri2) be a 2-voter profile that
induces (V ,Ei). By Lemma 4.3, for every (v,w) ∈ Ei we know that
both v Ri1 w and v Ri2 w and for every (v,w) /∈ Ei, v Ri1 w if and only if
w Ri2 v. Now consider the preference profile (R11,R12, . . . ,Rk1 ,Rk2) and
the majority graph (V ,E) it induces. We argue that E = E1 ∪ · · · ∪ Ek.
First assume that (v,w) ∈ Ei for some i with 1 6 i 6 k. Then,
both v Ri1 w and v Ri2 w. Since, E1, . . . ,Ek are pairwise orientation
compatible, (w, v) ∈ Ej for no j with 1 6 j 6 k, i.e., for all j with
1 6 j 6 k either v Rj1 w and v Rj2 w or v Rj1 w if and only if w R

j
2 v.

It follows that a majority prefers v over w and thus (v,w) ∈ E. Now
assume that (v,w) ∈ Ei for no i with 1 6 i 6 k. Then for all i with
1 6 i 6 k either both w Ri1 v and w Ri2 v or w R

j
1 v if and only if

v R
j
2 w. it is easy to see that v is not majority preferred to w, i.e.,

(v,w) /∈ E.

Next, we show that a similar condition suffices for a graph to be
inducible by a certain odd number of voters.24

24 The if-direction of Lemma 4.6 can also be obtained as a special case of this lemma.



38 on majority relations of few voters

Lemma 4.8
Let (V ,E) be a tournament and (V ,E1), . . . , (V ,Ek) be majority
graphs induced by 2-voter profiles such that E,E1, . . . ,Ek are
orientation compatible. Let, moreover, Ek+1 ⊇ E \ (E1 ∪ · · · ∪
Ek) be acyclic. Then, (V ,E) is induced by a 2k+ 1-voter profile.

Proof. In virtue of Lemma 4.7 we know that (V ,E1 ∪ · · · ∪ Ek) is in-
duced by a 2k-voter profile (R11,R12, . . . ,Rk1 ,Rk2). Inspection of the
proof also reveals that every edge (v,w) ∈ E1 ∪ · · · ∪ Ek has a posi-
tive even weight of at least two. As Ek+1 is acyclic and asymmetric,
there is some (strict) preference relation Rk+1 with Ek+1 ⊆ Rk+1.
Moreover, since Ek+1 corresponds to only one voter and every edge
in E1 ∪ · · · ∪ Ek has a majority of at least two, Ek+1 does not have to
be orientation compatible with any of E1, . . . ,Ek. It can then easily
be seen that the majority graph induced by (R11,R12, . . . ,Rk1 ,Rk2 ,Rk+1)
equals (V ,E), E1 ∪ · · · ∪ Ek being determined by majorities of at least
one in (R11,R12, . . . ,Rk1 ,Rk2 ,Rk+1) and E \ (E1 ∪ · · · ∪ Ek) by Rk+1, each
edge in which has then weight one.

4.3 determining the majority dimension of
a digraph

In this section, we address the computational problem of computing
the majority dimension. To this end, we define the problem of check-
ing whether for a given digraph G there exists a preference profile
with k voters that induces G, i.e., whether G is a k-majority digraph.

Check-k-Majority

Input: A digraph G and a positive integer k.
Question: Is G a k-majority digraph?

Recall that for a digraphG, whether dim(G) is odd or even depends
on whether G is complete (i.e., a tournament) or not, according to
Lemma 4.1.

In the following, we provide an implementation for computing
the minimal number of voters that is required to induce a given di-
graph. This implementation relies on an encoding of the problem as
a Boolean satisfiability (SAT) problem which is then solved by a SAT
solver. This technique turns out to be surprisingly efficient and easily
outperforms an implementation for 3-majority digraphs based on the
graph-theoretic characterization in Lemma 4.6.

4.3.1 Computing the Majority Dimension via SAT

The number of objects potentially involved in the Check-k-Majority

problem are given in Table 4.2. It is immediately clear that a naïve
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Preference profiles Tournaments
k = 1 k = 3 k = 5 (unlabeled)

m = 5 120 ∼ 1.7 · 106 ∼ 2.5 · 1010 12

m = 10 ∼ 3.6 · 106 ∼ 4.8 · 1019 ∼ 6.3 · 1032 ∼ 9.7 · 106
m = 25 ∼ 1.6 · 1025 ∼ 3.7 · 1075 ∼ 9.0 · 10125 ∼ 1.3 · 1065
m = 50 ∼ 3.0 · 1064 ∼ 2.8 · 10193 ∼ 2.6 · 10322 ∼ 1.9 · 10305
m = 100 ∼ 9.3 · 10157 ∼ 8.1 · 10473 ∼ 7.1 · 10789 > 101332

Table 4.2: Number of objects involved in the Check-k-Majority problem
for one, three, and five voters.

Input: digraph (A,�), positive integer k
Output: whether (A,�) is a k-majority digraph
/* Encoding of problem in CNF */

File cnfFile;
foreach voter i do

cnfFile += Encoder.reflexivePreferences(i);
cnfFile += Encoder.completePreferences(i);
cnfFile += Encoder.transitivePreferences(i);
cnfFile += Encoder.antisymmetricPreferences(i);

cnfFile += Encoder.majorityImplications((A,�));
if � is not complete then

cnfFile += Encoder.indifferenceImplications((A,�));
/* SAT solving */

satisfiable = SATsolver.solve(cnfFile);
if instance is satisfiable then

return true;

else
return false

Algorithm 4.1: Sat-Check-k-Majority

algorithm will not solve the problem in a satisfactory manner. We
describe our algorithmic efforts to solve this problem for reasonably
large instances.

In order to answer Check-k-Majority, we follow a similar ap-
proach as Tang and Lin (2009), Geist and Endriss (2011), and Brandt
and Geist (2014): we translate the problem to propositional logic (on translation to

propositional logica computer) and use state-of-the-art SAT solvers to find a solution.
At a glance, the overall solving steps are shown in Algorithm 4.1.

Generally speaking, the problem at hand can be understood as the
problem of finding a preference profile that satisfies certain condi-
tions, in this case: inducing a given digraph. Thus, a satisfying in-
stance of the propositional formula to be designed should represent
a preference profile. To capture this, a surprisingly simple formal-
ization involving just one type of variable suffices: in our encoding
the boolean variable ri,a,b represents a Ri b, i.e., voter i ranking al-
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ternative a at least as high as alternative b. As it turns out, this one
variable type also suffices for the additional condition of inducing the
given digraph.

More specifically, the following conditions or axioms need to be
formalized:

1. All k voters have linear orders over the m alternatives as their
preferences (short: linear preferences).

2. For each majority edge a � b in the digraph, a majority of
voters needs to prefer a over b (short: majority implications).

3. For each missing edge (a � b and b � a) in the digraph, ex-
actly half the voters need to prefer a over b (short: indifference
implications).25

The details of the encoding are given in our papers (Brandt et al.,
2014c; Bachmeier et al., 2014). Ultimately, this leads to a formula in
conjunctive normal form with a total of

m2 ·
(
k+

(
k

m(k)

))
variables for the case of tournaments and

m2 ·
(
k+

(
k

m(k)

)
+

(
k
k/2

))
variables for incomplete digraphs. The number of clauses is equal to

k · (m3 +m2) + m
2 −m

2
·
(
1+

(
k

m(k)

)
·m(k)

)
for tournaments and at most

k · (m3 +m2) + (m2 −m) ·
(
1+

(
k

k/2

)
· k
2

)
for incomplete digraphs.

This formalization of all axioms in propositional logic puts us in
a position where we can analyze arbitrary digraphs G for their ma-
jority dimension dim(G). Before we do so, however, we describe an
optimization technique for tournament graphs, which, for certain in-
stances, speeds up the computation significantly.

Recognizing all components in a tournament can be done efficiently
as shown in Proposition 3.7. Here, we demonstrate how the knowl-
edge about the full decomposition tree of a tournament T can be used
to optimize the computation of the majority dimension dim(T). Inoptimization

through
decomposition

particular, we show that the majority dimension of a tournament is
equal to the maximum of the majority dimensions of its components
and the corresponding summary.

25 Note that this axiom is only required for incomplete digraphs.
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Lemma 4.9
Let T be a tournament and B̃ = {B1, . . . ,Bp} a decomposition of
T . Also, let TB the summary of T with respect to B̃ and for each
j ∈ {1, . . . ,p}, let TBj denote the summary of T |Bj with respect
to its minimal decomposition. Then,

dim(T) = max
j

{dim(TBj), dim(TB)}.

Proof. Let R be a minimal profile inducing T . Then, R|Bj induces
TBj for every Bj establishing dim(T) > dim(TBj). That dim(T) >
dim(TB) holds is also easy to see by considering a variant of R in
which from each component all but one alternative are arbitrarily
chosen and removed. The remaining profile then induces TB. For
the other direction, let v ′(T) = maxj{dim(TBj), dim(TB)}. We know,
by Lemma 4.1, that dim(T ′) and every dim(TBj) is odd, as these are
all tournaments. Each TBj (and TB) has a minimal profile Rj (and R,
respectively). We can add pairs of voters with opposing preferences
to each profile without changing its majority relation. This way, we
get profiles R ′j (and R ′) that still induce TBj (or TB) but now all have
the same number of voters v ′(T). Now, create a new profile R̂ from
R ′ in which Rji replaced alternative j as a segment in R ′i for each voter
i and every alternative j as in (Laffond et al., 1996). It is easy to check
that R̂ has v ′(T) voters and still induces T , i.e., dim(T) > v ′(T) =

maxj dim(TBj).

We have implemented this optimization and found that many real-
world majority digraphs exhibit proper decompositions, speeding up
the computation of Sat-Check-k-Majority.

4.3.2 Computational Efficiency

The characterization of 3-majority digraphs in Section 4.2 allows for
a straightforward algorithm, which is expected to have a much better algorithm for

checking
3-inducability

running time than any naïve implementation enumerating all prefer-
ence profiles (also compare Table 4.2). The corresponding algorithm
2-Partition-Check-3-Majority is given in Algorithm 4.2. Besides
enumerating all 2-partitions of the majority relations, the only non-
trivial part is to check whether a relation has a transitive reorienta-
tion. This can be done efficiently using an algorithm by Pnueli et al.
(1971).

We compared the running times of 2-Partition-Check-3-Majority

with the ones of our implementation via Sat as described in Sec-
tion 4.3.1 (see also Algorithm 4.1).26 It turns out that—even though it
is much more universal—Sat-Check-3-Majority offers significantly
better running times (see Table 4.3). Note that in addition to being

26 As a programming language, Java was used in both cases.
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m Sat 2-partition

5 < 0.1s < 0.1s
6 < 0.1s < 0.1s
7 < 0.1s 0.1s
8 < 0.1s 530s

9 < 0.1s —
10 < 0.1s —
20 0.1s —
50 1.5s —
100 12.5s —

Table 4.3: Runtime comparison of the Sat implementation for k = 3 and
2-Partition-Check-3-Majority for complete digraphs (tourna-
ments) of different sizes m with a cutoff time of one hour.

more efficient, Sat-Check-k-Majority is even able to return a pref-
erence profile with k voters that induces the given digraph (without
the need for additional computations).

Further runtimes, which exhibit the practical power of our SAT
approach (and its limits), can be obtained from Table 4.4. All exper-
iments were run on an Intel Core i5, 2.66GHz (quad-core) machine
with 12 GB RAM using the SAT solver plingeling (Biere, 2013).

Input: digraph (A,�)
Output: whether (A,�) is a 3-majority digraph
if � is incomplete then

return false;

else
foreach 2-partition {�1,�2} of � do

if �1 is transitive and �2 is acyclic and �2 has a transitive
reorientation then

return true;

return false;

Algorithm 4.2: 2-Partition-Check-3-Majority

4.4 analyzing majority dimensions

With the method described in the previous section, we are in a posi-
tion to analyze the majority dimension of digraphs. In this section,
we report on our findings for different sources of digraphs.
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m\k 3 4 5 6 7 8 9 10 11 12

3 .04 .04 .03 .04 .04 .04 .04 .05 .08 .10
4 .03 .04 .03 .04 .04 .04 .05 .07 .10 .18
5 .03 .04 .03 .04 .06 .05 .06 .09 .16 .35
6 .03 .04 .04 .04 .05 .06 .08 .12 .27 .63
7 .04 .04 .04 .05 .05 .07 .10 .17 .45 1.10
8 .04 .05 .05 .05 .07 .08 .13 .23 .69 1.80
9 .04 .05 .05 .64 .07 .10 .17 .33 1.06 2.83
10 .05 .05 .06 .67 .09 .12 .23 .46 1.56 4.25
11 .06 .06 .06 1.92 .10 .14 .30 .63 2.22 6.37
12 .06 .07 .07 3.35 .12 .19 .40 .85 3.18 8.48
13 .07 .07 .09 3.93 .15 .27 .52 1.16 4.44 12.30
14 .07 .09 .10 4.15 .18 .36 .64 1.51 5.99 16.84
15 .08 .10 .13 3.89 .21 .88 .79 2.22 7.67 —
16 .09 .11 .14 4.12 .25 4.55 .99 2.90 9.80 —
17 .10 .12 .19 4.41 .29 7.15 1.23 4.69 12.48 —
18 .11 .14 .23 4.76 .35 17.51 1.53 8.25 15.97 —
19 .12 .15 .35 4.97 .43 — 1.80 — 19.99 —
20 .13 .17 .54 5.04 .47 — 2.21 — — —
21 .14 .18 5.87 6.15 .63 — 2.71 — — —
22 .16 .20 11.07 5.43 .96 — 3.24 — — —
23 .17 .23 18.95 5.76 1.57 — 4.12 — — —
24 .20 .26 — 5.87 2.56 — 4.60 — — —
25 .22 .29 — 6.12 4.21 — 5.85 — — —

Table 4.4: Runtime in seconds of Sat-Check-k-Majority for different num-
ber of alternatives and different number of voters k when aver-
age runtimes did not exceed 20 seconds. For this table, averages
were taken over 5 samples from the uniform random tournament
model.

4.4.1 Exhaustive Analysis

Using the tournament generator from the nauty toolkit (McKay and
Piperno, 2013a), we generated all tournaments with up to 10 alterna-
tives and found that all of these are 5-inducible. In fact, all tourna-
ments of size up to seven are even 3-inducible, confirming a conjec-
ture by Shepardson and Tovey (2009). They also showed that there
exist tournaments of size 8 that are not 3-inducible. We confirmed
that the exact number of such tournaments is 96 (out of 6880) as
mentioned by Eggermont et al. (2013). One of these is depicted in
Figure 4.1.

We have not encountered a single tournament for which we could
show that it is not 5-inducible. Since quadratic residue tournaments
of enormous size are the only concrete tournament of which we know
that they have higher majority dimension (see Section 4.1), we exam-
ined small tournaments of this kind as well and found that

dim(Q11) = 3 and dim(Q19) = 5.
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Unfortunately, we were not able to check whether the majority dimen-
sion of Q23 is equal to 5 or larger as the SAT solver did not terminate
in reasonable time.27

Another specific tournament that we considered is a tournament on
24 alternatives that will be presented in Section 10.2 and serves as the
current minimal counterexample to a now disproved conjecture by
Schwartz (1990) in social choice theory. We found it to be a 5-majority
tournament, implying that the negative theoretical consequences of
the counterexample already hold for scenarios with only 5 voters (and
at least 24 alternatives).

4.4.2 Empirical Analysis

In the preference library PrefLib (Mattei and Walsh, 2013), scholars
have contributed data sets from real world scenarios ranging from
preferences over movies or sushi via Formula 1 championship results
to real election data. Accordingly, the number of voters whose prefer-
ences originally induced these data sets vary heavily between 4 and
44000. At the time of writing, PrefLib contained 354 tournaments in-
duced from pairwise majority comparisons as well as 185 incomplete
majority digraphs.

Among the tournaments in PrefLib, 58 are 3-inducible. Out of the
two largest tournaments in the data set with 240 and 242 alternatives,
respectively, the first is a 5-majority tournament while on the second
the Sat solver did not terminate within one day. The remaining tour-
naments are transitive and thus 1-inducible. Therefore, all checkable
tournaments in PrefLib are inducible by only 5 voters.

For the non-complete majority digraphs in PrefLib, we found that
the indifference constraints which are imposed on all missing edges
change the picture. Not only does it negatively affect the running
time of Sat-Check-k-Majority in comparison to tournaments which
made us restrict our attention to instances with at most 40 alterna-
tives, but it also seems to result in higher voter complexities of up to
8 among the 85 feasible instances. However, given that the number of
voters in the profiles that originally induced these majority digraphs
are often in the hundreds or thousands, we still consider these low
majority dimensions.

4.4.3 Stochastic Analysis

Additionally, we considered stochastic models to generate tourna-
ments of a given size m as described in Section 2.2.

27 We terminated the solving process after a total of 6 weeks.
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For up to 21 alternatives, we sampled preference profiles (each con-
sisting of 51 voters28) from five of the models described in Section 2.2
and examined the corresponding majority graphs for their majority
dimension using Sat-Check-k-Majority. The average complexities
over 30 instances of each size are shown in Table 4.5. We see that the
unbiased models (IC, IAC, uniform) tend to induce digraphs with
higher majority dimension.

Again, we encountered no tournament that was not a 5-majority
tournament.29

m uniform IC IAC
Mallows-φ
(φ = 0.95)

spatial
(dim = 2)

3 1.40 1.13 1.13 1.13 1.00
5 3.00 1.67 2.13 1.33 1.13
7 3.00 2.67 2.67 2.47 1.33
9 3.13 3.00 3.00 2.67 1.60
11 3.93 3.07 3.00 2.87 2.33
13 4.80 3.07 3.20 2.93 2.53
15 5.00 3.27 3.40 3.00 2.67
17 5.00 3.40 3.80 2.93 2.80
19 5.00 4.27 4.20 3.00 2.80
21 5.00 4.47 4.33 3.00 2.87

Table 4.5: Average majority dimension in tournaments generated by
stochastic (preference) models. The given values are averaged
over 30 samples each.

28 We found that this size turned out to be sufficiently large to discriminate the different
underlying stochastic models, cf. Section 9.3.

29 Our efforts also included checking more than 8 million uniform random tourna-
ments with 12 alternatives.
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D E F I N I T I O N S

The advantage of making economics more
mathematical is that it introduces order, precision,
and a sense of objectivity into what would
otherwise be considered a vague social science.

Ariel Rubinstein, 2007

Many problems in multiagent decision making can be addressed
using tournament solutions, i.e., functions that associate with each
complete and asymmetric relation on a set of alternatives a non-
empty subset of the alternatives. Tournament solutions are most
prevalent in social choice theory, where—as in this thesis—the bi-
nary relation is typically assumed to be given by pairwise majority
comparisons (e.g., Moulin, 1986; Laslier, 1997). Other application
areas include zero-sum games (Fisher and Ryan, 1995; Laffond et al.,
1993b; Duggan and Le Breton, 1996), argumentation theory (Dunne,
2007; Dung, 1995), multi-criteria decision analysis (Arrow and Ray-
naud, 1986; Bouyssou et al., 2006), and coalitional games (Brandt and
Harrenstein, 2010).

Recent years have witnessed an increasing interest in tournament
solutions both in terms of their axiomatic as well as algorithmic prop-
erties by the multiagent systems community (Brandt and Fischer,
2008; Faliszewski et al., 2009; Brandt et al., 2010b; Brandt et al., 2014a;
Brandt et al., 2013b) and the theoretical computer science community
(Woeginger, 2003; Alon, 2006; Baumeister et al., 2013).

In this chapter, we define, illustrate and discuss a good number
of tournament solutions that will be studied with different perspec-
tives in the later chapters of this part. Axiomatic properties which
rightfully play a very important role in the evaluation of tournament
solutions are only mentioned in passing in this chapter. Those needed
will be introduced in Chapter 10 for the concepts discussed there.

For an excellent overview, more details on most concepts and a
more thorough treatment of axiomatic properties, we refer to Laslier
(1997). Computational issues are discussed by Brandt (2009) and
Hudry (2009). The presentation in this chapter is based on the corre-
sponding section in our paper (Brandt et al., 2015b) with inspirations
taken from the book chapters by Brandt et al. (2015a) and Fischer et al.
(2015).

49
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5.1 unweighted solution concepts

An (unweighted) tournament solution is a function that maps a tour-
nament to a nonempty subset of its alternatives and disregards the
names of alternatives. In addition, we require that a Condorcet win-
ner must be chosen whenever one exists.30 Here, we deviate from
Laslier’s definition who required that Condorcet winners have to be
chosen uniquely whenever they exist.31

Definition 5.1
A function S is a tournament solution if it associates each tour-
nament T = (A,�) with a subset S(T) ⊆ A and it holds for all
T ∈ T that

• S(T) 6= ∅,

• π(S(T)) = S(π(T)) for all isomorphisms π on T, and

• CW(T) ⊆ S(T).

Note that by the second property, every tournament solution au-
tomatically satisfies neutrality. Part of this is that every tournamentneutrality

solution has to select either every alternative of an orbit or none.
Let S1,S2 be two tournament solutions. We say that S1 is finer

than S2 or is a refinement of S2 and write S1 ⊆ S2 if S1 always returnsrefinement

subsets of the choice sets of S2, i.e.,

S1 ⊆ S2 ⇔ S1(T) ⊆ S2(T) for all T ∈ T.

Conversely, S2 is coarser than S1 or a coarsening of S1 in such a case.coarsening

We start with three non-complex tournament solutions that would
not be seriously considered as choice functions in practical scenarios.

The trivial tournament solution (TRIV) always selects all alternativestrivial tournament
solution of a tournament. By definition, it is the coarsest tournament solution

and does not even rule out alternatives in transitive tournaments. A
first albeit very conservative approach to excluding alternatives is re-
flected in Condorcet Non-Losers (CNL) that excludes Condorcet losers
whenever they exist and chooses the whole set of alternatives oth-
erwise. An interesting aspect about CNL is that it is a non-trivial
representative of the family of simple tournament solutions, definedsimple tournament

solution by their property to never exclude more than one alternative. A third
tournament solution that will serve as a more serious baseline for
comparisons in terms of discriminativity is what we call the Con-
dorcet solution (COND). It chooses the Condorcet winner wheneverCondorcet solution

one exists and the whole set of alternatives otherwise.32

30 The last requirement is the property of Condorcet-consistency which is therefore auto-
matically satisfied by every tournament solution.

31 This property is then called strong Condorcet-consistency.
32 Note that COND differs from CW (cf. Section 2.1.2) on all tournaments T = (A,�)

that exhibit no Condorcet winner. Then, COND(T) = A whereas CW(T) = ∅ which
is why CW does not constitute a tournament solution.
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For the upcoming definitions, let T = (A,�) be a tournament and
let M(T) denote the adjacency matrix of T where entries (mab)a,b∈A adjacency matrix

are 1 whenever a � b and 0 otherwise.

5.1.1 Solutions Based on Scores

Several solution concepts are defined via scores being attached to
alternatives with the choice set consisting of those alternatives that
either tie for the highest score or have a non-negative score.

The Copeland set CO(T) of T consists of all alternatives whose do- Copeland set

minion is of maximal size, i.e.,

CO(T) = arg max
a∈A

|D(a)|.

This set can be easily computed in linear time by determining all out-
degrees and choosing the alternatives with maximum out-degree.

The Slater set SL(T) of T consists of the maximal elements of those Slater set

linear orders that have as many edges as possible in common with T
(Slater, 1961), i.e.,

SL(T) = {max(L) : L ∈ arg max
L ′∈L(A)

|L ′ ∩�|}

Finding these linear orders is equivalent to solving an instance of
the NP-complete problem feedback arc set (Alon, 2006; Charbit et al.,
2007; Conitzer, 2006), which implies that checking membership in
the Slater set is NP-hard (Charon and Hudry, 2010). Yet, there are
implementations that are sufficiently fast on small instances (e.g.,
Charon and Hudry, 2011).

The Markov set of a tournament is defined as those alternatives Markov set

that have maximum probability in the unique stationary distribution
of a Markov chain associated with T in the following way. Laslier
(1997) used the tournament matrix to define the transition matrix of
a Markov chain as

N =
1

|T |− 1
· (M+ ICO)

where ICO is the diagonal matrix of the (Copeland) scores. Then, the
Markov set MA(T) of T is defined as

MA(T) = arg max
a∈A

{p(a) : p ∈ ∆(A) and N · p = p}

where ∆(A) denotes the set of all probability distributions over A.
Computing p as the eigenvector of N associated with the eigenvalue
1 is governed by matrix multiplication (Hudry, 2009) and therefore is
in O(|T |2.3729) (Vassilevska Williams, 2012).

The bipartisan set of T is defined as the support of the unique mixed bipartisan set

Nash equilibrium of a zero-sum game, associated with T . To this end,
let G(T) denote the skew-adjacency matrix of a tournament T . This skew-adjacency

matrix
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skew-symmetric matrix is defined as the difference of the adjacency
matrix and its transpose, i.e.,

G(T) =M(T) −M(T)t.

This matrix is interpreted as the payoff matrix of a symmetric (two-
player) zero-sum game.33 Laffond et al. (1993b) and Fisher and Ryan
(1995) have shown independently that every such game has a unique
mixed Nash equilibrium (pT ,pT ) which is equivalent to every tourna-
ment T admitting a unique probability distribution pT ∈ ∆(A) such
that ∑

a,b∈A
pT (a)q(b)G(T)a,b > 0 for all q ∈ ∆(A).

The bipartisan set BP(T) of T is defined as the support of this equilib-
rium, i.e.,

BP(T) = {a ∈ A : pT (a) > 0}.

Brandt and Fischer (2008) have shown that BP(T) can be computed in
polynomial time using a linear feasibility program.

5.1.2 Uncovered Set and Banks Set

If all majority relations were transitive, there would be little dispute
about always picking the Condorcet winner as a singleton choice set.
However, as we have seen throughout the first part of this thesis, the
majority relation does not need to be transitive and may in fact be
isomorphic to any binary relation (cf. Chapter 4). Two approaches
to gain back transitivity are captured in the Banks set which consid-
ers inclusion-maximal transitive subsets and in the covering relation
which is transitive subset of the dominance relation.

The Banks set BA(T) of T , introduced by Banks (1985) is defined asBanks set

the maximal elements of maximal transitive subsets in T 34, i.e.,

BA(T) = {a ∈ A : ∃B ∈ BT (a) such that @b : b � B}.

Computing BA is known to be NP-hard (Woeginger, 2003). Brandt
et al. (2010b) gave an arguably simpler proof of this hardness result
which we will use for new hardness arguments in Section 6.2 and
Section 10.3.1. Our implementation is based on a recent algorithm
by Gaspers and Mnich (2010) that enumerates all feedback vertex sets,
each of which is the complement of a maximal transitive subset.

The covering relation is always defined with respect to a subsetcovering relation

B ( A. For all distinct a,b ∈ B, a covers b in B, if DB(b) ⊂ DB(a).
Then, the uncovered set UC(T) of T is defined as the set of vertices whouncovered set

33 With the payoffs being only within {−1, 0, 1}, this has also been called a tournament
game.

34 Banks’s original motivation was slightly different as his aim was to characterize the
set of outcomes under sophisticated voting in the amendment procedure.



5.1 unweighted solution concepts 53

are maximal elements according to the covering relation in A (Fish-
burn, 1977; Miller, 1980). Equivalently, a vertex is not covered and
thereby in the uncovered set if and only if it can reach every other
vertex in the tournament via a path of length at most two.35 It is
easily seen from the second definition that a ∈ UC(T) if and only if(
M2 +M

)
ab
6= 0 for all b ∈ A \ {a}. Consequently, the running time

for computing UC is governed by matrix multiplication, i.e., it is in
O(|T |2.3729) (Vassilevska Williams, 2012).

The uncovered set as a tournament solution is not idempotent, i.e.,
it does not necessarily hold that UC(UC(T)) = UC(T), and one can
therefore define a sequence of tournament solutions by letting

UCk = UC(UCk−1(T)) and UC1(T) = UC(T).

The iterated uncovered set UC∞(T) of a tournament T is then defined iterated uncovered
setas

UC∞(T) = ⋂
k∈N

UCk(T).

Due to the finiteness of T , computing UC∞ requires at most |T | suc-
cessive UC-computations. Therefore, UC∞ can be computed in time
O(|T |1+2.3729).

5.1.3 Solutions based on Stability

A subset of alternatives B ⊆ A is called S-stable for a tournament S-stable

solution S if a /∈ S(B ∪ {a}) for all a ∈ A \ B. Stable sets can be used
to define a new tournament solution Ŝ that returns the union of all
minimal S-stable sets, i.e.,

Ŝ(T) =
⋃

{B is S-stable : ∀C ( B : C is not S-stable}.

Defining new tournament solutions via the ̂-operator is most ap-
pealing for tournament solutions S that always admit a unique mini-
mal set.

Recall that a set B ⊆ A is dominant in T if B � A \ B. Using the
notion of stable sets, we see that this is equivalent to B being CNL-
stable in T . The top cycle TC(T) of a tournament T is defined as the top cycle

unique minimal CNL-stable (or dominant) set, i.e.,

TC = ĈNL.

Uniqueness of the minimal dominant set is straightforward and was
first shown by Good (1971). Referring to our treatment of components
in majority graphs in Chapter 3, the top cycle of T coincides with
the top-most component of the scaling decomposition of T . If T is
irreducible, TC(T) = A. The top cycle can be computed in linear time
by identifying the strongly connected components of T (Tarjan, 1972).

Dutta (1980) has shown that every tournament admits a unique
UC-stable set and defined the minimal covering set MC(T) of T as minimal covering

set
35 In graph theory, such vertices are often called kings.
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MC(T) = ÛC(T).

A polynomial-time algorithm for computing MC using the BP algo-
rithm as a subroutine was proposed by Brandt and Fischer (2008).

Brandt (2011b) was the first to consider BA-stable sets which he
called extending sets. He conjectured that minimal extending sets wereextending sets

always unique and defined

ME(T) = B̂A(T).

The conjecture has been disproved by Brandt et al. (2013a) and we
address the implications of this on ME at length in Section 10.3.36

Computing the minimal extending set is a tedious task. We show
in Section 10.3.1 that the problem is NP-hard but it may very well be
harder than that. The best known upper bound is Σp3 as verifying
whether a set is BA-stable already seems to require solving the coNP-
complete problem of deciding whether an alternative is not contained
in BA (Brandt, 2009). We compute minimal extending sets using a
naïve implementation, which already takes about 3 minutes on in-
stances of 25 alternatives.

5.1.4 Solutions Based on Retentiveness

A nonempty subset of alternatives B ⊆ A is called S-retentive for tour-S-retentive set

nament solution S if S(D(b)) ⊆ B for all b ∈ B such that D(b) 6= ∅.
Just like stable sets, retentive sets can be used to define a new tourna-
ment solution S̊ that returns the union of all minimal S-retentive sets,
i.e.,

S̊(T) =
⋃

{B is S-retentive : ∀C ( B : C is not S-retentive}.

Just like ̂ before, ˚ is an operator that maps from the space of tour-
nament solutions to itself. It was introduced by Schwartz (1990) in
the course of his definition and analysis of the tournament equilibrium
set (TEQ) which is defined as the unique fixed point of ˚ , i.e.,tournament

equilibrium set
TEQ = ˚TEQ.

This recursive definition is well-defined since the dominator sets be-
come strictly smaller in each level of the recursion.

While S̊ could be considered for any tournament solution S, the
concept is most appealing when there is a unique inclusion-minimal
S-retentive set. This was shown by Brandt et al. (2014a) for S = TC,
resulting in T̊C or TC-ring.TC-ring

A general method for computing S̊, given an implementation for

S, is to compute the corresponding S-relation S−→ where a S−→ b if and
only if a ∈ S(D(b)) and then return the maximal elements of that

36 Originally, the name of the concept was the minimal extending set of a tournament. In
light of the possible non-uniqueness, we will only call it ME.
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relation’s transitive closure, as suggested by Brandt et al. (2010b). In
case of T̊C, this takes polynomial time. Due to its recursive nature,
computing TEQ is much harder than computing T̊C. The problem is
known to be NP-hard while the best known upper bound is PSPACE

(Brandt et al., 2010b). For general tournaments with more than 100
alternatives, computing TEQ is currently out of reach. For structured
tournaments this changes drastically as we will see in Chapter 7.

5.2 weighted solution concepts

The Borda solution (BO) is typically used in a voting context, where it Borda

is construed as based on voters’ rankings of the alternatives: each al-
ternative receives |A|− 1 points for each time it is ranked first, |A|− 2
points for each time it is ranked second, and so forth. The solution
concept then chooses the alternatives with the highest total number of
points (Borda, 1784). In the more general setting of weighted tourna-
ments, the Borda score of alternative x ∈ A in G = (A, w) generalizes
the Copeland score by taking the weights into account:

sBO(a,G) =
∑

b∈A\{a}

w(a,b)

Then, the Borda winners are the alternatives with the highest Borda
score.37 If w(a,b) represents the number of voters that rank a higher
than b, the two definitions of Borda are equivalent. Computing the
set of Borda winners runs along the same lines as computing the
Copeland set and can be done in linear time.

The maximin score sMM(a, T) of an alternative a in a weighted tour-
nament T = (A, w), is given by its worst pairwise comparison, i.e.,
sMM(x, T) = miny∈A\{x} w(x,y). The maximin solution, also known as maximin solution

the Simpson-Kramer method and denoted by MM, returns the set of all
alternatives with the highest maximin score (Simpson, 1969; Kramer,
1977; Young, 1977).

There are two solution concepts in the literature under the name
ranked pairs that differ by their inherent tie-breaking rule.38 Given a ranked pairs

weighted tournament T = (A, w), both variants construct transitive
tournaments T ′ on A in the following manner. First order the (di-
rected) edges of T in decreasing order of weight. Then consider the
edges one by one according to this ordering. If the current edge can
be added to T ′ without creating a cycle, then do so; otherwise discard
the edge. Then, the unique undominated alternative of T ′ is chosen
from T .

The difference lies in how ties in the ranking of edge weights are
handled. In the original definition by Tideman (1987), no tie-breaking

37 Borda winners and the Copeland set coincide for unweighted tournaments.
38 See Brill and Fischer (2012) and Brill (2012, Chapter 8.1) for a more thorough discus-

sion of these two variants.
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rule is fixed and the procedure returns the set of all tournaments T ′

that are obtained through some tie-breaking rule. We refer to the
weighted tournament solution that returns all alternatives that are
undominated in any such T ′ as RP. Brill and Fischer (2012) have
shown that the winner determination problem for RP is NP-hard.

In the second variant, ties are broken according to some pre-defined
tie-breaking rule τ. The corresponding solution concepts RPτ is the
only resolute concept we consider in this thesis: for any weighted
tournament T , it chooses a singleton, i.e., |RPτ(T)| = 1. It is obvious
that determining the sole winner according to RPτ is tractable.

A very prominent weighted tournament solution that we include
for completeness in this list is Kemeny’s rule (Kemeny, 1959). WhileKemeny’s rule

usually being considered for preference profiles, it actually only oper-
ates on the weighted majority relation and can be seen as an extension
of Slater’s rule to weighted tournaments. In this perspective, an alter-
native a is a Kemeny winner in T = (A, w) if it is undominated in a
Kemeny ranking �K that maximizes the total weight on edges sharedKemeny ranking

with T , i.e.,

�K∈ arg max
�

∑
a,b∈A
a�b

w(a,b).

Virtually all problems related to Kemeny’s rule are at least NP-hard
(Bartholdi, III et al., 1989; Hemaspaandra et al., 2005). See Fischer
et al. (2015) for a good overview about what is known for Kemeny’s
rule.

5.3 summary

Tournament solutions as functions that chose a set of alternatives
from complete weighted or unweighted graphs can be applied in
many scenarios, one of which is social choice. There is a plethora
of unweighted and weighted tournament solutions that differ, for ex-
ample, in terms of their axiomatic properties, their ability to discrim-
inate between alternatives, and their computational complexity. We
briefly introduced all solution concepts that we are concerned with
in this thesis. For later reference, the abbreviated names are listed in
Table 5.1.
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TRIV trivial tournament solution

CNL Condorcet non-losers

COND Condorcet solution

CO Copeland set

SL Slater set

MA Markov set

BP bipartisan set

BA Banks set

UC uncovered set

UC∞ iterated uncovered set

TC top cycle

MC minimal covering set

ME ME

TEQ tournament equilibrium set

T̊C TC-ring

BO Borda

MM maximin, Simpson-Kramer

RP ranked pairs (Tideman’s variant)

RPτ ranked pairs (resolute variant)

Table 5.1: List of unweighted and weighted tournament solutions.
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H A R D N E S S O F V OT I N G W I T H A C O N S TA N T
N U M B E R O F V OT E R S

[T]o my knowledge, when not trivial, the
complexity for lower values of m [the number of
voters] remains unknown. In particular, it would
be interesting to know whether some of the
problems [. . . ] remain NP-hard if m is a given
constant.

Olivier Hudry, 2008

In this chapter, we show that the winner determination problem of
four well-studied voting rules remains NP-hard even if the number of
voters is a small constant. Our general method is to analyze the exist-
ing hardness constructions of four common social choice rules with
respect to their susceptibility to the sufficient conditions in Lemma 4.7
or Lemma 4.8. In all cases, we slightly modify the original construc-
tion to get better bounds on the number of voters that are required to
induce it.

In Section 6.1, we introduce for two new decision problems that
they are NP-complete which will be used in the results in the next
sections. In Section 6.2, Section 6.3, Section 6.4, and Section 6.5 that
the winner determination problem remains NP-hard even with elec-
torates of a small constant size for the Banks set, the tournament equi-
librium set, the Slater set and the ranked pairs method, respectively.
Section 6.6 summarizes our findings.

6.1 two np-complete problems

Before we proceed further, we introduce two new constrained classes
of propositional formulae (Ordered3-CNF to be used for the results
in Sections 6.2 and 6.3, and ReducedFew-CNF to be used for the
result in Section 6.4) and show for both that the problem of deciding
whether a given formula is satisfiable is NP-complete.

A formula of propositional logic in conjunctive normal form (CNF)
is in 3-CNF if each clause has at most three literals. We say that a
formula ϕ from 3-CNF is in Ordered3-CNF if its clauses all contain Ordered3-CNF

exactly three distinct literals and are ordered within ϕ in such a way
that for each propositional variable p, all clauses containing the lit-
eral p precede all clauses containing ¬p. It is known that 3Sat, the

59
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problem of deciding whether a given formula in 3-CNF is satisfiable,
is NP-complete (Karp, 1972). For formulae in Ordered3-CNF, we call
the corresponding decision problem Ordered3Sat .Ordered3Sat

Lemma 6.1
Ordered3Sat is NP-complete.

Proof. Membership in NP is obvious. For the hardness, we reduce
from 3Sat. Let ϕ be some formula in 3-CNF. Let P denote the set
of variables of the propositional language in which ϕ is formulated
and let C = (c1, . . . , c|C|) denote the clause set of ϕ. We may assume
w.l.o.g. that no clause contains the same variable twice, that all literals
in a clause are ordered according to a fixed ordering (p1,p2, . . .), and
that every clause is of size three. The latter is due to the fact that
clauses of size one can be easily used to simplify ϕ and the remaining
clauses (p∨ q) of size two can be padded with a new variable x to
(p∨ q∨ x)∧ (p∨ q ∨ ¬x). We call all variables that occur at least
once in ϕ original variables.

For the reduction, we construct an ordered formula ϕ ′ in 3-CNF
with 6 · |C| clauses and 4 · |C| additional variables that is satisfiable if
and only if ϕ is. For every clause ci = (`1 ∨ `2 ∨ `3), define a set of
new clauses ϕi =

∧6
j=1 c

j
i with

c1i = (`1 ∨ xi ∨ x
′
i), c2i = (`2 ∨¬xi ∨ yi),

c3i = (`2 ∨¬x ′i ∨ yi), c4i = (`3 ∨¬yi ∨ zi),

c5i = (¬xi ∨¬yi ∨¬zi), and c6i = (¬x ′i ∨¬yi ∨¬zi)

where xi, x ′i,yi, and zi are new propositional variables. It is easy
to check that ci is satisfiable if and only if ϕi is. Since the literals
associated with original variables are spread over different ϕi just as
they were over the different clauses ci in ϕ, this implies that

∧
iϕi is

satisfiable if and only if ϕ is.

What remains to be shown is that all the clauses cji can be arranged
in such a way that the resulting formula is ordered. To this end, we
define for each original variable p and j ∈ {1, . . . , 4} the clause sets

Cp,j =
⋃
i

{c
j
i : p ∈ c

j
i} and C¬p,j =

⋃
i

{c
j
i :¬p ∈ c

j
i}

as well as

C5 =
⋃
i

c5i and C6 =
⋃
i

c6i .
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We are now in a position to define ϕ ′ to be

ϕ ′ =

|P|∧
i=1

(( 4∧
j=1

∧
c∈Cpi ,j

c

)
∧

( 4∧
j=1

∧
c∈C¬pi ,j

c

))
∧

∧
c∈C5∪C6

c.

We claim thatϕ ′ is ordered. We show this for original and new vari-
ables separately. For each original variable p, all positive occurrences
are in the Cp,j, preceding the negative occurrences in the C¬p,j.

For all new variables, the clauses in C5 ∪C6 only contain negative
occurrences and are at the back of ϕ. Therefore, we only have to
check that orderedness holds in the first part of ϕ ′. For each zi,
this is trivially the case as it only occurs once (as a positive literal)
outside of C5 ∪C6. For the others that we denoted by xi, x ′i, and yi,
the positive occurrences in Cp`,j ∪ C¬p`,j for some ` and j ∈ {1, 2, 3}
always precede the single negative occurrence in CpL,J ∪ C¬pL,J for
some J ∈ {2, 3, 4} and L 6= `: due to the fixed ordering of the literals
within a clause we have that L > `.

We say that a formula from 3-CNF is in Few-CNF if each literal ap-
pears at most twice, and each variable appears at most thrice. We call
the problem of checking whether a formula given in Few-CNF is sat-
isfiable FewSat. Tovey (1984) has shown that FewSat is NP-complete.
We follow his proof to show that this still holds for formulae in Re-
ducedFew-CNF where we additionally require that every variable ReducedFew-CNF

occurs in at most one three-literal clause and every literal in at most
one two-literal clause. Denote the corresponding decision problem
by ReducedFewSat . ReducedFewSat

Lemma 6.2 (cf. Tovey, 1984, Thm. 2.1)
ReducedFewSat is NP-complete.

Proof. Membership in NP is obvious. For hardness, we reduce from
3Sat. Let ϕ :=

∧n
i=1(xi ∨ yi ∨ zi) be some formula in 3-CNF where

no clause contains the same variable twice. For every variable v oc-
curring in ϕ, replace each of its L occurrences with a new variable vj
where 1 6 j 6 L. Now add the clauses

ϕv = (¬vL ∨ v1)∧

L−1∧
j=1

(¬vj ∨ vj+1)

which are equivalent to (vL ⇒ v1)∧
∧L−1
j=1 (vj ⇒ vj+1). Call the re-

sulting formula red(ϕ). Note that red(ϕ) only contains clauses with
three literals (original clauses with replaced variables) or two literals
(the new clauses) and denote these clause sets by C3 and C2, respec-
tively. Also observe that every variable occurs exactly once in C3 and
every literal exactly once in C2, i.e., red(ϕ) is in ReducedFew-CNF.
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For every old variable v, we can only satisfy ϕv by setting all vj to
the same value. Since setting all vj to the same value t satisfies ϕv
and has the same effect on the original part of red(ϕ) that setting v
to t has on ϕ, it follows that ϕ is satisfiable if and only if red(ϕ) is
satisfiable.

6.2 the banks set

Although finding a random alternative in the Banks set can be done in
polynomial time (Hudry, 2004), deciding whether an alternative be-
longs to the Banks set is NP-complete as shown by Woeginger (2003).
Brandt et al. (2010b) gave an arguably simpler proof of this result by a
reduction from 3Sat: every formula ϕ in 3-CNF can be transformed
in polynomial time into a tournament TBA

ϕ with a decision node c0
such that c0 is in the Banks set of TBA

ϕ if and only if ϕ is satisfiable.
Due to Lemma 6.1, this reduction works just as well if ϕ is taken to
be ordered as well. Again, we have P denote the set of variables of
the propositional language in which ϕ is formulated.

A tournament (V ,E) is in the class GBA if it satisfies the followingthe class GBA

properties. There is an odd integer m such that,

V = C∪U1 ∪ · · · ∪Um,

where C,U1, . . . ,Um are pairwise disjoint and C = {c0, . . . , cm}. We
have Ci denote the singleton {ci} and U =

⋃m
i=1Ui. If i is odd,

Ui = {u1i ,u2i ,u3i } whereas if i is even Ui is a singleton {ui}. Let
X =

⋃
{Ui : i is odd} and Y =

⋃
{Ui : i is even}. Intuitively, (V ,E)

is TBA
ϕ for some ϕ in ordered 3-CNF with 1

2(m + 1) clauses. If i is
odd, Ui corresponds to a clause of ϕ and the nodes it contains rep-
resent (tokens of) literals. We assume each of these nodes uji to be
labeled by the literal λ(uji) it represents. For odd i ∈ {1, . . . ,m} and
j ∈ {1, 2, 3} we define,

U
j
i = {u

j
i}

U
p
i = {u ∈ Ui : λ(u) = p}

U
¬p
i = {u ∈ Ui : λ(u) = ¬p}

Moreover, for even i ∈ {1, . . . ,m} and j ∈ {1, 2, 3}, we stipulate,

U
j
i = U

p
i = U¬p

i = ∅.

Observe that
⋃

p∈P
16i6m

(Upi ∪U
¬p
i ) = X.
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We are now in a position to define the edge set E, almost as in
Brandt et al. (2010b).39 Let

E =
⋃
i<j

(Cj ×Ci)∪
⋃
i<j

(
(Ui ×Uj) \ Eϕ

)
∪

⋃
16i6m

(
(U1i ×U2i )∪ (U2i ×U3i )∪ (U1i ×U3i )

)
∪

⋃
i 6=j

(Ci ×Uj)∪
⋃
i

(Ui ×Ci)∪ Eϕ,

where

Eϕ =
⋃
p∈P
i<j

(Upj ×U
¬p
i )∪

⋃
p∈P
i<j

(U¬p
j ×U

p
i ).

Figure 6.1 illustrates this type of tournament. We also refer to Eϕ as
the formula dependent of the tournament TBA

ϕ . The edge set

(E \ Eϕ)∪ Eϕ

we refer to as its skeleton.
We will show that the skeleton of each tournament TBA

ϕ is induced
by a 3-voter profile such that the edges in Eϕ all get a weight of one.
At the same time, Eϕ is inducible by a 2-voter profile such that the inducing every

tournament in GBA

with 5 voters
weight on all edges is two. A little reasoning and an application of
Lemma 4.8 then gives us the desired result.

Theorem 6.3
Computing the Banks set is NP-hard, if the number of voters is
at least five.

Proof. Let (V ,E) be a tournament in GBA. It suffices to show that (V ,E)
is induced by a 5-voter profile. To this end define:

E1 =
⋃
i

(Ui ×Ci),

E2 = E
ϕ,

E3 = E \ (E1 ∪ E2).

Observe that E = E1 ∪ E2 ∪ E3 and that E1, E2, and E3 are pairwise
disjoint. In virtue of Lemma 4.8, it therefore suffices to show that
(V ,E1) and (V ,E2) are induced by 2-voter profiles and that (V ,E3) is
acyclic.

39 There is only a slight change compared to the original construction by Brandt et al.
(2010b). Specifically, we now have edges U1i ×U

3
i instead of the other way around.

It is not difficult to check that the argument of the reduction is not affected—it
is irrelevant whether the crucial transitive subtournament with c0 as its maximal
element may contain one, two, or three vertices from a Ui.
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c0

c1

c3

c5

c2

c4

u15 u25 u35

u13 u23 u33

u11 u21 u31

u4

u2

} C0

} C1
} C2
} C3
} C4
} C5

} U1
} U2
} U3
} U4
} U5

Figure 6.1: A tournament TBA
ϕ = (V ,E) in the class GBA, where E is given

by the displayed edges of any kind and it is understood that
missing edges point downwards. Moreover, λ(u35) = λ(u33) =

λ(u31). The dotted and dashed upward edges correspond to the
edge sets E1 and E2 in Theorem 6.3, respectively. The remaining
edges, i.e., all downward edges and the edges within the Ui
form an acyclic edge set and correspond to E3.

For (V ,E1) it is easy to see that it is a union of unidirected stars
and therefore 2-inducible. For (V ,E2), let

E
p
2 =

⋃
i<j

(
U
p
j ×U

¬p
i

)
∪
(
U

¬p
j ×U

p
i

)
be the edges in E2 associated with a variable p. Note that E2 =⋃
p∈P E

p
2 and that all Ep2 are vertex-disjoint from each other. Recall

that (V ,E) was in induced through a construction that was based
on an ordered formula. This implies that whenever Upj 6= ∅ 6= U¬P

i

we have that i is greater than j. Therefore, Ep2 can also be written as⋃
i,j(U

¬p
i ×U

p
j ). In this representation, it is clear that Ep2 is a complete,

unidirected bipartite graph. But then, E2 as a vertex-disjoint union of
such graphs is a bilevel graph and 2-inducible according to Erdős and
Moser (1964, Lemma 2, cf. footnote 23 on page 36).

To see that E3 is acyclic, note that it forms a subset of

C×U∪
⋃
i<j

(Ui ×Uj)∪
⋃
i>j

(Ci ×Cj)∪⋃
16i6m

(
(U1i ×U2i )∪ (U2i ×U3i )∪ (U1i ×U3i )

)
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and corresponds to all (shown) horizontal and (missing) downward
edges in Figure 6.1.

6.3 the tournament equilibrium set

Brandt et al. (2010b) have shown that computing TEQ is NP-hard by
a reduction from 3Sat. By Lemma 6.1, the very same construction is
also a valid reduction from Ordered3Sat. For every formula ϕ in
ordered 3-CNF, a tournament TTEQ

ϕ can be constructed such that TEQ
selects a decision node c0 from T

TEQ
ϕ if and only if ϕ is satisfiable.

The class of these tournaments TTEQ
ϕ is denoted by GTEQ and the tour-

naments in this class bear a strong structural similarity to those in
GBA, which can be exploited to show that every tournament in GTEQ

is induced by a 7-voter profile.
A tournament (V ,E) is in the class GTEQ if it satisfies the following the class GTEQ

properties. There is an odd integer m with m ≡ 1 (mod 4) such that,

V = C∪U1 ∪ · · · ∪Um,

where C,U1, . . . ,Um are defined the same as in GBA. We have Ci
denote the singleton {ci}. Moreover, let X =

⋃
{Ui : i ≡ 1 (mod 4)},

Y =
⋃
{Ui : i is even}, and Z =

⋃
{Ui : i ≡ 3 (mod 4)}.

Intuitively, (V ,E) is TTEQ
ϕ for some ϕ with 1

4(m+ 3) clauses in or-
dered 3-CNF. Every Ui ∈ X corresponds to a clause of ϕ and the
nodes it contains represent (tokens of) literals. Again, we assume
each of these nodes uji to be labeled by the literal λ(uji) it represents.
For i ∈ {1, 5, . . . ,m} and j ∈ {1, 2, 3} we define,

U
j
i = {u

j
i},

U
p
i = {u ∈ Ui : λ(u) = p}, and

U
¬p
i = {u ∈ Ui : λ(u) = ¬p}.

Moreover, for the other values of i, and j ∈ {1, 2, 3}, we stipulate,

U
j
i = U

p
i = U¬p

i = ∅.

Observe that
⋃

p∈P
16i6m

(Upi ∪U
¬p
i ) = X.

We are now in a position to define the edge set E.

E =
⋃
i<j

(Cj ×Ci)∪
⋃
i 6=j

(Ci ×Uj)∪
⋃
i=j

(Uj ×Ci)∪⋃
16i6m

(
(U1i ×U2i )∪ (U2i ×U3i )∪ (U3i ×U1i )

)
∪

⋃
i<j

(
(Ui ×Uj) \ (Eϕ ∪ Ez)

)
∪ Eϕ ∪ Ez,
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u19 u29 u39

u17 u27 u37

u15 u25 u35

u13 u23 u33

u11 u12 u13

u8

u6

u4

u2

c0

c1

c3

c5

c7

c9

c2

c4

c6

c8

Figure 6.2: A tournament TTEQ
ϕ = (V ,E) in the class GTEQ, where E is given

by solid edges and it is understood that missing edges point
downwards.

where

Eϕ =
⋃
p∈P
i>j

(Upi ×U
¬p
j )∪

⋃
p∈P
i>j

(U¬p
i ×U

p
j ),

Ez =
⋃
l 6=l ′
i=j+2

(Uli ×Ul
′
j ).

An example of such a tournament is depicted in Figure 6.2. The no-
table structural differences to GBA are the cycles in Ui for odd i and
the edges Ez between Z and X. Next, we show that every tourna-inducing every

tournament in GTEQ

with 7voters
ment TTEQ

ϕ is induced by a 7-voter profile, using the same approach
as in Theorem 6.3.

Theorem 6.4
Computing TEQ is NP-hard, if the number of voters is at least
seven.

Proof. Similar to the proof for Theorem 6.3, it suffices to show that
every tournament (V ,E) in GTEQ is induced by a 7-voter profile. To
achieve this, we partition E into four disjoint edge sets E1,E2,E3,E4 ⊆
E and show that the graphs (V ,E1), (V ,E2), and (V ,E3) are each
induced by 2-voter profiles as well as that (V ,E4) is acyclic. Then the
result follows from Lemma 4.8.
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While the tournaments in GTEQ are very similar to the ones in GBA,
the introduction of new nodes and edges makes finding an appealing
partition a bit trickier. We define

E1 =
⋃
i>j

(
Ci × (Cj ∪Uj)

)
∪
⋃
i

(U3i ×U1i )∪⋃
i≡3

mod 4

(
(U1i ∪U3i )×U2i−2

)
,

E2 = Eϕ,

E3 = Ez \ E1, and

E4 = E \ (E1 ∪ E2 ∪ E3).

It can readily be appreciated that E1, E2, and E3 are contained in E
(see Figure 6.3). Also, they are pairwise disjoint and therefore {E1,E2,E3,E4}
is proper partition of E.

u15 u25 u35

u13 u23 u33

u11 u12 u13

u4

u2

c0

c1

c3

c5

c2

c4

E1

p ¬t ¬q

u13 u23 u33

¬p r q

u4

u2

c0

c1

c3

c5

c2

c4

E2

u12 u22 u32

u13 u23 u33

u11 u21 u31

u4

u2

c0

c1

c3

c5

c2

c4

E3

Figure 6.3: Illustration of the edge sets E1,E2,E3 ⊂ E in TTEQ
ϕ = (V ,E). The

thick arrow on the left represents all edges
⋃
i<j{(cj, ci)} being

part of E1.

To show that (V ,E1) is 2-inducible, we define

E ′1 =
⋃
i6j

Uj⊂X∪Z

(
Ci ×Uj

)
∪
⋃
i6j
Uj⊂Y

(Uj ×Ci)∪

⋃
i<j

Ui,Uj⊂X∪Z

((
Ui ×Uj

)
\ E1

)
∪

⋃
i<j

Ui,Uj⊂Y

(Uj ×Ui)∪

⋃
i odd

(
(U1i ∪U3i )×U2i

)
∪ (Y × (X∪Z)) .

It is straightforward to check that E ′1 is a reorientation of Ẽ1. Also,
it is easy but tedious, by making the obvious case distinctions, to
show for E1 and E ′1 that the dominion of each vertex is contained in
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the dominion of each of its dominators, implying that E1 and E ′1 are
both transitive. For example, consider a vertex u1i ∈ X in E ′1 for which

D(u1i ) = U
2
i ∪

⋃
j>i
j odd

Uj and D(u1i ) = Y ∪
⋃
j<i
j odd

Uj ∪
⋃
j6i

Cj

again denote the set of all out-neighbors and all in-neighbors of u1i in
(V ,E ′1), respectively. It is straightforward to check that every vertex
in D(u1i ) also has an edge in E ′1 to every vertex in D(u1i ). Thus, in
virtue of Lemma 4.3, (V ,E1) is induced by a 2-voter profile.

The proof for (V ,E2) being 2-inducible is analogous to the proof of
the same statement in the Banks construction (see Theorem 6.3). This
is also where the orderedness of ϕ is exploited.

The graph (V ,E3) is obviously transitive. We also observe that it
consists of isomorphic and vertex-disjoint subgraphs (Ui∪Ui−2,E3,i)

for i ≡ 3 (mod 4) with Ei = (Uli ×Ul
′
i−2) for l 6= l ′. It is sufficient to

find a general transitive reorientation E ′3,i on such a subgraph because
then every completion of

⋃
i≡3(mod 4) E

′
3,i is a transitive reorientation

of Ẽ3. We define

E ′3,i = (Ui ×U2i−2)∪
(
(U1i−2 ∪U3i−2)×U2i−2

)
∪(

(U3i−2 ∪U1i )× (U1i−2 ∪U3i )
)
∪

(U1i ×U2i )∪ (U2i ×U3i ).

This subgraph set is also shown in Figure 6.4 and it is easy to verify
that it is indeed transitive.

u13 u23 u33

u11 u21 u31

Figure 6.4: The edge set E ′3,3 which is part of the reorientation E ′3 of Ẽ3 in
the proof of Theorem 6.4. Dotted edges denote the incompara-
bility subgraph of E ′3,3.

Finally, to see the acyclicity of (V ,E4), observe that

E4 =
⋃
i<j

(Ci ×Uj)∪
⋃
i<j

(
(Ui ×Uj) \ (Eϕ ∪ Ez)

)
∪

⋃
i

(
(U1i ×U2i )∪ (U2i ×U3i )

)
and is thereby contained in the transitve closure of the ordering

(c0,u11,u21,u31, c1,u2, c2,u13,u23,u33, c3,u4, c4,u15, . . . , cm).
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6.4 the slater set

The close relationship between Slater rankings and feedback arc sets
can be used to easily show that computing Slater rankings is NP-hard
in general digraphs. It was proved by Alon (2006), Conitzer (2006),
and Charbit et al. (2007) that computing feedback arc sets is NP-hard
even in tournaments. We will analyze the proof by Conitzer (2006), a
reduction from MaxSat. The latter problem asks for an assignment
to the propositional variables in a Boolean formula ϕ such that at
least a given number s1 of clauses is satisfied. Due to Lemma 6.2,
we can constrain ϕ to be in ReducedFew-CNF without affecting the
correctness of Conitzer’s reduction. In there, a tournament TSL

ϕ is
constructed for which a Slater ranking with at most s2 inconsistent
edges exists if and only if such an assignment for ϕ exists, where s2
depends on ϕ and s1.

Let GSL denote the class of all tournaments TSL
ϕ obtained from a the class GSL

Boolean formula ϕ in ReducedFew-CNF according to this construc-
tion. A tournament (V ,E) is in the class GSL if it satisfies the following
properties. There exist integers m, l > 1, such that

V = C∪
⋃

16i6m
16j66

T
j
i ,

where C and all T ji are pairwise disjoint and for 1 6 i 6 m

C = {c1, . . . , c|C|},

T
j
i = {t

j,1
i , . . . , tj,li }.

Each subtournament
(
T
j
i ,E∩

(
T
j
i × T

j
i

))
has to be a transitive com-

ponent, i.e., it is a linear order and for a vertex v ∈ V \ T
j
i and vertices

v1, v2 ∈ T ji , either {(v1, v), (v2, v)} or {(v, v1), (v, v2)} have to be in E.
For our purposes, we can treat T ji as a single vertex denoted by tji. Ev-
ery ci is associated with a clause in ϕ. Abusing notation, we denote
this clause with ci as well. Every Ti corresponds to a variable λ(Ti)
in ϕ. For notational convenience, let

T j =
⋃

16i6m

t
j
i and Ti =

⋃
16j66

t
j
i.

For (V ,E) to be in GSL, the edge set has to be of the form

E = EA ∪
⋃
i

{(
t1i , t2i

)
,
(
t2i , t3i

)
,
(
t3i , t1i

)}
∪(

(T5 ∪ T6)×C
)
∪(

C× (T1 ∪ T2 ∪ T3 ∪ T4)
)
\ Eϕ ∪ Eϕ
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t11

t21

t31

t41

t51

t61

c1

T1

λ(T1) ∈ c1

t12

t22

t32

t42

t52

t62

c2

T2

¬λ(T2) ∈ c2

t13

t23

t33

t43

t53

t63

c3

T3

λ(T3)
¬λ(T3)

/∈ c3

Figure 6.5: A schematic of a tournament TSL
ϕ in GSL to illustrate the three

different cases for the edges between T2 ∪ T3 ∪ T4 and C. These
edges are shown as dashed and are the only that depend on ϕ.
The thick arrows below and above indicate the fixed order be-
tween and within the T ji , and in between the ci. Many other
edges are omitted in favor of comprehensibility.

where

EA =
⋃
i<j

{(ci, cj)}∪
⋃
i<j

{(Ti, Tj)}∪
⋃
i

⋃
J∈{4,5,6}
16j<J

{(tji, t
J
i)}, and

Eϕ = {(t2i , cj) : λ(Ti) ∈ cj}∪
{(t3i , cj) : ¬λ(Ti) ∈ cj}∪
{(t4i , cj) : λ(Ti),¬λ(Ti) /∈ cj}.

We again refer to Eϕ as the formula dependent of the tournament TSL
ϕ

and to Eσ = E \ Eϕ as its skeleton. An illustration of a tournament in
GSL is depicted in Figure 6.5.inducing every

tournament in GSL

with 13 voters
We show that every tournament TSL

ϕ is induced by a 13-voter pro-
file.

Theorem 6.5
Computing the Slater set is NP-hard if the number of voters is
at least 13.

Proof. For even numbers of voters greater than two, the result was
shown by Dwork et al. (2001) and Biedl et al. (2009). For an odd
number of voters, the majority digraph has to be a tournament.

Let (V ,E) be a tournament in GSL that is constructed from a for-
mula ϕ in ReducedFew-CNF. We decompose E into disjoint sets
E1, . . . ,E7 and claim that each of E1, . . . ,E6 is 2-inducible while E7
is acyclic. Invoking Lemma 4.8 then gives the desired result.

Recall that since it is taken to be from ReducedFew-CNF, ϕ con-
sists of clauses containing two or three literals and we denote these
clause sets and (abusing notation) their corresponding ci ∈ V by C2
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and C3, respectively. Also, each variable occurs exactly once (posi-
tively or negatively) in C3, once as a positive literal in C2, and once
as a negative literal in C2. Therefore, we can define two edge sets that
conveniently partition E∩ (C2 × T4) as

(C2 × T4)+ =
⋃
p∈P

{(cj, t4i ) : λ(Ti) ∈ cj} and

(C2 × T4)− =
⋃
p∈P

{(cj, t4i ) :¬λ(Ti) ∈ cj}.

Now, we are in a position to define

E1 = EA ∪
⋃
i

{(t1i , t2i )},

E2 = E∩ (C3 × T4),
E3 = E∩ (C2 × T4)+,

E4 = E∩ (C2 × T4)−,

E5 = E∩
(
(T2 ∪ T3)×C3

)
,

E6 = E∩
(
(T2 ∪ T3)×C2

)
, and

E7 = E \ (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6).

First, we consider (V ,E1) and find that it is easy but a bit tedious
to check that it is transitive. For the reorientation of (V , Ẽ1), define

E ′1 =
⋃
i

(
{(t1i , t3i ), (t

2
i , t3i )}∪ (Ti ×C)

)
.

Again, it is easy to see that (V ,E ′1) is a transitive reorientation of
(V , Ẽ1). By Lemma 4.3, this makes E1 2-inducible.

For the edge sets E2,E3,E4,E4, and E6 we find that they are all
vertex-disjoint union of unidirected stars and therefore 2-inducible
by Lemmas 4.4 and 4.5. These results all exploit that ϕ is in Reduced-
Few-CNF: for E2 and E5, the statement follows from the fact that
every variable occurs at most once in C3 whereas for E3,E4, and E6,
the statement holds due to each literal occuring at most once in C2.

Finally, we find that

E7 ⊆ ((T4 ∪ T5 ∪ T6)×C)∪
(C× (T1 ∪ T2 ∪ T3))∪
(T2 × T3)∪ (T3 ∪ T1).

Notice that the righthand side is acyclic, and so E7 is also acyclic.
Since the defined edge sets E1, . . . ,E7 are pairwise disjoint, E7 is

acyclic, and all sets but E7 are 2-inducible, we can apply Lemma 4.8
and find that (V ,E) is 13-inducible. This concludes the proof.
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6.5 ranked pairs

The NP-hardness proof by Brill and Fischer (2012) for RP, the neutral
variant of ranked pairs, is by a reduction from Sat. For each Boolean
formula ϕ in CNF they constructed a weighted graph GRP

ϕ such that
a decision node d is selected by RP from GRP

ϕ if and only if ϕ is satis-
fiable. The construction, of course, works just as well for a reduction
from 3Sat. We may also assume that in every formula ϕ in 3-CNF no
variable occurs more than once in each clause.

Since the original construction in Brill and Fischer (2012) does not
yield a tournament, investigating it would give only results involving
an even number of voters. However, a minor modification of the
argument results in a tournament, providing the means to discuss
an odd number of voters. We first define the class GRP in which the
weighted graphs GRP

ϕ for formulas ϕ in 3-CNF are contained. Then
we prove that every graph in this class is induced by an 8-voter profile,
showing that deciding whether a given alternative is a ranked pairs
winner is already NP-complete for eight voters. Later, we define the
tournament class TRP and show the same result for an odd number
of voters. Finally we combine these two results into a corollary.

A weighted graph (V ,E) (with weight function w) belongs to GRP ifthe class GRP

and only if it fulfills the following conditions. There are some integers
m, l > 1 such that

V = D∪U1 ∪ · · · ∪Um ∪X1 ∪ · · · ∪Xl,

where, for 1 6 i 6 m and 1 6 j 6 l,

D = {d},

Ui = {u1i ,u2i ,u3i ,u4i }, and

Xj = {xj}.

If (V ,E) is obtained as the graph GRP
ϕ for some ϕ in 3-CNF, l is the

number of clauses, m the number of variables occurring in ϕ, the Uis
are the variable gadgets, the Xjs the clause gadgets, and, finally, D
the decision node. Let Uji = {u

j
i}, U

j =
⋃m
i=1{u

j
i}, U =

⋃m
i=1Ui and

X =
⋃l
i=1 Xi. Moreover, E = Eσ ∪ Eϕ, where Eσ (the skeleton) and Eϕ

(the formula dependent part) are disjoint such that

Eσ =(D× (U1 ∪U3))∪ (X×D)∪
m⋃
i=1

{
(u1i ,u2i ), (u

2
i ,u3i ), (u

3
i ,u4i ), (u

4
i ,u1i )

}
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and Eϕ is such that for all 1 6 i 6 m and all 1 6 j 6 l:

Eϕ ⊂ (U2 ∪U4)×X,

|Eϕ ∩ (U2 ∪U4)×Xj)| 6 3, and

|Eϕ ∩ (U2i ∪U4i )×Xj)| 6 1,

i.e., every vertex in X has at most three incoming edges (intuitively
corresponding to the literals x contains) and at most one from every
Ui (intuitively corresponding to that no propositional variable occurs
more than once in each clause). Finally, we check that the weight func-
tion w is defined such that all edges in E ∩ ((U2 ×U3) ∪ (U4 ×U1))
have weight 4 and all edges in E \ ((U2 × U3) ∪ (U4 × U1)) have
weight 2. The reader is deferred to Figure 6.6 for an example illustrat-
ing this definition of the class GRP.

d

u21

u11

u41

u31

u22

u12

u42

u32

x1 x2 x3

Figure 6.6: A graph (V ,E) in the class GRP. The thick edges have weight 4
whereas the thin edges have weight 2.

E1 E2

E3 E4

Figure 6.7: The sets E1, E2, E3, and E4 for the graph of Figure 6.6 as defined
in the proof of Theorem 6.6.
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Not being a complete graph, GRPϕ can only be induced by a profile
involving an even number of voters. In fact, we will prove that onlyinducing every

graph in GRP with
8 voters

eight voters suffice to induce any graph in GRP.

Theorem 6.6
Deciding whether a given alternative is a ranked pairs winner
is NP-complete if the number of voters is even and at least 8.

Proof. Membership in NP follows from the fact that it is easy to verify
whether a given ranking can be the outcome of the RP procedure,
independent on the number of voters.

For hardness, let (V ,E) be a graph (with weight function w) in GRP.
Intuitively, (V ,E) = GRP

ϕ for some formula ϕ in 3-CNF. It suffices to
show that (V ,E) is induced by an 8-voter profile. As an auxiliary
notion, let for each 1 6 j 6 l,

Eϕ ∩ ((U2 ∪U4)×Xj) = Eϕj,1 ∪ Eϕj,2 ∪ Eϕj,3,

where |Eϕj,i| 6 1 for all 1 6 i 6 3. Intuitively, Eϕj,1, Eϕj,2, and Eϕj,3 impose
an ordering on the incoming edges of vertex xj. Also set

Eϕi =

l⋃
j=1

Eϕj,i

for each 1 6 i 6 3, i.e., Eϕi collects the i-th incoming edges of the
vertices in X. Now define the following edge sets.

E1 = E
ϕ
1 ∪

m⋃
i=1

(
(U2i ×U3i )∪ (U4i ×U1i )

)
,

E2 = E
ϕ
2 ∪

m⋃
i=1

(
(U2i ×U3i )∪ (U4i ×U1i )

)
,

E3 = E
ϕ
3 ∪ (D× (U1 ∪U3)), and

E4 = (X×D)∪
m⋃
i=1

(
(U1i ×U2i )∪ (U3i ×U4i )

)
.

Observe that E = E1 ∪E2 ∪E3 ∪E4 (see Figure 6.7). Moreover, each of
(V ,E1), (V ,E2), (V ,E3), and (V ,E4) is a vertex-disjoint union of unidi-
rected stars. Hence, by Lemma 4.5 we may assume they are induced
by the 2-voter profiles (R11,R12), (R

2
1,R22), (R

3
1,R32), and (R41,R42), respec-

tively. Moreover, E1, E2, E3, and E4 all contained in E and therefore
also pairwise orientation compatible. By Lemma 4.7 it thus follows
that (V ,E) is induced by the 8-voter profile

R = (R11,R12,R21,R22,R31,R32,R41,R42).

Moreover, E1, E3, and E4 as well as E2, E3, and E4 are pairwise
disjoint whereas E1 ∩ E2 =

⋃m
i=1

(
(U2i ×U3i ) ∪ (U4i ×U1i )

)
. Thus, all

edges in E \
⋃m
i=1

(
(U2i × U3i ) ∪ (U4i × U1i )

)
have weight 2, whereas
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those in
⋃m
i=1

(
(U2i ×U3i ) ∪ (U4i ×U1i )

)
have weight 4. We may con-

clude that also the graph (V ,E) with its weights is induced by the
8-voter profile R.

The original hardness construction contained edges with weights 2
or 4 and unspecified edges, defining a priority over the edges. It is
easy to see that increasing all weights in such a graph by 1 to 3 and 5
does not change this priority. Similarly, adding edges with weight 1
is not harmful as the corresponding pairs are added to the bottom of
the priority, making them irrelevent to determining whether d is an
RP winner or not. Therefore, by incorporating these observations into
GRP
ϕ , for each Boolean formula ϕ in 3-CNF, we can create a weighted

tournament (call it TRP
ϕ ) from which d is selected by RP if and only

if ϕ is satisfiable. We denote the class of weighted tournaments that
consist of these TRP

ϕ by TRP.
We adapt the same notation as for GRP. A weighted tournament

(V ,E ′) (with weight function w ′) belongs to TRP if and only if it sat- the class TRP

isfies the following conditions. The set of alternatives can be written
as

V = D∪U1 ∪ · · · ∪Um ∪X1 ∪ · · · ∪Xl

whereas the edge set E ′ is the union of two disjoint sets E
′σ (the

skeleton) and E
′ϕ (the formula dependent part). Assuming that E is the

edge set of GRP
ϕ , then E

′ϕ = Eϕ and E
′σ = Eσ ∪ E ′σc where

E
′σ
c =

(
((D×U)∪ (U×X)) \ E

)
∪

m⋃
i=1

(
(U1i ×U3i )∪ (U2i ×U4i )

)
∪⋃

i<j

(Ui ×Uj)∪
⋃
i<j

(Xi ×Xj).

E
′σ
c can be equivalently described as a reorientation of Ẽ. Moreover,

we check that w ′ is defined such that all edges in E
′σ ∩ ((U2 ×U3)∪

(U4×U1)) have weight 5, all edges in (E
′ϕ∪E ′σ)\ ((U2×U3)∪ (U4×

U1)) have weight 3, and all edges in E
′σ
c have weight 1. inducing every

tournament in TRP

with 11 voters
We show 11 voters are sufficient to induce every tournament in the

class TRP.

Theorem 6.7
Deciding whether a given alternative is a ranked pairs winner
is NP-complete, if the number of voters is odd and at least 11.

Proof. The proof here is very similar to the previous theorem. Let
(V ,E ′) be a tournament with weight function w ′ in TRP. Intuitively,
(V ,E ′) = TRP

ϕ for some formula ϕ in 3-CNF. It suffices to show that
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(V ,E ′) is induced by an 11-voter profile. Using the notation provided
in the proof of Theorem 6.6, we define the following edge sets.

E ′1 =E
′ϕ
1 ∪

m⋃
i=1

(
(U2i ×U3i )∪ (U4i ×U1i )

)
,

E ′2 =E
′ϕ
2 ∪

m⋃
i=1

(
(U2i ×U3i )∪ (U4i ×U1i )

)
,

E ′3 =E
′ϕ
3 ∪ (D× (U1 ∪U3)),

E ′4 =(X×D)∪
m⋃
i=1

(
(U1i ×U2i )∪ (U3i ×U4i )

)
,

E ′5 =(X×D)∪
m⋃
i=1

{
(u4i ,u1i )

}
, and

E ′6 =(D×U)∪ (D×X)∪ (U×X)∪
⋃

16i6m
j<l

(Uji ×U
l
i)∪

⋃
i<j

(Ui ×Uj)∪
⋃
i<j

(Xi ×Xj).

Observe that E ′1, E ′2, E ′3, E ′4, and E ′5 are contained in E ′, making them
pairwise orientation compatible, and that each of (V ,E ′1), (V ,E ′2),
(V ,E ′3), (V ,E ′4), and (V ,E ′5) is a forest of stars. Therefore, in virtue
of Lemma 4.5 we may assume that they are induced by the 2-voter
profiles (R11,R12), (R

2
1,R22), (R

3
1,R32), (R

4
1,R42),and (R51,R52). Moreover, it

can readily be appreciated that E ′6 ⊇ E ′ \ (E ′1∪ . . .∪E ′5). As E ′6 defines
a transitive closure for an order over all of the alternatives in V (see
Figure 6.8), (V ,E ′6) is acyclic, and we may assume that it is induced
by a voter with the preference relation R6 = E ′6. Thus by Lemma 4.8,
(V ,E ′) is induced by the 11-voter profile

R = (R11,R12,R21,R22,R31,R32,R41,R42,R51,R52,R6).

d

u21

u11

u41

u31

u22

u12

u42

u32

x1 x2 x3

Figure 6.8: The order implied by the edge set E ′6 over the alternatives of a
tournament (V ,E ′) in the class TRP.

Furthermore, note that there are some edges in common among the
edge sets and that E ′6 is not orientation compatible with E ′. Edges in
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E
′σ ∩ (U2 × U3) occur in E ′1, E ′2, and E ′6; edges in E

′σ ∩ (U4 × U1)
occur in E ′1, E ′2, and E ′5 while E ′6 includes edges in the opposing di-
rection or, equivalently, includes

⋃m
i=1(U

1
i ×U4i ); each edge in (E

′ϕ ∪
E
′σ) \ ((U2 ×U3) ∪ (U4 ×U1)) occurs in E ′6 and exactly one of the

other edge sets; and, finally, edges in E
′σ
c occur only in E ′6. Thus, a

simple counting reveals that edges in E
′σ ∩ ((U2 ×U3) ∪ (U4 ×U1))

have weight 5, edges in (E
′ϕ ∪ E ′σ) \ ((U2 ×U3) ∪ (U4 ×U1)) have

weight 3, and edges in E
′σ
c have weight 1. Therefore, we may con-

clude that (V ,E ′) together with its weights is induced by the 11-voter
profile R.

Corollary 6.8
Deciding whether a given alternative is a ranked pairs winner
is NP-complete if the number of voters is either eight or at least
ten.

Proof. This follows from Theorems 6.6 and 6.7.

6.6 summary

We have shown that the winner determination problem for the Banks
set, the tournament equilibrium set, the Slater set, and ranked pairs
winners remains NP-hard even when the number of voters is limited
to a small constant. Our finding are summarized in Table 6.1. It
remains open whether any of these tournament solutions is already
NP-hard for three voters or whether Kemeny’s rule is NP-hard for any
constant odd number of voters.

Solution Concept NP-hard for n >

Banks set 5 voters
Tournament equilibrium set 7 voters
Slater set 13 voters
Ranked pairs 8 voters (n 6= 9)

Table 6.1: Numbers of voters for which winner determination is NP-hard.
The Banks set and the tournament equilibrium set are defined
for an odd number of voters only.
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C O M P O S I T I O N - C O N S I S T E N C Y O F TO U R N A M E N T
S O L U T I O N S

But there are always several adequate formal sets
of possible choices: just add tiny distinctions
about which nobody cares. Then the “good choice
for the society” should not depend upon the
modeler’s chosen mathematical formalization, if
this formalization is adequate.

Jean-François Laslier 2000

Many tournament solutions are non-trivial to compute. We have
seen in Chapter 6 that the winner determination problem for, e.g.,
the Banks set and the tournament equilibrium set is NP-hard even
if the number of voters is limited to a small constant. This can be
seen as evidence that the class of all tournaments—even those that
correspond to majority relations of a rather small electorate—is exces-
sively rich even though it is well-known that only a fraction of these
tournaments occur in realistic settings (see, e.g., Feld and Grofman,
1992). Therefore, an important question is whether there are natural
distributions of tournaments that admit more efficient algorithms for
computing specific tournament solutions.

In this chapter, we seek to exploit the frequent existence of proper
decompositions of tournaments as discussed in Section 3.4, combined
with a consistency property (composition-consistency) that is satis-
fied by a good number of tournament solutions. As before, we use
simulations to assess the effect in question on tournaments obtained
from stochastic models.

In related work, Betzler et al. (2014) reviewed data reduction rules
that facilitate the computation of Kemeny rankings. One of the tech-
niques, the “Extended Condorcet criterion” corresponds to a special
case of (weak) composition-consistency for Kemeny rankings where
only reducible components are considered. Furthermore, a prepro-
cessing technique that resembles the one proposed here has been
used by Conitzer (2006) to speed up the computation of Slater rank-
ings. Interestingly, even though Slater’s solution is not composition-
consistent, decompositions of the tournament can be exploited to
identify a subset of the optimal rankings (see Laslier, 1997, Proposi-
tion 3.4.4).

Our results, on the other hand, allow us to compute complete choice
sets and are applicable to all composition-consistent tournament so-
lutions. For this chapter, we implicitly assume that a tournament so-

79
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lution also satisfies strong Condorcet-consistency, i.e., that Condorcet
winners are chosen uniquely whenever they exist (see Section 5.1).40

7.1 composition-consistency

A tournament solution is composition-consistent if it chooses the
“best” alternatives from the “best” components (Laffond et al., 1996).41

Definition 7.1
A tournament solution S is composition-consistent if for all tour-composition-

consistent naments T and T̃ such that T̃ is the summary of T with respect
to some decomposition {B1, . . . ,Bk},

S(T) =
⋃

i∈S(T̃)

S(T |Bi).

Composition-consistent tournament solutions include the uncov-
ered set, the minimal covering set, the bipartisan set, the Banks set,
the tournament equilibrium set, and the minimal extending set (Laslier,
1997; Brandt, 2011b).42 Recall that the former three admit polynomial-
time algorithms whereas the latter three are computationally intracta-
ble. None of the concepts is known to admit a linear-time algorithm
which, according to Proposition 3.7, is the time needed to compute
the decomposition tree.

Before we proceed, we briefly introduce the most basic concepts of
parameterized complexity theory (see, e.g., Niedermeier, 2006). In
contrast to classical complexity theory, where only the size of problem
instances is taken into account, parameterized complexity allows for a
more fine-grained analysis by considering arbitrary parameters of the
instances. A problem with parameter k is said to be fixed-parameter
tractable (or to belong to the class FPT) if there exists an algorithmfixed-parameter

tractable that solves the problem in time f(k) · poly(|I|), where |I| is the size of
the input and f is some computable function independent of |I|.

For example, each (computable) problem is trivially fixed-parameter
tractable with respect to the parameter |I|. Given an NP-hard problen,
the crucial point is to identify a parameter that is reasonably small
in realistic instances and to devise an algorithm that is at most super-
polynomial in this parameter.

40 The only concepts considered in this thesis that violate this property are TRIV and
CNL.

41 Composition-consistency is related to cloning-consistency, which was introduced by
Tideman (1987) in the context of voting.

42 The top cycle is not composition-consistent but a decomposition could still be used
to determine the choice set (Laslier, 1997, Prop. 2.4.9). Since the top cycle can always
be computed in linear time, this approach is of limited use.
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7.2 exploiting composition-consistency

Let S be a composition-consistent tournament solution and consider
an arbitrary tournament T = (A,�) together with its decomposition
tree D(T). For an internal node B of D(T), let Bi(D(T),B) denote the
i-th children of B in D(T). Composition-consistency implies that

S(T |B) =
⋃

i∈S(TB)

S(T |Bi(D(T),B)).

The choice set S(T) can thus be computed by starting at the root of
D(T) and iteratively applying the equation above. If B is reducible, recursive algorithm

we immediately know that S(T |B) = S(T |B1(D(T),B)), since 1 is the
maximum of the transitive tournament TB. A straightforward imple-
mentation of this approach is given in Algorithm 7.1.

Input: composition-consistent tournament solution S,
tournament T
Output: S(T)

compute D(T)
S← ∅
Q← (A)
while Q 6= () do

B← Dequeue(Q)
if |B| = 1 then

S← S∪B
else

if B is reducible then
Enqueue(Q,B1(D(T),B))

else B is irreducible
compute S(TB)
foreach i ∈ S(TB) do

Enqueue(Q,Bi(D(T),B))

return S

Algorithm 7.1: Compute S(T) via decomposition tree

Algorithm 7.1 visits each node of D(T) at most once. The algorithm
for computing S is only invoked for tournaments TB for which B is
irreducible and |B| > 2. The order of such a tournament TB is equal
to the number of children of node B in D(T).

Let f(m) be an upper bound on the running time of an algorithm
that computes S(T) for tournaments of order |T | 6 m. Then, the
running time of Algorithm 7.1 can be upper-bounded by f(δ(T)) times
the number of irreducible nodes of D(T), i.e., with the decomposition
degree δ(T) as a parameter. We thus obtain the following Theorem.
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Theorem 7.2
Let S be a composition-consistent tournament solution and let
furthermore f(k) be an upper bound on the running time of an
algorithm that computes S for tournaments of order at most k.
Then, S(T) can be computed in O(m2) + f(δ(T)) · (m− 1) time,
where m is the order or T .

Proof. Let T be a tournament and m = |T |. We show that Algo-
rithm 7.1 computes S(T) in O(m2) + f(δ(T)) · |Irr(D(T))| time. Correct-
ness follows from composition-consistency of S. The running time
can be bounded as follows. Computing D(T) requires time O(m2)

(Proposition 3.7). During the execution of the while-loop, each node
B of D(T) is visited at most once. If B is reducible or a singleton,
there is no further computation. If B ∈ Irr(D(T)), S(TB) is computed.
As |TB| is upper-bounded by δ(T), this can be done in f(δ(T)) time.
Finally, as the number of internal nodes in a tree with m leafs is
bounded by m− 1, we have that |Irr(D(T))| 6 m− 1. Summing up,
this yields a running time of at most O(m2) + f(δ(T)) · (m− 1).

In particular, Theorem 7.2 shows that the computation of S(T) is
fixed-parameter tractable with respect to the parameter δ(T).

For a better understanding of this theorem, consider a composition-
consistent tournament solution S such that f(m) is in DTIME(2O(m)).
This holds, for example, for the Banks set. For any given tourna-
ment T of order m, Theorem 7.2 then implies that S(T) can be com-
puted efficiently (i.e., in time polynomial in m) whenever δ(T) is in
O(logm). Theorem 7.2 is of course also applicable to tractable tour-
naments solutions such as the minimal covering set and the bipar-
tisan set. Although computing these solutions is known to be in P,
existing algorithms rely on linear programming and may be too time-
consuming for very large tournaments. For both concepts, a signifi-
cant speed-up can be expected for distributions of tournaments that
admit a small decomposition degree.

Generally, decomposing a tournament asymptotically never harms
the running time, as the time required for computing the decomposi-
tion tree is only linear in the input size.43

7.3 experimental results

It has been shown in the previous section that the problem of comput-
ing a composition-consistent tournament solution is fixed-parameter
tractable with respect to the decomposition degree of a tournament.
Actual values of the decomposition degree for tournaments from
various stochastic preference models were already presented in Sec-
tion 3.4. In this section, we use the same kind of simulations to ex-

43 Checking whether there exists a Condorcet winner already requires θ(m2) time.
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Figure 7.1: Running time comparisons of straightforward implementations
(“NoCC”) and their enhancements by Algorithm 7.1 (“WithCC”)
on artificial, highly decomposable tournaments.

amine the effect on the actual running time of using Algorithm 7.1
(“WithCC”) in comparison to the straightforward method (“NoCC”)
to compute composition-consistent tournament solution. The times
given for the WithCC algorithm always include the time it took to
compute the decomposition tree. As for tournament solutions, we
considered BA and TEQ both of which are notoriously hard to com-
pute but satisfy composition-consistency. The results are given in
Figure 7.2 (for BA) and Figure 7.3 (for TEQ) at the end of this chapter.

It can be seen that the WithCC algorithm is never significantly worse
and in many scenarios much better than the NoCC implementation. It
is in line with our earlier findings on urn cultures (including IC and
IAC) that the number of voters does not have a noteworthy effect on
their induced tournaments. For TEQ, it is fair to say that it should always respect

components when
computing TEQ

never be computed with the NoCC algorithm. The gap between the
two implementations for our sensible distance-based models can be
huge.

For illustrative purposes, we also examined the speedup on artifi-
cial tournaments that were designed to have components. Specifically,
we generated cyclones44 of size up to 51 and replaced each vertex by
a 3-cycle component. Results of this comparison for the Banks set
and the bipartisan set are shown in Figure 7.1.

As can be seen, the effect for the computation of BA is dramatic!
For BP, we can observe an interesting effect where the running time of
the algorithm that exploits composition-consistency is larger for small
instances. This is due to an overhead caused by the now multiple calls overhead due to

number of problem
instances

to the external LP solver that is used to compute BP. For sufficiently
large instances, the increase in computational speed outweighs this
(seemingly linear) effect.

44 For odd m, a cyclone (or cyclical tournament) Cm = ({a1, . . . ,am},�) is defined by
ai � aj if and only if (j− i mod m) ∈ {1, . . . , m−1

2 }
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7.4 summary

We studied the algorithmic benefits of composition-consistent tourna-
ment solutions and show that computing any composition-consistent
tournament solution is fixed-parameter tractable with respect to the
decomposition degree. This is of particular relevance for tournament
solutions that are known to be computationally intractable such as
the Banks set and the tournament equilibrium set. For example,
one corollary of this result is that the Banks set of a tournament
can be computed efficiently whenever the decomposition degree is
polylogarithmic in the number of alternatives. As a consequence, the
speedup obtained by exploiting composition-consistency when com-
puting tournament solutions for these instances is quite substantial
as we showed experimentally for the tournament equilibrium set and
the Banks set. Since computing a decomposition tree requires only
linear time, decomposing a tournament never hurts, and often helps.
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Figure 7.2: Running time comparisons of a straightforward implementation
of the Banks set (“NoCC”) and its enhancements due to Algo-
rithm 7.1 (“WithCC”) on tournaments of size 30 from various
stochastic models for electorate sizes from 3 to 305.
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Figure 7.3: Running time comparisons of a straightforward implementa-
tion of the tournament equilibrium set (“NoCC”) and its en-
hancements due to Algorithm 7.1 (“WithCC”) on tournaments
of size 20 from various stochastic models for electorate sizes
from 3 to 305.



8
P O S S I B L E A N D N E C E S S A R Y W I N N E R S O F PA R T I A L
TO U R N A M E N T S

People, for some reason, like to do combinatorial
search in their spare time.

Michael Trick, 2010

When choosing from a tournament, relevant information may only
be partly available. This could be because some preferences are yet
to be elicited, some matches yet to be played, or certain comparisons
yet to be made. In such cases, it is natural to speculate which are
the potential and inevitable outcomes on the basis of the information
already at hand.

Given any solution concept on tournaments S, possible winners of
a partial tournament G are defined as alternatives that are selected
by S in some tournament completion of G, and necessary winners are
alternatives that are selected in all such completions.

In this chapter, we address the computational complexity of iden-
tifying the possible and necessary winners for a number of solution
concepts whose winner determination problem for complete tourna-
ments is tractable. We consider five of the most common solution con-
cepts for tournaments—namely, Condorcet winners (CW), Condorcet
non-loses (CNL), the Copeland solution (CO), the top cycle (TC), and
the uncovered set (UC)—and three common solutions for weighted
tournaments—Borda (BO), maximin (MM) and resolute ranked pairs
(RPτ). For each of these solution concepts, we characterize the com-
plexity of the following problems: deciding whether a given alterna-
tive is a possible winner (PW), deciding whether a given alternative is
a necessary winner (NW), as well as deciding whether a given subset
of alternatives equals the set of winners in some completion (PWS).
These problems can be challenging, as even unweighted partial tour-
naments may allow for an exponential number of completions.

8.1 related work

Similar problems have been considered before. For Condorcet win-
ners, voting trees and the top cycle, it was already shown that possi-
ble and necessary winners are computable in polynomial time (Lang
et al., 2012; Pini et al., 2008; Pini et al., 2011). The same holds for

87



88 possible and necessary winners of partial tournaments

1 1 1

a

b

c

c

b

a

a

b

1 1 1

a c a

b b b

c a c

1 1 1

a c a

b b c

c a b

1 1 1

a c c

b b a

c a b

a

b c

a

b c

a

b c

a

b c

a

b c

Figure 8.1: This non-commutative diagram illustrates the two approaches
to possible and necessary winners of partial preference profiles
for majoritarian social choice functions. First, the completion
of the partial profile to full preference profiles is shown in the
bottom left. The corresponding majority tournaments are in the
dashed box on the bottom right. In this work, we start from the
partial majority tournament on the top right which is induced
by the partial preference profile. Then, we consider all possible
completions to tournaments which are depicted in the solid box
on the bottom right.

computing possible Copeland winners that were considered in the
context of sports tournaments (Cook et al., 1998).

A more specific setting that is frequently considered within the area
of computational social choice differs from our setting in a subtle but
important way that is worth being pointed out. There, tournaments
are assumed to arise from pairwise majority comparisons on the basis
of a profile of individual voters’ preferences.45 Since a partial prefer-
ence profile R need not conclusively settle every majority comparison,possible and

neccesary winners of
partial preference

profiles

it may give rise to a partial tournament only. There are two natural
ways to define possible and necessary winners for a partial prefer-
ence profile R and solution concept S.46 The first is to consider the
completions of R and the winners under S in the corresponding tour-
naments. The second—covered by our more general setting—is to
consider the completions of the incomplete tournament G(R) corre-

45 See, e.g., Baumeister and Rothe (2010), Betzler and Dorn (2010), Konczak and Lang
(2005), Walsh (2007), and Xia and Conitzer (2011) for the basic setting, Betzler et al.
(2009) for parameterized complexity results, Hazon et al. (2012) and Kalech et al.
(2011) for probabilistic settings, and Chevaleyre et al. (2010) and Xia et al. (2011) for
settings with a variable set of alternatives.

46 These two ways of defining possible and necessary winners are compared (both
theoretically and experimentally) in Lang et al. (2012) and Pini et al. (2011) for three
solution concepts: Condorcet winners, voting trees and the top cycle.
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sponding to R and the winners under S in these. Since every tourna-
ment corresponding to a completion of R is also a completion of G(R)
but not necessarily the other way round, the first definition gives rise
to a stronger notion of a possible winner and a weaker notion of a
necessary winner. Interestingly, and in sharp contrast to our results,
determining these stronger possible and weaker necessary winners
is computationally hard for many voting rules (Lang et al., 2012; Xia
and Conitzer, 2011).

Here, we do not assume that tournaments arise from majority com-
parisons in voting or from any other specific procedure. This ap-
proach has a number of advantages. Firstly, it matches the diversity
of settings to which solutions concepts on tournaments are applicable,
which goes well beyond social choice and voting. For instance, our
results also apply to a question commonly encountered in sports com-
petitions, namely, which teams can still win the cup and which future
results this depends on.47 Secondly, (partial) tournaments provide an
informationally sustainable way of representing the relevant aspects
of many situations while maintaining a workable level of abstraction
and conciseness. For instance, in the social choice setting described
above, the partial tournament induced by a partial preference pro-
file is a much more succinct piece of information than the preference
profile itself. Finally, specific settings may impose restrictions on the
feasible extensions of partial tournaments. The positive algorithmic
results can be used to efficiently approximate the sets of possible and
necessary winners in such settings, where the corresponding prob-
lems may be intractable. The voting setting discussed above serves to
illustrate this point.

8.2 preliminaries

A partial tournament is a pair G = (A,E) where A is a finite set of partial tournament

alternatives and E ⊆ A×A an asymmetric relation on A.48

Let G = (A,E) be a partial tournament. Another partial tourna-
ment G ′ = (A ′,E ′) is called an extension of G, denoted G 6 G ′, if extension

A = A ′ and E ⊆ E ′. If E ′ is complete, G ′ is called a completion of G. completion

We write [G] for the set of completions of G, i.e., [G] = {T ∈ T :G 6 T }.
See Figure 8.2 for an example.

We extend our definition of dominions and dominators to sets by
defining DG(X) =

⋃
x∈XDG(x) and DG(X) =

⋃
x∈XDG(x).

49 For

47 See, e.g., Cook et al. (1998), Kern and Paulusma (2004), and Schwartz (1966).
48 The difference between partial tournaments and the majority graphs we defined

earlier lies in the interpretation of non-existing edges. They are seen as (majority)
ties in the case of majority graphs whereas we treat them as not yet elicited pairwise
comparisons in this chapter.

49 In this chapter, we slightly depart from notational conventions used elsewhere in
this thesis: outside of examples, alternatives are usually named x,y instead of a,b
to avoid confusion with the capacities of b-matchings used in Section 8.5.1.



90 possible and necessary winners of partial tournaments
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c d

G

a b

c d

T1 ∈ [G]

a b

c d

T2 ∈ [G]

Figure 8.2: Example of a partial unweighted tournament G and two of its
possible completions. In G, the (dotted) edges between the pairs
{a,b}, {b, c}, and {c,d} are not yet specified.

given G = (A,E) and X ⊆ A, we further write EX→ for the set of
edges obtained from E by adding all missing edges from alternatives
in X to alternatives not in X, i.e.,

EX→ = E∪ {(x,y) ∈ X×A : y /∈ X and (y, x) /∈ E}.

We use EX← as an abbreviation for EA\X→, and respectively write
Ex→, Ex←, GX→, and GX← for E{x}→, E{x}←, (A,EX→), and (A,EX←).

Let n be a positive integer. A partial n-weighted tournament is a pairpartial n-weighted
tournament G = (A, w) consisting of a finite set of alternatives A and a weight

function w : A×A→ {0, . . . ,n} such that for each pair (x,y) ∈ A×A
with x 6= y, w(x,y) + w(y, x) 6 n. We say that T = (A, w) is
a (complete) n-weighted tournament if for all x,y ∈ A with x 6= y,
w(x,y) + w(y, x) = n. A (partial or complete) weighted tournamen-
tweighted tournament is a (partial or complete) n-weighted tourna-weighted

tournament ment for some n ∈ N. The class of n-weighted tournaments is de-
noted by T[n]. Observe that with each partial 1-weighted tourna-
ment (A, w) we can associate a partial tournament (A,E) by setting
E = {(x,y) ∈ A :w(x,y) = 1}. Thus, (partial) n-weighted tournaments
can be seen to generalize (partial) tournaments, and we may identify
T[1] with T.

The notations G 6 G ′ and [G] can be extended naturally to partial
n-weighted tournaments G = (A, w) and G ′ = (A ′, w ′) by letting
(A, w) 6 (A ′, w ′) if A = A ′ and w(x,y) 6 w ′(x,y) for all x,y ∈ A,
and [G] = {T ∈ T[n] :G 6 T }.

For given G = (A, w) and X ⊆ A, we further define wX→ such that
for all x,y ∈ A,

wX→(x,y) =

{
n− w(y, x) if x ∈ X and y /∈ X,

w(x,y) otherwise,

and set wX← = wA\X→. Moreover, wx→, wx←, GX→, and GX← are
defined in the obvious way.

We use the term solution concept for functions S that associate with
each (complete) tournament T = (A,E), or alternatively with each
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(complete) weighted tournament T = (A, w), a choice set S(T) ⊆ A.50

A solution concept S is called resolute if |S(T)| = 1 for each tourna- resolute

ment T . In this chapter we will consider the following solution con-
cepts: Condorcet winners (CW), Condorcet non-losers (CNL), Copeland
(CO), top cycle (TC), and uncovered set (UC) for tournaments, and maxi-
min (MM), Borda (BO), and resolute ranked pairs (RPτ) for weighted
tournaments. Of these, no concepts besides RPτ is resolute.

8.3 possible & necessary winner problems

A solution concept selects alternatives from complete tournaments
or complete weighted tournaments. A partial (weighted) tourna-
ment, on the other hand, can be extended to a number of complete
(weighted) tournaments, and a solution concept selects a (potentially
different) set of alternatives for each of them.

For a given solution concept S, we can thus define the set of possi-
ble winners for a partial (weighted) tournament G as the set of alter- possible winners

natives selected by S from some completion of G, i.e., as PWS(G) =⋃
T∈[G] S(T). Analogously, the set of necessary winners of G is the necessary winners

set of alternatives selected by S from every completion of G, i.e.,
NWS(G) =

⋂
T∈[G] S(T). We write PWSS(G) = {S(T) : T ∈ [G]} (pos-

sible winning sets) for the set of sets of alternatives that S selects for possible winning
setsthe different completions of G.

Note that NWS(G) may be empty even if S selects a non-empty set
of alternatives for each tournament T ∈ [G], and that |PWSS(G)| may
be exponential in the number of alternatives of G. It is also easily
verified that G 6 G ′ implies

PWS(G
′) ⊆ PWS(G) and NWS(G) ⊆ NWS(G

′)

and that it holds that

PWS(G) =
⋃
G6G ′

NWS(G
′) and NWS(G) =

⋂
G6G ′

PWS(G
′).

If a solution concept S refines a solution concept S ′, that is, S(G) ⊆
S ′(G) for all G (which we denote by S ⊆ S ′), then PWS(G) ⊆ PWS ′(G)

and NWS(G) ⊆ NWS ′(G).51

Deciding membership in the sets PWS(G), NWS(G), and PWSS(G)

for a given solution concept S and a partial (weighted) tournament G
are natural computational problems. We will respectively refer to
these problems as PWS, PWSS, and NWS.

50 We avoid the term tournament solution in this chapter as in our common definition
(Def. 5.1 on 50), it requires the concept to never consist of the empty set. This would
exclude one of the concepts we study, namely CW.

51 S ⊆ S ′ does however not imply PWSS(G) ⊆ PWSS′(G). The following holds, though:
if S ⊆ S ′ then for all X ∈ PWSS(G) there is a X ′ ∈ PWSS′(G) such that X ⊆ X ′.
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PWS (Possible Winners)
Input: A partial tournament G = (A,E) or an n-weighted partial

tournament G = (A, w) with the number n; an alternative
x ∈ A.

Question: Does there exist a completion T ∈ [G] such that x ∈ S(T)?

PWSS (Possible Winning Set)
Input: A partial tournament G = (A,E) or an n-weighted partial

tournament G = (A, w) with the number n; a subset of
alternatives X ⊆ A.

Question: Does there exist a completion T ∈ [G] such that X = S(T)?

NWS (NecessaryWinners)
Input: A partial tournament G = (A,E) or an n-weighted partial

tournament G = (A, w) with the number n; an alterna-
tives x ∈ A.

Question: Is x contained in S(T) for all completions T ∈ [G]?

The problem NWS (Necessary Winning Set) is not considered
because it can be reduced to PW and NW:

X ∈ NWSS(G)⇔ X = PWS(G) = NWS(G).

For irresolute solution concepts, PWSS may appear a more complex
problem than PWS. We are, however, not aware of a polynomial-time
reduction from PWS to PWSS. The relationship between all of these
problems may also be of interest for the “classic” possible winner
setting with partial preference profiles.

For complete tournaments T we have [T ] = {T } and thus PWS(T) =

NWS(T) = S(T) and PWSS(T) = {S(T)}. As a consequence, for solu-
tion concepts Swith an NP-hard winner determination problem—like
Banks, Slater, and TEQ—the problems PWS, NWS, and PWSS are NP-
hard as well.52 We therefore restrict our attention to solution concepts
for which winners can be computed in polynomial time.

8.4 unweighted tournaments

In this section, we consider the following well-known solution con-
cepts for unweighted tournaments: Condorcet winners, Condorcet
Non-Losers, the Copeland set, the top cycle, and the uncovered set.

8.4.1 Condorcet Winners & Condorcet Non-Losers

Condorcet winners and Condorcet non-losers are very simple solu-
tion concepts and will provide a nice warm-up. Recall that an alterna-

52 This does not exclude the possibility that computing some (arbitrary) possible win-
ner or possible winning set for some of these solution concepts could be done in
polynomial time.
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tive x ∈ A is a Condorcet winner of a complete tournament T = (A,E) if
it dominates all other alternatives, i.e., if (x,y) ∈ E for all y ∈ A \ {x}.
The set of Condorcet winners of tournament T will be denoted by
CW(T); obviously this set is always either a singleton or empty.

By contrast, alternative x is a Condorcet non-loser in T if v dominates
some other alternatives in A, i.e., if (x,y) ∈ E for some y ∈ A \ {x}.
The set of Condorcet non-losers of a tournament T will be denoted
by CNL(T).

Let G = (A,E) be a partial tournament. If some alternative x is
dominant in G, then x will obviously be the Condorcet winner in all
completions of G. On the other hand, if for some y ∈ A \ {x} it is not
the case that (x,y) ∈ E, there is some completion of G in which x is
no Condorcet winner. Hence,

x ∈ NWCW(G) iff (x,y) ∈ E for all y ∈ A \ {x}

and

x ∈ PWCW(G) iff (y, x) ∈ E for no y ∈ A \ {x}.

Obviously, the criteria on the right-hand side of the equivalences can
be checked in polynomial time.

Each of the sets in PWSCW(G) is either a singleton or the empty set,
and determining membership for a singleton is obviously tractable.
Checking whether ∅ ∈ PWSCW(G) is not quite that simple. The fol-
lowing result gives an exact characterization of PWSCW(G), which is
interesting per se.

Lemma 8.1
Let U be the set of undominated alternatives of a partial tour-
nament G = (A,E). Then,

• for every alternative x ∈ A, {x} ∈ PWSCW(G) if and only if
x ∈ U;

• ∅ 6∈ PWSCW(G) if and only if 1 6 |U| 6 2 and U is domi-
nant.

Proof. Because a complete tournament has either one Condorcet win-
ner or none, any set in PWSCW(G) has cardinality 0 or 1. Clearly,
{x} ∈ PWSCW(G) if and only if x ∈ U. It remains to be shown that
PWSCW(G) contains ∅ if and only if U = ∅, or |U| > 3, or 1 6 |U| 6 2
and U is not dominant.

If U = ∅, CW(T) = ∅ for every T ∈ [G]. It follows that ∅ ∈
PWSCW(G). If |U| > 3, consider any cycle C ⊆ U × U. Then, the
set of undominated alternatives in G ′ = (A,E ∪C) is empty. It again
follows that ∅ ∈ PWSCW(G).

If U = {x} and x is dominant, then x is a Condorcet winner in every
T ∈ [G], therefore ∅ /∈ PWSCW(G).
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If U = {x} and {x} is not dominant, then (x,y) /∈ E for some y 6= x.
Consider a completion of G containing (y, x). In this completion,
the set of undominated alternatives is empty. It follows that ∅ ∈
PWSCW(G).

If U = {x,y} and {x,y} is dominant, then for every T ∈ [G], either
(x,y) ∈ T and x is a Condorcet winner in T , or (y, x) ∈ T and y is a
Condorcet winner in T . It follows that ∅ /∈ PWSCW(G).

Lastly, if U = {x,y} and {x,y} is not dominant, then for some z 6=
x,ywe have (x, z) /∈ E or (y, z) /∈ E. Without loss of generality, assume
(x, z) /∈ E. Consider a completion of G containing (z, x) and (x,y).
Such a completion exists, because (x, z) /∈ E, and (y, x) /∈ E (since
x ∈ U). In this completion, the set of undominated alternatives is
empty. It follows that ∅ ∈ PWSCW(G).

Theorem 8.2
PWCW, NWCW, and PWSCW can be solved in polynomial time.

The results for PWCW and NWCW also follow from Proposition 2 of
Lang et al. (2012) and Corollary 2 of Konczak and Lang (2005). We
further note that Theorem 8.2 is a corollary of corresponding results
for maximin in Section 8.5.2. The reason is that a Condorcet winner isCondorcet winners

redcuces to maximin the maximin winner of a 1-weighted tournament, and a tournament
does not admit a Condorcet winner if and only if all alternatives are
maximin winners.

We conclude this section by observing that the problems PWCNL,
NWCNL, and PWSCNL each are reducible to NWCW, PWCW, and PWSCW,Condorcet

Non-Losers reduces
to Condorcet

winners

respectively. It can straightforwardly be checked that for all partial
tournaments G = (A,E) and all X ⊆ A,

X ∈ PWSCNL(G) if and only if A \X ∈ PWSCW(G−1),

where G−1 = (A,E−1) is G with all of its set edges inverted, i.e.,
E−1 = {(x,y) : (y, x) ∈ E}. It also follows that,

PWCNL(G) = A \ NWCW(G−1), and

NWCNL(G) = A \ PWCW(G−1).

Since set complementation and edge reversal can be achieved in
polynomial time and by Theorem 8.2, we obtain the following result
as a corollary of Theorem 8.2.

Theorem 8.3
PWCNL, NWCNL, and PWSCNL are all polynomial-time solvable.

As an example for CW and CNL, consider the partial tournament Gexample for CW and
CNL depicted in Figure 8.2 in which there is no dominating alternative
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while the set of undominated alternatives in G is U = {a,b}. There-
fore,

PWCW(G) = {a,b} and

NWCW(G) = ∅.

For PWSTC(G), note that the set U is not dominant because (b, c) /∈ E.
By Lemma 8.1, this gives

PWSCW(G) = {{a}, {b}, ∅}.

For Condorcet non-losers, we observe that G−1 = (A,E−1) with
E−1 = {(c,a), (d,a), (d,b)}. Now, we have that

PWCW(G−1) = {c,d},

NWCW(G−1) = ∅, and

PWSCW(G−1) = {{c}, {d}, ∅} (by Lemma 8.1)

which implies that

PWCNL(G) = {a,b, c,d},

NWCNL(G) = {a,b}, and

PWSCNL(G) = {{a,b,d}, {a,b, c}, {a,b, c,d}}.

8.4.2 Copeland

To illustrate the determination of possible and necessary Copeland
winners, consider again the partial tournament G shown in Figure 8.2. example for CO

In completions of G where a (resp. b) is a Condorcet winner, a (resp.
b) is the sole Copeland winner as in the completion shown in Fig-
ure 8.2b. The only two completions in which neither a nor b is a
Condorcet winner are

{(a, c), (a,d), (b,a), (b,d), (c,b), (c,d)},

where the set of Copeland winners is {a,b, c}, and

{(a, c), (a,d), (b,a), (b,d), (c,b), (d, c)},

also depicted in Figure 8.2c, where the set of Copeland winners is
{a,b}. Therefore,

PWCO(G) = {a,b, c},

NWCO(G) = ∅, and

PWSCO(G) = {{a}, {b}, {a,b}, {a,b, c}}.
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Since Copeland scores coincide with Borda scores in the case of
1-weighted tournaments, the following is a direct corollary of the
results in Section 8.5.1.53

Theorem 8.4
PWCO, NWCO, and PWSCO can be solved in polynomial time.

From PWSCO being solvable in polynomial time, we get the follow-
ing corollary that may be of independent interest to graph theorists.

Corollary 8.5
There exists a polynomial-time algorithm to check whether a
partial tournament admits a regular completion.

8.4.3 Top Cycle

Lang et al. (2012, Corollaries 1 and 2) have shown that possible and
necessary winners for TC can be computed efficiently by greedy algo-
rithms. Still, we give the following characterization that will be usefulalternative definition

for TC for our PWSTC considerations. An alternative is a possible winner if
and only if it can reach every other alternative via existing or un-
specified edges. Formally, given a partial tournament G = (A,E), an
alternative x0 ∈ A is in PWTC(G) if and only if for every other alter-
native y ∈ A \ {x0}, there exists a path (x0, x1, x2, . . . , xk) in A with
xk = y such that (xi+1, xi) /∈ E for all i ∈ {0, . . . ,k− 1}. We call such
a path a possible path.possible path

For PWSTC, we not only have to check whether there exists a com-
pletion such that the set in question is dominating, but also that there
is no smaller dominating set. It turns out that this can still be done
in polynomial time.

Theorem 8.6
PWSTC can be solved in polynomial time.

Proof. Let G = (A,E) be a partial tournament and X ⊆ A. If X = ∅,
then X /∈ PWSTC(G) as the set of all alternatives is always dominant.
If |X| = 1, then the X ∈ PWSTC(G) if and only if X ∈ PWCW(G). If
|X| = 2, then X /∈ PWSTC(G) because there exists no top cycle set of
size two. Therefore we can assume that |X| > 3.

Consider the graph GX→. If X does not dominate A \ X in GX→,
then X /∈ PWSTC(G) because an alternative in A \ X beats an alterna-
tive in X. Therefore, we now need to check whether X ∈ PWSTC(G|X),
i.e., whether X is a possible top cycle set in the partial tournament
G restricted to X. In essence, the problem PWSTC is reduced to the
restricted problem PWSTC for the set of all alternatives.

For a partial tournament G = (A,E), the Good set GO(G) is definedGood set

53 PWCO can alternatively be solved via a polynomial-time reduction to maximum
network flow (see, e.g., Cook et al., 1998, p. 51).
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as the set of all alternatives that can reach every other alternative via
a possible path (Good, 1971). Note that for a (complete) tournament
T , GO(T) = TC(T). We prove that A ∈ PWSTC(G) if and only if
GO(G) = A. Obviously, if A 6= GO(G) then A /∈ PWSTC(G). For
the other direction, we start with a partial tournament G = (A,E)
with GO(G) = A and successively add new edges to G while the
Good set is still everything until G is a tournament. Pick an arbitrary
unspecified edge between alternatives x and y. We claim that either
G ′ = (A,E ′) with E ′ = E ∪ {(x,y)} or G ′′ = (A,E ′′) with E ′′ = E ∪
{(y, x)} maintains the Good set invariance. Assume the latter is not
the case. Then there have to exist alternatives a and b such that the
only possible path from a to b in G contained (x,y). In particular,
(b,a) ∈ E. Now, since G ′ also fails to have GO(G ′) = A, there have
to exist alternatives c and d such that the only possible path from c

to d in G contained (y, x). The situation is depicted in Figure 8.3. But
then we have a contradiction because there is in fact a possible path
from from c to d via y,b,a, and x in G ′.

a b

cd

x y

Figure 8.3: Illustration of the final step in the proof of Theorem 8.6. Possi-
ble paths between alternatives are shown as snaked edges. The
shown edges stem from the assumption that neither (x,y) nor
(y, x) can be fixed without making any alternative lose the prop-
erty that they can reach every other alternative on a possible
path. But then, there even has to exist a circle of possible paths
that circumvents the connection between x and y altogether.

As an example, we again consider the partial tournament G de- example for TC

picted in Figure 8.2a, for which we show that

PWTC(G) = {a,b, c,d},

NWTC(G) = ∅, and

PWSTC(G) = {{a}, {b}, {a,b, c}, {a,b, c,d}}.

The result for PWTC(G) is witnessed by the completion shown in Fig-
ure 8.2c where every alternative is in the top cycle. For NWTC(G),
the statement follows from the observation that for every alternative,
there exists a completion in which another alternative is a Condorcet
winner. Regarding PWSTC(G), we consider each subset separately.
Since PWSCW ⊆ PWSTC, we get that {a} and {b} are in PWSTC(G). For
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{a,b, c}, we apply Theorem 8.6: a,b, c are undominated by d, and
the Good set of G|{a,b,c} is {a,b, c}. Likewise, the Good set of G is
{a,b, c,d}. It remains to be shown that the other subsets of size three
are not in PWSTC(G). To this end, note that the Good set of G|{a,b,d}
is only {a,b} and that {a, c,d} and {b, c,d} are both not undominated
in G.

8.4.4 Uncovered Set

Recall that a second definition of the uncovered set states that an
alternative is not covered if and only if it can reach every other al-
ternative in at most two steps. Formally, x ∈ UC[T ] if and only if
for all y ∈ A \ {x}, either (x,y) ∈ E or there is some z ∈ A with
(x, z), (z,y) ∈ E. We denote the two-step dominion DE(DE(x)) of an
alternative x by D2E(x).

We first consider PWUC, for which we check for each alternative
whether it can be reinforced to reach every other alternative in at
most two steps.

Theorem 8.7
PWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (A,E) and an alternative
x ∈ A, we check whether x is in UC(T) for some completion T ∈ [G].

Consider the graph G ′ = (A,E ′′) where E ′′ is derived from E as
follows. First, we let D(x) grow as much as possible by letting E ′ =
Ex→. Then, we do the same for its two-step dominion by defining
E ′′ as E ′DE ′(x)→. We claim that x ∈ PWUC(G) if and only if A =

{x}∪DE ′′(x)∪D2E ′′(x).
(⇒) First, let x ∈ PWUC(G). By definition, there is a completion

(A,E∗) such that for all y ∈ A \ {x} we have y ∈ DE∗(x) ∪DE∗(x).
But from the definition of E ′′, it holds that DE∗(x) ⊆ DE ′′(c) and
D2E∗(x) ⊆ D2E ′′(x). Consequently, y is also in DE ′′(x)∪D2E ′′(x).

(⇐) For the other direction, let y ∈ A \ {x}, y ∈ DE ′′(x) ∪D2E ′′(x).
In any completion T of G ′, x is trivially in UC(T), implying that x ∈
PWUC(G).

A similar argument yields the following.

Theorem 8.8
NWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (A,E) and an alternative
x ∈ A, we check whether x is in UC(T) for all completions T ∈ [G].

Consider the graph G ′ = (A,E ′′) with E ′′ defined as follows. First,
let E ′ = Ex←. Then, expand it to E ′′ = E ′DE ′(x)→. Intuitively, this
makes it as hard as possible for x to beat alternatives outside of its
dominion in two steps.
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We claim that x ∈ NWUC(G) if and only if A = {x} ∪DE ′′(x) ∪
D2E ′′(x).

(⇒) First, let x ∈ NWUC(G). Assume for contradiction that there
exists a y ∈ A \ {x} such that y /∈ DE ′′(x)∪D2E ′′(x). Then, in any com-
pletion (A,E∗) of G ′, x cannot reach y in two steps and consequently
x /∈ UC(A,E∗), a contradiction.

(⇐) Now, let A \ {x} = DE ′′(x)∪D2E ′′(x). In any completion (A,E∗)
of G, we have DE ′′(x) ⊆ DE∗(x) and D2E ′′(x) ⊆ D2E∗(x). Consequently,
x ∈ UC(A,E∗) and x ∈ NWUC(G).

As it can be checked in polynomial time whetherA = {x}∪DE ′′(x)∪
D2E ′′(x), this completes the proof.

a b

c d

(a) A partial
tournament G

a b

c d

(b) An extension of G
strengthening c
and its dominion

a b

c d

(c) An extension of G
strengthening d
and its dominion

Figure 8.4: A partial unweighted tournament G and possible extensions. In
the center, the alternative c and its dominion was maximally
reinforced resulting in c reaching every other alternative in at
most two steps. Therefore, c ∈ PWUC(G). On the right, the same
was done for alternative d that cannot reach a in two steps and
is therefore not contained in PWUC(G).

Again, consider the partial tournament G from Figure 8.4a as an example for UC

example. It is straightforward to check that G contains no neces-
sary winners for UC which is also a consequence of NWTC(G) = ∅
and UC ⊆ TC. For PWSUC, we consider each alternative separately.
For a, we have E ′ = Ea→ = {(a,b), (a, c), (a,d), (b,d)}, and E ′′ =

E ′, therefore DE ′′(a) = {b, c,d} and a ∈ PWUC(G). Likewise, b ∈
PWUC(G). Now, for c, we have E ′ = {(a, c), (a,d), (b,d), (c,b), (c,d)}
and E ′′ = {(a, c), (a,d), (b,d), (c,b), (c,d), (b,a)}, see also Figure 8.4b.
This gives us DE ′′(c) = {b,d} and D2E ′′(c) = {a}, and therefore, c ∈
PWUC(G). Lastly, for d, we have E ′ = {(a, c), (a,d), (b,d), (d, c)} and
E ′′ = {(a, c), (a,d), (b,d), (d, c), (c,b)} as depicted in Figure 8.4c. This
gives us DE ′′(d) = {c} and D2E ′′(d) = {b}, implying that d /∈ PWUC(G).
Together, we get that

PWUC[G] = {a,b, c},

NWUC(G) = ∅, and

PWSUC(G) = {{a}, {b}, {a,b, c}}

where an ad-hoc reasoning was used to obtain PWSUC(G).



100 possible and necessary winners of partial tournaments

a b c

d e f

(a)

a b c

d e f

(b)

a b c

d e f

(c)

Figure 8.5: A partial tournament G and the only two completions of G for
which the uncovered set is given by {a,b, c}. Dotted edges are
missing and omitted edges point downwards. This partial tour-
nament is used as a gadget in the proof of Theorem 8.9.

For all solution concepts considered so far—Condorcet winners,
Condorcet non-losers, Copeland, and the top cycle—PW and PWS
have the same complexity. One might wonder whether a result like
this holds more generally, and whether there could be a polynomial-P-time reduction

from PWS to PW? time reduction from PWS to PW. In the following, we show that this
is not the case, unless P = NP.

First, consider the partial tournament G = ({a, . . . , f},E) depicted
in Figure 8.5a. It is not hard to see that there are (exactly) two com-gadget for PWSUC

pletions T of G such that {a,b, c} = UC(T). The first is pictured in
Figure 8.5b and the other in Figure 8.5c.

To see that there are no other such complectios, consider an arbi-
trary completion ({a, . . . , f},E ′). Then, either (d, e) ∈ E ′ or (e,d) ∈ E ′.
If the former, observe that d must be covered by c. Hence, (c,a) ∈ E ′
and (f,d) ∈ E ′. It now follows that f is covered by b. Therefore, also
(b, c) ∈ E ′ and (e, f) ∈ E ′. This entails that a covers e and, with (e,b)
we finally obtain (a,b) ∈ E ′. It can now readily be appreciated that
({a, . . . , f},E ′) is the complete tournament depicted in Figure 8.5b. By
an analogous argument it follows that ({a, . . . , f},E ′) must be the com-
plete tournament depicted in Figure 8.5c if we assume that (d, e) ∈ E ′.

This observation forms the basis of the construction used to prove
NP-hardness of PWSUC, the problem of deciding whether a subset of
alternatives of a partial tournament G is the uncovered set of some
completion of G.

Theorem 8.9
PWSUC is NP-complete.

Proof. Let G = (A,E) be a partial tournament. Given a set X ⊆ A and
a completion T ∈ [G], it can be checked in polynomial time whether
X = UC(T). Hence, PWSUC is obviously in NP.
NP-hardness can be shown by a reduction from Sat. Let ϕ be a

formula in conjunctive normal form. We construct a partial tourna-
ment Gϕ = (Aϕ,Eϕ) as follows. For each propositional variable p
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we introduce five alternatives denoted by p, p+, p−, p+, and p−. For
each clause c, we also introduce two alternatives denoted by c and c.
In the construction, p+ is associated with the positive literal p and p−

with the negative literal p̄. We will argue that a literal node covering
a c corresponds to this literal satisfying the associated clause c. We
also have two auxiliary alternatives denoted by 1 and 0.

For each propositional variable p, we have edges from p+ to p+,
from p− to p−, from p+ to p−, and from p− to p+. Moreover, there
is an edge from each of the alternatives p+,p−,p+, and p− to p. The
edges between p+, p−, and 1 and those between p+ and p− are miss-
ing. For distinct propositional variables p and q, for each of p, p+,
and p− there is an edge to q+ and q−.

For every clause c, there are edges from alternative c to c, and
from c to 1. For every propositional variable p, the edges between c
and p+ and those between c and p− are missing. Observe that, for
each propositional variable p, the subgraph induced by p−, p+, 1, p−,
p+, and c is isomorphic to the partial tournament depicted in Fig-
ure 8.5a, above. Otherwise c is dominated by every other alternative
(but the relation to other c ′ is left unspecified). Moreover, if p occurs
as a (positive) literal in c, there is an edge from p+ to c. This is a
prerequisite for c to be covered by p+. Similarly, there is an edge
from p− to c whenever p̄ occurs as a negative literal in c. Otherwise
there are edges from p to c as well as from c to p+, to p−, and to
every other p+ and p−.

Moreover, there are edges from 0 to p for every propositional vari-
able p. Otherwise, there is an edge from every other alternative to 0.

Lastly, for every clause c and every propositional variable p that
does not occur in c, there are edges from c to p+ and to p−. Any
edges not specified in the above description can be set arbitrarily. For
an example of this construction the reader is referred to Figure 8.6.

Finally, define

X = {p,p+,p− : p a propositional variable}∪ {c : c a clause}∪ {1}.

Table 8.1 summarizes which alternatives can reach which other al-
ternatives in at most two steps. We thus find that, for every comple-
tion T of Gϕ, the set X is contained in UC(T) and that 0 is covered by 1.
Whether, for propositional variables p, the alternatives p+ and p− and
whether, for clauses c, alternative c are in UC(T) depends on the way
in which T completes Gϕ.

We conclude the proof by showing that

X = UC(T) for some T ∈ [Gϕ] if and only if ϕ is satisfiable.

First assume that ϕ is satisfiable and let v be the satisfying assign-
ment for ϕ. For each propositional variable p that v sets to true add
edges (p−,p+), (p+, 1), and (1,p−) as well as (p−,p+), (p+, c), and
(c,p−), for each clause c in which p occurs as a literal. For each propo-
sitional variable q that v sets to false, add edges (1,q+), (q+,q−), and
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p q p− p+ 1 q− q+ c c ′ p− p+ c c ′ q− q+ 0

p · q− c[p] c[p̄] c · · · · c c · · · · c

p− · 0 · p+ c p p p p c[p̄] · · · · · ·
p+ · 0 p− · c p p c c ′ · c[p] · · · · ·
1 · · p− p+ · q− q+ · · · · p p · · ·
c[p] 0 0 · p+ c ′ q− q+ · c ′ · · p− · · · ·
c[p̄] 0 0 p− · c ′ q− q+ · c ′ · · p+ · · · ·
p− · 0 · � � p p p p · p− p p p p ·
p+ · 0 � · � p p p p p+ · p p p p ·
c[p] 0 0 c � · c c 1 c 1 1 · c 1 1 ·
c[p̄] 0 0 � c · c c 1 c 1 1 · c 1 1 ·
0 · · q q − p p p p q q p p p p ·

Table 8.1: Table summarizing which types of alternatives reach which other
types of alternatives in one or two steps in completions of the
partial tournament Gϕ. An alternative x in the entry for row r
and column c means that r can reach c via x. If the entry is a
dot (“·”), r can reach c directly, i.e., in one or zero steps. A box
(“�”) signifies that it depends on how Gϕ is being completed, if
and via which alternative r can reach c. The minus in the entry
for 0 and 1 means that 0 cannot reach 1 in at most two steps, no
matter how Gϕ is completed. Thus, 0 is covered by 1 in every
completion of Gϕ. We assume p and q to be distinct variables.
Furthermore, c[p] simply denotes clause c on the understanding
that p occurs as a literal in c. Similarly for c[p̄]. An alternative
c reaches q+ (q−) via c or q+ (q−) depending on whether q (q̄)
occurs in c or not. We may assume that no clause contains both
a literal and its negation as well as that every literal occurs in at
least one clause.
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pq̄

pq̄

p̄r

p̄r

p−

p−

p+

p+

p

q−

q−

q+

q+

q

1

0

Figure 8.6: Part of the dominance relation of the partial tournament Gϕ
associated with ϕ = (p ∨ ¬q) ∧ (¬p ∨ r). The part involving
variable r, i.e., the nodes r, r+, r−, r+, and r−, has been omitted.
The dashed edges are dependent on the clauses of ϕ. Omitted
edges point downwards or, when on the same level, in an arbi-
trary direction. Dotted edges are missing.

(q−, 1) as well as (c,q+), (q+,q−), and (q−, c), for each clause c in
which q̄ occurs as a literal. Then, p− is covered by 1, p+ by p− and ev-
ery c with p occurring in it as a literal by p+. Similarly, q− is covered
by q+, q+ by 1, and c by q− provided that q̄ occurs in c.

For the opposite direction, assume that, there is some completion T
of Gϕ such that for every propositional variable p and for every
clause c, alternatives p−, p+, and c are covered. Define assignment vT
such that it sets propositional variable p to true if there is some
clause c such that p+ covers c in T and sets p to false, otherwise.
Observe that vT is well-defined as an assignment.

Finally, we have to show that vT satisfies ϕ. To this end consider an
arbitrary clause c. It suffices to prove that vT satisfies c. By assump-
tion, c is covered either by some p+ where p is some propositional
variable that occurs as a (positive) literal in c or c is covered by some
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q+ q− c c ′

q− 1q+

1

2

3

4

5

6

Figure 8.7: Illustration of the concluding argument of the proof of Theo-
rem 8.9. A double edge from alternative x to alternative y in-
dicates that x covers y. The numbers some of the edges are
labelled with correspond to the order in which their existence is
demonstrated in the proof of Theorem 8.9.

other alternative x. If the former, vT sets p to true and accordingly
satisfies c. In the latter case, recall that c reaches all alternatives in at
most two steps apart from alternatives p+ such that p occurs in c and
from alternatives q− such that q̄ occurs as a literal in c (also see Ta-
ble 8.1). We may therefore assume that x = q− for some q such that q̄
occurs as a literal in c. It suffices to show that vT sets q to false. To
this end, consider an arbitrary c ′. We prove that q+ does not cover c ′,
see Figure 8.7 for an illustration of the reasoning. As q− covers c
in T and because there is an edge from c to 1 by construction, there is
also an edge from q− to 1. This edge, together with the one from q−

to q−, preclude that 1 covers q−. Reaching every other alternative in
at most two steps, q− must therefore be covered by q+. As there is
an edge from q− to q−, it follows that T also has an edge from q+

to q−. This being established and there being an edge from q+ to q+,
we may conclude that q− does not cover q+ in T . Rather, q+ reaches
every alternative except 1 in at most two steps in T . Therefore, q+ is
covered by 1. Because there is an edge from q+ to q+, there is also an
edge from 1 to q+ in T . At this point observe that, by construction,
there is an edge from c ′ to 1. Therefore, q+ does not cover c ′ in T .
This concludes the proof.

8.5 weighted tournaments

We now turn to weighted tournaments, and in particular consider the
solution concepts Borda, maximin, and ranked pairs.



8.5 weighted tournaments 105

8.5.1 Borda

Recall that BO(T) is defined as the set of alternatives with the highest
total weight on outgoing edges.

Before we proceed further, we define the notion of a b-matching,
which will be used in the proofs of several of our results in this sec-
tion. Let H = (AH,EH) be an undirected graph with vertex capacities
b : AH → N0. Then, a b-matching of H is a function µ : EH → N0 b-matching

such that for all v ∈ AH,
∑
e∈{e ′∈EH:v∈e ′} µ(e) 6 b(v). The size of b-

matching µ is defined as
∑
e∈EH µ(e). It is easy to see that if b(v) = 1

for all v ∈ AH, then a maximum-size b-matching is equivalent to a
maximum-cardinality matching. In a b-matching problem with up-
per and lower bounds, there further is a function a : AH → N0.
A feasible b-matching then is a function µ : EH → N0 such that
a(v) 6

∑
e∈{e ′∈EH:v∈e ′} µ(e) 6 b(v).

If H is bipartite, then the problem of computing a maximum size
feasible b-matching with lower and upper bounds can be solved in
strongly polynomial time (Schrijver, 2003, Chapter 21). We will use
this result to show that PWBO and PWSBO can both be solved in poly-
nomial time. While the following result for PWBO can also be shown
using Theorem 6.1 of Kern and Paulusma (2004), we still give a direct
proof that will then be extended to PWSBO.
Theorem 8.10

PWBO can be solved in polynomial time.

Proof. Generally, we observe that making a BO-winner x stronger by
increasing weight on an edge to another alternative, cannot make x
a losing alternative.54 Now, let G = (A, w) be a partial n-weighted
tournament and x ∈ A. By the observation before, x ∈ PWBO(G) if
and only if x ∈ PWBO(G

x→). We give a polynomial-time algorithm
for checking whether the latter holds via a reduction to the problem
of computing a maximum-size b-matching of a bipartite graph. Let
s∗ = sBO(x,Gx→) be the Borda score of x in Gx→. We construct a
bipartite graph H = (AH,EH) with vertices AH = A \ {x}∪ Ex, where
Ex = {{i, j} ⊆ A \ {x}}55 and edges EH = {{v, e} : v ∈ A \ {x} and v ∈
e ∈ Ex}. We further define vertex capacities b : AH → N0 such
that b({i, j}) = n − w(i, j) − w(j, i) for {i, j} ∈ Ex and b(v) = s∗ −

sBO(v,Gx→) for v ∈ A \ {x}.
Now observe that in any completion T = (A, w ′) ∈ [Gx→], it holds

that w ′(i, j) + w ′(j, i) = n for all i, j ∈ A with i 6= j. The sum of
the Borda scores in T is therefore n|A|(|A|− 1)/2. Some of the weight
has already been used up in Gx→; the weight which has not yet been
used up is equal to

α = n|A|(|A|− 1)/2−
∑
v∈A

sBO(v,Gx→).

54 This means that BO satisfies monotonicity.
55 Note that w(i, j) = wx→(i, j) for alternatives i, j ∈ A \ {x}.
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We claim that x ∈ PWBO(G
x→) if and only if H has a b-matching of

size at least α.
(⇒) Let T = (A, w ′) ∈ [Gx→] be a completion with x ∈ BO(T).

Consider the b-matching µ with µ(i, {i, j}) = w ′(i, j) − w(i, j). We
verify that µ is a feasible b-matching. Let v ∈ AH. If v ∈ A \ {x}, we
have that ∑

e∈{e ′∈EH:v∈e ′}

µ(e) = sBO(v, T) − sBO(v,Gx→)

6 s∗ − sBO(v,Gx→)

= b(v).

Otherwise, v = {i, j} ∈ Ex and∑
e∈{e ′∈EH:{i,j}∈e ′}

µ(e) = µ({i, {i, j}}) + µ({j, {i, j}})

= n− w(i, j) − w(j, i)

= b({i, j}).

As the the size of µ is∑
e∈EH

µ(e) =
∑
i 6=j

(
w ′(i, j) + w ′(j, i) − w(i, j) − w(j, i)

)
=
∑
i 6=j

n−
∑
i∈A

∑
j∈A\{i}

w(i, j)

= α,

the statement is shown.
(⇐) For the other direction, assume that a feasible b-matching of

size at least α exists. We construct a completion T = (A, w ′) ∈ [Gx→]

with x ∈ BO(T). Let w ′(i, j) = µ(i, {i, j}) + w(i, j) for all {i, j} ⊆ A \ {x}

as well as w ′(x, i) = w(x, i) and w ′(i, x) = w(x, i) for all i ∈ A\ {x}. As
w(i, j) 6 w ′(i, j) and w ′(i, j) +w ′(j, i) 6 w(i, j) +w(j, i) +b({i, j}) = n
for all {i, j} ⊆ A, T is an extension of Gx→. From

α =
∑

{i,j}Ex
b({i, j}) >

∑
e∈EH

µ(e) =
∑
i 6=j
> α,

we know that the upper capacities b({i, j}) of all {i, j} ∈ Ex are exactly
met by µ (and that there cannot be a matching with size more than α).
This implies that

w ′(i, j) + w ′(j, i) = w(i, j) + w(j, i) + b({i, j}) = n,

showing that T is indeed a completion of Gx→.
Since H can be constructed efficiently, and since a maximum size

b-matching can be computed in strongly polynomial time, our algo-
rithm runs in polynomial time.
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(a) A partial 5-weighted tourna-
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(b) The partial 5-weighted tour-
nament Gc→.
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(c) The constructed bipartite
graph H for target Borda
score s∗ = sBO(c,Gc→) = 8.
Capacities are given next
to the vertices. Thick
edges with weights indi-
cate the unique maximum
b-matching.
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(d) The completion T of G that
corresponds to the maxi-
mum b-matching. In this
case, BO(T) = {a,b, c}.

Figure 8.8: Illustration of the algorithm for checking whether an alterna-
tive c is contained in PWBO(G) for a partial 5-weighted tourna-
ment G.



108 possible and necessary winners of partial tournaments

Figure 8.8 illustrates the described steps for determining whether
an alternative is contained in PWBO(G).

This idea can be extended to a polynomial-time algorithm for PWSBO
where we use a similar construction for a given G = (A, w), a candi-
date set X ⊂ X and a target Borda score s∗. Binary search can be used
to efficiently search the interval of possible target scores.

Theorem 8.11

PWSBO can be solved in polynomial time.

Proof. Let G = (A, w) be a partial n-weighted tournament, and X ⊆
A. We give a polynomial time algorithm for checking whether X ∈
PWSBO(G), via a bisection method and a reduction to the problem of
computing a maximum b-matching of a graph with lower and upper
bounds.

Assume that there is a target Borda score s∗ and a completion T ∈
[G] with X ∈ PWSBO(T) and sBO(x, T) = s∗ for all x ∈ X. Then, the
maximum Borda score of an alternative not in X is s∗ − 1.

For a given target Borda score s∗, we construct a bipartite graph
H = (AH,EH) with vertices AH = A∪ Ex, where Ex = {{i, j} ⊆ A : i 6=
j, w(i, j) + w(j, i) < n}, and edges EH = {{v, e} : v ∈ A and v ∈ e ∈
Ex}. Only the lower bounds as∗ : AH → N0 and upper bounds
bs∗ : AH →N0 depend on s∗ and are defined as follows: For vertices
x ∈ X, lower and upper bounds coincide and are given by as∗(x) =

bs∗(x) = s∗ − sBO(x,G). All other vertices v ∈ AH \ X have a lower
bound of as∗(v) = 0. Upper bounds for these vertices are defined
such that bs∗(v) = s∗ − sBO(v,G) − 1 for v ∈ A \ X, and bs∗({i, j}) =

n− w(i, j) − w(j, i) for {i, j} ∈ Ex. As in the proof of Theorem 8.10,
it holds that a feasible b-matching in H corresponds to an extension
of G. Such an extension is a completion T ∈ [G] if and only if the b-
matching has size α = n|A|(|A|−1)/2−

∑
v∈A sBO(v,G), which equals

the weight not yet used up in G. Then, T satisfies X ∈ PWSBO(T) and
sBO(x, T) = s∗ for all x ∈ X. If, on the other hand, no s∗ gives rise to a
graph that has a b-matching of size α, then X 6∈ PWSBO(G).

In order to obtain a polynomial-time algorithm, we need to check
whether there exists a target score s∗ for which the corresponding
graph H with upper and lower bounds admits a b-matching of size α.
It is easily verified that any such s∗ is contained in the integer interval

I = [max
x∈X

sBO(x,G),n(|A|− 1) ].

Observe that |I| depends on n and thus is not polynomially bounded
in the size of G. Checking every integer s ∈ I is therefore not feasible
in polynomial time. However, we now show that we can perform
binary search in order to find s∗ efficiently. We need the following
two observations about the interval I. For s ∈ I, we say that s admitsstructure of score

interval I a feasible b-matching if the corresponding graph H has a feasible b-
matching.
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First, if an s ′ ∈ I admits a feasible b-matching, then every s ′′ ∈
I with s ′′ 6 s ′ also admits a feasible b-matching. This is because
removing all weight from edges that exceeds the (reduced) upper
bounds gives a feasible b-matching for s ′′.

Second, with s ′ as before and α ′ the size of the corresponding
maximum feasible b-matching µ ′, there cannot be an s ′′ ∈ I with s ′′ >
s ′ such that the size α ′′ of a maximum feasible b-matching µ ′′ for
s ′′ is smaller than α ′. This is because either (i) no such µ ′′ exists
since not all lower bounds can be met, or (ii) such an µ ′′ exists and
its size is at least α ′. To see the latter, note that a decrease in the size
of a maximum feasible matching cannot be caused by upper bounds
as bs ′′(v) > bs ′(v) for all v ∈ AH. It remains to be shown that the
increase in as ′′(v) for v ∈ X does not result in a smaller maximum
b-matching. Since the weight of all edges incident to a vertex in
X in the b-matching is completely determined by the bounds and
increases from µ ′ to µ ′′, a total decrease in size can only be due to
edges {j, {i, j}} with i ∈ A \ X, j ∈ A whose weight is bounded by
bs ′′({i, j}) − µ ′′(i, {i, j}). But then,

µ ′′(i, {i, j}) + µ ′′(j, {i, j}) = bs ′′({i, j})

> bs ′({i, j}) > µ ′(i, {i, j}) + µ ′(j, {i, j})

and therefore α ′′ > α ′.
These two observations show that the interval I consists of two

subintervals where the lower part admits feasible b-matchings of
increasing size, whereas the upper part does not admit feasible b-
matchings. Therefore, s∗ is either at the upper end of the lower part
or it does not exist.

Algorithmically, we can check the existence of s∗ with the follow-
ing binary search algorithm. Let [Imin, Imax] be an interval that is ini- binary search

tialized to I = [maxx∈X sBO(x,G),n(|A| − 1)]. Consider the median
value s of this interval. If the corresponding graph H has no feasible
b-matching, continue with the interval [Imin, s− 1]. Otherwise, if the
maximum feasible b-matching has size at least α, return “yes”. If its
size is less than α, continue with [s+ 1, Imax]. If [Imin, Imax] is empty,
return “no.”

The number of queries of this algorithm is bounded by dlog2 |I|e 6
dlog2 n|A|e and, therefore, polynomial in the size of G.

To conclude this section, we give a proof for NWBO being solvable
in polynomial time as well. It is worth noting that this result does
not follow directly from the polynomial-time result for NWBO for the
case of preference profiles (Xia and Conitzer, 2011).

Theorem 8.12

NWBO can be solved in polynomial time.
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Proof. Let G = (A, w) be a partial weighted tournament, x ∈ A. We
give a polynomial-time algorithm for checking whether x ∈ NWBO(G).

Let G ′ = Gx→. We want to check whether some other alternative
y ∈ A \ {x} can achieve a Borda score of more than s∗ = sBO(x,G ′).
This can be done separately for each y ∈ A \ {x} by reinforcing it as
much as possible in G ′. If for some y, sBO(y,G ′y→) > s∗, then x /∈
NWBO(G). If, on the other hand, sBO(y,G ′y→) 6 s∗ for all y ∈ A \ {x},
then x ∈ NWBO(G).

As an example, consider the partial 5-weighted tournament G inexample for BO

Figure 8.8a. The fact that {a,b, c} ⊆ PWBO(G) follows already from
the completion shown in Figure 8.8d. Also note that this was the only
completion in which c was chosen. Alternative d cannot be a possible
Borda winner since sBO(d,Gd→) = 7 < 8 = sBO(a,G). To determine
PWSBO(G), we still have to check which subsets of {a,b, c} are possi-
ble winning sets. For singletons, it is easy to see that only {a} and
{b} are in PWSBO(G). For {a,b}, we could employ the binary search
method described in Theorem 8.11. Here, we just argue that moving
one unit of weight from (c,d) to (d, c) in the completion shown in
Figure 8.8d, gives another completion in which {a,b} is the winning
set. For NWBO(G), it is straightforward to check that no alternative is
a necessary Borda winner. Together, we have that

PWBO(G) = {a,b, c}

NWBO(G) = ∅
PWSBO(G) = {{a}, {b}, {a,b}, {a,b, c}}.

8.5.2 Maximin

For maximin, consider again the partial 5-weighted tournament de-
picted in Figure 8.9a as an example. It is easy to see that a (or b)example for MM

are the unique maximin winners in all completions of Ga→ (or Gb→).
Also, c can not be a possible maximin winner as it will always have
a maximin score of 0 whereas a always has at least 1. Similarly, alter-
native d can never have a higher maximin score than a. Figure 8.9c
shows a completion in which {a,d} is the set of maximin winners. If
one unit of weight is shifted from (c,b) to (b, c), the resulting comple-
tion has {a,b,d} as the maximin winners. It is also straightforward
to find a completion of G{a,b}→ with {a,b} as the set of maximin win-
ners. It is easy to verify that no alternative is a necessary maximin
winner. Together, this gives

PWMM(G) = {a,b,d}

NWMM(G) = ∅
PWSMM(G) = {{a}, {b}, {a,b}, {a,d}, {a,b,d}}.
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(b) The constructed bipartite
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∗
for s∗ = 1 and

X = {a,d} as in the proof
of Theorem 8.14. A max-
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(c) A completion T of G that
could be obtained from
the matching. Indeed,
MM(T) = {a,d} with
sMM(T) = 1.
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(d) This completion T of G
is a witness for {a,b} ∈
PWSMM(G).

Figure 8.9: Example of a 5-weighted partial tournament and completions
relevant for possible maximin winners.
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We first show that PWMM is polynomial-time solvable by reducing
it to the problem of finding a maximum-cardinality matching of a
graph.

Theorem 8.13

PWMM can be solved in polynomial time.

Proof. We show how to check whether x ∈ PWMM(G) for a partial
n-weighted tournament G = (A, w). Consider the graph Gx→ =

(A, wx→). Then, sMM(x,Gx→) is the best possible maximin score x
can get among all completions of G. If sMM(x,Gx→) > n

2 , then we
have sMM(y, T) 6 wx→(y, x) 6 n

2 for every y ∈ A \ {x} and every
completion T ∈ [Gx→] and therefore x ∈ PWMM(G).

Now consider sMM(x,Gx→) < n
2 . We will reduce the problem

of checking whether x ∈ PWMM(G) to that of finding a maximum
cardinality matching, which is known to be solvable in polynomialreduction to

maximum
cardinality matching

time (Edmonds, 1965). We want to find a completion T ∈ [Gx→]

such that sMM(x, T) > sMM(y, T) for all y ∈ A \ {x}. In other words,
we want to complete the weights of edges between vertices in A \ {x}

in such a balanced way so that x is still a winner. If there exists a
y ∈ A \ {x} such that sMM(y,Gx→) > sMM(x,Gx→), then we already
know that x /∈ PWMM(G). Otherwise, each y ∈ A\ {x} derives its maxi-
min score from at least one particular edge (y, z) where z ∈ A \ {x,y}
and w(y, z) 6 sMM(x,Gx→). Moreover, it is clear that in any com-
pletion, y and z cannot both achieve a maximin score of less than
sMM(x,Gx→) from edges (y, z) and (z,y) at the same time. Construct
the following undirected and unweighted graph H = (AH,EH) where
AH = A \ {x}∪ {{i, j} ⊆ A : i 6= j}. Build up EH such that: {i, {i, j}} ∈ EH
if and only if i 6= j and wx→(i, j) 6 sMM(x,Gx→). In this way, if i is
matched to {i, j} in H, then i derives a maximin score of less than or
equal to sMM(x,Gx→) from his comparison with j. Clearly, the size of
H is polynomial in the size of G. We show that x ∈ PWMM(G) if and
only if there exists a matching of cardinality |A|− 1 in H.

(⇒) First, assume that x ∈ PWMM(G). Then there exists a comple-
tion T = (A, w ′) of Gx→ in which the maximin score of each y ∈ A \

{x} is at most sMM(x,Gx→) < n
2 . If alternative i derives its maximin

score from a comparison with j 6= i ∈ A \ {x}, i.e., sMM(i, T) = w ′(i, j),
then j cannot derive its maximin score from a comparison with i be-
cause w ′(j, i) > n− sMM(x,Gx→) implies w ′(j, i) > n

2 . Therefore, in
H, each i ∈ AH ∩A can be matched to a {i, j} ∈ AH such that {i, j} is
not matched to any other vertex in AH. The resulting matching in H
has cardinality |A|− 1.

(⇐) Now, assume that there exists a matching M of cardinality
|A| − 1 in H. Then, each i ∈ A \ {x} has to be matched to an {i, j}
where w(i, j) 6 sMM(x,Gx→). Consider a completion T = (A, w ′) ∈
[Gx→] in which for all (i, j) ∈ A×A such that {i, {i, j}} ∈ M, we set
w ′(i, j) = w(i, j) and w ′(j, i) = n− w(i, j). Moreover, the weights of
all other edges in T are set by any arbitrary completion of edges in
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Gx→. Clearly, T is a proper completion of Gx→ and therefore of G.
In T , the maximin score of each y ∈ A \ {x} is less than or equal to
the maximin score of x. Therefore x ∈ MM(G) which implies that
x ∈ PWMM(G).

Next, we show that PWSMM can be solved in polynomial time. The
proof proceeds by identifying the maximin values that could poten-
tially be achieved simultaneously by all elements of the set in ques-
tion, and solving the problem for each of these values using similar
techniques as in the proof of Theorem 8.13. Only a polynomially
bounded number of problems need to be considered.

Theorem 8.14

PWSMM can be solved in polynomial time.

Proof. Let G = (A, w) be a partial n-weighted tournament, and X ⊆
A. We give a polynomial time algorithm for checking whether X ∈
PWSMM(G).

If X ∈ PWSMM(G) there must be a completion T ∈ [G] and s∗ ∈
{0, . . . ,n− 1} such that sMM(x, T) = s∗ for all x ∈ X and sMM(i, T) < s∗

for all y ∈ A \ X. First, we note that if s∗ > n − w(j, i) for some
i ∈ X, j ∈ A or s∗ 6 w(i, j) for some i /∈ X, j ∈ A, then X 6∈ PWSMM(G).
Therefore, assume that

n− w(j, i) > s∗ for all i ∈ X, j ∈ A and

w(i, j) < s∗ for all i /∈ X, j ∈ A.

We treat the cases s∗ > n
2 , s∗ = n

2 , and s∗ < n
2 separately.

First, assume that s∗ > n
2 . Then, X ∈ PWSMM if and only if X is a

singleton {x} and wx→(x, j) > n
2 for all j ∈ A \ {x}.

Now assume that s∗ = n
2 . With the assumptions above, we can

define G ′ = (A, w ′) as an extension of GX→ with w ′(i, j) = w ′(j, i) =
n
2 = s∗. Note that in every completion T of G ′, sMM(i, T) = s∗ for
all i ∈ X and that X ∈ PWSMM(G) with maximum maximin score n

2

in the corresponding completion if and only if X ∈ PWSMM(G ′) with
the same maximum maximin score in the respective completion.

In addition, we need to check whether alternatives not in X can be
forced to have a strictly smaller maximin score than n

2 . To this end,
construct an unweighted undirected bipartite graph H = (AH,EH)
with AH = A∪ {{i, j} ⊆ A : i 6= j}. For i ∈ A \X and j 6= i, EH contains
an edge {i, {i, j}} if w(i, j) < s∗. Otherwise, EH contains no edges.
We claim that X ∈ PWSMM(G ′) with a maximin score of s∗ = n

2

in the corresponding completion if and only if there is a maximum
cardinality matching of size |A \X| in H.
(⇒) Let T = (A, w ′′) a completion of G ′ (and thereby of G) in

which X is the set of maximin winners with sMM(i, T) = s∗ = n
2 for

all i ∈ X. For each i /∈ X, there needs to be a j 6= i with w ′′(i, j) < s∗.
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Collecting {i, {i, j}} for each such pair gives a matching of size |A \ X|

in H which is maximum since each vertex on one side of the bipartite
graph is contained in it.
(⇐) For the other direction, assume that there is a maximum match-

ing of size |A \X|. We construct a completion T = (A, w ′′) of G ′ such
that X is the set of maximin winners. Note that every i ∈ (AH ∩A) \X
has to be contained in an edge {i, {i, j}} in the matching. For each such
edge, let w ′′(i, j) = w ′(i, j) and w ′′(j, i) = n−w ′′(i, j). These weights
witness that sMM(i, T) < s∗. Otherwise, T is an arbitrary comple-
tion of G. Together, we have that sMM(i, T) = s∗ for all i ∈ X and
sMM(i, T) < s∗ for all i /∈ X. Figure 8.10 illustrates the procedure for a
2-weighted tournament and the set X = {a}.

Lastly, assume that s∗ < n
2 . For a given s∗, we construct an undi-

rected unweighted bipartite graph Hs
∗
= (AH,Es

∗
H ). Let AH as before.

An edge {i, {i, j}} with i ∈ A, j ∈ A \ {i} is contained in Es
∗
H if

i ∈ X and w(i, j) 6 s∗ 6 n− w(j, i) or

i /∈ X and w(i, j) 6 s∗ − 1.

Otherwise, Es
∗
H contains no edges. Note that Hs

∗
is bipartite and

contains at most |A|2 edges.
We claim that X ∈ PWSMM(G) with a maximin score of s∗ < n

2

in the corresponding completion if and only if there is a maximum
cardinality matching of size |A| in Hs

∗
.

(⇒) Let T = (A, w ′) a completion of G in which X is the set of
maximin winners with the maximum maximin score s∗. For every
vertex i ∈ A, there has to be an j 6= i such that w ′(i, j) accounts for
the maximin score of i. Also, since s∗ < n

2 , it can not be the case
that j also derives its maximin score from w ′(j, i). Therefore, the set
of all such pairs {i, {i, j}} is a valid matching of size |A|. It is obviously
maximal.
(⇐) For the other direction, assume that there is a maximum match-

ing of size |A|. Note that every i ∈ (AH ∩ A) has to be contained
in an edge {i, {i, j(i)}} in the matching. We construct a completion
T = (A, w ′) in which X is the set of maximin winners. For i ∈ X,
define w ′(i, j(i)) = s∗ and w ′(j(i), i) = n− s∗. Similarly, for i ∈ A \X,
define w ′(i, j(i)) = s∗ − 1 and w ′(j(i), i) = n− (s∗ − 1). As long as
there are unspecified edges (i, j) in the completion, define

w ′(i, j) = max{w(i, j), s∗}, if i ∈ X, j ∈ A, and

w ′(i, j) = max{w(i, j), s∗ − 1}, otherwise

together with w ′(j, i) = n− w(i, j).
Note that T is a proper completion of G. Now, we have sMM(i, T) =

s∗ for all i ∈ X and sMM(i, T) < s∗ for all i /∈ X.
It remains to be shown that in the last case only a limited number

of possible s∗ have to be considered. To see this, note that when s∗
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is gradually incremented from 0 to n
2 − 1, whether an edge {i, {i, j}}

is contained in Es
∗
H or not changes at most twice. Therefore, it is

sufficient to only consider target maximin scores s∗ ∈ {w(i, j),n −

w(j, i) : i ∈ X, j ∈ A \ {x}} ∪ {w(i, j) + 1 : i ∈ A, j ∈ A \ {i}}, i.e., at most
2|A|2 different values to examine all distinct Hs

∗
.

All cases can be completed in polynomial time.
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(d) A completion of G ′ and G
with a as the sole alter-
native with the maximum
maximin score of 1.

Figure 8.10: Illustration of the algorithm for checking whether a singleton
{a} is contained in PWSMM(G) for a partial 2-weighted tourna-
mentG. It is obvious that a cannot have a maximin score of 2 in
any completion or be the sole maximin winner with a maximin
score of 0. Therefore, we check the for the case s∗ = n

2 = 1.

Lastly, we consider NWMM for which we apply a similar technique
as for NWBO: to see whether x ∈ NWMM(G), we start from the graph
Gx← and check whether some other alternative can achieve a higher
maximin score than x in a completion of Gx←.

Theorem 8.15

NWMM can be solved in polynomial time.

Proof. We show how to check whether x ∈ NWMM(G) for a partial
n-weighted tournament G = (A, w). The maximin score of x in Gx←

is the worst case maximin score of x among all proper completions of
G.

For each y ∈ A \ {x}, the maximin score of y in Gy→ is the best
possible maximin score of y among the completions of G. If the
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maximin score of each y in the corresponding Gy→ is not more
than the maximin score of x in Gx←, then x ∈ NWMM(G), otherwise
x /∈ NWMM(G).

8.5.3 Ranked Pairs

It is readily appreciated that the ranked pairs procedure for RPτ, and
thus its winner determination problem, is computationally tractable.
The possible winner problem, on the other hand, turns out to be NP-
hard. This also shows that tractability of the winner determination
problem, while necessary for tractability of PW, is not generally suffi-
cient.S ∈ P 6⇒ PWS ∈ P

For the proofs of the results in this section, we refer to our paper
(Aziz et al., 2012) and the thesis by Brill (2012).

Theorem 8.16

PWRPτ is NP-complete.

Since the ranked pairs method is resolute, hardness of PWSRPø fol-
lows immediately.

Corollary 8.17

PWSRPτ is NP-complete.

Computing necessary ranked pairs winners turns out to be coNP-
complete. This is again somewhat surprising, as computing necessary
winners is often considerably easier than computing possible winners,
both for partial tournaments and partial preference profiles (Xia and
Conitzer, 2011).

Theorem 8.18

NWRPτ is coNP-complete.

8.6 possible winning subsets

We considered the problem PWS—whether a subset of alternatives
is a possible winning set. In addition, it may be of interest whether
a subset of alternatives is among the winners in some completion,
i.e., they are all in the choice set but there may be more winning
alternatives. We will refer to the latter problem as PWSS (possiblePWSS

winning subset). We note that an oracle to solve PWSS can be used to
solve PW. If we want to check whether i ∈ PW(G), we simply check
whether {i} ∈ PWSS(G). We are not aware of any algorithmic relationopen relation to

PWS between the problems PWS and PWSS.
We examined the computational complexity of PWSSS for most of

the solution concepts considered in this chapter. Since the arguments
are often very similar to proofs already given, we briefly summarize
our findings here.
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CW As there is never more than one Condorcet winner, every X ∈
PWSSCW(G) is a singleton and the problem reduces to comput-
ing PWCW(G).

CNL For PWSSCNL, note that X /∈ PWSSCNL(G) if and only if ev-
ery completion T−1 ∈ [G−1] has a Condorcet winner which is
furthermore located in X. Therefore,

X ∈ PWSSCNL(G)⇔

{
∅ ∈ PWSCW(G−1) or

PWCW(G−1) \X 6= ∅.

CO Just as for the other problems, polynomial computability of
PWSSCO follows from the corresponding result for PWSSBO.

TC For the top cycle, the problem PWSSTC can be solved in poly-
nomial time. In fact, it can be shown that for a partial tour-
nament G and a set of alternatives X, it is sufficient to check
whether X ⊆ PWTC(G) (with an additional argument if |X| = 2)
in order to determine whether X ∈ PWSSTC(G).

BO The argument and algorithm for checking whether X is con-
tained in PWSSBO(G) is almost the same as the argument for
PWSBO in Theorem 8.11. The only difference is that the sBO(v, T)
may now be up to s∗ instead of s∗ − 1 for v ∈ A \X in T ∈ [G].
Consequently, we only need to redefine bs∗(v) to s∗− sBO(v,G)
for all v ∈ A \X. The rest is analogous.

MM The proof for efficient computability of checking whether X ∈
PWSMM(G) can be modified to accommodate PWSSMM. More
precisely, the second basic assumption is now w(i, j) 6 s∗ for
i /∈ X, j ∈ A. For s∗ = n

2 it is sufficient to check whether G ′

is a proper extension of G. For s∗ < n
2 , edges {i, {i, j}} with

i ∈ X are now contained in Es
∗
H of w(i, j) 6 s∗. The rest of the

argument can be adjusted appropriately. For s∗ > n
2 , nothing

changes.

RPτ Since PWRPτ is NP-complete by Theorem 8.16, we get NP-hardness
of PWSSRPτ by the oracle argument above. The problem is also
NP-complete as membership in NP is obvious.

The complexity of PWSSUC is currently open. Minor modification complexity of
PWSSUC is opento our hardness proof of PWSUC will not do the trick. In that argu-

ment, the crucial question was whether there is a completion that
excludes certain alternatives from the choice set. This does not help
for PWSSUC.

8.7 summary and discussion

The problem of computing possible and necessary winners for par-
tial preference profiles has recently received a lot of attention. We
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have investigated this problem in a setting where partially specified
(weighted or unweighted) tournaments instead of profiles are given as
input. Our findings are summarized in Table 8.2.

S PWS NWS PWSS

CW in P Lang et al., 2012 in P Lang et al., 2012 in P (Th. 8.2)
CNL in P (Th. 8.3) in P (Th. 8.3) in P (Th. 8.3)
CO in P (Th. 8.4)a in P (Th. 8.4)a in P (Th. 8.4)
TC in P Lang et al., 2012

a in P Lang et al., 2012 in P (Th. 8.6)
UC in P (Th. 8.7) in P (Th. 8.8) NP-C (Th. 8.9)

BO in P (Th. 8.10)a in P (Th. 8.12) in P (Th. 8.11)
MM in P (Th. 8.13)a in P (Th. 8.15) in P (Th. 8.14)
RP NP-C (Th. 8.16) coNP-C (Th. 8.18) NP-C (Cor. 8.17)
a This P-time result contrasts with the intractability of the same problem for

partial preference profiles (Lang et al., 2012; Xia and Conitzer, 2011).

Table 8.2: Complexity of computing possible winners (PW) and necessary
winners (NW) and of checking whether a given subset of alter-
natives is a possible winning set (PWS) under different solution
concepts given partial tournaments.

A key conclusion is that computational problems for partial tour-
naments can be significantly easier than their counterparts for par-
tial profiles. For example, possible Borda or maximin winners can
be found efficiently for partial tournaments, whereas the correspond-
ing problems for partial profiles are NP-complete (Xia and Conitzer,
2011).

While tractability of the winner determination problem is necessary
for tractability of the possible or necessary winners problems, the re-
sults for ranked pairs in Section 8.5.3 show that it is not sufficient. We
further considered the problem of deciding whether a given subset of
alternatives equals the winner set for some completion of the partial
tournament. The results for the uncovered set in Section 8.4.4 imply
that this problem cannot be reduced to the computation of possible
or necessary winners, but whether a reduction exists in the opposite
direction remains an open problem.

Partial tournaments have also been studied in their own right, inde-
pendent of their possible completions. For instance, Peris and Subiza
(1999) and Dutta and Laslier (1999) have generalized several solu-
tion concepts on tournaments to incomplete tournaments by directly
adapting their definitions. The common point with the approach we
follow here is the nature of the input, namely, incomplete tourna-
ments. However, solution concepts for incomplete tournaments in
Peris and Subiza (1999) are defined by a direct generalization of the
usual definition on complete tournaments in contrast to our defini-
tions, which are based on the completions of the input partial tour-
nament. In this context, the notion of possible winners suggests a
canonical way to generalize a solution concepts defined on tourna-
ment to incomplete tournaments. The way of extending tournament
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solutions to partial tournaments is referred to as the “conservative ex-
tension” and inherits various axiomatic properties which the original
tournament solutions satisfies for tournaments (Brandt et al., 2014b).
The positive computational results presented in this chapter are an
indication that this may be a promising approach.

Furthermore, we have not examined the complexity of computing
possible and necessary winners for some attractive tournament so-
lutions such as the minimal covering set, the bipartisan set (Laslier,
1997) and weighted versions of the top cycle and the uncovered set (De
Donder et al., 2000).





9
C O M PA R I N G C H O I C E S E T S
O F TO U R N A M E N T S O L U T I O N S

Perhaps more important is that methods used
here to furnish tools for analysing structural
properties of dominance which could be applied,
without really undue difficulty, to give a complete
treatment of the cases, say m 6 12. The cases
previously so treated—m 6 4—were exceptional,
while some of the more variegated aspects of
dominance set in for m = 5 and m = 6.

Robert L. Davis, 1954

As we have seen in Section 5, a wide variety of tournament so-
lutions have been proposed in the literature. Even though many of
them are based on vastly different ideas, they share some similar-
ities. For instance, most tournament solutions uniquely select the
Condorcet winner whenever it exists. Moreover, some tournament
solutions return completely identical or at least overlapping choice
sets if the number of alternatives is sufficiently small whereas some
have a reputation for excluding only few alternatives.

In this chapter, we study the differences of tournament solutions in
matters of their choice sets and choice set sizes. First, we review the
known inclusion relations among tournament solutions in Section 9.1.
Then, in Section 9.2, we aim at formalizing and systematically inves-
tigating the similarity of any given pair of tournament solutions by
studying the minimal number of alternatives that are required for the
disparity and the separation of the corresponding choice sets. In Sec-
tion 9.3, we turn to stochastic simulations to assess the typical size
of the different choice sets. Generally, we consider all tournament
solutions from Section 5.1 that satisfy strong Condorcet-consistency
(besides COND which will only serve as a baseline in Section 9.3),
which are TC, UC, UC∞, MC, BP, T̊C, BA, ME, TEQ, CO, SL, and MA.

9.1 set-theoretic relations

All of the aforementioned tournament solutions return subsets of TC
and all except TC and T̊C return subsets of UC. On top of that, the
following inclusion relationships are known (see Laslier, 1997):

BP ⊆MC ⊆ UC∞ and TEQ ⊆ BA.

121
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COND
TC
UC
BA

UC∞
MC
ME
TEQ

BP

SL MA

CO

Figure 9.1: Set-theoretic relationships between tournament solutions. If the
ellipses of two tournament solutions S and S ′ intersect, then
S(T) ∩ S ′(T) 6= ∅ for all tournaments T . If the ellipses for S
an S ′ are disjoint, however, this signifies that S(T) ∩ S ′(T) = ∅
for some tournament T . The exact location of BP, TEQ, and ME
in this diagram are unknown but BP is contained in MC and
intersects with TEQ in all known instances whereas TEQ and
ME are contained in BA, but their inclusion in MC (and in each
other) is uncertain.

Furthermore, it has been shown that

BA(MC) ⊆ BA and TEQ(UC∞) = TEQ,

which implies that

BA∩MC 6= ∅ , and TEQ ⊆ BA∩UC∞ 6= ∅.
Also, by the upcoming Theorem 10.22, we know that

ME ⊆ BA.

The set-theoretic relationships of these concepts are depicted in Fig-
ure 9.1. BA, ME, and TEQ are the only tournament solutions that are
capable of discriminating in regular tournaments, i.e., tournaments
in which all alternatives have the same degree. All other tournament
solution, besides possibly T̊C for which regularity is open, always
select all alternatives in regular tournaments.

9.2 disparity and separation of tournament
solutions

For two tournament solutions S1 and S2, we define the disparity indexdisparity index
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d(S1,S2) as the size of the smallest tournament T for which S1 and
S2 differ, i.e.,

d(S1,S2) = min{m ∈N : ∃ T ∈ Tm such that S1(T) 6= S2(T)}.

Similarly, we define the separation index s(S1,S2) as the size of the separation index

smallest tournament T for which the two choice sets are disjoint. For-
mally,

s(S1,S2) = min{m ∈N : ∃ T ∈ Tm such that S1(T)∩ S2(T) = ∅}.

Isolated bounds on both values for selected tournament solutions
have been provided in previous work. In particular, the construc-
tion of tournaments for which certain tournament solutions return
disjoint choice sets has occupied researchers. For example, the first
described tournament for which the Banks set and the Slater set
are disjoint consists of 75 alternatives (Laffond and Laslier, 1991).
Later, this bound on the separation index was improved to 16 alterna-
tives by Charon et al. (1997) and, quite recently, to 14 alternatives by
Östergård and Vaskelainen (2010). Östergård and Vaskelainen have
also provided a lower bound of 11 by means of an exhaustive com- s(BA, SL) ∈ [11, 14]

puter analysis. In other work, Hudry (1999) has shown that the sepa-
ration index for the Banks set and the Copeland set is 13. Dutta (1990) s(BA, CO) = 13

provided a tournament of order 8 in which the Banks set and the tour-
nament equilibrium set are both strictly contained in the minimal
covering set. Among other facts, our study has shown that Dutta’s d(BA, TEQ) 6 8

example is minimal.
Perhaps the most interesting open problem regarding the relation-

ships between tournament solutions concerns the bipartisan set and
the Banks set. In all examples studied so far, either the Banks set is open relation

between BA and BPcontained in the bipartisan set or the Banks set is contained in the
bipartisan set (see, e.g., Laslier, 1997). In particular, it is unknown
whether these tournament solutions always intersect. Here, we pro-
vide the first tournament in which the bipartisan set and the Banks
set are not contained in each other.

9.2.1 Methodology

For some pairs of tournament solutions, we can easily show that they
always intersect. As a consequence, their separation index is∞.

Proposition 9.1
The following statements hold:

1. s(MC, ME) =∞
2. s(UC∞, ME) =∞
3. s(T̊C, TEQ) =∞



124 comparing choice sets of tournament solutions

a b c d

Figure 9.2: In this tournament, MA(T) = SL(T) = {a} ( CO(T) = {a,b} (
UC(T) = {a,b,d} ( TC(T) = {a,b, c,d}. All other tournament so-
lutions considered here coincide with UC. Omitted edges point
rightwards.

Proof. We prove each statement separately.

1. Since BA ⊆ UC, every UC-stable set is also BA-stable.

2. Since MC ⊆ UC∞, this follows from Statement 1.

3. Since TEQ ⊆ TC, every TC-retentive set is also TEQ-retentive.

Apart from these theoretical results, we exhaustively searched for
minimal examples with disparate or disjoint choice sets. Obviously,
the number of non-isomorphic tournaments of order m grows expo-
nentially (Moon, 1968, p. 87). We generated all non-isomorphic tour-
naments of of order ten or less using McKay’s nauty toolkit (McKay,generation of

non-isomorphic
tournaments

2009). In total, we analyzed about 107 tournaments. For each pair
of tournament solutions and all tournaments in increasing order, we
examined the choice sets for disparity and disjointness. Some of the
most interesting tournaments we encountered were rearranged using
a graphical tournament tool until the respective statements seemed
most intuitive. Figures of these tournaments are included in Sections
9.2.2 and 9.2.3.

9.2.2 Experimental Results

Our results are summarized in Table 9.1 on page 129. When the exact
value of an index is unknown, we provide lower and upper bounds.

TC, CO, SL, MA vs. the rest

MA, SL, and CO tend to select significantly smaller choice sets thanmost discriminating
tournament

solutions
the other tournament solutions whereas TC is not very discriminative.
This is witnessed by the tournament of order 4 depicted in Figure 9.2
where CO, SL, and MA are smaller and TC is larger than all the re-
maining tournament solutions. This tournament accounts for all ‘4’
entries in Table 9.1.

UC, BA vs. UC∞, MC, BP, TEQ, ME, T̊C

A smallest tournament for which BA (and UC) differs from MC (as
well as UC∞, BP, TEQ, ME, T̊C) is shown in Figure 9.3. It is easy to
verify that {a,b,d} is UC-stable. Alternative c, however, is in BA(T)

because B = {c,d, e} ∈ BT (c) and neither a nor b dominates B.
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a b c d e

Figure 9.3: In this tournament, UC∞(T) = MC(T) = BP(T) = TEQ(T) =
ME(T) = T̊C(T) = {a,b,d} whereas UC(T) = BA(T) = {a,b, c,d}.
Omitted edges point rightwards.

UC vs. BA

There is an interesting family of tournaments that serve as minimal
examples for a number of set-theoretic relationships between differ-
ent tournament solutions. The first is the disparity of UC and BA—
two solutions that return identical choice sets for all tournaments of
order up to six.

The basic variant of this tournament family is shown in Figure 9.4
and constitutes a minimal tournament for which BA ( UC (Miller et
al., 1990). The difference is that d /∈ BA(T) as for all B ∈ BT (d) there
is some x ∈ D(d) with x � B. Note that in this tournament |D(x)| = 4

for all x ∈ BA and |D(x)| 6 3 for all x /∈ BA, i.e., CO(T) = BA(T).

When each grey alternative is replaced by the unique tournament
of order 2, the resulting tournament of order 10 is a minimal exam-
ple for BA ( CO, as CO(T) = {a,b, c,d}. (This result is not part of
Table 9.1.)

If we go one step further and replace each grey alternative with any
tournament of order 3, the resulting tournament has order 13 and is
a known minimal example for the separation of BA and CO proposed
by Moulin (1986) and Hudry (1999).

Finally, if we put any tournament of order 4 in place of the grey
alternatives, we get a tournament of order 16 where still BA(T) =

{a,b, c} but MA(T) = {d}. Since any one of the alternatives from the
new components can be removed without changing the result, this
gives an upper bound of 15 for the separation of MA and BA.

BP vs. MC, TEQ, ME

Consider the tournament in Figure 9.5. The unique equilibrium strat-
egy of the tournament game G(T) is (15 , 15 , 15 , 15 , 15 , 0) and therefore
BP(T) = {a,b, c,d, e}. However, this set is not UC-stable as f can reach
every other alternative in BP(T) ∪ {f} = A in at most two steps. This
is a minimal tournament for which MC differs from BP. The same
holds for TEQ and ME as they coincide with MC for tournaments up
to size 7.
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a

b

c

d

e

f

g

Figure 9.4: Minimal example for BA(T) = {a,b, c} ( UC(T) = {a,b, c,d}
(Miller et al., 1990). If e, f, and g each get replaced by any tour-
nament of order 3, the resulting tournament of order 13 is the
minimal example for BA ∩ CO = ∅ by Hudry (1999). If two of
e, f, and g are instead replaced with tournaments of order 4, we
get a tournament of order 15 in which MA(T) = {d} is disjoint
from BA(T) = {a,b, c}. Omitted edges point downwards.

a

b
c

d
e

f

Figure 9.5: In this tournament, BP(T) = {a,b, c,d, e} ( A = TEQ(T) =
ME(T) = MC(T). Omitted edges point rightwards. Note that
the subtournament on BP(T) constitutes the only regular tour-
nament of order 5.

MC vs. TEQ, ME

A minimal tournament for which TEQ and ME differ from MC is of
order 8 and depicted in Figure 9.6. This tournament is again a vari-
ant of the tournament from Figure 9.4, this time expanded with an
additional vertex h. In this tournament B = A \ {d} is the only BA-
stable set. It is easy to check that B is not UC-stable as d does reach
every other vertex in A in at most two steps. In fact, only A is UC-
stable and therefore MC(T) = A. This implies that d(ME, MC) = 8.
The reader can also verify that d does not dominate any vertex ac-
cording to the TEQ-relation and therefore d /∈ TEQ(T), implying
d(TEQ, MC) = 8. While TEQ and ME actually coincide for this
tournament, a small modification gives a minimal tournament T ′ for
which this is not the case, similar to the one reported by Brandt (2009).
The only necessary change in the dominance relation is e � g, then
TEQ(T ′) = A \ {d} ( ME(T ′) = A, accounting for d(TEQ, ME) = 8.
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a
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Figure 9.6: Minimal tournament for which TEQ(T) = ME(T) 6= MC(T).
Here, TEQ(T) = ME(T) = A \ {d} whereas MC(T) = A. The el-
lipse indicates {e, f,g} � h and omitted edges point downwards.
If we change the dominance relation slightly to e � g, we get a
minimal tournament for which TEQ and ME do not coincide.
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e
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g

h

Figure 9.7: In this tournament, CO(T) = MA(T) = {b} whereas UC∞(T) =
MC(T) = BP(T) = T̊C(T) = TEQ(T) = ME(T) = {a, c,d, e, f}.
This is the smallest tournament for which these choice sets are
separate. The ellipse indicates {f,g,h} � a and omitted edges
point downwards.

CO, MA vs. UC∞, MC, BP, T̊C, TEQ, ME

For the separation of these tournament solutions, we found the tour-
nament T depicted in Figure 9.7. It is easy to verify that alternative
b has the largest dominion but is not contained in the UC-stable set
{a, c,d, e, f}. Therefore, CO(T)∩MC(T) = ∅ which gives s(CO, MC) =
8. As for this tournament CO(T) = MA(T) and MC(T) = UC∞(T) =
BP(T) = T̊C(T) = ME(T) = TEQ(T), this also induces a few other
separation indices in our table.

9.2.3 Further Findings

Apart from values and bounds for the disparity and separation index,
our exhaustive search also revealed a number of other tournaments
with interesting properties.
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Figure 9.8: The first reported tournament where BA and BP are not con-
tained in each other. In this tournament, BP(T) = A \ {e}
whereas BA(T) = A \ {f}. Omitted edges point downwards.

BP and BA

For instance, we have found the first tournament where BP and BA
have a proper intersection, i.e., are not contained in each other. The
tournament is depicted in Figure 9.8, has 8 alternatives, and is min-
imal. The equilibrium strategy is ( 723 , 323 , 123 , 723 , 0, 123 , 123 , 323), i.e.,
BP(T) = A \ {e}. It is, however, easy to verify that e ∈ BA as no
other alternative dominates {e, f,g,h} ∈ BT (e). At the same time, ev-
ery set in BT (f) is dominated by some alternative in {b, c, e} ⊆ D(f)

and therefore f /∈ BA. In fact, BA = A \ {f}.

BA and MC

It was known already that BA and MC always intersect but none
of them always chooses a subset of the other (Laslier, 1997). Our
experiments showed that a proper intersection can only be observed
for tournaments of order at least 10. A tournament of this kind is
depicted in Figure 9.9. The reader can easily check that A \ {c, i} is
UC-stable. On the other hand, i obviously is in BA(T), witnessed by
the maximal transitive subset {i, j, c}. Alternative f, however, is not in
BA(T) as for each B ∈ BT (f), there is an alternative from {b,d, e} ⊆
D(f) that dominates B. In fact, MC(T) = A \ {c, i} and BA(T) = A \

{c, f}. The choice sets overlap.

9.3 discriminative power of tournament so-
lutions

Neutrality, as a very basic property we require from a social choice
function, implies that it may be possible that several alternatives qual-
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s\d TC UC UC∞ MC BP T̊C BA ME TEQ CO SL MA

TC — 4 4 4 4 4 4 4 4 4 4 4
(9.2) (9.2) (9.2) (9.2) (9.2) (9.2) (9.2) (9.2) (9.2) (9.2) (9.2)

UC ∞ — 5 5 5 5 7a 5 5 4 4 4
(9.3) (9.3) (9.3) (9.3) (9.4) (9.3) (9.3) (9.2) (9.2) (9.2)

UC∞ ∞ ∞ — 6 6 6 5 6 6 4 4 4
(9.3) (9.2) (9.2) (9.2)

MC ∞ ∞ ∞ — 6b 6 5 8 8c 4 4 4
(9.3) (9.6) (9.6) (9.2) (9.2) (9.2)

BP ∞ ∞ ∞ ∞ — 6 5 6 6b 4 4 4
(9.3) (9.2) (9.2) (9.2)

T̊C
∞ [11,∞] [11,∞] [11,∞] [11,∞] — 5 6 6 4 4 4

(9.3) (9.2) (9.2) (9.2)

BA ∞ ∞ ∞ ∞ [11,∞] [11,∞] — 5 5 4 4 4
(9.3) (9.3) (9.2) (9.2) (9.2)

ME ∞ ∞ ∞ ∞ [11,∞] [11,∞] ∞ — 8d 4 4 4
(9.6) (9.2) (9.2) (9.2)

TEQ ∞ ∞ ∞ [11,∞] [11,∞] ∞ ∞ [11,∞] — 4 4 4
(9.2) (9.2) (9.2)

CO ∞ ∞ 8 8 8 8 13e 8 8 — 4 4
(9.7) (9.7) (9.7) (9.7) (9.4) (9.7) (9.7) (9.2) (9.2)

SL ∞ ∞ 8b 8b 8b 8 [11,14]f 8 8b 6g
— 5

MA ∞ ∞ 8 8 8 8 [11,15] 8 8 8 6 —(9.7) (9.7) (9.7) (9.7) (9.4) (9.7) (9.7)

a Shown by Miller et al. (1990)
b Shown (without minimality) by Laslier (1997)
c Shown (without minimality) by Dutta (1990)
d Shown by Brandt (2009)
e Shown by Hudry (1999)
f Shown by Östergård and Vaskelainen (2010)
g Shown by Charon et al. (1996)

Table 9.1: Overview of all disparity indices and separation indices currently
known for the tournament solutions considered. The names of
coorresponding figures are given in round brackets.

ify equally well to be chosen.56 Depending on the rationalization of
the social choice function, this might be a rare exception or a common
phenomenon. Since alternatives are generally assumed to be mutu-
ally exclusive, it is typically understood that ties will eventually be
broken by some procedure that is independent of the agents’ prefer-
ences. While it seems desirable to narrow down the choice as much as
possible based on the preferences of the voters alone, the uncertainty
the agents face when it comes to the final selection process can also
be used as a powerful tool to satisfy certain formal criteria (such as
impartiality, consistency, or strategyproofness) that would otherwise
be impossible to attain. The trade-off between discriminative power
and axiomatic foundations is especially evident for tournament solu-
tions as many of them can be axiomatically characterized as the most
discriminating functions that satisfy certain desirable properties.57.

56 For example, every tournament solution has to chose all alternatives in a 3-cycle or,
more generally in every vertex-homogeneous tournament, i.e., when all alternatives
are in the same orbit.

57 For example, TC is the most discriminating tournament solution satisfying
expansion-consistency. Similar characterizations are known for UC, BA, MC, and
BP (see, e.g., Brandt et al., 2013b, Chapter 6, Section 2.2.2)
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Figure 9.9: A minimal tournament for which BA and MC properly intersect.
BA(T) = A \ {c, f} whereas MC(T) = A \ {c, i}. Omitted edges
point downwards.

In this section, we study the discriminative power of various so-
cial choice functions—i.e., how many tied alternatives are returned—
when preferences are drawn from common distributions that have
been proposed in the literature.

9.3.1 Motivation

Analytical results about the discriminative power of tournament so-
lutions for realistic distributions of preferences are very difficult to
obtain. To the best of our knowledge, all existing papers explicitly or
implicitly consider a uniform distribution over all tournaments of a
fixed size. Under this assumption, it was shown by Fey (2008) thatanalytical results:

large choice sets BA almost always selects all alternatives as the number of alternatives
goes to infinity. By the above-mentioned inclusion relationship this
implies the same statement for UC and TC. Later, an analogous re-
sult was shown for MC by Scott and Fey (2012). More precise results
for BP have been given by Fisher and Reeves (1995) who identified
the whole distribution of |BP| for any fixed number of alternatives m.
They found that the probability that BP returns exactly k alternatives
is 2−(m−1)

(
m
k

)
if k is odd and zero otherwise. This directly implies

that on average, BP returns half of the alternatives for tournaments
with an odd number of alternatives. In fact, for large tournaments,
BP almost always chooses close to half of the alternatives (Scott and
Fey, 2012).

These analytical results stand in sharp contrast to empirical obser-
vations that Condorcet winners exist in many real-world situationsempirical results:

Condorcet winners
everywhere

(see, e.g., Feld and Grofman, 1992; Regenwetter et al., 2006), imply-
ing that tournament solutions very frequently return singletons. At
the time of writing, the preference library PrefLib (Mattei and Walsh,
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2013), contained 354 tournaments induced from pairwise majority
comparisons. Out of these, all except 9 exhibit a Condorcet winner.
The remaining tournaments are still very structured as the uncovered
set never contains more than 4 alternatives (even in the largest of the
remaining tournaments with 242 alternatives).

Our aim is to fill the gap between analytical and empirical results
by means of stochastic simulations.

9.3.2 Experimental Results and Discussion

Our informal measure for discriminative power of a tournament so-
lution on a specific model is the ratio of its average choice set size
to the average size of COND which serves as a baseline being the
least discriminative tournament solution that satisfies—as the other
concepts—strong Condorcet consistency. We examined the average
choice set sizes of the aforementioned tournament solutions for a
fixed number of voters m = 51. The results are shown in Figure 9.10.

Due to the large number of Condorcet winners in these samples,
the standard deviations of the measured choice set sizes are rather
large. In cases of very high or very low average choice set sizes as in
the spatial or in the uniform random tournament model, the standard
deviation is, of course, low. A notable exception from this behavior is
BP in case of the uniform random tournament model and the similar
Condorcet noise model with p = 0.55. There, BP on average chooses
less than half of the alternatives with low standard deviation.

The following conclusions can be drawn from our results.

• TC is almost as undiscriminating as COND.

• All other tournament solutions are much more discriminating
than the analytical results for uniform random tournaments
suggest. In fact, for all reasonable parameterizations of the
considered models with transitive individual preferences and
at least ten alternatives (including impartial culture) all tourna-
ment solutions except TC discarded at least 75% of the alterna-
tives on average.

• All tournament solutions except TC behave similarly in terms
of discriminative power. One may conclude that the decision
which one to use in practical applications should not be based
on discriminative power, but rather on axiomatic properties such
as monotonicity or (group-) strategyproofness. The uncovered
set, for example, has a particularly appealing axiomatization
(Moulin, 1986).

• Using a more fine-grained analysis, tournament solutions can
be divided into five clusters based on their discriminative power.
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Figure 9.10: Comparison of average absolute choice set sizes for various
stochastic preference models. The number of alternatives is on
the horizontal axis, the number of voters is m = 51. Averages
are taken over 100 runs. The Slater set (SL) is omitted whenever
its computation was infeasible.



9.4 summary 133

The first cluster merely consists of TC. The second cluster con-
tains UC and BA. UC∞, MC, and TEQ are contained in the third
cluster. BP forms a cluster of its own. Finally, tournament so-
lutions based on scoring (SL, CO, and MA) are much more dis-
criminating than all other tournament solutions and form the
fifth cluster. Out of these, MA stands out as the most selective
one. It is almost always unique.

• UC∞ (and thereby also MC) discriminates more than BA. This
observation could not be deduced from the set-theoretic rela-
tionships between tournament solutions.

• BP is not only remarkably discriminating in uniform random
tournaments (which already follows from the analytical results),
but even more discriminating in the Condorcet noise model
with p = 0.55. Within the group of tournament solutions with
appealing characterizations, it discriminates the most (and is
efficiently computable).

Aside from our insights into the discriminative powers of tourna-
ment solutions, we observed differences worth mentioning across the
various stochastic models.

• The choice set sizes on the uniform random tournament model
that was used in earlier analytical results differ significantly
from the choice set sizes under the other models considered
in this work.

• Impartial culture, urn model (including the impartial anony-
mous culture), and Mallows mixtures all result in similar choice
set size distributions and lead to more discrimination than the
uniform random tournament model.

9.4 summary

In the first part of this chapter, we exhaustively searched for small-
est examples where the tournament solutions we consider do not co-
incide or are even disjoint. We believe that these might also be of
didactic value when teaching the basics of tournament solutions.

In a second step we addressed a glaring discrepancy between an-
alytical results suggesting that many tournament solutions almost
always select the whole set of alternatives and empirical statements
regarding the ubiquity of Condorcet winners or small dominant sets.
Resorting to sensible stochastic models and simulations, we were able
to show that the implicit assumptions for the negative analytic results
describe an extreme case and that tournament solutions in most cases
do select rather small choice sets.





10
S TA B I L I T Y O F TO U R N A M E N T S O L U T I O N S

We say that a tournament has property S(k) if for
every set A of k players some other player beats
all x ∈ A. Note the difficulty of determining the
top k players in such a tournament.

Paul Erdős and Joel Spencer, 1974

Besides very basic symmetry properties such as anonymity and
neutrality, one can think of many different properties that seem to be
desirable for a social choice function. Other innocuous properties in-
clude monotonicity which requires that chosen alternatives still have to monotonicity

be chosen when a pairwise comparison is flipped in their favor and in-
dependence of unchosen alternatives which requires the same for changes independence of

unchosen
alternatives

in the binary relation among non-chosen alternatives. Composition-
consistency which featured prominently in Chapter 7 not only has
an intuitive appeal but also relates choices of different tournaments
(of different size), namely those that can be transformed into each
other by replacing components with other components. Each of these
three properties demands for a consistency of choice across different consistency of choice

tournaments.

In contrast, the property of stability which we are focusing on in
this chapter relates choices made from different subtournaments of
the same tournament. Only few tournament solutions are known to
be stable, including the top cycle, the minimal covering set, and the
bipartisan set.

In this chapter, we first review the relations of different proper-
ties around stability, including a new property that we call local re-
versal symmetry in Section 10.1. Then, we discuss the consequences
of a recently found counterexample for a long-standing conjecture
for TEQ in Section 10.2. In particular, we provide a much smaller
counterexample that actually may have consequences for our assess-
ment of TEQ as a tournament solution. In Section 10.3, we address
many open questions regarding ME, including whether it satisfies
stability—it does not. Lastly, in Section 10.4 we present ideas of our
ongoing efforts to characterize BP using some of the properties men-
tioned in this chapter.

135
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10.1 stability and related properties

Stability of a tournament solution is a property defined by Brandt and
Harrenstein (2011). It requires that a set is chosen from two different
sets of alternatives if and only if it is chosen from the union of these
sets.

Definition 10.1
A tournament solution S is stable or satisfies stability (STA) ifstable

for all (A,�) and nonempty B,C,X ⊆ A with X ⊆ B∩C,

X = S(B) = S(C) if and only if X = S(B∪C).

As mentioned before, stability is satisfied by only a handful of the
tournament solutions usually considered in the literature. These are
(besides TRIV) the top cycle, the minimal covering set, the bipartisan
set and T̊C.

We consider various properties related to stability.

10.1.1 Weakenings of Stability

Stability can be factorized into conditions α̂ and γ̂ by consideringα̂ and γ̂

each implication in the above equivalence separately.
The former is also known as Chernoff’s postulate 5∗ (Chernoff, 1954),

the strong superset property (Bordes, 1979), or outcast (Aizerman andstrong superset
property Aleskerov, 1995) (see Monjardet, 2008, for a more thorough discus-

sion of the origins of this condition).
A tournament solution S satisfies α̂, if for all sets of alternatives

A,B, and X with X ⊆ A ∩ B, X = S(A ∪ B) implies X = S(A) = S(B).
Equivalently, S satisfies α̂ if for all sets of alternatives A,B, S(A) ⊆
B ⊆ A implies S(A) = S(B).

A tournament solution S satisfies γ̂, if for all sets of alternatives
A,B, S(A) = S(B) implies S(A∪B) = S(A) = S(B).

Conveniently, these properties are automatically satisfied by all
tournament solutions Ŝ if the underlying solution concept S always
admits a unique minimal S-stable set (Brandt and Harrenstein, 2011).

For a finer analysis, we split α̂ and γ̂ into two conditions (Brandt
and Harrenstein, 2011, Remark 1).

Definition 10.2
A tournament solution S satisfies

• α̂⊆ if for all A,B, it holds that S(A) ⊆ B ⊆ A impliesα̂⊆

S(B) ⊆ S(A),58

• α̂⊇ if for all A,B, it holds that S(A) ⊆ B ⊆ A impliesα̂⊇

S(B) ⊇ S(A),
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• γ̂⊆ if for all A,B, and X, it holds that X = S(A) = S(B) γ̂⊆

implies X ⊆ S(A∪B), and

• γ̂⊇ if for all A,B, and X, it holds that X = S(A) = S(B) γ̂⊇

implies X ⊇ S(A∪B).

Obviously, we have

α̂⇔ α̂⊆ ∧ α̂⊇ and

γ̂⇔ γ̂⊆ ∧ γ̂⊇ .

A tournament solution is idempotent if the choice set is invariant under idempotent

repeated application of the solution concept, i.e., S(T |S(T)) = S(T) for
all tournaments T . We show that α̂⊇ is stronger than idempotency.

Lemma 10.3
If a tournament solution S satisfies α̂⊇ , then S is idempotent.

Proof. In any tournament T , we have S(T |S(T)) ⊇ S(T) because of α̂⊇ .
The result follows.

In Figure 10.1, the implications of the different properties are shown.

stability

α̂

α̂⊆ α̂⊇

γ̂

γ̂⊆ γ̂⊇

idempotency

Figure 10.1: Implications of stability properties.

10.1.2 Local Reversal Symmetry

We propose a new property that is intimately connected to a flip op-
eration on tournaments. Given a tournament T = (A,�) and an alter-
native a ∈ A, we define Ta as the tournament obtained from T by a
local reversal at alternative a, i.e., Ta = (A,�a) with local reversal

i �a j if and only if (i � j and a /∈ {i, j}) or (j � i and a ∈ {i, j}).

58 The property α̂⊆ has been called the weak superset property or the Aïzerman property
before.
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The effect of local reversals is illustrated in Figure 10.2. Note that
T = (Ta)a and (Ta)b =

(
Tb
)a for all alternatives a and b.

a b

cd

T

a b

cd

Ta

a b

cd

Tb

Figure 10.2: Local reversals at alternatives a and b in a tournament T result
in Ta and Tb, respectively.

We say that a tournament solution satisfies local reversal symme-
try (LRS) whenever reversing all relations involving an alternative a
changes the membership of a in the choice set. We consider entering
and leaving the choice set separately.

Definition 10.4
A tournament solution S satisfies LRSIN if for all T and for allLRSIN

alternatives a

a /∈ S(T)⇒ a ∈ S(Ta).

Conversely, S satisfies LRSOUT if for all T and for all aLRSOUT

a ∈ S(T)⇒ a /∈ S(Ta).

S satisfies LRS if it satisfies LRSIN and LRSOUT. In short, for allLRS

T and for all a

a ∈ S(T)⇔ a /∈ S(Ta).

It is easy to see that LRSIN (or LRSOUT) for a tournament solution
S carries over for coarsenings (or refinements) of S.

Lemma 10.5
Let S,S ′ be two tournament solutions with S ⊆ S ′. If S satisfies
LRSIN, then so does S ′. Conversely, if S ′ satisfies LRSOUT then
S does as well.

The notions of LRS and stability are not independent of each other.
In fact, LRSIN is implied by stability.

Theorem 10.6
If a tournament solution S is stable, then S satisfies LRSIN.

Proof. Assume that S is stable but violates LRSIN. Then there exists
a tournament T = (A,�) and an alternative a ∈ A such that a /∈
S(T) and a /∈ S(Ta). From this, we construct a tournament with two
disjoint S-stable sets.
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S α̂ γ̂ STA LRSIN LRSOUT LRS

TRIV 3 3 3 3 7 7

TC 3 3 3 3 7 7

UC 7 7 7 3 7 7

MC 3 3 3 3 7 7

BP 3 3 3 3 3 3

BA 7 3 7 7 7 7

CO 7 7 7 7 3 7

SL 7 7 7 7 3 7

T̊C 3 3 3 3 7 7

TEQ 7 7 7 7 7 7

Table 10.1: Properties of tournament solutions.

Let T ′ = (A ′,� ′) with A ′ = X ∪· Y and each of T ′|X and T ′|Y is
isomorphic to T |A\{a}. Also, partition X = X0 ∪· X1 and Y = Y0 ∪· Y1
where X0 and Y0 consist of the alternatives that are mapped to DT (a)
by the isomorphism. Adding X0 � ′ Y1, Y1 � ′ X1,X1 � ′ Y0, and Y0 � ′
X0 completes the definition of T ′. The structure of the construction
which, for obvious reasons, we call a shoelace construction is depicted shoelace

constructionin Figure 10.3. We claim that both X and Y are S-stable. For this, we
note that for every alternative x ∈ X (or y ∈ Y) every subtournament
T |X∪{y} (or T |Y∪{x}) is isomorphic either to T or to Ta with x (or y)
being mapped to a. By assumption, a is neither chosen in T nor in
Ta and therefore X and Y are both S-stable in T ′. Thus, S is not stable,
a contradiction.

X0

X1

Y0

Y1

X Y

Figure 10.3: Shoelace construction of T ′ with two S-stable sets X and Y used
in the proof of Theorem 10.6 to show that stability implies
LRSIN.

A natural question to ask at this point is whether the studied tour-
nament solutions satisfy LRSIN or LRSOUT (and α̂ or γ̂ for that matter).
The answers we found for this question are collected in Table 10.1.

Many of these results follow from existing statements on stability
properties in Brandt and Harrenstein (2011) or are not difficult to
prove59. Others are a bit more involved (e.g., that SL satisfies LRSOUT
but not γ̂ or the violation of LRSIN by BA60) but are omitted here.

59 For example, the tournament that witnesses the violation of γ̂ by UC and BA has
only five alternatives, in case of SL and α̂, even four alternatives suffice.

60 The proof of the latter statement is similar to an argument in the proof of the up-
coming Theorem 10.19.
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Not surprisingly, LRSIN which is inclusive in nature is satisfied by
all solution concepts that, according to our results in Chapter 9 do
not discriminate that much, whereas the exclusive property LRSOUT is
satisfied by those who tend to select smaller choice sets.61

From the table, it is apparent that only one of these tournament
solutions satisfies both LRSIN and LRSOUT (and thereby LRS), namely
the bipartisan set which, again referring to Chapter 9, is the smallest
tournament solution that does not in most cases select singletons.

Proposition 10.7
BP satisfies LRS.

Proof. Since BP is stable, Theorem 10.6 implies that BP satisfies LRSIN.
Now, assume that BP violates LRSOUT, i.e., there is a tournament T
and an alternative a s.t. a ∈ BP(T) and a ∈ BP(Ta). Let pa(T) be
the total equilibrium scores of T \ {a}. It is known that a ∈ BP(T) if
and only if pa(DT (a)) > pa(DT (a)) (Laslier, 1997, Prop. 6.4.8). But
then pa(DT (a)) > pa(DT (a)) and pa(DTa(a)) > pa(DTa(a)). This is
a contradiction as DT (a) = DTa(a) and DT (a) = DTa(a).

10.2 the case of teq

Whether TEQ satisfies stability or not was shown (Brandt, 2009, The-
orem 7) to be subject to Schwartz’s long-standing conjecture that was
recently disproved. This conjecture by Schwartz and its weakenings
formally reads as follows.62

Conjecture 10.8 (Schwartz, 1990)
Every tournament admits a unique minimal TEQ-retentive set.

Conjecture 10.9 (Brandt et al., 2010a, see Theorem 3)
There is no tournament with two disjoint BA-retentive sets.

Conjecture 10.10 (Brandt et al., 2013a)
No tournament T = (A,�) admits two disjoint sets X0,X1 such
that for every i ∈ {0, 1} and every transitive subset B of Bi, there
exists an a ∈ X1−i such that a � B.

We call such sets Xi from Conjecture 10.10 that contain only transi-
tive subsets that can be extended by an outside alternative chain-free
sets.chain-free sets

Brandt et al. (2013a) disproved Conjecture 10.10 by non-constructively
proving the existence of a tournament TCF with two disjoint chain-
free sets. Not even the exact size of the counterexample can be de-
rived from the proof, only that the two sets X1 and X2 have about 215

and 10103 vertices, respectively.

61 We have not considered MA in this study but would suspect that it satisfies LRSOUT.
62 To clarify again, all of these “conjectures” are disproved already. We will argue about

the connections between their respective counterexamples.
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It is not difficult to verify that TCF can be used to obtain a coun-
terexample to Conjecture 10.9. In fact, we use the shoelace construc-
tion from Figure 10.3 to get a tournament TTEQ twice the size of TCF

in which both sets X and Y are BA-retentive. Since TEQ ⊆ BA, it im-
mediately follows that the two sets are also TEQ-retentive and TTEQ

is a counterexample to Conjecture 10.8. Still, the size of TTEQ is un-
known which is unfortunate as the size mTEQ of a smallest counterex-
ample to Conjecture 10.8 bears some importance for the following rea-
son: TEQ satisfies many desirable properties, including stability, for
all tournaments that are smaller than the smallest counterexample
to Schwartz’s conjecture (Laffond et al., 1993a; Houy, 2009a; Houy,
2009b).

We provide a small tournament with two disjoint TEQ-retentive a much smaller
counterexamplesets and thereby lower the upper bound on mTEQ from ∼10103 to 24.

The counterexample was found by exhaustive searching for LRSIN-
violations of TEQ. We found a tournament T on 13 alternatives
where TEQ(T) = A \ a = TEQ(Ta) for a distinct alternative a. Us-
ing again the shoelace construction as described in the proof of The-
orem 10.6, we obtained a tournament on 24 alternatives with two
isomorphic TEQ-stable sets X and Y. It turned out that these are also
TEQ-retentive, giving us a much smaller counterexample to Conjec-
ture 10.8.

The definition of the tournament is as follows. Let T = (A,�)
with A = X ∪· Y where X = {x1, . . . , x12} and Y = {y1, . . . ,y12}. Also,
let X0 = {x1, . . . , x6}, 12 = {x7, . . . , x12}, Y0 = {y1, . . . ,y6}, and Y1 =

{y7, . . . ,y12}. For ∈ X,y ∈ Y, the dominance relation is defined as in
the shoelace construction illustrated in Figure 10.3.

The two subtournaments T |X and T |Y are isomorphic. For T |X, the
dominator sets are defined as

DX(x1) = {x4, x5, x6, x8, x9, x12}, DX(x2) = {x1, x6, x7, x10, x12},
DX(x3) = {x1, x2, x6, x7, x9, x10}, DX(x4) = {x2, x3, x7, x8, x11},
DX(x5) = {x2, x3, x4, x8, x10, x11}, DX(x6) = {x4, x5, x9, x11, x12},
DX(x7) = {x1, x5, x6, x11, x12}, DX(x8) = {x2, x3, x6, x7, x12},
DX(x9) = {x2, x4, x5, x7, x8}, DX(x10) = {x1, x4, x6, x7, x8, x9},
DX(x11) = {x1, x2, x3, x8, x9, x10}, and DX(x12) = {x3, x4, x5, x9, x10, x11}.

A rather tedious check reveals that

TEQ(DA(x1)) = {x4, x8, x12}, TEQ(DA(x2)) = {x6, x10, x12},
TEQ(DA(x3)) = {x6, x7, x9}, TEQ(DA(x4)) = {x2, x7, x11},
TEQ(DA(x5)) = {x2, x8, x10}, TEQ(DA(x6)) = {x4, x9, x11},
TEQ(DA(x7)) = {x1, x5, x11}, TEQ(DA(x8)) = {x3, x6, x12},
TEQ(DA(x9)) = {x2, x5, x7}, TEQ(DA(x10)) = {x4, x6, x7},
TEQ(DA(x11)) = {x1, x2, x8}, and TEQ(DA(x12)) = {x3, x4, x9}.

Obviously, TEQ(DA(x)) ⊆ X for all x ∈ X. Hence, X is TEQ-retentive
in T . Moreover, it can be checked that TEQ(DA(yi)) ⊂ Y for all
i ∈ {1, . . . , 12}, which implies that Y is TEQ-retentive as well. In fact,
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we even have that, for all i, j ∈ {1, . . . , 12}, yj ∈ TEQ(DA(yi)) if and
only if xj ∈ TEQ(DA(xi)).

Since it has been shown in earlier computer experiments by Brandt
et al. (2010b) that Conjecture 10.8 holds for all tournaments of size 12
or less63, this gives us

13 6 mTEQ 6 24.

10.3 the case of me

Similarly as for TEQ and Conjecture 10.8, it was shown that ME sat-
isfied stability and other desirable properties a weakening of Conjec-
ture 10.8 was correct. However, these statements were only shown
in one direction and after this “new” conjecture was disproved (as
well by the conterexample in Brandt et al. (2013a), it remained open
whether ME satisfies these properties or not.

Using the counter-example by Brandt et al. (2013a) we show that
ME fails to satisfy most properties, in particular stability while it does
satisfy α̂⊆, irregularity, and membership in the Banks set.64

Recall that if a set is BA-stable, then it is called an extending set
and that the union of all inclusion minimal extending sets defines the
tournament solution ME (Brandt, 2011b), i.e.,

ME(T) =
⋃

{B is BA-stable : ∀C ( B : C is not BA-stable}.

For an illustrative example where ME and BA do not coincide, see
Figure 9.3 on 125.

10.3.1 Minimal extending sets

Minimal extending sets, while commonly not considered as a solution
concept in their own right, satisfy a number of interesting properties.

First, it is obvious that an extending set remains an extending set
when outside alternatives are removed. Moreover, when the set was
a minimal extending set before, it is still minimal in the reduced tour-
nament.

Lemma 10.11

In a tournament T = (A,�) with (minimal) extending set B ⊂ A
in T and C ⊆ A with B ⊆ C, B is also a (minimal) extending set
in T |C.

63 There is little hope in improving the lower bound significantly just by means of
exhaustive search: according to the author of the nauty toolkit, B. McKay (personal
communcation, Aug 26, 2008), generating all tournaments of size 13 “could be done
if the future of life on earth depended on it”.

64 Previously, the two statements on computational (in)tractability and membership in
the Banks set were only known to hold if the (now disproved) conjecture Conjec-
ture 10.13 had been true (Brandt, 2009).
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Proof. Let B be an extending set in T . Then, a /∈ BA(B ∪ {a}) for all
a ∈ A \ B. As C ⊆ A, the result follows. Now let B be a minimal
extending set in T . Assume that B is not minimal in T |C. Then there
exists B ′ ( B such that B ′ is extending in T |C. Let Q be maximal in
BT |B ′∪{a}(a) for an a ∈ A \ C. Such Q and a have to exist as B ′ is
not extending in T . However, since B is an extending set, there is a
b ∈ B \B ′ with b � Q∪ {a}. For the transitive subset Q∪ {b}, there is
a b ′ ∈ B ′ with b ′ � Q∪ {b} because B ′ is extending in T |C. If b ′ � a,
then b ′ extends Q ∪ {a} which cannot be the case. If a � b ′, then Q
was not maximal. Therefore, such a b ′ cannot exist, a contradiction.

Secondly, from the definition of extending sets, it is immediate that
a minimal extending set is unaffected by modifying the dominance
relation among outside alternatives.

Lemma 10.12

A minimal extending set B in a tournament T = (A,�) is also
a minimal extending set in every tournament T ′ = (A,� ′) if
a � ′ b⇔ a � b for all a ∈ A and b ∈ B.

Brandt (2011b) conjectured that every tournament contains a unique
minimal extending set and showed that, if the conjecture holds, ME
satisfies a large number of desirable properties.

Conjecture 10.13 (Brandt, 2011b)
Every tournament admits a unique BA-stable set.

However, the tournament TTEQ derived from the counterexample to
Conjecture 10.10 by the method described in 10.2, also serves as a
counterexample to Conjecture 10.13: its two BA-retentive sets are also
BA-stable and thereby disjoint extending sets (Brandt et al., 2013a).

For some of our proofs we need to know that there is a tournament
with exactly two minimal extending sets that are disjoint. It is un-
known whether the tournaments described by Brandt et al. (2013a)
satisfy this property. To this end, we first show that from a tour-
nament with more than two or non-disjoint minimal extending sets
we can construct a strictly smaller tournament that still has multiple
minimal extending sets.65

Lemma 10.14

Let T be a tournament with multiple minimal extending sets
B1,B2, . . . ,Bk. If k > 2 or B1 ∩ B2 6= ∅ then there is a tourna-
ment T ′ with multiple minimal extending sets and |T ′| < |T |.

Proof. Let T be a tournament with multiple minimal extending sets
that violates

(i) A can be partitioned into only two minimal extending sets or

65 Part of the proof is inspired by a similar proof due to Brandt (2011b, Lemma 2).
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(ii) the minimal extending sets of T are disjoint.

If (i) is violated by T , let T ′ = T |B1∪B2 . Obviously, |T ′| 6 |T | and by
Lemma 10.11, B1 and B2 are still minimal extending sets in T ′.

If (ii) is violated, let C = B1 ∩B2 6= ∅. Due to minimality of B1 (and
B2), C is not an extending set. Hence, there have to be Q ⊆ C and a ∈
A \C such that a � Q and Q ∪ {a} is maximal in BC∪{a} and cannot
be extended from an alternative in C. Define B ′1 = {b ∈ B1 : b � Q}

and B ′2 = {b ∈ B2 : b � Q}.
Assume without loss of generality that a /∈ B1. Then there has to

be a b1 ∈ B1 that extends a ∪Q because B1 is an extending set, i.e.,
B ′1 is not empty. To show that B ′1 and B ′2 are disjoint, assume for
contradiction that there is a b ∈ B ′1 ∩ B ′2. It is easy to check that no
matter whether a � b or b � a, Q ∪ {a} is not maximal in BC∪{a}.
Hence, B ′1 ∩ B ′2 = ∅ and by stability of B2, there has to be a b2 ∈ B2
that extends Q ∪ {b1}, i.e., B ′2 is not empty as well. The situation is
depicted in Figure 10.4.

B1

B ′1

C

Q

B2

B ′2

Figure 10.4: Relevant subsets in the argument to construct a tournament
with disjoint minimal extending sets B ′1,B ′2, given a tourna-
ment with overlapping minimal extending sets B1,B2.

Next, we show that B ′1 and B ′2 are extending sets in T |B ′1∪B ′2∪Q. To
this end, consider a ′ ∈ B ′2 and R a maximal transitive subset of B ′1∪Q
such that a ′ � R. It is easy to see that Q ⊆ R due to B ′1 � Q, B ′2 � Q,
and maximality of R. As B1 is an extending set in T , there has to be
a c ∈ B1 that extends R ∪ {a ′}. By c � Q ⊆ R, c is contained in B ′1,
i.e., B ′1 (and analogously B ′2) is an extending set in T |B ′1∪B ′2∪Q. Due
to Lemma 10.11, B ′1 and B ′2 are also extending sets in T ′ = TB ′1∪B ′2
which is of strictly smaller order than T .

This insight allows us to deduce properties of a smallest tourna-
ment that has multiple minimal extending sets which will later prove
useful when reasoning about ME.

Corollary 10.15

Let T∗ = (A,�∗) be a smallest tournament with multiple mini-
mal extending sets. Then T∗ has exactly two minimal extending
sets and they partition A.
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For the remainder of this section, let T∗ to be such a tournament of
minimal order with multiple extending sets.66

10.3.2 Properties of ME

We analyze ME with respect to two different types of properties:
dominance-based properties and choice-theoretic properties. Both
serve as important benchmarks for the evaluation of decision-theoretic
and choice-theoretic concepts. We furthermore investigate ME’s rela-
tionship to other tournament solutions. Finally, we also establish the
computational complexity of deciding whether an alternative is in
ME for a given tournament.

Dominance-based properties

In this section, we consider two properties that are based on the dom-
inance relation. The first property is called monotonicity and corre- monotonicity

sponds to a well-established standard condition in social choice the-
ory. It prescribes that a chosen alternative should still be chosen if
it is reinforced. Formally, a tournament solution S satisfies mono-
tonicity if a ∈ S(T) implies a ∈ S(T ′) for all tournaments T = (A,�),
T ′ = (A,� ′), and a ∈ A such that �A\{a} = � ′A\{a} and for all
b ∈ A \ {a}, a � b implies a � ′ b.

Theorem 10.16

ME does not satisfy monotonicity.

Proof. Consider T∗ from Corollary 10.15 with its two (disjoint) mini-
mal extending sets B1 and B2 and alternatives b1 ∈ B1,b2 ∈ B2 with
b2 � b1. Let T∗b1 be the modified tournament where b1 � (B1 \ {b1}).
By the remark after Lemma 10.11, B2 is still a minimal extending set
in T∗b1 . By minimality of T∗ and Lemma 10.14, any other extending
set would be disjoint from B2, i.e., contained in B1. The set B1 itself
is no longer an extending set as no alternative in B1 extends {b2,b1}.
If there is an extending set B ′1 ( B1, then the tournament T∗b1 |B ′1∪B2
contradicts the minimality of T∗. Therefore, no such B ′1 exists and
ME(T∗b1) = B2, i.e., the strengthened alternative b1 is no longer con-
tained in ME.

The second property, independence of unchosen alternatives, states that independence of
unchosen
alternatives

the choice set should be unaffected by changes in the dominance re-
lation between unchosen alternatives. Formally, a tournament solu-
tion S is independent of unchosen alternatives if S(T) = S(T ′) for all
tournaments T = (A,�) and T ′ = (A,� ′) such that D�(a) = D� ′(a)
for all a ∈ S(T).

66 Interestingly, the order of this tournament is unknown. By exhaustive analysis and
the existence proof by Brandt et al. (2013a), we can say that it has at least 13 vertices
and less than 10104.
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Theorem 10.17

ME does not satisfy independence of unchosen alternatives.

Proof. Consider again T∗. Let T∗lin be the modified tournament where
the alternatives in B1 are in a linear order L. Then, there is a b1 =

max(L) with b1 �B1 B1 \ {b1}. By the same argument as in the proof
of Theorem 10.16, B2 is the unique minimal extending set in T∗lin and
therefore ME(T∗lin) = B2. If now edges in T∗lin are iteratively reversed
towards the original T∗, we get a sequence of tournaments T∗lin, . . . , T∗

in each of which B2 is a minimal extending set by Lemma 10.12. Also,
there can never be another minimal extending B ′1 6= B1 because by
Corollary 10.15, this would violate the minimality of T∗. This im-
plies that at some point in this sequence, reversing an edge between
two alternatives not in ME makes the whole set B1 a (new) minimal
extending set.

An interesting aspect of minimal extending sets is that, according
to Lemma 10.12, they satisfy a local variant of independence of un-
chosen alternatives, a property that their union (ME) fails to satisfy.

Brandt (2011a) has shown that set-monotonicity, defined as the in-set-monotonicity

variance of a choice set under weakening unchosen alternatives, im-
plies independence of unchosen alternatives. Consequently, ME is
not set-monotonic.

Corollary 10.18

ME violates set-monotonicity.

Choice-theoretic properties

An important class of properties concern the consistency of choice
and relate choices from different subtournaments of the same tourna-
ment to each other.
Theorem 10.19

ME satisfies (i) α̂⊇ but neither (ii) α̂⊆ nor (iii) γ̂⊇ .

Proof. We show each statement separately.
For (i), let T = (A,�) be a tournament with minimal extending

sets B1, . . . ,Bk and let T ′ = (C,� |C) be a subtournament of T with
ME(T) =

⋃
i∈{1,...,k} Bi ⊆ C ⊆ A. By Lemma 10.11, every Bi is still a

minimal extending set in T ′ and therefore ME(T ′) ⊇ME(T).
For (ii), consider again T∗ = (A,�∗) from Corollary 10.15 with its

two minimal extending sets B1 and B2. We create a larger tourna-
ment T∗x by adding an alternative x such that B1 � x and x � B2. The
tournament is depicted in Figure 10.5. Obviously, B1 still is a minimal
extending set and we claim that there is no other. Assume for contra-
diction that there is another minimal extending set B ′ 6= B1 in T∗x . If
x /∈ B ′ then B ′ is also a minimal extending set in T∗ by Lemma 10.11.
As T∗ has not minimal extending sets besides B1 and B2, it follows
that B ′ = B2. But B2 cannot be an extending set in T∗x because for
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B1 B2

x

Figure 10.5: Structure of the tournament T∗x used to show that ME violates
α̂⊆ . Without alternative x, this is a minimal tournament T∗

among those with multiple minimal extending sets.

any b2 ∈ B2 there is no b ′2 that extends {x,b2}. If, on the other hand,
x ∈ B ′, then B ′ ∩ B1 6= ∅ since otherwise {b1, x} cannot be extended
from within B ′ for all b1 ∈ B1 due to B1 � x. By Lemma 10.14, there
exists a subtournament T ′ of T∗x with two disjoint minimal extending
sets and |T ′| 6 |T∗x |− 2 < |T∗|. The first inequality holds because x
and at least one alternative from B1 ∩ B ′ are not contained in T ′ by
the construction. This contradicts the minimality of T∗.

For (iii), consider T∗ = (A∗,�∗) with its minimal extending sets B1
and B2. For all b ∈ B2 let T∗b = (B1 ∪ {b},�∗B1∪{b}). By Lemma 10.11,
B1 is still a minimal extending set in all T∗b. There cannot be an-
other minimal extending set B2 (containing b) because otherwise T∗b
would have multiple extending sets, contradicting the minimality of
T∗. Therefore ME(T∗b) = B1 for all b ∈ B2. If γ̂⊇ holds for ME, then
ME(T∗) = ME(T∗b) = B1 because T∗ is the union of all T∗b. However,
ME(T∗) = A, a contradiction. This concludes the proof.

It is open whether ME satisfies γ̂⊆ . Still, the fact that ME violates
α̂⊆ and γ̂⊇ immediately implies that it violates stability.

Corollary 10.20

ME does not satisfy α̂ or γ̂ and is therefore not stable.

Interestingly, minimal extending sets themselves are stable sets.
They satisfy a local version of stability, namely

• removing alternatives outside of a minimal extending set has
no effect on it by Lemma 10.11 and

• a set that is minimal extending in several tournaments is also
minimal extending in the union of these by the definition of
minimal extending sets.

From Theorem 10.19 and Lemma 10.3, we also get that ME is idem-
potent.

Corollary 10.21

ME satisfies idempotency.
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Relationships to other tournament solutions

Besides the axiomatic properties of ME, we are also interested in its
set-theoretic relationships to other tournament solutions. Assuming
that every tournament has only one minimal extending set, Brandt
(2011b) showed that ME always selects subsets of BA and subsets
of MC. Under an even stronger conjecture, he also proved that ME
always selects supersets of TEQ. Since the conjectures turned out to
be incorrect, these questions are open again. We can now answer one
of these in the affirmative, namely that ME indeed chooses from BA.

Theorem 10.22

For all tournaments T ,

ME(T) ⊆ BA(T).

Proof. Let T = (A,�) be a tournament. It suffices to show that, if
B ⊆ A is a minimal extending set, all alternatives of B are also in
the Banks set. Assume a ∈ ME(T). Then there is some minimal
extending set B such that a ∈ B. Also assume for contradiction that
a /∈ BA(T). Then, for every X ∈ BT (a) there is some x ∈ A with
X∪ {x} ∈ BT (x). We show that B \ {a} is also an extending set, which
contradicts minimality of B.

To this end, consider an arbitrary z ∈ A \ (B \ {a}). First assume
that z = a and consider an arbitrary Z ⊆ B \ {a} with Z∪ {a} ∈ BT (a).
Without loss of generality we may assume that Z is maximal, in the
sense that there is no Z ′ ⊆ B \ {a} with Z ( Z ′ such that Z ′ ∪ {a} ∈
BT (a). As a /∈ BA(T), there is also an x ∈ A with Z ∪ {a, x} ∈ BT (x).
If, x ∈ B \ {a} we are done immediately. If x /∈ B \ {a}, by virtue of B
being an extending set, there is some b ∈ B with Z ∪ {b, x} ∈ BT (b).
Also observe that b � a. Otherwise, Z∪ {a,b} ∈ BT (a), which would
contradict maximality of Z in B. It follows that Z ∪ {a,b} ∈ BT (b),
and we are done for this case.

Now assume that z 6= a and again consider an arbitrary maximal
Z ⊆ B \ {a} with Z ∪ {z} ∈ BT (z). If there is some b ∈ B \ {a} with
Z ∪ {b, z} ∈ BT (b), we are done. Thus, since B is an extending set,
we may assume without loss of generality that Z ∪ {a, z} ∈ BT (a).
Since a /∈ BA(T), there is some x ∈ A such that Z ∪ {a, x, z} ∈ BT (x).
If, x ∈ B \ {a} we are done immediately. If x /∈ B \ {a}, by virtue
of B being an extending set, there is some b ∈ B with Z ∪ {a,b, x} ∈
BT (b). Moreover, b � z. Otherwise, Z ∪ {b, z} ∈ BT (z), contradicting
the assumed maximality of Z. Hence, Z ∪ {b, x,a, z} ∈ BT (b). Since
obviously b 6= a, we may conclude that Z ∪ {b, z} ∈ BT (b) and also
for this case we are done.

Laslier (1997, Theorem 7.1.3) showed that BA is irregular by pre-
senting a corresponding tournament on 45 alternatives. By Theo-
rem 10.22, ME also has to be irregular. In Figure 10.6, we give a
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smallest regular tournament in which ME and BA exclude alterna-
tives. The tournament is of order 13 and was found by exhaustively
checking all tournaments of increasing order where the tournaments
were generated with the help of McKay’s nauty package (McKay and
Piperno, 2013b).

Corollary 10.23

ME is irregular.

a b c

d

e

f

m

g

h

i

j k l

Figure 10.6: A regular tournament on 13 vertices. Omitted edges point
downwards. Vertex m is not in BA and thereby not in ME.
This is the smallest tournament where ME (as well as BA and
TEQ!) is irregular.

An important property of every tournament solution is whether it
can be computed efficiently. This is typically phrased as a decision
problem which asks whether a given alternative is contained in the
choice set of a given tournament. While it is known that this problem computational

complexity of MEis NP-hard for BA (Woeginger, 2003), this has no immediate conse-
quence on the complexity of the problem for ME.67 We show that
computing ME is indeed NP-hard.

Theorem 10.24

Deciding whether an alternative in a tournament is contained
in ME is NP-hard.

Proof. The proof is a reduction from 3Sat that uses the very same
construction that was used to show the hardness of computing TEQ,
even for seven voters (cf. Section 6.3).

Thus, let ϕ be a formula in 3-CNF

(x11 ∨ x
2
1 ∨ x

3
1)∧ · · ·∧ (x1m ∨ x2m ∨ x3m)

67 For example, Hudry (2004) has pointed out that random members of BA can be
found efficiently (in linear time).
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Figure 10.7: A tournament Tϕ as used in the proof of Theorem 10.24. Miss-
ing edges point downwards.

and consider the tournament Tϕ = (C∪U,�). We prove that

ϕ is satisfiable if and only if c0 ∈ME(Tϕ).

Recall that C = {c0, c1, . . . , c4m−3} and U =
⋃
16i64m−3Ui, where

Ui =

{
{u1i ,u2i ,u3i } if i is odd,

{ui} if i is even.

The dominance relation �ϕ has to satisfy

ci � cj for all i > j,

ci � Uj for all i 6= j, and

Ui � ci for all i > 0.

For our purposes in this chapter, we ignore further constraints on
�U and refer the reader to (Brandt et al., 2010b) for details of the
construction. A full example of such a tournament Tϕ is shown in
Figure 10.7.

First assume that ϕ is not satisfiable. Then, by a simple argument
(Brandt et al., 2010b, proof of Theorem 2) we have c0 /∈ BA(Tϕ). From
Theorem 10.22, it also follows that c0 /∈ME(Tϕ).
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For the opposite direction, assume that ϕ is satisfiable and let α be
the witnessing assignment.

Let

U− =
⋃

06k6m

{u
j
4k+1 : α sets xjk to false}

and define

U+ = U \U−,

and let U+
i = U+ ∩Ui. Let, furthermore, for all i with 1 6 i 6 4m− 3,

U>i = Ui ∪ · · · ∪U4m−3 and C>i = Ci ∪ · · · ∪C4m−3.

Let U+
i = U+ ∩Ui and U+

>i = U
+ ∩U>i.

We say that a subset V ⊆ U is i-leveled if V ∩Uj 6= ∅ for all j with
4m− 3 > j > i. As α is a satisfying assignment, we then have that
U+
i is 1-leveled. Moreover, for every i with 4m− 3 > i > 1 and all

u ∈ U+
i , there is a transitive i+ 1-leveled set Xu in U+

>i+1 of which u
is a maximal element.

Let B be a minimal extending set of Tϕ. We show by induction on i
that for all i with 4m− 3 > i > 1 we have

C>i ∪U
+
>i ⊆ B.

For the basis, i.e., if i = 4m − 3, we have to show that c4m−3 ∈
B as well as that U4m−3 ⊆ B. To prove the former, assume for a
contradiction that B ∩ C = ∅. Then, B ⊆ U. Accordingly, there is
some u ∈ U with u ∈ B. Observe, however, that c0 � u and that
there is no u ′ ∈ U with u ′ � c0. Therefore, there is no u ′ ∈ B

with both u ′ � u and u ′ � c0, a contradiction. We may conclude
that there is some c ∈ C with c ∈ B. If c = c4m−3, we are done.
Otherwise, c4m−3 � c. Observe that there is no alternative a ∈ C∪U
with both a � c4m−3 and a � c. It follows that c4m−3 ∈ B.

Second, we show that for each u ∈ U4m−3 we have u ∈ B. Con-
sider an arbitrary u ∈ U4m−3. Without loss of generality we may
assume that u = u14m−3 and, for a contradiction, that u14m−3 /∈ B.
Also consider u24m−3 and observe that u24m−3 � c4m−3. If u24m−3 /∈
B, then u14m−3 is the only alternative a in C ∪ U with both a �
u24m−3 and a � c4m−3. It then follows that u14m−3 ∈ B. If, on
the other hand, u24m−3 ∈ B, observe that both u14m−3 � u24m−3 and
u14m−3 � c4m−3. Moreover, there is no alternative a ∈ C ∪U with
a � {u14m−3,u24m−3, c4m−3}. Again, it follows that u14m−3 ∈ B.

For the induction step, we may assume that

C>i ∪U
+
>i ⊆ B

and we show that

C>i−1 ∪U
+
>i−1 ⊆ B.
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First consider ci−1 and assume for a contradiction that B∩ (C\C+
>i) =

∅. Recall that U+
>i ∩Ui 6= ∅ and let u ∈ U+

>i ∩Ui. By the induction
hypothesis we have that {u} ∪ Xu ⊆ B. Then, c0 is the maximal ele-
ment of the transitive set {c0,u}∪Xu. Observe that there is no u ′ ∈ U
that is the maximal element of {u ′, c0,u} ∪ Xu because c0 � u ′. As
{u}∪Xu is i-leveled, neither is there a c ∈ C>i such that c is the max-
imal element of {c, c0,u} ∪ Xu. A contradiction follows. Accordingly,
there is some c ∈ B ∩ (C \C+

>i). If c = ci−1 we are done. Otherwise,
ci−1 � c. Observe that there is no alternative a ∈ C ∪U with both
a � ci−1 and a � c. It follows that ci−1 ∈ B.

Now consider an arbitrary ui−1 ∈ U+
>i−1. There is a k with 0 6

k 6 m such that either

(i) Ui−1 = U2k,

(ii) Ui−1 = U4k+1, or

(iii) Ui−1 = U4k+3.

If (i), observe that ui−1 is the maximal element of the transitive
set {ui−1, ci−1}∪Xui−1 . As Xui−1 ⊆ U+

>i, by the induction hypothesis
and the previous argument, we may assume that {ci−1} ∪ Xui−1 ⊆ B.
Observe, however, that in this case, there is no alternative a ∈ C ∪U
distinct from ui−1 that is the maximal element of {a,ui−1, ci−1} ∪
Xui−1 .

If (ii), Ui−1 = {u1i−1,u2i−1,u3i−1}. Without loss of generality we
may assume that ui−1 = u1i−1 and observe that ui−1 is the maximal
element of the transitive set {ui−1, ci−1}∪Xui−1 . By the induction hy-
pothesis and the first part of the induction step, {ci−1} ∪ Xui−1 ⊆ B.
As Xui−1 is i-leveled there is some u ′′ ∈ Xui−1 ∩Ui+1. By construction,
moreover, u ′′ = u1i+1. Again, there is no alternative a ∈ C ∪U dis-
tinct from ui−1 that is the maximal element of {a,ui−1, ci−1}∪Xui−1 .
In particular, it is not the case that u3i−1 is the maximal element of
{a,ui−1, ci−1} ∪ Xui−1 . To see this, recall that u1i+1 ∈ Xi+1. Then
observe that, by construction of Tϕ, also u1i+1 � u3i−1.

Finally, if (iii), again Ui−1 = {u1i−1,u2i−1,u3i−1}. Without loss of
generality, we may assume that ui−1 = u1i−1. Observe that u1i−1 is the
maximal element of the transitive set {u1i−1, ci−1} ∪ Xui−1 . Moreover,
by the induction hypothesis and the first part of the induction step,
{ci−1} ∪ Xui−1 ⊆ B. For contradiction assume that u1i−1 /∈ B. Also
consider u2i−1. Then, also u2i−1 � c1i−1. If u2i−1 /∈ B, then u1i−1 is the
only alternative a in C∪U with both a � u2i−1 and a � ci−1. It then
follows that u1i−1 ∈ B. If, on the other hand, u2i−1 ∈ B, then both
u1i−1 � u2i−1 and u1i−1 � ci−1. Moreover, there is no alternative a ∈
C ∪U with a � u1i−1, a � u2i−1, and a � ci−1. Again, it follows that
u1i−1 ∈ B.

To conclude the proof, let u ∈ U+
1 and consider also Xu. Observe

that c0 is the maximal element of the transitive set {c0,u} ∪ Xu. As
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we have seen above, {c0,u} ∪ Xu ⊆ B. Also observe that there is no
alternative a ∈ C∪U distinct from c0 that is the maximal element of
the set {a, c0,u}∪Xu. It follows that c0 ∈ B, as desired.

10.3.3 Discussion on ME

We have analyzed the axiomatic as well as computational properties
of the tournament solution ME. Results were mixed. In conclusion,
ME

1. is not monotonic,

2. is not independent of unchosen alternatives,

3. satisfies α̂⊇ and idempotency,

4. does not satisfy α̂⊆ and γ̂⊇ and is not stable,

5. satisfies irregularity,

6. is contained in the Banks set,

7. is NP-hard to compute, and

8. satisfies composition-consistency.

The statement 8 was shown in Brandt (2011b), the others are new.
Two relationships of ME with other tournament solutions are still
open. It is unknown whether the tournament equilibrium set is al-
ways contained in ME and whether ME is always contained in the
minimal covering set. These results, together with the recent findings
mentioned in Section 10.2 regarding TEQ—which satisfies irregular-
ity but also fails stability—, suggest that stability and irregularity may
be incompatible in general. We intend to further pursue this question
in future work.

We observed that many of the properties that are violated by ME
are nevertheless satisfied by individual minimal extending sets (also
see Table 10.2). It is an interesting issue whether extending sets could
perhaps still be used as the basis for choice in tournaments. Selecting
one of the extending sets in a way such that the axioms considered in
here are still satisfied appears to be problematic.

10.4 the case of bp

In this last section, we give an outlook on ongoing efforts to charac-
terize the bipartisan set as the finest tournament solution satisfying
properties such as stability, LRS, regularity, and the like.

A helpful tool to reason about the LRS properties is the LRS dia-
gram. It is based on the observation that every alternative aT1 in a LRS diagram
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property ME minimal
extending sets

set-monotonicity 7 3

independence of
7 3

unchosen alternatives
stability (α̂ and γ̂) 7 3

Table 10.2: Comparison of properties of ME and minimal extending sets as
tournament correspondences.

tournament T1 is mapped to an alternative bT2 in a tournament T2

of the same size as T1 by a local reversal at aT1 , and vice versa. More
precisely, since this operation respects tournament isomorphisms, it
is a bijection on orbits and partitions the set

Am = {o ∈ OT : T ∈ Tm}

into pairs of orbits (o1
T1

,o2
T2
) that we call local reversal pairs. The pairslocal reversal pairs

of A4 are depicted in Figure 10.8.

1

2

3

1

T4,1

4

5

T4,2

4

5

T4,3

3

6

6

2

T4,4

Figure 10.8: A visualization of the partitioning of the orbits in T4 into local
reversal pairs. Omitted edges within each of the four tourna-
ments point downwards.

The benefit of this is approach is that the LRS properties can be
formulated in terms of choice from local reversal pairs.

Proposition 10.25

Every tournament solution S satisfies LRSIN (LRSOUT) if and
only if it chooses at least (at most) one orbit from every local
reversal pair.

Consequently, LRS is satisfied precisely by those tournament so-
lutions which select exactly one orbit from every pair. Disregarding
orbit sizes—which are rarely larger than one according to Gao et al.
(2000)—this gives that a tournament solution satisfying LRS on aver-
age has to select half of the alternatives in the set of all tournaments,
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which is almost exactly the statement which Fisher and Reeves (1995)
proved for BP.

Another consequence of Proposition 10.25 is that the local reversal
operation cannot map an alternative a in a tournament T to itself and
we do actually get reversal pairs. Assume for contradiction that such
an a exist. Then there could be no tournament solution satisfying LRS
because no matter whether it selects a or not, this entails a violation
of LRS. But since BP does satify LRS, this can never happen.

The most interesting effect of Proposition 10.25 is that every tourna-
ment solution S satisfying LRS is a finest LRS-satisfying tournament
solution. This is because for another tournament solution S ′ to be
finer than S, it needs to select strictly less orbits from at least one
local reversal pair than S. But since both satisfy LRS, they both al-
ways choose exactly one of the two orbits. This is remarkable since
typical characterizations of tournament solutions identify a concept
as the finest satisfying several properties.68 In case of LRS, inclusion-
minimality is inherent already.

10.5 summary and discussion

We have reviewed several conjectures related to the tournament solu-
tions TEQ and ME. As a consequence of the found counterexamples
to these conjectures, TEQ and ME fail to satisfy most of the usually
considered desirable properties. However, the practical relevance of
these findings remains unclear. While we successfully lowered the
size of the smallest counterexample to the TEQ-related conjecture
to 24, this achievement required new insight and significant compu-
tational efforts. Everything indicates that these counterexamples are
extremely rare and even more so for ME. Here, still no actual coun-
terexample is known and the upper bound on the number of alterna-
tives from when on ME fails to be an axiomatically very appealing
tournament solution currently stands at roughly 10103. In effect, ME
does satisfy these properties in all scenarios in which tournaments
only admit a unique minimal extending set and it is fair to say that
ME satisfies the considered properties for all practical purposes. This,
in turn, may be interpreted as a questioning the axiomatic method in questioning the

axiomatic methodgeneral: For what does it mean if a tournament solution (or any other
mathematical object) in principle violates some desirable properties,
but no concrete example of a violation is known and will perhaps
ever be known?

68 See the characterizations of TC (Bordes, 1976), UC (Moulin, 1986), MC (Dutta, 1988),
and BA (Brandt, 2011b).
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