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A B S T R A C T

The rise of computational social choice, a relatively new research field,
indicates that a computer-science perspective on social choice theory
is fruitful and can contribute to our understanding of collective deci-
sion making. In this thesis, we show how substantial insights in social
choice theory can be achieved via computer-aided methods that are
based on powerful solving techniques, such as SAT and SMT (satisfi-
ability modulo theories).

Our contribution is twofold: first and foremost, we provide a range
of such computer-aided methods for the domain of social choice
theory. Most importantly, this includes techniques for computer-
aided theorem proving as initially proposed by Tang and Lin [2009].
But also the generation of (counter-)examples, the design of solving-
based algorithms, and experimental analyses can significantly benefit
from the use of constraint solvers.

The second contribution of this thesis lies in the numerous results
for social choice theory that we obtained with the aforementioned
methods. We resolve open problems regarding different notions of
strategic manipulation for set-valued and probabilistic social choice,
analyze structural properties of majority graphs and preference pro-
files, and take a practical perspective on issues in voting and prefer-
ence aggregation. For instance, we generalize a set of existing the-
orems by proving that weak notions of efficiency and strategyproof-
ness are incompatible in probabilistic social choice.
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Part I

I N T R O D U C T I O N TO A N D S U M M A R Y O F
C O N T R I B U T I O N S





1
I N T R O D U C T I O N

“The only way to rectify our reasonings is to make
them as tangible as those of the Mathematicians,
so that [. . . ] when there are disputes among
persons, we can simply say: Let us calculate,
without further ado, to see who is right.”

G. W. Leibniz, 1686

The impact of computers, and artificial intelligence in particular, in
our everyday lifes is undebatable. We experience self-driving cars,
autonomous robots, automated online assistants, computer-aided in-
terpretation of medical images, and many more supporting systems
that facilitate otherwise tedious or complex tasks. In formal sciences,
however, successful applications of automated reasoning are much
less frequent. Other than a few lighthouse theorems, such as the four
color theorem, few results have been proved with computer-aided
methods and, to date, most applications of mechanized reasoners are
to be found in industrial applications, most prominently hardware
and software design.

In pure mathematics and related disciplines, successful applica-
tions of automated theorem provers have mostly concentrated on the
verification of existing results and proofs thereof. Corresponding sys-
tems, as powerful as they are, in addition, usually have to be operated
by specialists. The task of theorem discovery, i.e., the search for novel
results, is mostly carried out manually and without machine-support.

Yet, we will see that social choice theory has three characteristics
that make it well-suited for computer-aided reasoning: it uses the ax-
iomatic method,1 it is concerned with combinatorial structures, and
its main concepts can be defined based on rather elementary mathe-
matical notions.

The goal of this thesis project, thus, is to broaden and deepen the
basis for applying computer-aided methods to theoretical economics,
and social choice theory in particular. Our main tools for this task are
satisfiability (SAT) solvers, i.e., pieces of software that apply powerful
heuristics to decide whether a given propositional formula has a satis-
fying assignment or not. But we also apply other solving paradigms,
such as satisfiability modulo theories (SMT), answer set program-
ming (ASP), and integer programming (IP). In order to make use

1 I.e., it defines economical and social requirements in mathematically precise terms
and then reasons about them deductively.

3



4 introduction

of these general problem solving tools, we need to translate instances
of problems from social choice theory into the muss less expressive
languages accepted by these solvers. If we manage to do so, how-
ever, we are rewarded with an easily adaptable, automated assistant
that allows for “testing” of finite conjectures (and variants thereof
with minimal effort by simply replacing or altering some axioms). In
many cases these finite results carry over to arbitrarily large instances
by easy-to-prove inductive lemmas, which then yields novel results of
full generality instantaneously.

But let us now have a brief glimpse at the subject matter under con-
sideration before we return to methodological aspects in Section 1.2
and Chapter 3 in particular.

1.1 social choice theory and computa-
tional social choice

Social choice theory is a truly interdisciplinary field with contribu-
tions by mathematicians, economists, political scientists, and, more
recently, computer scientists. The discipline is concerned with the
analysis of preference aggregation and collective decision making, both
of which occur in a multitude of forms. Most apparent are politi-
cal elections, in which a set of voters select one or many represen-
tatives. Much more frequent, however, are everyday decisions of
groups (without monetary payments), say colleagues deciding for a
lunch location or friends deciding on which movie to watch together.
And then there is an abundance of applications in computer science
where agents (for instance, robots or distributed software) have to
agree on joint plans and actions.2 Another example is the aggrega-
tion of results of different search engines (by so-called metasearch
engines), which is also often viewed as a preference aggregation prob-
lem.

What all these applications have in common is that they require
an aggregation mechanism, a function that takes as input the pref-
erences of all agents and outputs a collective choice.3 Unfortu-
nately, striking impossibility results, such as Arrow’s theorem and the
Gibbard-Satterthwaite theorem, state that even very basic conditions any
aggregation mechanism should intuitively satisfy are incompatible
with each other. While this might seem to indicate that no reason-
able mechanism for collective decision making exists—and, certainly,
there is no perfect mechanism for any application—a multitude of

2 In the following (except the original publications) we limit the reference to “voters”
as much as possible in favor of the slightly more general term “agent”.

3 Depending on the setting the collective choice may be a ranking, single winner, set
of winners, lottery over winners, etc.
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mechanisms has evolved, each of which satisfies a different set of
properties.

As an example, a property that has received particular interest and
is generally well-understood is the notion of strategyproofness. Strate-
gyproofness postulates that, even in the case that an agent has full
knowledge about the other agents’ preferences, he cannot benefit
from manipulating the election, i.e., from misrepresenting his true
preferences. Unfortunately, the Gibbard-Satterthwaite theorem says that
only dictatorships can be strategyproof.4 In order to escape this im-
possibility, three major approaches have been suggested in the lit-
erature for social choice [see, e.g., Moulin, 1980],5 out of which we
concentrate on (1.) and (2.) in this thesis:

1. allowing for sets of alternatives as outcomes rather than just
single winners (set-valued social choice, cf. Section 2.2),

2. allowing for probability distributions as outcomes (randomized, or
probabilistic social choice, cf. Section 2.3), and

3. restricting the domain of preferences (most prominently to
single-peaked preferences, which guarantees the existence of
a Condorcet winner and hence allows for strategyproof rules as
observed already by Dummett and Farquharson [1961]).

While each of these approaches generally allows for strategyproof ag-
gregation mechanisms, options (1.) and (2.) entail that the notion of
strategyproofness is no longer uniquely defined. In these settings, the
exact meaning of strategyproofness heavily relies on how preferences
over individual alternatives are extended to sets of, or even lotter-
ies over these alternatives. An analysis of the different notions of
strategyproofness and whether they allow for desirable aggregation
functions is a key concern of social choice theory and, furthermore,
a main point of departure for many of our results (reflected, e.g., in
all of our publications that fall into the category of computer-aided
theorem proving, i.e., Publications [1], [2], [3], and [4]).6

In contrast to classical social choice theory, computational social
choice is a relatively new discipline that has its roots in contributing
to social choice by taking a computational perspective, i.e., the per-
spective of computer science. For instance, regarding the notion of
strategyproofness, Bartholdi, III et al. [1989] show in a seminal article
how computational complexity can be used as a shield against manip-
ulations, thereby providing voting rules that are strategyproof in prac-
tice despite the theoretical possibility of a manipulation. Quite soon,

4 Unless all but at most 2 alternatives are completely ignored, in which case a simple
decision by majority works.

5 Monetary side-payments would also form an option, but these are usually not con-
sidered a part of social choice theory.

6 Publications [2] and [3] are concerned with a variant of strategyproofness called
participation.
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however, also the opposite direction became popular and is now an
integral part of computational social choice: importing concepts from
social choice theory into computer science, and multi-agent systems
in particular. Since the 2000s we can observe a very active and stable
community with contributions in voting theory, ressource allocation,
fair division, coalition formation, and judgement aggregation, just to
name a few. For an extensive account of the area of computational
social choice, including a historical perspective, see the recent books
by Brandt et al. [2016a] and Rothe [2015], and, in particular, the intro-
ductory chapter of the former [Brandt et al., 2016b].

Our own work clearly falls into the domain of computational social
choice as it applies computational tools to generate insights in social
choice theory. Yet, the particular methods applied have only been
brought to social choice relatively recently, as we will argue when
discussing methodologically related work in Section 1.2. For overviews
of related work from a social choice perspective, the reader is—given
the multitude of different aspects for which we were able to gain
insights via computer-aided methods—referred to Chapter 4 and to
the respective original publications referenced therein.

1.2 computer-aided results in social
choice theory

While time and again there have been contributions to social choice
theory that in some way used computers to generate insights in social
choice theory, computer-aided theorem proving was only brought to
this field in 2008 by Lin and Tang; a journal version of their work
appeared one year later [Tang and Lin, 2009]. In the method they
introduced, they reduce well-known impossibility results, such as Ar-
row’s theorem, to finite instances, which can then be checked by a sat-
isfiability (SAT) solver [for a general introduction to satisfiability, see,
e.g., Biere et al., 2009]. We extended this method in previous work to
a fully-automatic search algorithm for impossibility theorems in the
relatively simple context of preference relations over sets of alterna-
tives [Geist and Endriss, 2011].

While those contributions mark the point of departure for this
thesis project, in recent years similar solving-based techniques have
proven to be quite effective for other problems in economics, too. Ex-
amples are the work by Fréchette et al. [2016], in which SAT solvers
are used for the development and execution of the FCC’s reverse spec-
trum auction, and recent results by Drummond et al. [2015], who
solve stable matching problems via SAT solving. Again closer to
computer-aided theorem proving and discovery is the article by Tang
and Lin [2011], who apply SAT solving to identify classes of two-
player games with unique pure Nash equilibrium payoffs. In another
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recent paper, Caminati et al. [2015] verified combinatorial Vickrey auc-
tions via higher-order theorem provers.

In some respect, our approach also bears similarities to automated
mechanism design [see, e.g., Conitzer and Sandholm, 2002], where de-
sirable properties are encoded as constraints, too, but mechanisms
are computed to fit specific problem instances (rather than being ap-
plicable generally). In a similar spirit, Mennle and Seuken [2015] run
linear programs in order to compute optimal (randomized) choice
mechanisms that satisfy approximate versions of strategyproofness
and efficiency.7

Also related, but directed more towards formalizing and verify-
ing existing results and proofs thereof, is a body of work on logical
formalizations of important theorems in social choice theory, most
prominently, Arrow’s theorem [see, e.g., Nipkow, 2009, Grandi and En-
driss, 2013, Cinà and Endriss, 2015].

During the course of this project the results obtained by computer-
aided theorem proving have already found some attention in the so-
cial choice community [Chatterjee and Sen, 2014] and further pop-
ularizing work is underway [Kerber et al., 2015]. It still, however,
appears to be a long way from the current systems—that have to be
operated by expert users or programmers—to an automatic proof as-
sistant for social choice theory which is powerful enough to discover
new results and which, at the same time, is easy to use. We elaborate
on this point a little more in Chapter 8.

1.3 outline and contribution of this the-
sis

With this thesis we contribute in two ways to the state of the art: first,
by providing methods for computer-aided analysis in social choice
and potentially other areas of (computational) economics, and, sec-
ond, by answering questions from those fields that remained open
after “manual” efforts to solve them. In particular, we concentrate on
finding new results (rather than verifying existing theorems), and es-
pecially those that are unlikely to have been found without the help
of computers.

A few selected highlights of such novel results are:

• we prove for set-valued social choice that Pareto optimality is in-
compatible with Fishburn-strategyproofness and -participation,
respectively,

7 The specific choices of these properties allowed for the use of linear programming
rather than the more expressive framework of satisfiability modulo theories (SMT),
which we had to apply in Publication [4].
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• we extract complex but human-readable proofs of these theorems
from the SAT solver’s output,8

• we leverage SMT solving to strengthen a set of existing results
for randomized social choice mechanisms by showing that a weak
form of strategyproofness stands in conflict with a correspond-
ing form of efficiency, and

• we find optimal bounds and an elegant, computer-generated
proof for the fact that Condorcet-consistency and participation
are incompatible.

While methodologically the core of our work concerns computer-
aided proving of impossibility results and extracting human-readable
proofs for these results, there are also three other ways, in which we
have used computers to generate insights in social choice theory:

1. by applying different solving techniques, such as SAT, ASP, and
LP, to generate (minimal) counterexamples for conjectures,

2. by providing solving-based algorithms for computational prob-
lems in social choice that deliver state-of-the-art performance
while being quite flexible, and

3. by simply using computational tools to deal with practical con-
cerns regarding preference aggregation and election methods.9

The remainder of Part I is structured as follows. In Chapter 2, we
set up two basic models for social choice. We then, in Chapter 3, use
these models to exemplify our main methodological contributions
using different solving techniques. In Chapter 4, we summarize our
findings and describe how the individual contributions are connected
to each other. In addition, we give some details that had to be omitted
from the original publications.

Part II carries the core of this thesis, the original publications. In
Part III we conclude by briefly discussing the presented methods and
by describing some ideas for future work.

8 To the best of our knowledge this is the first time that human-readable proofs have
been constructed via SAT solving.

9 For instance, by providing an online tool for preference aggregation that is both
powerful and easy to use.



2
M A I N S E T T I N G S A N D M AT H E M AT I C A L M O D E L S

This chapter describes two basic models of social choice, which we
then formalize exemplarily as SAT/SMT instances in Chapter 3. Vari-
ants of these models are widely used and we also build upon and
extend them in our publications as needed, for instance by variable
agendas or electorates, or by allowing for ties in the individual pref-
erences.

The two models differ by the class of outcomes of their respective
aggregation mechanisms: while in set-valued social choice the out-
comes are sets of best alternatives (for which then eventually ties have
to be broken by other means), the outcomes in probabilistic social
choice are lotteries (i.e., a probability distributions) over alternatives.
The latter can not only be used to identify a single winner by means
of randomization, but also allows for an interpretation as fractional
allocations (e.g., for splitting time shares or monetary budgets).

2.1 foundations

Both models share some mathematical foundations, which we briefly
define in this section. The following Sections 2.2 and 2.3 then intro-
duce some of the specifics of each model.

Let A be a set of m alternatives and N = {1, . . . ,n} be a set of agents. alternatives
agentsEach agent i ∈ N is equipped with a preference relation %i over the
preference relationalternatives, which is postulated to be linear.10 The interpretation

of x %i y is that agent i values alternative x at least as much as
alternative y. We write �i for the strict part of %i, i.e., x �i y if x %i y
but not y %i x. Note that, due to anti-symmetry, the only difference
between %i and �i is that %i is reflexive while �i is not. The set
of all preference relations is denoted by R. As we will be concerned
with social choice, i.e., collective decisions by the set of all agents, we
define a preference profile to be an n-tuple R = (%1, . . . ,%n) ∈ RN of preference profile

preference relations.
The central objects of consideration are aggregation functions f :

RN → O, which map preference profiles to outcomes from a set O.
Depending on the setting, the set O differs. In the simplest model,
resolute social choice, O simply is the set of all alternatives A and the resolute social choice

aggregation functions (then also called voting rules) yield a single win- voting rules

10 A linear (sometimes called strict) preference relation is complete, transitive, and anti-
symmetric. In some publications, we also consider weak preferences, which only
satisfy the former two properties, i.e., they allow for ties between alternatives.

9



10 main settings and mathematical models

ner. Unfortunately, this setting is prone to sweeping impossibilities
like the Gibbard-Satterthwaite theorem [Gibbard, 1973, Satterthwaite,
1975] and even basic fairness conditions such as anonymity and neu-
trality cannot be guaranteed to be compatible [cf. Moulin, 1983, Chap-
ter 2]. Hence, one has to resort to more general sets of outcomes.
In the following, we consider the cases of O = 2

A (set-valued social
choice), where 2A stands for the set of all subsets of A, and O = ∆(A)

(probabilistic social choice), where ∆(A) denotes the set of all lotterieslottery

over A, i.e., functions p : A→ R such that p(x) > 0 for all x ∈ A and∑
x∈A p(x) = 1.
Many axioms have been put forward to describe desirable proper-

ties of such aggregation functions. Resistance to strategic manipu-
lation (so-called strategyproofness) and efficiency (e.g., in the form of
Pareto optimality) are two such properties that have been particularly
well-studied, and which will be presented in the following sections
for set-valued and for probabilistic social choice.

Before we get to these specific properties, however, we briefly in-
troduce some even more basic properties, which we require for re-
viewing our main results in Chapter 4. Anonymity and neutral-
ity, for instance, are common fairness properties, which require that
an aggregation function treats all agents (or all alternatives, respec-
tively) equally. In formal terms, f(R) = f(σ(R)) for all permutations
σ : N → N over agents (anonymity), and f(R)(x) = f(π(R))(π(x)) foranonymity

all permutations π : A→ A and x ∈ A (neutrality).11neutrality
Many of our result will be valid for the restricted class of majori-

tarian aggregation functions, i.e., functions that are neutral and only
depend on the (pairwise) majority relation RM, which is defined as(pairwise) majority

relation
x RM y if and only if |{i ∈ N | x %i y} > |{i ∈ N | y %i x}.

In line with conventional notation, we denote by PM the strict part of
the majority relation RM, i.e., a PM b if a RM b but not b RM a.

An aggregation function f then formally is majoritarian if it is neu-majoritarian

tral and f(R) = F(R ′) whenever RM=R ′M. Note that the majority re-
lation can be suitably represented as a graph T = (A,RM), which,
in the case of an odd number of voters with strict preferences, is a
tournament, and a weak tournament otherwise.12tournament

weak tournament Based on the majority relation, one also easily defines the notion of
a Condorcet winner, an obvious choice for a “best” alternative, which,
however need not exist: an alternative x is a Condorcet winner of aCondorcet winner

given preference profile R if x PM y for all y ∈ A \ {x}. An aggregation
function that uniquely selects a Condorcet winner whenever it exists
is called a Condorcet extension.Condorcet extension

11 The permutations σ and π are extended to preference profiles in the usual way. For
example, π(R) is the preference profile obtained from π by replacing %i with %πi for
every i ∈ N, where π(x) %πi π(y) if and only if x %i y.

12 A tournament (graph) is a directed graph in which each pair of distinct nodes is
connected by a single directed edge. In a weak tournament (graph) two directed
edges in opposite directions are also allowed between any pair of nodes.
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2.2 set-valued social choice

Allowing for multiple tied winners, set-valued social choice separates
the problem of breaking ties from the aggregation procedure. An
aggregation function, then called a social choice function (SCF), maps social choice

functionpreference profiles to non-empty sets of alternatives, the winners. The
resolute case is embedded by SCFs that are single-valued for all pref-
erence profiles, i.e., |f(R)| = 1 for all R ∈ RN, in which case we also
speak of resolute SCFs.

Many axioms have been put forward to describe desirable prop-
erties of SCFs. Resistance to strategic manipulation (so-called strat-
egyproofness) and efficiency (e.g., in the form of Pareto optimality) are
two such properties that have been particularly well-studied. As three
major publication of this thesis ([1], [4], and [5]) answer open ques-
tions regarding these two properties, and since, additionally, the case
study in Section 3.1.1 is based on strategyproofness, we define these
concepts here.

2.2.1 Strategyproofness

“My scheme is intended only for honest men.”

J.-C. de Borda, 18th century

Rather than starting with the formal definition, let us consider an
example of a preference profile R and assume a winner is to be deter-
mined by Borda’s rule fBorda,13 which has been named after J.-C. de
Borda:

3 3 2

a c b

b a c

c b a

d d d

R

3 3 1 1

a c b c

b a c b

c b a d

d d d a

R ′

In the example of preference profile R, the (single) winner is alterna-
tive a, i.e., fBorda(R) = {a} (scores are a : 17,b : 15, c : 16,d : 0). If, how-
ever, one of the agents i with truthful preferences b �i c �i a �i d
misrepresents these preferences by expressing c �i b �i d �i a, we
arrive at the new profile R ′, for which fBorda(R

′) = {c} (scores are
a : 16,b : 14, c : 17,d : 1)—an outcome preferred by the manipulating
agent i.

13 Definition of Borda’s rule: the alternatives receive points from each agent depending
on their positions in the corresponding preference relations; for each agent the top-
ranked alternative gets m− 1 points, the next one m− 2 points, and so on (down
to 0 points for the bottom-ranked alternative). The alternatives with the highest
accumulated score win.
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Of course, we would like to avoid examples like this and have
SCFs that are resistant to this kind of strategic manipulation. That,
at least for the resolute case, this is not generally possible without
making one agent a dictator, i.e., an agent who always gets his mostdictatorship

preferred alternative, was proven independently by Gibbard [1973]Gibbard-
Satterthwaite

theorem
and Satterthwaite [1975] in the famous Gibbard-Satterthwaite theo-
rem. Moving to set-valued social choice, and thereby relaxing the
assumption of resoluteness, one can get positive results. On the other
hand, then the notion of strategyproofness is no longer unique be-
cause agents need to compare sets of winners rather than single alter-
natives.

Such comparisons are usually achieved by defining a suitable set ex-
tension E, which extends the individual preferences %i to preferencesset extension

%E
i over sets of alternatives. The definition of strategyproofness then

becomes dependent on the extension E:

Definition 2.1
Let E be a set extension. An SCF f is E-manipulable by agent i ifE-manipulable

there exist preference profiles R and R ′ with %j=% ′j for all j 6= i
such that f(R ′) is (strictly) E-preferred to f(R) by agent i, i.e.,

f(R ′) �E
i f(R).

An SCF is called E-strategyproof if it is not E-manipulable.E-strategyproof

Note the strict preference f(R ′) �E
i f(R), which is equivalent to

f(R ′) %E
i f(R) and not f(R) %E

i f(R
′).14

Two simple set extensions are the optimist (O) and the pessimistoptimist extension

(P) extension , in which agents compare sets simply by consideringpessimist extension
their best and worst elements, respectively. In formal terms, given
individual preferences %i, a set of alternatives X is (weakly) optimist-
preferred to another set Y (short: X %O

i Y) if there exists x ∈ X

such that x % y for all y ∈ Y. Analogously, X is (weakly) pessimist-
preferred to Y (short: X %P

i Y) if there exists y ∈ Y such that x % y for
all x ∈ X.

As an example, consider the preferences a � b � c. We then, for
instance, have {a, c} �O {b} and {b} �P {a, c}.

While these two extensions play an important role in the case study
in Section 3.1.1, our publications are mostly concerned with two other
extensions that have particular natural interpretations and are due to
Kelly [1977] and Fishburn [1972a] . For definitions and discussions ofKelly extension

Fishburn extension these additional extensions, the reader is referred to Publications [1]
and [2].

14 There are other notions of strategyproofness which require the truthful outcome to
be weakly preferred to the manipulated one. For complete set extensions, this is
equivalent to the presented notion. For incomplete set extensions, however, requiring
a weak preference is quite demanding.
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2.2.2 Pareto Optimality

Economic efficiency is captured in a rather mild form in the notion of
Pareto optimality: if there is an alternative y which everyone prefers
weakly, and at least one agent prefers strictly to alternative x (i.e.,
y Pareto dominates x), then x should not be selected.15 If no such
alternative exists, x is called Pareto optimal. Formally, we denote
by PO(R) the set of all alternatives that are Pareto optimal in R and
define for set-valued social choice:
Definition 2.2

An SCF f is Pareto optimal if it only selects Pareto optimal alter- Pareto optimality

natives, i.e., if f(R) ⊆ PO(R) for all preference profiles R.

In the examples R and R ′ above, for instance, alternative d is Pareto
dominated by alternatives b and c. Hence, d must not be selected as
a winner by any Pareto optimal SCF.

2.3 probabilistic social choice

While the roots of probabilistic principles for social choice date back
as far as to ancient Athens [Headlam, 1933], these ideas have received
surprisingly little attention after the first formal studies of proba-
bilistic social choice int the 60s and 70s [see, e.g., Zeckhauser, 1969,
Fishburn, 1972b, Intriligator, 1973, Gibbard, 1977]. Recently, however,
probabilistic social choice is gaining interest again with a range of
contributions both from social choice [see, e.g., Ehlers et al., 2002, Bo-
gomolnaia et al., 2005, Chatterji et al., 2014, Brandl et al., 2016a] and
political science [see, e.g., Goodwin, 2005, Dowlen, 2009, Stone, 2011].
One reason for its increasing popularity might be that it is not prone
to many classical impossibility theorems, including the previously
mentioned ones (Gibbard-Satterthwaite and Duggan-Schwartz).

In fact, Gibbard [1977] proved that random dictatorships are the only random dictatorship

strategyproof and (ex post) efficient probabilistic mechanism. Al-
though the name might suggest that these are undesirable aggrega-
tion functions, at least their uniform version (in which an agent is
picked uniformly at random and gets to decide upon the outcome) is
considered quite fair for many settings and is even frequently used
in real-life, for instance when items need to be allocated among a set
of agents.

Formally, the aggregation functions for probabilistic social choice,
so-called social decision schemes (SDS), are defined as functions f : social decision

schemeRN → ∆(A), where (as defined before) ∆(A) stands for the set of
all lotteries over A.

Properties such as strategyproofness and efficiency then depend
upon the way how agents compare lotteries to one another given their

15 For strict individual preferences, this is equivalent to y �i x for all i ∈ N.
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preferences over alternatives [for an extensive treatment see Aziz
et al., 2014]. In Publication [4], we consider a natural way of extend-lottery extension

ing individual preferences to lotteries based on stochastic dominance
(SD): given individual preferences %i, a lottery p is SD-preferred tostochastic

dominance another lottery q (short: p %SD
i q) if for every alternative x, lottery p

is at least as likely as lottery q to yield an alternative at least as good
as x. Formally,

p %SD
i q if and only if

∑
y%ix

p(y) >
∑
y%ix

q(y) for all x ∈ A.

As a shorthand, we write �SD
i for the strict part of %SD

i , i.e., a �SD
i b

if a %SD
i b but not b %SD

i a.
In contrast to the previously considered optimist and pessimist ex-

tensions, the SD-extension is not complete, i.e., there are lotteries that
cannot be compared by this extension. Consider, for example, the
preferences a � b � c, which imply

(1/2a+ 1/2 c) �SD
i (1/4a+ 1/4b+ 1/2 c),

but leave the lotteries 1/2a+ 1/2 c and b incomparable to each other
(recall that the support of the former is O-preferred to the latter, and
the support of the latter is P-preferred to the former).

The notion of E-strategyproofness for set extensions E can be ap-
plied in the same fashion for any lottery extension L. With L = SDL-strategyproofness

this gives the usual definition of (weak) SD-strategyproofness.16

For efficiency one can extend the notion of Pareto optimality for
arbitrary lottery extensions. An SDS f then is L-efficient if it onlyL-efficiency

returns L-optimal lotteries, i.e., lotteries that are Pareto optimal with
respect to L. For L = SD, this means that f may never return a lottery
p for which we can find another lottery q with q %SD

i p for all i ∈ N,
and q �SD

i p for at least one i ∈ N.17

Interestingly, both these notions, (weak) SD-strategyproofness and
SD-efficiency, naturally correspond to the setting when agents are
equipped with utility functions (rather than just ordinal preferences):utility functions

it can be shown that p %SD
i q if and only if p yields at least as much

expected utility as q according to all consistent utility representations
of %i.

16 Strong SD-strategyproofness would require a potential manipulator to always
(weakly) prefer the truthful outcome to any manipulated outcome, cf. Footnote 14.

17 It appears to be a specific feature of probabilistic social choice that efficiency notions
are defined based on preference extensions. In particular, in some results (see e.g.,
Publication [4]), both efficiency and strategyproofness are even based on the same
extension. While one could theoretically also define efficiency notions based on set
extensions in set-valued social choice (where usually only Pareto optimality is con-
sidered), such efficiency notions seem to be either too weak (e.g., Fishburn, Kelly),
too strong (e.g., pessimist), or incomparable to Pareto optimality (e.g., optimist). For
instance, our main result regarding Fishburn-strategyproofness, Theorem 4.1, can-
not be weakened from Pareto optimality to Fishburn-efficiency since a majoritarian
SCF known as the top cycle satisfies Fishburn-strategyproofness [Sanver and Zwicker,
2012] and Fishburn-efficiency [Aziz et al., 2015].
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How problems from probabilistic social choice involving SD-
strategyproofness and SD-efficiency can, despite the infinite space
of lotteries, be encoded and solved via computer-aided methods (as
SMT instances) is briefly touched upon in Sections 3.2 and 4.1; for a
more detailled account, see Publication [4].





3
M E T H O D O LO GY

In this chapter, we describe the basic ideas of the computer-aided
methods we use in this thesis to solve problems in social choice theory.
As our core results were obtained via an inductive approach coupled
with SAT solving, we mostly concentrate on this specific approach
and exemplify it for the celebrated Duggan-Schwartz theorem.18 Af-
terwards we also briefly review the other solving techniques applied
in this thesis.

3.1 computer-aided theorem proving via
sat solving

As mentioned in the introduction, the general idea of proving theo-
rems in social choice theory by reducing them to an extensive base
case, which can then be solved on a computer, is attributed to Tang
and Lin [2009]. We build upon this idea and extend it in two ways:
we transfer it to the more complex realms of set-valued and proba-
bilistic social choice, and we provide a method for extracting human-
readable proofs. The settings of set-valued and probabilistic social
choice require more advanced techniques for solving the base cases
as otherwise the search space rapidly becomes too large. As an il-
lustration, consider the sizes of the search spaces in Publications [1]
and [2] given in Table 3.1, which clearly show that any attempt at the
problem via exhaustive search would be doomed to fail.

Alternatives (m) 4 5 6 7

Publication [1]
50,625 ∼ 1018 ∼ 10101 ∼ 10959

(odd n, strict pref.)
Publication [2]

∼ 1049 ∼ 10868 ∼ 1038,650 ∼ 104,506,953(arbitrary n,
strict or weak pref.)

Table 3.1: Sizes of the search spaces of our problems, i.e., number of differ-
ent majoritarian SCFs, depending on the number of alternatives
and the settings considered.

Despite the more advanced encoding that we developed, the overall
method of proving the results remains unchanged. An induction step,

18 This case study has not been published before and, in particular, is not contained in
any of the publications that are part of this thesis.

17
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which is usually easy to prove, reduces the desired theorems to finite
instances. Depending on the number of variable parameters, more
than one such reduction lemma may be required; for instance, one for
the number of agents and another one for the number of alternatives.

Most work, however, needs to be invested into finding a suitable
representation of this finite version of the theorem in some language
that allows for automatic verification. One may ask why we chose
the relatively restricted language of propositional logic in conjunction
with SAT solvers for this task, even though many of the problems we
consider involve statements that are naturally formulated in second-
order logic. The answer is that there usually is a trade-off between
expressivity of the input language and the ability of corresponding
solvers to automatically solve problem instances. SAT solvers proved
to be particularly effective for our problems from social choice theory.
In contrast, experiments with formulations in—the much more natu-
ral choice of—higher-order logic unfortunately failed because the cor-
responding automated theorem provers did not terminate in any rea-
sonable amount of time. These observations reflect similar findings
by Grandi and Endriss [2013], who tried to verify existing impossibil-
ity results with theorem provers for first-order logic, and Lange et al.
[2013], who verify Vickrey’s theorem by providing extensive guidance
to four interactive theorem provers.

The high-level architecture that we employed for proving base
cases and constructing counterexamples is depicted in Figure 3.1.
First, the setting and axioms under consideration are encoded into
a suitable representation, e.g., conjunctive normal form (CNF) for
the case of SAT solving. This procedure might require additional
tools, such as an LP solver or the graph isomorphism program nauty

[McKay and Piperno, 2013], for instance, to determine if a specific lot-
tery is efficient or if two tournaments are isomorphic,19 respectively.
Then the encoded problem is fed to a SAT or SMT solver, whose out-
put then gets translated back—based on the encoding chosen—into
human-readable format (e.g., a tabular representation of an SCF that
satisfies the given axioms).

The next subsection zooms in on the encoder and explains, at the
example of the Duggan-Schwartz theorem, how encodings in propo-
sitional logic of statements that are naturally formulated in higher-
order logic can be constructed. This case study illustrates in a simple
way (and yet being completely disjoint from) the work included in
Publications [1], [2], [3], and [4]. In particular, it does not require
the advanced optimization techniques that we describe in those pub-
lications.

19 Isomorphic tournaments are important when encoding neutrality.
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Encoder (CNF,
SMT-LIB, etc.)

nauty

LP
solver

SAT/SMT solver

Model
decoder

Setting and axioms Results

Figure 3.1: High-level system architecture as used to prove finite instances
of theorems and to compute counterexamples

3.1.1 Case Study: the Duggan-Schwartz Theorem

The Duggan-Schwartz theorem [Duggan and Schwartz, 2000] is the
most prominent generalization of the famous Gibbard-Satterthwaite
theorem [Gibbard, 1973, Satterthwaite, 1975]. While the Gibbard-
Satterthwaite theorem says that no resolute SCF can be both strat-
egyproof and non-dictatorial, the Duggan-Schwartz theorem drops
the restriction of resoluteness at the cost of introducing the strong
notions of O- and P-strategyproofness as well as a strengthened ver-
sion of non-dictatorship: the condition of not having a nominator. A
nominator is an agent whose most preferred alternative is always se- nominator

lected as a winner (but not necessarily uniquely). In addition, for
every alternative there must be a preference profile for which the
alternative is selected as the unique winner—a very mild condition
called non-imposition, which, for instance, is much weaker than Pareto non-imposition

optimality.
Formally, the statement of the Duggan-Schwartz theorem then is as Duggan-Schwartz

theoremfollows [for more details and a direct proof, see e.g., Taylor, 2005].20

Theorem 3.1 (Duggan and Schwartz, 2000)
Let m > 3 and n > 2. Then any non-imposed SCF that is O-
and P-strategyproof must have a nominator.

Reduction to a Finite Instance

In order to reduce the Duggan-Schwartz theorem to a finite instance,
one can apply two inductive lemmas, one for the number of alterna-
tives and one for the number of agents. In the case of the Duggan-
Schwartz theorem, these lemmas are:

20 The theorem also holds for n = 1. Yet we state the theorem for n > 2 in favor of a
more instructive exposition. Also note that an inductive lemma would likely require
n > 2 [cf. Tang and Lin, 2009]. For m 6 2, majority rule satisfies the axioms.
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Lemma 3.2
Let m > 3 and n > 2. If f is a non-imposed SCF for m+ 1 al-
ternatives and n agents that is O- and P-strategyproof and has
no nominator, then also for m alternatives and n agents there
is an SCF f ′ that satisfies the same properties.

Lemma 3.3
Let m > 3 and n > 2. If f is a non-imposed SCF for m alterna-
tives and n+ 1 agents that is O- and P-strategyproof and has
no nominator, then also for m alternatives and n agents there
is an SCF f ′ that satisfies the same properties.

In many instances (e.g., Publications [1], [2], and [4]), such induc-
tive lemmas are rather easy to proof. This is not the case for the
Duggan-Schwartz theorem: while Theorem 3.1 itself, of course, im-
plies Lemmas 3.2 and 3.3, we are not aware of a simpler proof. Since,
for the induction on the number of alternatives m, only the condition
of not having a nominator is problematic, and in order to still survey
the basic proof technique here, we strengthen non-nominatorship to
anonymity and present a proof for the corresponding, slightly weaker
Lemma 3.4. Unfortunately, the induction on the number of agents n
does—even with anonymity instead of non-nominatorship—not suc-
ceed with the standard techniques of cloning a fixed agent, cloning
an agent based on his preferences, or adding a constant agent.

In the proof of Lemma 3.4 we occasionally apply an observation by
Taylor [2005, p. 82] that any non-imposed and P-strategyproof SCF
f may only choose from top sets. A top set XR ⊂ A of a preferencetop set

profile R is a set of alternatives such that every agent prefers any
x ∈ XR over any y /∈ XR. If a non-imposed and P-strategyproof SCF
f chooses an alternative outside the top set, i.e., if there is x ∈ f(R)
with x /∈ XR, then we could construct a P-manipulation instance by
iteratively, i.e., agent by agent, moving from R to a profile R ′ with
f(R ′) = {y} for some y ∈ XR: the profile R ′ exists by non-imposition
and at some stage the worst alternative for some manipulating agent
would increase since y �i x for all i ∈ N.

Lemma 3.4
Letm > 3 and n > 2. If f is a non-imposed, anonymous SCF for
m+ 1 alternatives and n agents that is O- and P-strategyproof,
then also for m alternatives and n agents there is an SCF f ′ that
satisfies the same properties.

Proof. Let f be a non-imposed, anonymous SCF for m+ 1 alternatives
and n agents that is O- and P-strategyproof. We define fe to be the
restriction of f tom alternatives based on preference profiles in which
alternative e ∈ A is ranked last by all agents. Formally,

fe(R) := f(R
+e),
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where R+e is the preference profile obtained from R by adding a new
alternative e in the last position for all agents. This restriction of f is a
well-defined SCF since alternative e is not contained in a top set and,
hence, cannot be contained in f(R+e).

We now need to show that for some alternative e the restriction fe
is a non-imposed, anonymous, O- and P-strategyproof SCF. Since
this turns out to work for any e ∈ A, we just pick e arbitrarily.

• Non-imposition: Consider a preference profile Rwith all agents
agreeing on some alternative x as their top choice. Then {x} is a
top set also in R+e and hence fe(R) = f(R+e) = {x}.

• Anonymity: The fact that fe is an anonymous SCF carries over
from f directly. To see this, let R be a preference profile and
π : N→ N be a permutation of agents. Then

fe(R) = f(R
+e) = f(π(R+e)) = f(π(R)+e) = fe(π(R))

since f is anonymous and since the operations of renaming
agents and adding e at the bottom are independent of each
other.

• O- and P-strategyproofness: Let E be the optimist (O) or pes-
simist (P) set extension.21 Assume for a contradiction that fe is
not E-strategyproof. Then there exist preference profiles R and
R ′ and an agent i ∈ N such that fe(R ′) �E

i fe(R). But since
fe(R

′) = f(R ′+e) and fe(R) = f(R+e), we get

f(R ′+e) �E
i ′ f(R

+e),

where �i ′ stands for the preferences of agent i in R+e. This
contradicts E-strategyproofness of f.

By applying Lemmas 3.2 and 3.3, we can reduce the Duggan-
Schwartz theorem to a finite instance, which then only concerns 3 al-
ternatives and 2 agents.

Lemma 3.5
Let m = 3 and n = 2. Then any non-imposed SCF that is O-
and P-strategyproof must have a nominator.

Next, we encode this finite instance in propositional logic and prove
it using a SAT solver.

Encoding of the Base Case

Our encoding of Lemma 3.5 is a basic version (and resembles parts)
of what we used in Publications [1] and [2]. The idea is to encode an
arbitrary SCF via Boolean variables cR,X—one variable for each pair
of a preference profile R and a non-empty set of alternatives X. Each

21 In fact, strategyproofness can be shown for a large class of set extensions E (see
Publication [1] for details) rather than just the specific two considered here.



22 methodology

such variable cR,X then stands for f(R) = X, i.e., the choice set X being
assigned to preference profile R.22 In order to model Lemma 3.5,
every (implicit and explicit) property of f now needs to be encoded
as a constraint using only Boolean operators on these variables. After
encoding these properties we then employ a SAT solver to verify that
this combination of properties is unsatisfiable, proving the desired
result, Lemma 3.5.

We have the following relevant properties:

• Functionality of the SCF f (Func),

• E-strategyproofness (for E = O, P) (E-SP),

• Non-imposition (NImp), and

• Non-nominator (NNom).

Let us start with (Func), which has a straightforward encoding in
propositional logic. The property says that for each preference profile
R there is exactly one set X such that the variable cR,X is set to true.23

Formally,

(∀R) ((∃X) cR,X ∧ (∀Y,Z) Y 6= Z→ ¬(cR,Y ∧ cR,Z))

≡
∧

R



(∨

X

cR,X

)
∧
∧

Y 6=Z
(¬cR,Y ∨¬cR,Z)


 . (Func)

Note that we omit the domains of the quantifiers for the sake of
brevity whenever they are clear from the notation or context.

Two simple tricks are applied to reach the purely propositional
statement in (Func). First, all universal and existential quantifiers are
replaceable by conjunctions and disjunctions, respectively, because of
the finite universes they quantify over. Second, conditions which are
not propositional, such as Y 6= Z, can be easily taken care of by a
computer program when instantiating the constraints.

22 An encoding based on variables cR,x (with intended meaning x ∈ f(R)) would also
be possible but is less efficient for the notion of strategyproofness.

23 There exist less direct, but more efficient encodings of the “at least one” and “at most
one” properties [see, e.g., Hoelldobler and Nguyen, 2013]. In our encoding, however,
the functionality of the SCF is never a performance critical axiom, which is why we
stick to the simpler formulation.
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The second of these tricks also plays a major role when it comes to
E-strategyproofness (for any set extension E), one of the more com-
plex, but still manageable conditions to be encoded:

(∀R, i,%)¬
(
f(Ri 7→%) �E

i f(R)
)

≡ (∀R, i,%,X, Y)
((
f(Ri 7→% = X)∧ f(R) = Y

)
→ ¬X �E

i Y
)

≡ (∀R, i,%,X, Y)
(
X �E

i Y → ¬
(
f(Ri 7→%) = X∧ f(R) = Y

))

≡ (∀R, i,%,X, Y)
(
X �E

i Y →
(
f(Ri 7→%) 6= X∨ f(R) 6= Y

))

≡
∧

R

∧

i

∧

%

∧

X,Y
X�E

i Y

(
¬cRi 7→%,X ∨¬cR,Y

)
, (E-SP)

where the symbol Ri 7→% stands for the preference profile obtained
from R by replacing agent i’s preferences with %. This, just like X �E

i

Y, is easily computable by a computer program while instantiating
the formula.

The properties of non-imposition (NImp) and non-nominator
(NNom) are more straightforward to encode again; the latter con-
dition, however, requires transformation into conjunctive normal
form (CNF),24 which is efficiently achieved by replacing the term∧
X3topR,i

¬cR,X by helper variables hR,i [Tseitin’s encoding, see, e.g.,
Tseitin, 1983]. Note that topR,i is used to denote the top-ranked al-
ternative according to agent i’s preference relation (within the prefer-
ence profile R).

(∀x)(∃R)f(R) = {x}

≡
∧

x

∨

R

cR,{x} (NImp)

¬(∃i)(∀R) topR,i ∈ f(R)
≡ (∀i)(∃R) topR,i /∈ f(R)

≡ (∀i)(∃R)(∀X)
(

topR,i ∈ X→ f(R) 6= X
)

≡
∧

i

∨

R

∧

X3topR,i

¬cR,X

≡
∧

i

∨

R

hR,i (NNom)

As indicated already, in the last step we replace the term∧
X3topR,i

¬cR,X by helper variables hR,i in order to arrive at a for-

24 Practically all SAT solvers expect the input formula to be in CNF.
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mula in CNF. This entails the following definitions that also have to
be included in the encoding:

(∀R, i)


 hR,i ←→


 ∧

X3topR,i

¬cR,X






≡ (∀R, i)




¬hR,i ∨


 ∧

X3topR,i

¬cR,X






∧


hR,i ∨¬


 ∧

X3topR,i

¬cR,X








≡ (∀R, i)


 ∧

X3topR,i

(¬hR,i ∨¬cR,X)

∧


hR,i ∨

∨

X3topR,i

cR,X




 .

(H)

Putting together the constraints (Func), (E-SP) for E ∈ {O, P},
(NImp), (NNom), and (H) for m = 3 and n = 2, we arrive at a propo-
sitional formula in CNF (with 324 variables and 13253 clauses) that
current SAT solvers can detect to be unsatisfiable within less than one
second.

3.2 further solving techniques applied in
this thesis

Apart from SAT, which takes the most prominent role in this thesis
project, we also applied other solving methodologies to gain insights
in social choice theory:

• linear programming (LP), applied as an auxiliary tool for iden-
tifying inefficient lotteries (Publication [4]) and for calculating
the bipartisan set (Publications [1] and [2]),

• integer programming (IP), to show the non-existence of a prefer-
ence profile satisfying specific conditions regardless of the number
of agents (Publication [5]),

• answer set programming (ASP), as a more expressive alterna-
tive to SAT for questions regarding k-majority digraphs (Pub-
lication [6]), also applied as an auxiliary tool for finding com-
pletions of incompletely specified preference relations (Publica-
tion [5]), and
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• satisfiability modulo theories (SMT), a powerful methodology
enabling the treatment of the infinite domain of lotteries over
alternatives (Publication [4]).

While linear and integer programming are well-known and estab-
lished paradigms, in this section, we briefly introduce the concept of
ASP solving and describe exemplarily how an axiom from probabilistic
social choice can be encoded as an SMT instance.

Answer Set Programming (ASP)

ASP [see Gebser et al., 2012, for a comprehensive introduction] is a rel-
atively new logic programming paradigm that offers a compact and
expressive modelling language in conjunction with state-of-the-art
solving performance. Indeed, in our experiments in Publication [6],
we could hardly find a performance gap between current SAT and
ASP solvers despite the richer modelling language.

There are two key differences between SAT and ASP solving: first,
ASP works with a different logic, called stable model semantics, in
which statements are only considered true if they are provable, and,
second, ASP solving comprises an initial grounding step, in which
first-order statements are automatically converted to propositional
statements. While, for the user, the former is mostly a design choice,
the latter—together with the availability of arithmetic operations and
predicates—significantly reduces the effort required for modelling
(i.e., encoding) a given problem. On the flipside, the somewhat un-
usual semantics might make ASP less accessible compared to classical
techniques, such as SAT solving.

Satisfiability Modulo Theories (SMT)

SMT instances can be viewed as extensions of SAT instances, in
which predicates from a given theory replace simple propositional, i.e.,
Boolean, variables. In other words, SMT instances are Boolean com-
binations of statements from a given theory. As an example, consider
the SAT instance p1 ∧ (p2 ∨ p3) in comparison to the SMT instance
(for the theory of linear arithmetic) x < 5+ y∧ (y 6 −2∨ x > 1).

There are SMT solvers for very different theories ranging from spe-
cific data types (such as arrays or bitvectors) to different versions of
arithmetic (integer vs. real, linear vs. non-linear, etc). Similar to SAT,
also for SMT there is an active community that runs annual competi-
tions [Barrett et al., 2013]. In practice, SMT solvers are typically used
as backends for verification tasks, such as the verification of software.

We apply SMT solvers in Publication [4] to model problems from
probabilistic social choice. Doing the same via SAT appears hopeless
because one would have to discretize the space of lotteries over alter-
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natives. In the theory of (quantifier-free) linear real arithmetic, on the
other hand, such lotteries are easily expressible. The corresponding
(highly non-trivial) encoding is presented in Publication [4]; here we
only display an SMT-formalization of a toy axiom saying that a lot-
tery p should not be (weakly) SD-preferred to a lottery q by an agent
with preferences %i, i.e., p 6%SD

i q.
For this purpose, we define variables px and qx for all x ∈ A, and

make sure these actually denote lotteries over A:∑
x∈A

rx = 1∧
∧

x∈A
rx > 0 for r ∈ {p,q}.

Then the forbidden SD-preference can be encoded in a straightfor-
ward way as:

p 6%SD
i q

≡¬


(∀x ∈ A)

∑
y%ix

p(y) >
∑
y%ix

q(y)




≡ (∃x ∈ A)
∑
y%ix

p(y) <
∑
y%ix

q(y)

≡
∨

x∈A

∑
y%ix

py <
∑
y%ix

qy.

If we instantiate this axiom for A = {a,b, c,d} and the individual
preferences a �i b �i c �i d we, for instance, get

∨

x∈A

∑
y%ix

py <
∑
y%ix

qy

≡ (pa < qa)∨

(pa + pb < qa + qb)∨

(pa + pb + pc < qa + qb + qc) ,

where we have omitted the two final sums as they are both trivially
equal to 1.

Note that, in this form, the axiom cannot be modelled as a linear
program since linear programs do not allow disjunctions. As an SMT
axiom, however, it is perfectly well-formed.

Encodings of other axioms are similar in style, but require more
evolved techniques and additional insights; for SD-strategyproofness
and SD-efficiency, as well as neutrality and anonymity (which are
encoded implicitly), these techniques and insights are presented in
Publication [4].
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S U M M A R Y O F P U B L I C AT I O N S A N D A D D I T I O N A L
R E S U LT S

This chapter provides an overview of the results that we obtained
during this thesis project. The corresponding original publications
are then included in full in Part II.

For the purpose of summarizing the publications, we classify them
into three categories based on their methodological contribution. This
classification is reflected in the Sections 4.1 to 4.3, in each of which
we briefly review the respective articles and describe how they are
connected. The methodological categories are as follows.

First and most importantly, in Section 4.1 we inductively prove
novel results about the incompatibility of seemingly basic conditions
such as strategyproofness and economic efficiency. As explained ear-
lier, the main components of the respective proofs are situated in
the respective induction bases and are established by means of au-
tomated solving techniques (SAT and SMT). We also describe in de-
tail how human-readable (or at least human-verifiable) proofs of these
computer-aided results can be extracted using our approach.

Second, it turns out that solving-based algorithms (in particular,
based on SAT, ASP, and LP) perform well for computational tasks in
social choice. Besides being interesting in their own right, these al-
gorithms can also be applied not only to generate counterexamples
but also to prove the correctness and minimality of these counterex-
amples. Corresponding advances and results are described in Sec-
tion 4.2.

And, finally, as a third category, we explain in Section 4.3 how
computers can assist for some practical concerns of social choice.

4.1 computer-aided theorem proving

With Publications [1], [2], [3], and [4], extensions to the computer-
aided approach to theorem proving by Tang and Lin [2009] (which
has also been exemplified in Section 3.1) lie at the core of this thesis.
The extensions are increasingly sophisticated from paper to paper in
order to capture more and more complex settings and axioms. In
particular, the setting progresses from set-valued social choice ([1],
[2], [3]) to probabilistic social choice ([4]).

27
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Finding Strategyproof Social Choice Functions via SAT Solving

Publication [1] and its encoding (which captures notions of strate-
gyproofness for set-valued social choice) are to be seen as the first
extension to the general approach. Thus, the article also offers the
most extensive treatment of the method itself and how it extends pre-
vious work. The novel technique of proof extraction is described in
most detail here, too. Publications [2], [3], and [4] then subsequently
build on the methodological insights from this paper.

Publication [1] offers a range of the results regarding the popular
notions of Kelly- and Fishburn-strategyproofness (cf. Section 2.2.1),
which are all obtained by applying the computer-aided method to
differing axioms or settings, thereby showcasing the universality and
flexibility of the approach. The publication’s main result, however,
clearly stands out:

Theorem 4.1 (Brandt and G., 2016)
For any number of alternatives m > 5 there is no majoritarian
SCF that satisfies Fishburn-strategyproofness and Pareto opti-Fishburn-

strategyproofness mality.

This theorem confirms the suspicion that Fishburn-strategyproofness
may only be satisfied by rather indiscriminating SCFs such as the
top cycle [Feldman, 1979, Brandt and Brill, 2011, Sanver and Zwicker,
2012] and can be shown to even hold without the assumption of neu-
trality.25

It was noticed by Peters [2016] that Theorem 4.1 can even be ex-
tended to pairwise SCFs,26 based upon the computer-aided resultspairwise

contained in Publication [1].27

The second key result of Publication [1] demonstrates that also
possibility results can be achieved with the computer-aided method.
While previous contributions [see, e.g., Brandt, 2015] suggested that
the bipartisan set (BP), an attractive majoritarian SCF, might be the
finest majoritarian SCF satisfying Kelly-strategyproofness, we find
an even finer such SCF.28 This SCF, however, fails to satisfy other
natural conditions (e.g., composition-consistency), which is why we

25 Every majoritarian SCF has to be neutral according to our definitions.
26 An SCF is pairwise if its outcomes only depend upon the pairwise majority margins

of the preference profiles. In other words, the SCF may depend upon the weighted
majority relations.

27 In Remark 1 of Publication [1] we state that Theorem 4.1 also holds for a weaker
variant of Fishburn-strategyproofness, in which the manipulator is only allowed to
swap two adjacent alternatives. This observation stands in conflict with the existence
of a pairwise, Fishburn-strategyproof, and Pareto optimal SCF (since otherwise we
could define a majoritarian SCF that satisfies Pareto optimality and this weaker vari-
ant of Fishburn-strategyproofness based upon the weighted tournaments with only
weights 1).

28 An SCF f is finer than (or, a refinement of) another SCF g if f(R) ⊆ g(R) for all
preference profiles R.
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phrase the result negatively and view it mostly as an insight into the
notion of Kelly-strategyproofness.

Theorem 4.2 (Brandt and G., 2016)
There exists a majoritarian Condorcet extension that refines BP
and is still Kelly-strategyproof. As a consequence, BP is not Kelly-

strategyproofnesseven a finest majoritarian Condorcet extension satisfying Kelly-
strategyproofness.

We furthermore analyze whether BP can be characterized by com-
position-consistency in conjunction with further natural properties.
While we are not able to resolve this question completely, we are able
to provide a set of insightful results on finite domains that might
guide the search for such a characterization in the future.

For these additional results, we required an encoding of the prop-
erty of composition-consistency, which relates outcomes for tourna-
ments of different sizes (which is not possible in our original formal-
ization). A technique for encoding this property had to be omitted
from the paper and is presented in Section 4.4.1. In addition, we also
conduct a study of the discriminatory power of Kelly-strategyproof
SCFs and report on our findings before we turn to the novel technique
of proof extraction.

Proof extraction enables us to construct a human-readable proof proof extraction

from a certificate of unsatisfiability, which is generated automatically
by the SAT solver. In more detail, the SAT solver extracts a minimal
unsatisfiable set (MUS) of clauses, i.e., a set of clauses that is unsatis- minimal

unsatisfiable setfiable but any of its subsets is satisfiable. Given our encoding, such
an MUS represents a list of “ingredients” for the proof of the result
under consideration, which can then serve as the basis for a human-
readable proof. We find a small MUS with only 16 clauses and decode
it (with machine support) into a human-readable proof for the main
result that occupies approximately two pages and, furthermore, car-
ries information on the (so far implicit) number of agents required.

Strategic Abstention Based on Preference Extensions: Positive Re-
sults and Computer-generated Impossibilities

Publication [2] and [3] build upon the successful encoding and tech-
niques from Publication [1] and extend it to the notion of participa-
tion. An SCF f satisfies participation, if no agent can benefit from participation

abstaining the election, or, formally, if there is no preference profile R
and agent i such that

f(R−i) �E
i f(R),

where R−i stands for the preference profile obtained by removing
agent i from R. Note that this also requires enriching the mathemati-
cal model for SCFs by variable electorates.
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In practice, extending the framework to participation for majoritar-
ian SCFs (Publication [2]) means to also allow for majority relations
with ties (as one has to deal with variable electorates and, thus, can-
not assume an odd number of voters anymore). In conjunction with
allowing weak individual preferences, this seemingly innocent exten-
sion leads to a massive blow-up of the corresponding search spaces
as Table 4.1 shows.

|A| Publication [1] Publication [2]

3 49 823,543
4 50,625 ∼ 2.5 · 1049
5 ∼ 7.9 · 1017 ∼ 9.4 · 10867
6 ∼ 5.8 · 10100 ∼ 6.8 · 1038649

Table 4.1: Number of different majoritarian SCFs. While in Publication [1]
we could assume an odd number of agents with strict preferences,
the concept of participation requires us to deal with variable elec-
torates, and therefore weak majority relations, in Publication [2].

Yet, by again using canonical representations of the majority rela-
tions (with respect to neutrality) and by proving lemmas which are
similar to the ones in Publication [1], we are able to obtain the fol-
lowing main result.29 It is presented in the paper together with a
human-readable proof, which was extracted with the tools from Pub-
lication [1].

Theorem 4.3 (Brandl, Brandt, G., and Hofbauer, 2015)
There is no majoritarian and Pareto optimal SCF that satisfies
Fishburn-participation if |A| > 4.Fishburn-

participation

By simple adjustments one also gets that this impossibility still holds
for strict preferences, but then requires at least five alternatives. A
proof for this additional result could also theoretically be extracted
from an MUS, which, however, is a tedious task given that it contains
124 instances of abstaining agents (compared to 10 such instances for
Theorem 4.3). Furthermore, not many additional insights are to be
expected from this proof by (massive) case distinction.

Optimal Bounds for the No-Show Paradox via SAT Solving

In contrast to the previous publication, the computer-generated
proofs in Publication [3] actually provide new insights into the prob-
lem: they exhibit a symmetric structure, which had not been ex-
ploited in any of the similar manual proofs before. The theorems
in this publication are multiple stronger versions of the famous no-
show paradox by Moulin [1988]: for each Condorcet extension there isno-show paradox

29 Further results include insights regarding the cardinality of choice sets returned by
SCFs that satisfy participation. These are reflected in Section 5.2 of Publication [2].
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a situation in which an agent is better off by abstaining the election if
there are at least 4 alternatives and 25 agents.

The high number of agents required for this statement clearly
stands out, especially when compared to similar results. One might
even suspect that there are Condorcet extensions that satisfy partici-
pation for any purpose involving only a small number of agents. We
answer these questions by providing tight bounds not only for the
resolute case, but also for set-valued and probabilistic social choice.
The main results for resolute rules, which were all obtained via SAT
solving are:

Theorem 4.4 (Brandt, G., and Peters, 2016)
There is no Condorcet extension that satisfies participation for
m > 4 and n > 12.

Theorem 4.5 (Brandt, G., and Peters, 2016)
There is a Condorcet extension f that satisfies participation for
m = 4 and n 6 11. Moreover, f is pairwise, Pareto optimal, and
a refinement of the top cycle.

Methodologically, the main advances of this paper are the transfer
to pairwise voting rules (i.e., rules that only depend on the anony-
mized comparisons between pairs of alternatives) and an incremen-
tal proving technique, the latter of which we gratefully attribute to
D. Peters. This incremental technique uses insights from computer-
generated proofs of weaker statements to heuristically search for a
proof of the desired statement, which would not be tractable directly
because of the immensely large search space.

Proving the Incompatibility of Efficiency and Strategyproofness via
SMT Solving

The induction-based computer-aided proving methods of this the-
sis culminate in Publication [4] where many of the previously de-
veloped techniques and an advanced encoding in the language of
SMT (with linear real arithmetic as its theory) are applied to prove satisfiability modulo

theoriesa conjecture by Aziz et al. [2013]. The conjecture forms a common
generalization of important known results from social choice [Aziz
et al., 2013, 2014, Brandl et al., 2016b] and strengthens statements that
were shown within the domain of assignment [Zhou, 1990, Bogomol-
naia and Moulin, 2001, Katta and Sethuraman, 2006]. The result is
stated in Theorem 4.6; for formal definitions of these notions of strat-
egyproofness and efficiency, which are based on utility functions, the
reader is referred to Publication [4]. We will, however, see that they
are equivalent to SD-strategyproofness and -efficiency, respectively.
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Theorem 4.6 (Brandl, Brandt, and G., 2016)
If m > 4 and n > 4, there is no anonymous and neutral so-
cial decision scheme (SDS) that satisfies efficiency and strate-
gyproofness.

Fortunately, the inductive lemma to reduce Theorem 4.6 to its base
case of m = n = 4 has a straightforward proof. However, compared
to previous contributions, two main challenges of infinite domainsencoding infinite

domains have to be overcome when modelling the base case:

1. preferences are modelled via utility functions and

2. the outcomes of the aggregation procedure are lotteries,

both of which do, when interpreted naïvely, not admit a finite repre-
sentation.

The first of these challenges is solved analytically whereas the lat-
ter is treated by technical means. Utility functions (1.) are handled
by resorting to the concept of stochastic dominance, which allows rep-
resenting both, strategyproofness and efficiency, by only considering
ordinal preferences (i.e., preference relations) rather than full utility
representations. This leads to the following simplified version of The-
orem 4.6:

Theorem 4.7 (Brandl, Brandt, and G., 2016)
If m > 4 and n > 4, there is no anonymous and neutral so-
cial decision scheme (SDS) that satisfies SD-efficiency and SD-SD-efficiency

strategyproofness.SD-
strategyproofness

The challenge of representing lotteries (2.), on the other hand, can
be transferred to the SMT solver. As described in some more detail
in Section 3.2, it is an advantage of SMT over SAT that statements
from an underlying theory (here: the theory of quantifier-free linear
real arithmetic) can take the place of purely boolean variables. This
enables modelling an unknown SDS by m real variables for each pref-
erence profile R (variable pR,x represents the probability assigned to
alternative x at profile R).

Other (less significant) methodological challenges include

• representing anonymity and neutrality without quantifying
over all permutations,

• encoding efficiency without quantifying over all lotteries,

• finding a domain large enough for the impossibility but small
enough to be solvable, and

• gaining confidence in the result through a human-verifiable en-
coding.
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Resolving these challenges again involves a mixture of computer-
aided and manual effort, details of which are to be found in Publi-
cation [4].

In addition to what is stated in the paper, Eberl [2016] was able to
completely verify the results of Publication [4] within the Isabelle

proof assistant and even produced (in a semi-automatical way) a very
complex, but in principle human-readable proof of the main result.

4.2 solving-based algorithms

In Publications [6] and [7] we develop algorithms for computational
problems in social choice theory and use them to improve our under-
standing of the notions of k-majority digraphs and Condorcet win-
ning sets, respectively. These algorithms have in common that they
are based on solving methodologies (here: SAT and ASP), use corre-
sponding solvers as backends, and compute preference profiles that
satisfy certain properties. The main idea is simple: encode an un-
known preference profile together with desirable properties as a sat-
isfiability problem and let the SAT solver compute whether such a
profile exists.30 Interestingly, these solving-based algorithms outper-
form existing tailor-made approaches (to the specific questions con-
sidered).

In Publication [5] we apply these and similar techniques to gain
insights (mostly by means of computing counterexamples) into the
connection between the McKelvey uncovered set and the notion of
Pareto optimality. Further applications are:

• an experimental analysis of how many agents it takes to obtain
the majority relations of real-world and generated preference
profiles (Publication [6]), and

• finding a minimal preference profile with Condorcet dimen-
sion 3 (Publication [7]).

A Note on the McKelvey Uncovered Set and Pareto Optimality

Even though the main theorem of Publication [5] is obtained manu-
ally, computer-aided methods (which are backed by solving method-
ologies) establish the boundaries of this result. To this end, we con-
sider the two most natural extensions of the main theorem and show,
by computing suitable counterexamples, that neither of them holds.

Let us first review the main result before we turn to its potential
extensions. If we assume that only the pairwise majority relation of
a preference profile R is known, one may pose the question of which

30 In some sense this is similar to the base case analysis in Chapter 4.1, where we
encoded aggregation functions rather than preference profiles.
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alternatives are guaranteed to be Pareto optimal (cf. Definition 2.2).
Theorem 4.8 implies that these are exactly the alternatives in the Mc-
Kelvey uncovered set UC(R) [Bordes, 1983, McKelvey, 1986].31,32 In ad-McKelvey uncovered

set dition, Theorem 4.8 establishes the existence of a preference profile
in which precisely the alternatives of the McKelvey uncovered set
are Pareto optimal. Formally, the statement is as follows (recall that
PO(R) denotes the set of all alternatives that are Pareto optimal in R).

Theorem 4.8 (Brandt, G., and Harrenstein, 2016)
For every preference profile R, there is another preference pro-
file R ′ with the same majority relation as R such that

UC(R) = PO(R ′).

As a consequence, the McKelvey uncovered set can be characterized
as the coarsest majoritarian SCF that satisfies Pareto optimality:

Corollary 4.9 (Brandt, G., and Harrenstein, 2016)
A majoritarian SCF f is Pareto optimal iff it is a refinement of
the McKelvey uncovered set (i.e., f(R) ⊆ UC(R) for all prefer-
ence profiles R).

Note that the proof of Theorem 4.8 crucially relies on the assump-
tion of variable electorates (i.e., R might have a different number ofvariable electorates

agents compared to R ′). Using computer-aided methods, which are
based on the algorithms from Publication [6], we show that this is not
simply a deficiency of the proof, but actually cannot be avoided:

Proposition 4.10 (Brandt, G., and Harrenstein, 2016)
There is a preference profile R such that

UC(R) 6= PO(R ′)

for all preference profiles R ′ with the same number of agents
and the same majority relation as R.

We obtain the corresponding counterexample by exhaustively iterat-
ing through tournaments (i.e., majority relations for odd numbers
of agents) and checking for each covering edge whether it can be
turned into a Pareto edge with the same number of agents. Hence,
the provided counterexample actually establishes the stronger state-
ment that turning even just an individual covering edge into a Pareto
edge might imply a change in the number of agents. This implies

31 The McKelvey uncovered set is a generalization to weak tournaments of the standard
uncovered set. Among the commonly described generalizations it appears to be the
most appealing one [see, e.g., Dutta and Laslier, 1999, Brandt and Fischer, 2008].
For an overview of the theory of covering relations and uncovered sets, see the
comprehensive survey paper by Duggan [2013].

32 Note that the uncovered set is a concept based only on the majority relation, whereas
Pareto optimality requires information from the underlying preference profile.
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that, for arbitrary fixed sizes of the electorate, the McKelvey uncov-
ered set cannot be characterized via Pareto optimality (as the set of
necessarily Pareto optimal alternatives).

A further natural extension of Theorem 4.8 would be to show equiv-
alence of the Pareto relation and the McKelvey covering relation (rather
than just the corresponding sets of alternatives). This time, we apply
answer set programming (ASP) to a specific tournament in order to
generate an integer program (IP), which then establishes the following
proposition.

Proposition 4.11 (Brandt, G., and Harrenstein, 2016)
There is a preference profile R such that, for no preference pro-
file R ′ with the same majority relation as R, the Pareto relation
of R ′ agrees with the covering relation of R.

For the proof of Proposition 4.11 an IP is needed rather than the
SAT-based approach from Publication [6], since with latter approach
one can only show the non-existence of suitable preference profiles
for fixed (small) numbers of agents whereas with an IP one can ask
for a solution with an arbitrary number of agents.33

Identifying k-majority Digraphs via SAT Solving

The techniques developed in Publication [6] form the basis of similar
algorithms which we apply in the other publications of this section.

The research problem is to develop a solving-based algorithm that
determines, given a (weak) tournament T and an integer k, whether a
preference profile R exists which contains exactly k agents and which
has T as its majority relation. If such a profile exists, T is also referred
to as a k-majority digraph and we say that T is inducible by k agents. k-majority digraph

k-inducibilityIn Publication [6], we present such algorithms backed by SAT
and ASP solving, and apply them to improve our understanding of
k-majority digraphs in exhaustive, empirical and stochastic experi-
ments. We were surprised by the significant performance improve-
ment over traditional approaches (for instance, based upon a char-
acterization of 3-majority digraphs by Brandt et al. [2013]). As an
example for k = 3, the SAT-based algorithm solves many randomly
sampled instances with up to 100 alternatives (corresponding to a
search space of roughly 10473 anonymous preference profiles) within
seconds, whereas the traditional approach requires 20 minutes for
8 alternatives already.

Our two main findings regarding k-majority digraphs are:

33 Even though it is not a problem here, in general one has to be careful about the nu-
merical stability of solutions when dealing with IP. Many SMT solvers are safe from
these potential issues (as they use exact arithmetic at the cost of lower computational
efficiency).
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• All tournaments with up to 7 nodes are inducible by 3 agents
(also shown independently by Eggermont et al. [2013] and con-
firming a conjecture by Shepardson and Tovey [2009]).

• All of the millions of tournaments we randomly sampled (by
means of different commonly used preference models) are in-
ducible by 5 agents (and 8 agents for the case of weak tourna-
ments). This is surprising, given a theoretical result by Stearns
[1959], which guarantees the existence of tournaments which
cannot be induced by k agents, for any k ∈N.

While the encoding presented in this publication was optimized
for performance, there are other, more flexible (and slightly less well-
performing) encodings, one of which we lay out in Section 4.4.2. Gen-
erally, however, even more performant encodings can easily be ex-
tended by additional constraints. This includes forcing a particular
set of edges to be Pareto edges, or ensuring that no small Condorcet
winning sets exist, which we made use of in Publication [5] and Pub-
lication [7], respectively.

Finding preference profiles of Condorcet dimension k via SAT

Elkind et al. [2011] introduce the notion of Condorcet winning sets
of a preference profile R as a set-valued generalization of the concept
of a Condorcet winner. For each alternative x outside a Condorcet
winning set C, there is a majority of agents such that each memberCondorcet winning

set of this majority finds at least one alternative within C more desirable
than x.

Elkind et al. then also define the notion of the Condorcet dimensionCondorcet
dimension dimC(R) of a preference profile R as the size of the smallest Condorcet

winning set it admits. Profiles with a Condorcet winner hence have
Condorcet dimension 1 and high dimensions appear to indicate very
diverse (and hence difficult to aggregate) preferences.

The short Publication [7] serves the purpose of providing a minimal
example of a preference profile R which has Condorcet dimension
dimC(R) = 3. We find that such a profile contains 6 agents and
alternatives, which improves previously known examples in both the
number of agents and the number of alternatives.34

Methodologically, the publication can be viewed as an extension
to Publication [6] in that a very similar approach leads to success.
The difference lies in an additional (complex) constraint for the non-
existence of small Condorcet winning sets, which then replaces the
constraint for majority relations. Despite the efficient approach, it is

34 The profile provided by Elkind et al. [2011] consists of 15 agents and alternatives.
Other examples were of sizes (7, 21), (8, 13), (11, 11), and (12, 12) (agents, alterna-
tives).
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still open whether a preference profile with Condorcet dimension 4
exists.

4.3 practical contributions

In contrast to the other publications in this thesis, Publications [8] and
[9] do not make extensive use of solving methodologies.35 Yet, they
heavily rely on computers to solve practical concerns of social choice.
While Publication [8] is a theoretical contribution to a practical prob-
lem (evaluating the probabilities with which certain voting paradoxes
occur), Publication [9] has a purely applied focus and provides an on-
line tool for practical preference aggregation among human agents.

Analyzing the Practical Relevance of Voting Paradoxes via Ehrhart
Theory, Computer Simulations, and Empirical Data

The axiomatic method of social choice theory judges the quality of
voting rules based on whether these rules satisfy certain desirable
properties, so-called axioms. Failure to satisfy a natural axiom, such
as not selecting the Condorcet loser, is often also referred to as a voting
paradox. Classical social choice then does not distinguish whether a
paradox occurs at a single preference profile or at many (or even all)
preference profiles.

In Publication [8] we take a much more practical perspective and
analyze how often two common paradoxes, the Condorcet loser para-
dox (CLP) and the agenda contraction paradox (ACP), occur for cer- Condorcet loser

paradox

agenda contraction
paradox

tain voting rules and under common assumptions about the distri-
bution of preferences. While for some specific settings tailor-made
approaches exist and can be carried out purely on analytical grounds,
computers can contribute significantly to answering these types of
questions flexibly, quickly and with high precision. Interestingly,
even the somewhat universal, analytical approach via Ehrhart theory, Ehrhart theory

which yields exact probabilities, requires expensive computations that
would not be feasible without computer support or powerful soft-
ware.

Our main findings are:

1. Despite being viewed as a major flaw of some Condorcet ex-
tensions, the CLP only occurs with negligible probabilities and
hence is of no practical relevance.

2. The ACP, on the other hand, frequently occurs under various
distributional assumptions about the agents’ preferences. The
extent to which it is real threat, however, strongly depends on

35 Applications of solvers are limited to the computation of choice rules (Young’s,
Dodgson’s, and Kemeny’s rule via an IP, and maximal lotteries via an LP).
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the voting rule, the underlying distribution of preferences, and,
somewhat surprisingly, the parity of the number of agents.

Pnyx: a Powerful and User-friendly Tool for Preference Aggregation

The web-based tool Pnyx (pnyx.dss.in.tum.de) is the result of an
effort to provide the advanced methods studied in social choice to
a broader audience.36 Under the hood, the tool also makes use of
linear and integer programming for the computation of maximal lot-
teries and Kemeny’s rule, respectively. These techniques, however,
are rather straightforward and well-known.

Thus, the main focus of the project, which had Publication [9]
as a side result, was to provide suitable aggregation rules to users
regardless of their knowledge about such rules. The user only
has to define input and output formats, which are then automati-
cally mapped to a suitable aggregation function. In addition, the
tool supports the whole process from setting up a poll, to eliciting
and aggregating preferences, to the communication of the results to
agents. A screencast explaining the core functionalities is provided at
vimeo.com/118576213.

4.4 details omitted from original publica-
tions

This section describes some results that had to be omitted from
the corresponding original publications (mostly due to space con-
straints).

4.4.1 Encoding of Composition-consistency

In Publication [1] we list a few results in Section 4.1 that involve the
property of composition-consistency, an invariance condition with re-
spect to cloning of alternatives. Since this property requires us to
reason about tournaments of different sizes—a non-trivial extension
of the encoding presented in Publication [1]—we present here how
this property can be encoded in our framework.

A component C of a tournament T = (A,RM) is a subset of thecomponent

alternatives in which all alternatives are indistinguishable by their
relationship to outside alternatives, i.e., for all x ∈ C we either have
{x} RM A \ C or A \ C RM {x}, where X RM Y denotes x RM y for all
x ∈ X, y ∈ Y. A set of pairwise disjoint components {C1, . . . ,Ck)

36 The development of user-friendly tools for social choice that enable user to run
advanced methods has, with the exception of spliddit.org, received surprisingly
little attention so far.

pnyx.dss.in.tum.de
vimeo.com/118576213
spliddit.org
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such that A =
⋃k
i=1Ci is then called a decomposition of T , and each decomposition

decomposition implicitly defines a summary T̃ := ({1, . . . ,k}, R̃M) by summary

i R̃M j if and only if Ci RM Cj.

In slight abuse of notation, we sometimes let the symbol T̃ refer to
the set {1, . . . ,k} only.

The property of composition-consistency [Laffond et al., 1996] pos- composition-
consistencytulates that whatever a majoritarian SCF f selects on smaller tourna-

ments must be preserved by f(T) with respect to any decomposition
{C1, . . . ,Ck} of T with summary T̃ , i.e.,

f(T) =
⋃

i∈f(T̃)
f(T |Ci). (CC)

An encoding of composition-consistency can thus be defined by in-
stantiating the statement (CC) for any decomposition {C1, . . . ,Ck} of
T with summary T̃ . A major difference of composition-consistency
compared to previously implemented axioms is that it links tourna-
ments of different sizes, whereas previous axioms only had impli-
cations for tournaments of a fixed size. Thus, in order to prove a
statement for |A| = m one has to instantiate all axioms for 1, . . . ,m
alternatives. Because of the exponential growth of the involved ob-
jects, fortunately, this does not increase the running time by much,
compared to working with m alternatives only.

Note that {C1, . . . ,Ck} forms a partition of A and hence we can
encode (CC) as

f(T) =
⋃

i∈f(T̃)
f(T |Ci)

≡
(
∀i ∈ T̃

)
(∀x ∈ Ci)

[
x ∈ f(T)←→

(
i ∈ f(T̃)∧ x ∈ f(T |Ci)

)]

≡
∧

i∈T̃

∧

x∈Ci

[
mT ,x →

(
m
T̃ ,i ∧mT |Ci ,x

)
∧

(
m
T̃ ,i ∧mT |Ci ,x

)
→ mT ,x

]

≡
∧

i∈T̃

∧

x∈Ci

[(
¬mT ,x ∨mT̃ ,i

)
∧
(
¬mT ,x ∨mT |Ci ,x

)
∧

¬m
T̃ ,i ∨¬mT |Ci ,x

∨mT ,x

]
,

where mT ,x are variable symbols representing x ∈ f(T). These can be
defined in a straightforward manner via the existing variable symbols



40 summary of publications and additional results

cT ,X (which stand for f(T) = X) by setting, for each tournament T and
non-empty set X:

cT ,X ←→


∧

x∈X
mT ,x ∧

∧

y/∈X
¬mT ,y




≡


¬cT ,X ∨


∧

x∈X
mT ,x ∧

∧

y/∈X
¬mT ,y




∧


cT ,X ∨


∨

x∈X
¬mT ,x ∨

∨

y/∈X
mT ,y






≡


∧

x∈X
(¬cT ,X ∨mT ,x)∧

∧

y/∈X

(
¬cT ,X ∨¬mT ,y

)

∧


cT ,X ∨

∨

x∈X
¬mT ,x ∨

∨

y/∈X
mT ,y


 .

As a practical comment, one may note that, by over-approxima-
tion, it suffices for an impossibility if partially instantiated axioms
already lead to an unsatisfiable formula (cf. Publication [1], Section
3.2.3). We make use of this fact in Publication [1] and only instantiate
composition-consistency for specific decompositions rather than for
any decomposition (of which there can be many). All reported re-
sults already hold when only considering the decomposition as rep-
resented by the first level of the tournament’s unique decomposition
tree [for a definition see, e.g., Brandt et al., 2011, Section 3].

4.4.2 More Flexible Encodings of k-majority Digraphs

While the tools presented in Publication [6] for the question of k-
majority digraphs are already quite flexible, the concrete encodings
of majority implications and indifference implications (which ensure that
the right majority relation is implemented by the desired preference
profile) implicitly assume anti-symmetry of individual preferences.
This assumption, however, is no longer valid in the setting of weak
individual preferences, i.e., preferences with ties.weak preferences

Fortunately, there are more general encodings of these two proper-
ties which come only at the cost of a rather small performance loss.
We present two such encodings with increasing generality.

The basic idea of the first encoding is to partition, for each pair of
alternatives a and b, the set of agents into three subsets: those with
a �i b (we call this set I ⊆ N), those with b �i a (called J ⊆ N),
and those with a ∼i b (implicitly given by N \ (I ∪ J)). One can then
compare these three subsets of N with respect to their relative size in
order to determine the majority situation between a and b.
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The majority implications of a majority edge from a to b can, hence, majority
implicationsbe encoded as (with variables pi,x,y standing for x %i y):

(∃I, J)
[
|I| > |J| ∧ I∩ J = ∅∧
(∀i ∈ I)a �i b∧ (∀j ∈ J)b �j a∧ (∀k /∈ I∪ J)a ∼k b

]

≡
∨

I∩J=∅
|I|>|J|


∧

i∈I
a �i b∧

∧

j∈J
b �j a∧

∧

k/∈I∪J
a ∼k b




≡
∨

I∩J=∅
|I|>|J|


∧

i∈I
(pi,a,b ∧¬pi,b,a)∧

∧

j∈J

(
pj,b,a ∧¬pj,a,b

)
∧

∧

k/∈I∪J
(pk,a,b ∧ pk,b,a)


 .

In order to convert this formula into CNF, one, for instance, applies
Tseitin’s transformation (cf. Section 3.1.1) and replaces the long con-
junction by an auxiliary variable. For the indifference implications, indifference

implicationsone just needs to replace |I| > |J| by |I| = |J| in the outmost disjunc-
tion.

If one wants to allow for even more general (e.g., incomplete) indi-
vidual preferences, one can resort to an even more flexible (but again incomplete

preferencesless performant) encoding for each majority edge from a to b:

|{i ∈ N | a %i b}| > |{j ∈ N | b %j a}|
≡ (∃I ⊆ N) [((∀i ∈ I)a %i b)∧

(∀J ⊆ N)
((
(∀j ∈ J)b %j a

)
→ |J| < |I|

)]

≡
∨

I⊆N


∧

i∈I
a %i b∧

∧

J⊆N




∧

j∈J
b %j a


→ |J| < |I|






≡
∨

I⊆N


∧

i∈I
a %i b∧

∧

J⊆N


|J| > |I|→


∨

j∈J
¬b %j a








≡
∨

I⊆N



∧

i∈I
pi,a,b ∧

∧

J⊆N
|J|>|I|

∨

j∈J
¬pj,b,a


 ,

where the term in square parentheses can, as before, be replaced by
helper variables to reach a formulation in CNF.
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Abstract

A promising direction in computational social choice is to address research problems
using computer-aided proving techniques. In particular with SAT solvers, this approach
has been shown to be viable not only for proving classic impossibility theorems such as
Arrow’s Theorem but also for finding new impossibilities in the context of preference ex-
tensions. In this paper, we demonstrate that these computer-aided techniques can also be
applied to improve our understanding of strategyproof irresolute social choice functions.
These functions, however, require a more evolved encoding as otherwise the search space
rapidly becomes much too large. Our contribution is two-fold: We present an efficient
encoding for translating such problems to SAT and leverage this encoding to prove new
results about strategyproofness with respect to Kelly’s and Fishburn’s preference exten-
sions. For example, we show that no Pareto-optimal majoritarian social choice function
satisfies Fishburn-strategyproofness. Furthermore, we explain how human-readable proofs
of such results can be extracted from minimal unsatisfiable cores of the corresponding SAT
formulas.

1. Introduction

Ever since the famous Four Color Problem was solved using a computer-assisted approach,
it has been clear that computers can contribute significantly not only to verifying existing
but also to finding and proving new results. Due to its rigorous axiomatic foundation, social
choice theory appears to be a field in which computer-aided theorem proving is a particularly
promising line of research. Perhaps the best known result in this context stems from Tang
and Lin (2009), who reduce well-known impossibility results such as Arrow’s theorem to
finite instances, which can then be checked by a satisfiability (SAT) solver (see, e.g., Biere,
Heule, van Maaren, & Walsh, 2009). Geist and Endriss (2011) were able to extend this
method to a fully-automatic search algorithm for impossibility theorems in the context of
preference relations over sets of alternatives. In this paper, we apply these techniques to
improve our understanding of strategyproofness in the context of set-valued, or so-called
irresolute, social choice functions. These types of problems, however, are more complex
and require an evolved encoding as otherwise the search space rapidly becomes too large.
Table 1 illustrates how quickly the number of involved objects grows and that, as a result,
exhaustive search is doomed to fail.

c©2016 AI Access Foundation. All rights reserved.
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Alternatives 4 5 6 7

Choice sets 15 31 63 127
Tournaments 64 1,024 32,768 ∼ 2 · 106

Canonical tournaments 4 12 56 456
Majoritarian SCFs 50,625 ∼ 1018 ∼ 10101 ∼ 10959

Table 1: Number of objects involved in problems with irresolute majoritarian SCFs

Our contribution is two-fold. On the one hand, we provide an extended framework
of SAT-based computer-aided theorem proving techniques for statements in social choice
theory and related research areas. Despite its complexity, this framework allows for the
extraction of human-readable proofs, which eliminates the need for extensive (and difficult)
verification of the underlying techniques. On the other hand, rather than only reproducing
existing results, we solve some open problems, which are of independent interest, in the
context of irresolute strategyproof social choice functions. These results are unlikely to
have been found without the help of computers, which further strengthens the importance
of the approach.

The results obtained by computer-aided theorem proving have already found attention
in the social choice community (Chatterjee & Sen, 2014) and similar techniques have proven
to be quite effective for other problems in economics, too. Examples are the ongoing work
by Fréchette, Newman, and Leyton-Brown (2016) in which SAT solvers are used for the
development and execution of the FCC’s upcoming reverse spectrum auction, recent results
by Drummond, Perrault, and Bacchus (2015) who solve stable matching problems via SAT
solving, as well as work by Tang and Lin (2011) who apply SAT solving to discover classes
of two-player games with unique pure Nash equilibrium payoffs. In another recent paper,
Caminati, Kerber, Lange, and Rowat (2015) verified combinatorial Vickrey auctions via
higher-order theorem provers. In some respect, our approach bears similarities to automated
mechanism design (see, e.g., Conitzer & Sandholm, 2002), where desirable properties are
encoded and mechanisms are computed to fit specific problem instances. There is also a
body of work on logical formalizations of important theorems in social choice theory, most
prominently, Arrow’s Theorem (see, e.g., Nipkow, 2009; Grandi & Endriss, 2013; Cinà &
Endriss, 2015), which has been directed more towards formalizing and verifying existing
results.

Given the universality of the SAT-based method and its ease of adaptation (e.g., “test-
ing” of similar conjectures with minimal effort by simply replacing or altering some axioms),
we expect these and similar techniques to be applicable to other open problems in social
choice theory and related research areas in the future. Results for different variants of
the no-show paradox (Brandl, Brandt, Geist, & Hofbauer, 2015; Brandt, Geist, & Peters,
2016c) support this hypothesis. It should be noted, however, that—at least currently—an
expert user or programmer is required to operate these systems. An interesting question
that remains is whether it is possible to develop an automatic proof assistant that allows re-
searchers to quickly test hypotheses on small domains without giving up too much generality
and efficiency.
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Let us now turn towards the social choice theoretic results. Formally, a social choice
function (SCF) is defined as a function that maps individual preferences over a set of alter-
natives to a set of socially most-preferred alternatives. An SCF is strategyproof if no agent
can obtain a more preferred outcome by misrepresenting his preferences. It is well-known
from the Gibbard-Satterthwaite theorem that, when restricting attention to SCFs that al-
ways return a single alternative, only trivial SCFs can be strategyproof. The assumption
of single-valuedness, however, has been criticized for being unreasonably restrictive (see,
e.g., Gärdenfors, 1976; Kelly, 1977; Taylor, 2005; Barberà, 2010). A proper definition of
strategyproofness for the more general setting of irresolute SCFs requires the specification
of preferences over sets of alternatives. Rather than asking the agents to specify their
preferences over all sets (which requires exponential space and would be bound to various
rationality constraints), it is typically assumed that preferences over single alternatives can
be extended to preferences over sets. Of course, there are various ways how to extend
preferences to sets (see, e.g., Gärdenfors, 1979; Duggan & Schwartz, 2000; Taylor, 2005),
each of which leads to a different class of strategyproof SCFs. A function that yields a
preference relation over subsets of alternatives when given a preference relation over single
alternatives is called a set extension or preference extension. In this paper, we focus on two
set extensions attributed to Kelly (1977) and Fishburn (1972),1 which have been shown to
arise uniquely under very natural assumptions (Gärdenfors, 1979; Erdamar & Sanver, 2009;
see also Section 2.2 of this paper).

While strategyproofness for Kelly’s extension (henceforth Kelly-strategyproofness) is
known to be a rather restrictive condition (Kelly, 1977; Barberà, 1977; Nehring, 2000),
some SCFs such as the Pareto rule, the omninomination rule, the top cycle, the uncovered
set, the minimal covering set, and the bipartisan set were shown to be Kelly-strategyproof
(Brandt, 2015). Interestingly, the more prominent of these SCFs are majoritarian, i.e., they
are based on the pairwise majority relation only and can be ordered with respect to set in-
clusion. These results suggest that the bipartisan set may be the finest Kelly-strategyproof
majoritarian SCF. In this paper, we show that this is not the case by automatically gen-
erating a Kelly-strategyproof SCF that is strictly contained in the bipartisan set. Brandt
(2015) furthermore showed that, under a mild condition, Kelly-strategyproofness carries
over to coarsenings of an SCF. Thus, finding inclusion-minimal Kelly-strategyproof SCFs is
of particular interest. We address this problem by automating the search for these functions
in small domains and report on our findings.

Existing results suggest that the more demanding notion of Fishburn-strategyproofness
may only be satisfied by rather indiscriminating SCFs such as the top cycle (Feldman, 1979;
Brandt & Brill, 2011; Sanver & Zwicker, 2012).2 Using our computer-aided proving tech-
nique, we are able to confirm this suspicion by proving that, within the domain of majoritar-
ian SCFs, Fishburn-strategyproofness is incompatible with Pareto-optimality. In order to
achieve this impossibility, we manually prove a novel characterization of Pareto-optimal ma-

1. Gärdenfors (1979) attributed this extension to Fishburn because it is the weakest extension that satisfies
a certain set of axioms proposed by Fishburn (1972). Some authors, however, refer to it as the Gärdenfors
extension, a term which we reserve for the extension due to Gärdenfors (1976) himself.

2. The negative result by Ching and Zhou (2002) uses Fishburn’s extension but a much stronger notion of
strategyproofness.
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joritarian SCFs and an induction step, which allows us to generalize the computer-generated
impossibility to larger numbers of alternatives.

The paper is structured as follows. In Section 2, we present the general mathemat-
ical framework that we use throughout this paper and introduce the new condition of
tournament-strategyproofness, which we show to be equivalent to standard strategyproof-
ness for majoritarian SCFs. In Section 3, we describe our computer-aided proving method
and explain how to encode the main questions of this paper as SAT problems. We also
describe optimization techniques and other features of the approach. In Section 4, we re-
port on our main findings—an impossibility and a possibility result—and discuss possible
extensions and their limits. In Section 5, our novel approach to proof extraction from these
computer-generated results is presented. We provide a human-readable proof of our main
result that can be verified without the help of computers. Finally, in Section 6 we wrap up
our work and give an outlook on further research directions.

2. Mathematical Framework of Strategyproofness

In this section, we provide the terminology and notation required for our results and intro-
duce notions of strategyproofness for majoritarian SCFs that allow us to abstract away any
reference to preference profiles.

2.1 Social Choice Functions

Let N = {1, . . . , n} be a set of at least three voters with preferences over a finite set A of
m alternatives. For convenience, we assume that n is odd, which entails that the pairwise
majority relation is antisymmetric. The preferences of each voter i ∈ N are represented by a
complete, antisymmetric, and transitive preference relation Ri ⊆ A×A. The interpretation
of (x, y) ∈ Ri, usually denoted by x Ri y, is that voter i values alternative x at least as much
as alternative y. The set of all preference relations over A will be denoted by R(A). The
set of preference profiles, i.e., finite vectors of preference relations, is then given by R∗(A).
The typical element of R∗(A) will be R = (R1, . . . , Rn). In accordance with conventional
notation, we write Pi for the strict part of Ri, i.e., x Pi y if x Ri y but not y Ri x. Note
that the only difference between Ri and Pi is that Ri is reflexive while Pi is not. In order
to improve readability, we write Ri : x, y, z as a shorthand for x Pi y Pi z. In a preference
profile, the weight of an ordered pair of alternatives wR(x, y) is defined as the majority
margin |{i ∈ N | x Ri y}| − |{i ∈ N | y Ri x}|.

Our central objects of study are social choice functions, i.e., functions that map the
individual preferences of the voters to a nonempty set of socially preferred alternatives.

Definition 1. A social choice function (SCF) is a function f : R∗(A)→ 2A \ ∅.

An SCF is resolute if |f(R)| = 1 for all R ∈ R∗(A), otherwise it is irresolute.

We restrict our attention to majoritarian SCFs, or tournament solutions, which are
defined using the majority relation. The majority relation RM of a preference profile R is
the relation on A×A defined by

(x, y) ∈ RM if and only if wR(x, y) ≥ 0,
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for all alternatives x, y ∈ A. An SCF f is said to be majoritarian if it is neutral3 and its
outcome only depends on the majority relation, i.e., f(R) = f(R′) whenever RM = R′M .
As before, we write PM for the strict part of RM , i.e., a PM b if a RM b but not b RM a.

An alternative x is called a Condorcet winner in R if x PM y for all y ∈ A\{x}. In other
words, a Condorcet winner is a “best” alternative with respect to the majority relation and
it seems natural that majoritarian SCFs should select a Condorcet winner. Unfortunately,
such clear-cut winners do not exist in general and a variety of so-called Condorcet extensions,
i.e., SCFs that uniquely return a Condorcet winner whenever one exists but differ in their
treatment of the remaining cases, have been proposed in the literature. In this paper, we
consider the following majoritarian Condorcet extensions (see, e.g., Laslier, 1997; Brandt,
Brill, & Harrenstein, 2016a, for more information).

Top Cycle Define a dominant set to be a non-empty set of alternatives D ⊆ A such
that for any alternative x ∈ D and y ∈ A \ D we have x PM y. The top cycle TC (also
known as weak closure maximality, GETCHA, or the Smith set) is defined as the (unique)
inclusion-minimal dominant subset of A.4

Uncovered Set Let C denote the covering relation on A×A, i.e., x C y (“x covers y”)
if and only if x PM y and, for all z ∈ A, y PM z implies y PM z. The uncovered set UC
contains those alternatives that are not covered according to C, i.e., UC (R) = {x ∈ A | y C
x for no y ∈ A}.

Bipartisan Set Consider the symmetric two-player zero-sum game in which the set of
actions for both players is given by A and payoffs are defined as follows. Suppose the first
player chooses a and the second player chooses b. Then the payoff for the first player is 1
if a PM b, −1 if b PM a, and 0 otherwise. The bipartisan set BP contains all alternatives
that are played with positive probability in the unique Nash equilibrium of this game.

An SCF f is called a refinement of another SCF g if f(R) ⊆ g(R) for all preference
profiles R ∈ R∗(A). In short, we write f ⊆ g in this case. It can be shown for the above
that BP ⊆ UC ⊆ TC (see, e.g., Laslier, 1997).

For our main result, we define the well-known notion of Pareto-optimality : an SCF f
is Pareto-optimal if it never selects any Pareto-dominated alternative x ∈ A, i.e., x /∈ f(R)
whenever there exists y ∈ A such that y Pi x for all i ∈ N .

2.2 Strategyproofness

Although our investigation of strategyproof SCFs is universal in the sense that it can be
applied to any set extension, in this paper we will concentrate on two well-known set
extensions attributed to Kelly (1977) and Fishburn (1972).5 These two set extensions

3. Neutrality postulates that for any permutation π of the alternatives A the SCF produces the “same”
outcome (modulo the permutation). See also Section 3.1.1.

4. It is easily seen that the set of dominant sets is ordered with respect to set inclusion and therefore
admits a unique minimal element. Assume for a contradiction that two dominant sets X,Y ⊆ A are not
contained in each other. Then, there exists x ∈ X \ Y and y ∈ Y \X. The definition of dominant sets
requires that x PM y and y PM x, a contradiction.

5. Another natural and well-known set extension by Gärdenfors leads to an even stronger notion of strate-
gyproofness, which cannot be satisfied by any interesting majoritarian SCF (Brandt & Brill, 2011). Note
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are defined as follows: Let Ri be a preference relation over A and X,Y ⊆ A two nonempty
subsets of A.

X RK
i Y if and only if x Ri y for all x ∈ X and all y ∈ Y . (Kelly, 1977)

One interpretation of this extension is that voters are completely unaware of the mechanism
(e.g., a lottery) that will be used to pick the winning alternative (Gärdenfors, 1979; Erdamar
& Sanver, 2009). In other words, it contains exactly the pairwise comparisons which voters
can make without knowledge of the mechanism (e.g., {a, b} RK

i {c} if a Pi b Pi c).

X RF
i Y if and only if all of the following three conditions are satisfied:

x Ri y for all x ∈ X \ Y and y ∈ X ∩ Y ,

y Ri z for all y ∈ X ∩ Y and z ∈ Y \X, and (Fishburn, 1972)

x Ri z for all x ∈ X \ Y and z ∈ Y \X.

For this extension one may assume the winning alternative to be picked by a lottery accord-
ing to some underlying a priori distribution that voters are not aware of (Ching & Zhou,
2002). Alternatively, the existence of a chairman who breaks ties according to a linear, but
unknown, preference relation also rationalizes this preference extension (Erdamar & Sanver,
2009). For both of these interpretations, the extension describes exactly the conclusions a
voter who is aware of the tie-breaking method can draw (e.g., {a, b} RF

i {b, c} if a Pi b Pi c,
which does not hold for Kelly’s extension RK

i ).
It is easy to see that X RK

i Y implies X RF
i Y for any pair of sets X,Y ⊆ A.

As we plan to prove a few results for entire classes of set extensions, we call a set
extension E independent of irrelevant alternatives (IIA) if its comparison of two sets X and
Y only depends on the restriction of individual preferences to X ∪ Y . Formally, E satisfies
IIA if for all pairs of preference relations Ri, R

′
i and nonempty sets X,Y ⊆ A such that

Ri |X∪Y = R′i |X∪Y it holds that

X RE
i Y if and only if X R′i

E Y .

This is a very mild and natural condition, which is satisfied by the previously mentioned
set extensions and any other major set extension from the literature we are aware of.

Based on any set extension E, we can state a corresponding notion of P E-
strategyproofness for irresolute SCFs. Note that in contrast to some related papers (e.g.,
Ching & Zhou, 2002; Sato, 2008), we interpret preference extensions as fully specified (in-
complete) preference relations rather than minimal conditions on set preferences.

Again, we write P E
i for the asymmetric part of RE

i , for any set extension E.

Definition 2. Let E be a set extension. An SCF f is P E-manipulable by voter i if there
exist preference profiles R and R′ with Rj = R′j for all j 6= i such that f(R′) is E-preferred
to f(R) by voter i, i.e.,

f(R′) P E
i f(R).

An SCF is called P E-strategyproof if it is not P E-manipulable.

that our negative result for Fishburn-strategyproofness trivially carries over to such more demanding set
extensions.
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1 2, 3 4 5 6 7

e d d c b b
c a e e c a
a e b b a c
d b c d e e
b c a a d d

(a) A preference profile R

d c

b

e a

(b) The corresponding (strict)
majority relation PM

d c

b

e a

(c) The manipulated (strict) ma-
jority relation P ′M when the first
agent submits b, a, c, d, e as his
preferences. All edges that have
been impacted by this change are
depicted in bold.

Figure 1: Let the choice sets be as indicated by shaded nodes; this example is taken from the
proof of Theorem 3 (cf. Section 5.1.3). The first agent in R can PF-manipulate by submit-
ting b, a, c, d, e as his preferences (since f(R′) = {a, c, d, e} PF

1 {a, b, c, d} = f(R)), but this
does not constitute a PK-manipulation (since {a, b, c, d} and {a, c, d, e} are incomparable
according to the Kelly-extension).

It follows from the observation on set extensions above that PF-strategyproofness implies
PK-strategyproofness. An example illustrating both notions of strategyproofness is shown
in Figure 1.

Of the above SCFs, TC is PF-strategyproof, BP is PK- but not PF-strategyproof,
whereas UC was only known to satisfy PK-strategyproofness (Brandt & Brill, 2011; Brandt,
2015).

2.3 Tournament-Strategyproofness

In order to allow for a more efficient encoding, we would like to omit references to preference
profiles and replace them with a more succinct representation with the same expressive
power. For majoritarian SCFs, the natural choice is to use the (strict) majority relation,
which, for an odd number of voters, can be represented by a tournament :

A tournament is an asymmetric and complete binary relation on the set of alterna-
tives A.6 We can thus view majoritarian SCFs as functions defined on tournaments rather
than preference profiles, and, in slight abuse of notation,7 write f(T ) instead of f(R) with
T = PM being the strict part of the majority relation of R. We, furthermore, denote by
T \ T ′ := {e ∈ T : e /∈ T ′} the edge difference of two tournaments T and T ′.

For our encoding to be efficient, it will be important to formalize the notion of strat-
egyproofness using only references to tournaments rather than preference profiles. The

6. Note that tournaments can be defined by their edge set only. Since there is exactly one edge between
any pair of vertices, the vertex set can be derived from the edge set.

7. It may be noted that, while majoritarian SCFs map from profiles (with an arbitrary, but fixed number
of voters) to sets of alternatives, their interpretation via tournaments abstracts away the reference to
individual voters. This has implications for Theorems 1 and 3, which depend upon the presence of a
sufficient number of voters. We discuss the required number of voters in Section 5.2.
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following definition serves this purpose and will be shown to be equivalent to the standard
notion of strategyproofness for majoritarian SCFs.

Definition 3. A majoritarian SCF f is said to be P E-tournament-manipulable if there exist
tournaments T, T ′ and a preference relation Rµ ⊇ T \ T ′ such that

f(T ′) P E
µ f(T ).

A majoritarian SCF is called P E-tournament-strategyproof if it is not P E-tournament-
manipulable.

Theorem 1. A majoritarian SCF is P E-strategyproof if and only if it is P E-tournament-
strategyproof.

Proof. We show that a majoritarian SCF is P E-manipulable if and only if it is P E-
tournament-manipulable.

For the direction from left to right, let f be a P E-manipulable majoritarian SCF. Then
there exist preference profiles R,R′ and an integer j with Ri = R′i for all i 6= j such that
f(R′) P E

j f(R). Define tournaments T := PM and T ′ := P ′M as the strict majority relations
of R and R′, respectively. Since R and R′ only differ for voter j, it follows that T \T ′ ⊆ Rj ,
i.e., all edges that are reversed from T to T ′ must have been in Rj . Thus, with Rµ := Rj ,
we get that f is tournament-manipulable.

For the converse, let f be a P E-tournament-manipulable majoritarian SCF. The SCF f
then admits a manipulation instance, i.e., there are two tournaments T, T ′ and a preference
relation Rµ ⊇ T \ T ′ such that f(T ′) P E

µ f(T ).
As in the proof of McGarvey’s Theorem (McGarvey, 1953), we construct a preference

profile R− = (R1, . . . , Rn−1) which has T ∩T ′ as the strict part P−M of its majority relation:
we start from an empty profile and, for each strict edge (a, b) ∈ T ∩ T ′, add two voters ia,b
and ja,b with the preferences

Ria,b : a, b, x1, . . . , xm−2 and Rja,b : xm−2, . . . , x1, a, b, respectively.

Here x1, . . . , xm−2 denotes an arbitrary enumeration of the m− 2 alternatives in A \ {a, b}.
It then holds for the weights wR−(a, b) of all edges (a, b) ∈ T that

wR−(a, b) =

{
2 if (a, b) ∈ T ∩ T ′
0 if (a, b) ∈ T \ T ′.

Note that the number of voters n− 1 in R− has to be even (and at most m2 −m− 2). By
adding Rµ as the n-th voter, we get to a profile R := (R−, Rµ) with an odd number of voters
as required. Then wR(a, b) ≥ 1 for all edges (a, b) ∈ T and, thus, R has T as its (strict)
majority relation. The second profile R′ can be defined to contain the same first n − 1
voters from R and the reversed preference Rµ as the n-th voter (i.e., R′ := (R−, Rµ)).8

The profile R′ then has T ′ as its (strict) majority relation (since wR′(a, b) = −1 for all

8. Immunity to manipulation by reversing preferences has been considered by Sanver and Zwicker (2012)
under the name of half-way monotonicity. Our proof entails that (weak) half-way monotonicity is equiv-
alent to strategyproofness for majoritarian SCFs.
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CNF encoder

Tournament
solver

nauty

LP
solver

SAT solver

Model decoder

Setting and axioms Results

Figure 2: High-level system architecture

edges (a, b) ∈ T \ T ′ and the weights of all edges in T ∩ T ′ are at least 1 again), which
completes the manipulation instance. I.e., we have found preference profiles R,R′ which
only differ for voter n (who has “truthful” preferences Rµ) and for which it holds that
f(R′) = f(T ′) P E

µ f(T ) = f(R).

3. Methodology

The method applied in this paper is similar to and yet more powerful than the ones presented
by Tang and Lin (2009) and Geist and Endriss (2011). Rather than translating the whole
problem näıvely to SAT, a more evolved approach, which resolves a large degree of freedom
already during the encoding of the problem, is employed. This approach is comparable to
the way SMT (satisfiability modulo theories) solving works: At the core there is a SAT
solver; certain aspects of the problem, however, are dealt with in a separate theory solving
unit which accepts a richer language and makes use of specific domain knowledge (Biere
et al., 2009, ch. 26). The general idea, however, remains to encode the problem into a
language suitable for SAT solving and to apply a SAT solver as an efficient and universal
problem solving machine.

While desirable, using existing tools for higher-order formalizations directly rather than
our specific approach, unfortunately, is not an option. For instance, a formalization of strate-
gyproof majoritarian SCFs in higher-order logic (HOL) as accepted by Nitpick (Blanchette
& Nipkow, 2010) is straightforward, highly flexible, and well-readable, but only successful
for proofs and counterexamples involving up to three alternatives before the search space
is exceeded.9 An optimized formalization, which we derived together with the author of
Nitpick (at the cost of reduced readability and flexibility), extends the performance to
four alternatives, which turns out to be just too low for our results.

9. On the other hand, the strict formalization required for Nitpick helped to identify a formally inaccu-
rate definition of Fishburn-strategyproofness by Gärdenfors (1979) (which was later repeated by other
authors).
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Concretely, our approach is the following (see also the high-level architecture in Fig-
ure 2): for a given domain size n we want to check whether there exists a majoritarian
SCF f that satisfies a set of axioms (e.g., PF-strategyproofness and Pareto-optimality).
We then encode the setting as well as the given axioms as a propositional formula (SAT
instance) and let a SAT solver decide whether this formula has a satisfying assignment. If
it has a satisfying assignment, we can decode it into a concrete instance of a majoritarian
SCF f which satisfies the required properties. If the formula is unsatisfiable, we know that
no such function f exists.

As we will see, depending on the problem, some preparatory tasks have to be solved
before the actual encoding: (i) sets, tournaments, and preference relations are enumerated;
(ii) isomorphisms between tournaments are determined using the tool nauty (McKay &
Piperno, 2013); (iii) choice sets for specific SCFs are computed (e.g., via matrix multipli-
cation for UC and linear programming for BP).

In the following, we describe in more detail how the general setting of majoritarian
SCFs as well as desirable properties, such as strategyproofness, can be encoded as a SAT
problem in CNF (conjunctive normal form).10 First, we describe our initial encoding, which
is expressive enough to encode all required properties, but allows for small domain sizes of
(depending on the axioms) at most four to five alternatives only. Second, we explain how
this encoding can be optimized to increase the overall performance by orders of magnitude
such that larger instances of up to seven alternatives are solvable.

3.1 Initial Encoding

By design, SAT solvers operate on propositional logic. A direct and näıve propositional
encoding of the problem would, however, require a huge number of propositional variables
since many higher-order concepts are involved (e.g., sets of alternatives, preference relations
over sets as well as over alternatives, and functions from tuples of such relations to sets).
In our approach, we use only one type of variable to encode SCFs. The variables are of the
form cT,X with T being a tournament and X being a set of alternatives.11 The semantics
of these variables are that cT,X if and only if f(T ) = X, i.e., the majoritarian SCF f selects
the set of alternatives X as the choice set for any preference profile with (strict) majority

relation T . In total, this gives us a high but manageable number of 2
m(m−1)

2 · 2m = 2
m(m+1)

2

variables in the initial encoding.

An encoding with variables cT,x for alternatives x rather than sets would require less
variable symbols. This encoding, however, leads to much more complexity in the generated
clauses, which more than offsets these savings. This imbalance is best exhibited in the
encoding of strategyproofness where statements are always made for pairs of outcomes (i.e.,
sets of alternatives). Each occurrence of cT,X could be replaced by

∧
x∈X cT,x∧

∧
y/∈X ¬cT,y.

But since this formula then contains a conjunction within a disjunction, which is not possible

10. Converting an arbitrary propositional formula näıvely to CNF can lead to an exponential blow-up in the
length of the formula. There are, however, well-known efficient techniques (e.g., Tseitin’s encoding, see
Tseitin, 1983) to avoid this at the cost of introducing linearly many auxiliary variables. We apply these
techniques manually when needed.

11. In all algorithms, a subroutine c(T,X) will take care of the compact enumeration of variables. Since we
know in advance how many tournaments and non-empty subsets there are, we can simply use a standard
enumeration method for pairs of objects.
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in CNF, either expansion (and therefore an exponential blow-up) or replacement (e.g., by
a helper variable cT,X ↔

∧
x∈X cT,x) would be required.

The following two subsections demonstrate the initial encoding of both contextual as
well as explicit axioms to CNF.

3.1.1 Context Axioms

Apart from the explicit axioms, which we are going to describe in the next subsection,
there are further axioms that need to be considered in order to fully model the context
of majoritarian SCFs. For this purpose, an arbitrary function that maps tournaments
to non-empty sets of its vertices will be called a tournament choice function. Using our
initial encoding three axioms are introduced, which will ensure that functionality of the
tournament choice function and neutrality are respected (making it a tournament solution):
(1) functionality, (2) canonical isomorphism equality, and (3) the orbit condition.

The first axiom ensures that the relational encoding of f by variables cT,X indeed models
a function rather than an arbitrary relation, i.e., for each tournament T there is exactly one
set X such that the variable cT,X is set to true. In formal terms this can be written as

(∀T ) ((∃X) cT,X ∧ (∀Y, Z) Y 6= Z → ¬(cT,Y ∧ cT,Z))

≡
∧

T



(∨

X

cT,X

)
∧
∧

Y 6=Z
(¬cT,Y ∨ ¬cT,Z)


 . (1)

As an illustrative example, the corresponding simple pseudo-code for generating the CNF
file can be found in Appendix B.

The second and third axiom together constitute neutrality of the tournament choice
function f , which, formally, can be written as

π(f(T )) = f(π(T )) for all tournaments T and permutations π : A→ A.

A direct encoding of this neutrality axiom, however, would be tedious due to the quan-
tification over all permutations. In addition, our reformulation as canonical isomorphism
equality and orbit condition enables a substantial optimization of the encoding as we will
see in Section 3.2. We require further observations in order to precisely state these two
axioms.

We use the well-known fact that graph isomorphisms define an equivalence relation
on the set of all tournaments.12 For each equivalence class, pick a representative as the
canonical tournament of this class. For any tournament T , we then have a unique canonical
representation (denoted by Tc). We also pick one of the potentially many isomorphisms
from Tc to T as the canonical isomorphism of T and denote it by πT .13 This allows us to
formulate the axiom of canonical isomorphism equality.

Definition 4. A tournament choice function f satisfies canonical isomorphism equality if

f(T ) = πT (f(Tc)) for all tournaments T . (2)

12. Two tournaments T and T ′ are isomorphic if there is a permutation π : A→ A such that π(T ) = T ′.
13. In practice, the tool nauty will automatically compute canonical representations for both tournaments

and isomorphisms.

575

57



Brandt & Geist

a b

c

d e

Figure 3: The orbits of this tournament are OT = {{a, b, c}, {d}, {e}}. A corresponding

automorphism would be α =

(
a b c d e
b c a d e

)
. C := {a, b, c} represents a component in

the sense that for all of its elements x ∈ C it holds that x PM d and e PM x.

For the last of the three context axioms, the definition of an orbit should be clarified. The
orbits of a tournament T are equivalence classes of alternatives according to the following
equivalence relation: two alternatives a, b are considered equivalent if and only if there is
an automorphism α : A→ A which maps a to b, i.e., for which α(a) = b. The set of orbits
of a tournament T is denoted by OT . An example can be found in Figure 3.

Definition 5. A tournament choice function f satisfies the orbit condition if

O ⊆ f(Tc) or O ∩ f(Tc) = ∅ (3)

for all canonical tournaments Tc and their orbits O ∈ OTc .

It can be shown that for any tournament choice function, neutrality is equivalent to
the conjunction of the orbit condition and canonical isomorphism equality, or equivalently,
that the class of tournament choice functions satisfying the orbit condition and canonical
isomorphism equality is equal to the class of tournament solutions. We formalize this
statement in Lemma 1. The proof of Lemma 1 is based on standard arguments from
category theory and is presented in Appendix A.

Lemma 1. For any tournament choice function, neutrality is equivalent to the conjunction
of the orbit condition and canonical isomorphism equality.

3.1.2 Explicit Axioms

Many axioms can be efficiently encoded in our proposed encoding language. In this section
we present the main conditions required to achieve the results in Section 4. Clearly, the most
important one is strategyproofness. In formal terms, P E-tournament-strategyproofness can
be written as

(∀T, T ′, Rµ ⊇ T \ T ′) ¬
(
f(T ′) P E

µ f(T )
)

≡
∧

T

∧

T ′

∧

Rµ⊇T\T ′

∧

Y PE
µX

(¬cT,X ∨ ¬cT,Y )
(4)

where T, T ′ are tournaments, Rµ is a preference relation, and X,Y are non-empty subsets
of A. The algorithmic encoding of strategyproofness is omitted here since we present an
optimized version in Section 3.2.
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Another property of SCFs that will play an important role in our results is the one of
being a refinement of another (known) SCF g. Fortunately, this can easily be encoded using
our framework:

(∀T )(∃X ⊆ g(T )) f(T ) = X

≡
∧

T

∨

X⊆g(T )

cT,X . (5)

If we desire that the resulting SCF f is different from g (for instance, to obtain a strict
refinement in conjunction with Axiom (5)), we encode the additional clause:

(∃T ) f(T ) 6= g(T )

≡
∨

T

¬cT,g(T ).
(6)

Finally, even properties regarding the cardinalities of choice sets can be encoded. The
following axiom—stating that |f(T )| < |g(T )| for at least one tournament T—will, for
instance, be useful in Section 4.1.1 when searching for SCFs that return small choice sets:

(∃T )(∃X) |X| < |g(T )| ∧ f(T ) = X

≡
∨

T

∨

X
|X|<|g(T )|

cT,X . (7)

3.2 Optimized Encoding for Improved Performance

In order to efficiently solve instances of more than four alternatives, we need to streamline
our initial encoding without weakening its logical and expressiv power. In this section, we
present the three optimization techniques we found most effective.

3.2.1 Obvious Redundancy Elimination

A straightforward first step is to reduce the obvious redundancy within the axioms. As an
example, consider the axiom of strategyproofness, where—in order to determine whether
an outcome Y = f(T ′) is preferred to an outcome X = f(T )—we consider all preference
relations Rµ ⊇ T \ T ′. It suffices, however, if we stop after finding the first such preference
relation with Y P E

µ X because then we already know that not both Y = f(T ′) and X = f(T )
can be true.

Similarly, in many axioms, we can exclude considering symmetric pairs of objects (e.g.,
for functionality of the tournament choice function, there is no need to consider both pairs
of sets (X,Y ) and (Y,X)).

3.2.2 Canonical Tournaments

The main efficiency gain can be achieved by making use of the canonical isomorphism
equality (see Section 3.1.1) during encoding. Recall that this condition states that for any
tournament T the choice set f(T ) can be determined from the choice set f(Tc) of the cor-
responding canonical tournament Tc by applying the respective canonical isomorphism πT .
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foreach Canonical tournament Tc do
foreach Tournament T ′ do

RTc\T ′ ← {Rµ | Rµ is a preference relation and Rµ ⊇ Tc \ T ′};
foreach Set X do

foreach Set Y do
boolean found← false;
foreach Rµ ∈ RTc\T ′ do

if ¬found ∧ setExt(Rµ,E).prefers(Y,X) then
variable not(c(Tc, X));

variable not(c(T ′c , π
−1
T ′ (Y )));

newClause();
found← true;

Algorithm 1: P E-tournament-strategyproofness (optimized)

Therefore, it suffices to formulate the axioms on a single representative of each equivalence
class of tournaments, in our case, the canonical tournament. The magnitudes in Table 1
illustrate that this formulation dramatically reduces the required number of variables, the
size of the CNF formula, and the time required for encoding it.

In particular, in all axioms we can replace any outer quantifier ∀T by a quantifier ∀Tc that
ranges over canonical tournaments only.14 In the case of strategyproofness, however, there
is a second tournament T ′ for which the restriction to canonical tournaments is potentially
not strong enough to capture the full power of the axiom. We therefore keep T ′ as an
arbitrary tournament but make sure that we only need variable symbols cT ′c ,Y for canonical
tournaments in our CNF encoding. This can be achieved through the canonical isomorphism
πT ′ since by Condition (2), f(T ′) = Y if and only if f(T ′c) = π−1

T ′ (Y ). The optimized
encoding is shown in Algorithm 1.

Furthermore, since we no longer make any statements within the CNF formula about
non-canonical tournaments, the canonical isomorphism equality condition becomes an
“empty” condition and, thus, can be dropped from the encoding.

3.2.3 Approximation through Logically Related Properties

Approximation is a standard tool in SAT/SMT which can speed up the solving process.
For instance, over-approximation can help find unsatisfiable instances faster by only solving
parts of the full problem description in CNF. If this partial CNF formula is found to be
unsatisfiable, any superset will also trivially be unsatisfiable. Since common manipulation
instances in the literature require only one edge in a tournament to be reversed, one can,
for instance, use over-approximation in the form of single-edge-strategyproofness, a slightly
weaker variant of (tournament-)strategyproofness with |T \ T ′| = 1.15

14. The tool nauty is capable of enumerating such non-isomorphic (i.e., canonical) tournaments.
15. While it was not obvious whether this condition is actually strictly weaker than tournament-

strategyproofness, we identified Pareto-optimal SCFs that are Kelly-single-edge-strategyproof but not
Kelly-tournament-strategyproof (cf. Section 4.1.1).
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If the solver returns that there is no single-edge-strategyproof SCF that satisfies some
set of properties Γ , we know immediately that there is also no strategyproof SCF that
satisfies Γ . We used this form of approximation to prove the results in Remark 2.16

In a similar fashion, one can also apply logically simpler conditions, such as the ones
by Brandt and Brill (2011), that are slightly stronger or weaker than P E-strategyproofness
for specific set extensions E in order to logically under- or over-approximate problems,
respectively. While these logically simpler conditions can help to further improve encoding
and solving times, none of them were required to obtain the results presented in this paper.

Another way to over-approximate our problems is to restrict the domain of the SCF
(e.g., by random sampling), which we explore in somewhat more detail when extracting
small proofs in Section 5.1.1.

3.3 Finding Refinements through Incremental Solving

In order to obtain results for most refined (i.e., inclusion-minimal) or otherwise minimal
SCFs, it will be important to also produce this property to the SAT solver in a satisfactory
way. Generally, since the task of a SAT solver is to generate only one satisfying assign-
ment, it does not necessarily output the finest SCF to satisfy a given set of properties.
Through iterated or incremental solving, however, we can force the SAT solver to generate
progressively finer or simply different SCFs that satisfy a set of desired properties.17 For
refinements, this can be achieved by adding clauses which encode that the desired SCF
must be (strictly) finer than previously found solution (see, e.g., the formulation in Sec-
tion 3.1.2). When the finest SCF with the desired properties has been found, adding these
clauses leads to an unsatisfiable formula, which the SAT solver detects and therefore verifies
the minimality of the solution.

With this final solving step, we have the main tools at hand required for our results, the
most significant ones of which we describe in the next section.

4. Results and Discussion

Here we present our two main findings:

• There exists a strict refinement of BP which is PK-strategyproof (Theorem 2).

• For majoritarian SCFs with m ≥ 5, PF-strategyproofness and Pareto-optimality are
incompatible (Theorem 3). For m < 5, UC satisfies PF-strategyproofness and Pareto-
optimality.

Further minor results are mentioned in the discussions proceeding the proofs and in Sec-
tion 4.2.1.

16. While for m = 7 approximation was required to reach the result, it also enabled a speed-up for smaller
instances: the running time for m = 6, for example, was reduced from almost five hours to three minutes.

17. Note that finding a refinement of an SCF is not equivalent to finding a smaller/minimal model in the
SAT sense; in our encoding all assignments have the same number of satisfied variables.
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4.1 Minimal Kelly-Strategyproof SCFs

Brandt (2015) showed that every coarsening f of a PK-strategyproof SCF f ′ is PK-
strategyproof if f(R) = f ′(R) whenever |f ′(R)| = 1. Thus, it is an interesting question
to identify finest (or inclusion-minimal) PK-strategyproof SCFs.

While previous results suggested that BP could be a—or even the—finest majoritarian
SCF which satisfies PK-strategyproofness, we first provide a counterexample to these as-
sertions using m = 5 alternatives, and second show that also for larger domain sizes there
exist majoritarian refinements of BP that are still PK-strategyproof and return significantly
smaller choice sets than BP .

Theorem 2. There exists a majoritarian Condorcet extension that refines BP and is still
PK-strategyproof. As a consequence, BP is not even a finest majoritarian Condorcet ex-
tension satisfying PK-strategyproofness.

Proof. Within seconds our implementation finds a satisfying assignment for m = 5 and the
encoding of the explicit axioms refinement of BP (implies Condorcet extension) and PK-
strategyproofness. The corresponding majoritarian SCF can be decoded from the assignment
and is defined like BP with the exception depicted in Figure 4.

a b

c

d e

Figure 4: Tournament on which a PK-strategyproof refinement of BP is possible. C :=
{a, b, c} represents a component in the sense that for all of its elements x ∈ C it holds that
x PM d and e PM x. While BP chooses the whole set A on this tournament, the refined
solution selects {a, b, c, d} only.

Using the technique described in Section 3.3, we furthermore confirmed that the ob-
tained SCF is the only refinement of BP on five alternatives which is still PK-strategyproof.
Note, however, that it does not satisfy the (natural, but strong) property of composition-
consistency (see, e.g., Laslier, 1997). Thus, it remains open whether BP might be character-
ized as an—or even the—inclusion-minimal, PK-strategyproof, and composition-consistent
majoritarian SCF.18

While we were not able to resolve this open problem completely, we proved the fol-
lowing statements by extending our approach to also cover composition-consistency. BP
is an inclusion-minimal, PK-strategyproof, and composition-consistent majoritarian SCF

18. Although already on the domain of up to five alternatives there are further inclusion-minimal, PK-
strategyproof, and composition-consistent Condorcet extensions, which we could find using the computer-
aided method, these counterexamples might not extend to larger domains.

580

62



Finding Strategyproof Social Choice Functions via SAT Solving

for m ≤ 5.19 For m ≤ 7, BP is an inclusion-minimal majoritarian SCF satisfying set-
monotonicity20 and composition-consistency. While this result might extend to larger in-
stances, it only holds for at most 5 alternatives that these properties uniquely characterize
BP .

If we, however, drop composition-consistency again, we can find multiple inclusion-
minimal majoritarian SCFs that are refinements of BP and still PK-strategyproof. Inter-
estingly, some of these SCFs turn out to be more discriminating than others in the sense
that on average they yield significantly smaller choice sets. In the following section we are
going to search for such discriminating SCFs and analyze the average size of their respective
choice sets.

4.1.1 Finding Discriminating Kelly-Strategyproof SCFs

Many PK-strategyproof tournament solutions have been criticized for not being discrim-
inating enough. It is known, for instance, that in large random tournaments, TC and
UC select all alternatives with probability approaching 1 (Scott & Fey, 2012), while BP
selects exactly half of the alternatives on average for any fixed number of alternatives
(Fisher & Reeves, 1995). More discriminating tournament solutions, on the other hand,
such as the Copeland, Markov, and Slater rules violate PK-strategyproofness. Using the
computer-aided approach, we search for the most discriminating majoritarian SCFs that
satisfy PK-strategyproofness. Though this is in the spirit of automated mechanism de-
sign (see, e.g., Conitzer & Sandholm, 2002), we apply these techniques mostly to improve
our understanding of PK–strategyproofness and related axioms rather than to propose the
generated tournament solutions for actual use.

As a measure for the discriminating power of majoritarian SCFs, we use the average
relative size avg(f) of the choice sets returned by an SCF f . Formally we define

avg(f) :=
1

|A| · |T|
∑

T∈T
|f(T )|,

where T is the set of all labeled tournaments on |A| = m alternatives. We call an SCF f
more discriminating than another SCF g if avg(f) < avg(g). Given a set of axioms Γ , we
try to find a most discriminating SCF f (i.e., with the minimal value for avg(f)) such that
f satisfies the axioms in Γ .

While in theory it would be possible to just encode the relevant axioms and then enu-
merate all SCFs with the required properties by incrementally applying Axiom (6), the
number of such SCFs is usually much too large. If we instead refine the initial solution
further and further by applying Axioms (5) and (6) as indicated in Section 3.3, we will
find an inclusion-minimal SCF, but not necessarily a most discriminating SCF f . We thus
proceed via Algorithm 2, which is guaranteed to find a most discriminating SCF f without
enumerating all candidates of SCFs. The algorithm starts by constructing an initial candi-
date of an SCF which satisfies the required axioms, iteratively refines it as much as possible
(via the conjunction of Axioms (5) and (6)), and then encodes an additional axiom stating

19. For m = 6 we can already find a refinement with the same properties.
20. Set-monotonicity postulates that the choice set is invariant under the weakening of unchosen alternatives;

it implies PK-strategyproofness (Brandt, 2015).

581

63



Brandt & Geist

that all future solutions must yield a choice set with strictly smaller cardinality for at least
one tournament T (Axiom (7)). The algorithm then repeats the refinement and encoding
process until no further solution can be found. Since Axiom (7) is a necessary condition for
avg(f) < avg(g), we can be sure that a finest SCF f is returned.

SCF smallestSolution← null;
CNF minimalRequirements← encodeAxioms();
minimalRequirements← preprocess(minimalRequirements); // optional

while isSatisfiable(minimalRequirements) do
CNF currentRequirements← minimalRequirements;
SCF currentSolution← solve(currentRequirements);
while canBeRefined(currentSolution) do

Append Axioms (5) and (6) to currentRequirements with g = currentSolution;
currentSolution← solve(currentRequirements);

// an inclusion-minimal solution has been found

if avgSize(currentSolution) < avgSize(smallestSolution) then
smallestSolution← currentSolution;

Append Axiom (7) to minimalRequirements with g = currentSolution;

return smallestSolution;
Algorithm 2: A search algorithm to find a cardinality-minimal SCF f (i.e., with minimal
value for avg(f)) that satisfies a given set of axioms. As a reminder, Axioms (5) and (6)
encode a strict refinement of g; Axiom (7) encodes |f(T )| < |g(T )| for some tournament
T .

Preprocessing is generally optional in Algorithm 2; for m = 6 we, however, had to use
unit propagation in order to reduce the size of the resulting SAT instance.21 Note that the
optimization techniques as described in Section 3.2 (in particular, canonical tournaments)
can also be applied here.

The results of our analysis are exhibited in Figure 5. While on up to four alternatives
all axioms under consideration lead to the same minimal size of avg(f), on larger domains,
PK-strategyproofness allows for smaller choice sets than BP (e.g., 45% instead of 50% of
the alternatives for m = 6). Interestingly, the gap between BP and these more discrimi-
nating SCFs that satisfy PK-strategyproofness is not extraordinarily large; in particular,
moving from PK-strategyproofness to PK-single-edge-strategyproofness allows for a more
sizable reduction of avg(f). For the related property of Kelly-participation, Brandl et al.
(2015) remarked that the average size of choice sets can be reduced by almost 50% com-
pared to BP , which supports the intuition that participation is a “weaker” property than
strategyproofness (even though logically the two are independent).

BP and set-monotonicity yield the exact same values of avg(f) for m ≤ 6, which is
somewhat surprising as we found SCFs that are not coarsenings of BP and are yet set-
monotonic on this domain size. These SCFs, however, have no set-monotonic refinements
that are more discriminating than BP . Interestingly, this does not generalize to larger

21. For the case of Kelly-strategyproofness, unit propagation and deletion of duplicate clauses reduced the
CNF formula from about 600 million to just below three million clauses.
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Figure 5: A comparison of the minimal values (rounded) of avg(f) for majoritarian, Pareto-
optimal SCFs f that satisfy the given axioms (e.g., PK-strategyproofness). Interestingly,
the values for set-monotonicity are identical to the ones for BP . Non-solid dots represent
upper bounds, i.e., cases where we could only compute an SCF f with this value of avg(f)
but have no guarantee that it is indeed minimal.
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domains since we found a most discriminating majoritarian SCF f for m = 7 that satisfies
set-monotonicity and Pareto optimality while only selecting 49.73% of the alternatives on
average.

As more demanding axioms usually lead to larger choice sets (for instance, the SCF that
always returns all alternatives trivially satisfies many axioms), one might view the minimal
value of avg(f) as an attempt to “quantify” the strength of an axiom. We leave a more
detailed study of such a quantification as future work.

4.2 Incompatibility of Fishburn-Strategyproofness and Pareto-Optimality

In order to prove our main result on the incompatibility of Pareto-optimality and PF-
strategyproofness we first show the following lemma, which establishes that, for majoritarian
SCFs, the notion of Pareto-optimality is equivalent to being a refinement of the uncovered
set (UC ).22

Lemma 2. A majoritarian SCF f is Pareto-optimal if and only if it is a refinement of
UC .

Proof. It is well-known, and was already observed by Fishburn (1977), that UC is Pareto-
optimal, which implies that all its refinements are also Pareto-optimal.

For the direction from left to right, let f be a Pareto-optimal majoritarian SCF and T an
arbitrary tournament. It suffices to show that f(T ) can never contain a covered alternative
(since then f(T ) ⊆ UC (T ) contains uncovered alternatives only). So let b be an alternative
that is covered by another alternative a. We are going to construct a preference profile
R which has T as its (strict) majority relation and in which b is Pareto-dominated by a.
Together with the Pareto-optimality of f this implies that b /∈ f(T ). We use a variant
of the well-known construction by McGarvey (1953), but for triples rather than pairs of
alternatives. Note that for each voter we need to ensure that he strictly prefers a to b in
order to obtain the desired Pareto-dominance of a over b. Starting with an empty profile,
for each alternative x /∈ {a, b} we add two voters Rx1 , Rx2 to the profile. These two voters
are defined depending on how x is ranked relative to a and b in order to establish the edges
between a, x and b, x. Note that since x T a implies x T b (because of a C b), edge (a, b)
cannot be contained in a three-cycle with x and, thus, forms a transitive triple with x.

• Case 1: x T a (implies x T b)
Rx1 : x, a, b, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, x, a, b

• Case 2a: a T x and x T b
Rx1 : a, x, b, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, a, x, b

• Case 2b: a T x and b T x
Rx1 : a, b, x, v1, . . . , vm−3; Rx2 : vm−3, . . . , v1, a, b, x

Here v1, . . . , vm−3 denotes an arbitrary enumeration of the m−3 alternatives in A\{a, b, x}.
In all cases, the two voters cancel out each other for all pairwise comparisons other than

(a, b), (x, a) and (x, b). For each of the remaining edges (y, z) ∈ T (with {y, z}∩ {a, b} = ∅)
22. A stronger version of this lemma was shown by Brandt, Geist, and Harrenstein (2016b).
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we further add two voters (now even closer to the construction by McGarvey.)

R(y,z)1 : y, z, a, b, v1, . . . , vm−4 and

R(y,z)2 : vm−4, . . . , v1, a, b, y, z,

which together establish edge (y, z), reinforce (a, b) and cancel otherwise. Note that in order
to achieve an odd number of voters, an arbitrary voter can be added without changing the
majority relation (as all edges had a weight of at least two so far). This completes the
construction of a preference profile R which has T as its (strict) majority relation and in
which b is Pareto-dominated by a.

To establish the full result (which does not admit a proof by counterexample as in
Theorem 2) we—similarly to previous approaches—make use of an inductive argument.

Lemma 3. For any set extension E that satisfies IIA, if there exists a majoritarian SCF f
for m+ 1 alternatives that is P E-strategyproof and Pareto-optimal, then there also exists a
majoritarian SCF f ′ for just m alternatives that satisfies these two properties.

Proof. Let f ⊆ UC be a majoritarian SCF for m + 1 ≥ 2 alternatives that is P E-
strategyproof. Then we define fe to be the restriction of f to m alternatives based on
tournaments in which alternative e is a Condorcet loser, i.e., an alternative x for which
(y, x) ∈ T for all y ∈ A \ {x}. In formal terms, define

fe(T ) := f(T+e),

where T+e is the tournament obtained from T by adding an alternative e as a Condorcet
loser. This restriction of f is a well-defined SCF since alternative e cannot be contained in
f(T+e) ⊆ UC (T+e) = UC (T ), where the last equation follows from the simple observation
that the covering relation is unaffected by deleting Condorcet losers.

We now need to show that for some alternative e the restriction fe is a majoritarian
SCF that is P E-strategyproof and Pareto-optimal. Since this holds for any e ∈ A, we just
pick e arbitrarily.

• Majoritarian: The fact that fe is a majoritarian SCF carries over trivially from f .

• P E-strategyproofness: Assume for a contradiction that fe is not P E-strategyproof.
Then, by Theorem 1 there exist tournaments T and T ′ on m alternatives such that
fe(T

′) P E
µ fe(T ) with Rµ ⊇ T \ T ′. But since fe(T

′) = f(T ′+e) and fe(T ) = f(T+e)
(and by the fact that E satisfies IIA), we get

f(T ′+e) P E
µ f(T+e),

which contradicts P E-tournament-strategyproofness of f (as the two tournaments T ′+e

and T+e form a manipulation instance), and thus P E-strategyproofness.

• Pareto-optimality: By Lemma 2, this is equivalent to being a refinement of UC .
Thus, let T be an arbitrary tournament on m alternatives and consider the following
chain of set inclusions, which proves that fe ⊆ UC :

fe(T ) = f(T+e) ⊆ UC (T+e) = UC (T ).
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By virtue of Lemma 3 it now suffices to check the claim for the restricted domain of
m = 5, which we do in the following lemma.

Lemma 4. For exactly five alternatives (i.e., m = 5) there is no majoritarian SCF f that
satisfies PF-strategyproofness and Pareto-optimality.

Proof. This base case of m = 5 alternatives was verified using our computer-aided approach,
i.e., we checked that, with |A| = 5 alternatives, there is no satisfying assignment for an
encoding of PF-tournament-strategyproofness (cf. Theorem 1) and being a refinement of
UC (cf. Lemma 2), which the SAT solver confirmed within seconds. A human-readable
proof of this claim has been extracted from the computer-aided approach and is presented
in Section 5.1.2.

Finally, this paper’s main result regarding PF-strategyproofness follows directly from
Lemmas 3 and 4.

Theorem 3. For any number of alternatives m ≥ 5 there is no majoritarian SCF f that
satisfies PF-strategyproofness and Pareto-optimality.

Proof. We prove the statement inductively. The base case of m = 5 is covered by Lemma 4.
For the induction step, we apply the contrapositive of Lemma 3 with E := F, which directly
yields the desired results.

While the number of voters required for this impossibility has been kept implicit so far,
an upper bound of at most m2 −m − 1 = 19 voters can be derived from the construction
in the proof of Theorem 1. In Section 5 we will see, however, that a human-readable proof
of Theorem 3 can be extracted, which only requires seven voters.

As a consequence of Theorem 3, virtually all common tournament solutions—except the
top cycle (see Remark 2)—fail to be PF-strategyproof.

4.2.1 Remarks

Before we turn towards the technique of proof extraction, let us discuss some further insights
regarding Theorem 3, which have been, to a large extent, enabled by the universality of the
presented method.

Remark 1 (Strengthenings). It can be shown with the computer-aided method that
Theorem 3 holds even without the assumption of neutrality. Since then, however, the
optimizations based on canonical tournaments can no longer be used, extracted proofs
(cf. Section 5) are much more complex and we therefore decided to present the result with
neutrality here.23

The theorem can be further strengthened by additionally only requiring PF-single-edge-
strategyproofness (cf. Section 3.2) or an even weaker variant of PF-strategyproofness where
the manipulator is only allowed to swap two adjacent alternatives (see, e.g., Sato, 2013).

23. In addition, running times are much longer, which, however, is not a major concern given that not many
conjectures had to be tested for this result.
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Remark 2 (The Top Cycle TC ). Note that Theorem 3 is not in conflict with the fact
that TC is PF-strategyproof, as, for m ≥ 4 alternatives, TC is strictly coarser than UC
and therefore not Pareto-optimal. Possibly, TC is even the finest majoritarian Condorcet
extension that satisfies PF-strategyproofness for m ≥ 5. We were able to verify this for
5 ≤ m ≤ 7 using our computer program. In the case of four alternatives, UC is a strict
refinement of TC and (as our method shows) still PF-strategyproof. For m = 8 the time and
space requirements appear to be prohibitive; already for m = 7 (despite all optimizations
and approximations) encoding and solving the problem takes almost 24 hours, while for
m = 6 it runs in about three minutes. It is not obvious whether an inductive argument can
extend these verified instances to larger numbers of alternatives (as, for instance, such an
induction step would require at least five alternatives).

Remark 3 (Other Preference Extensions). An advantage of the computer-aided ap-
proach is its universality. We can, for instance, very easily adapt the implementation to
check set extensions other than the ones by Kelly and Fishburn.

Interestingly, our main result only relies on a small fraction of the power of the Fishburn
extension: it suffices to only compare disjoint sets and sets that are contained in one another.
In formal terms, the following set extension suffices for the impossibility:

X RF−
i Y if and only if





X RK
i Y when X ∩ Y = ∅,

X RF
i Y when X ⊆ Y or Y ⊆ X,

⊥ otherwise.

Actually, it would even suffice to only compare sets X and Y such that |X ∩ Y | ≤ 3.
We also checked a strengthening of the Fishburn extension: a voter prefers a set X to

a set Y if X is better than Y under both optimistic and pessimistic expectations.
Formally, X ROP

i Y if and only if

x Ri y for all x ∈ X and some y ∈ Y , and

y Ri x for all y ∈ Y and some x ∈ X.

This extension is a weakening of both the optimistic and the pessimistic notions of strate-
gyproofness in the Duggan-Schwartz Theorem (Duggan & Schwartz, 2000). In the majori-
tarian setting, POP-strategyproofness leads to an analogous impossibility as in Theorem 3
for m ≥ 4 already.

Remark 4 (Generality of Lemma 3). Note that the proofs of the individual properties
within the inductive proof of Lemma 3 do only rely on the definition of fe and stand
independently of each other. Furthermore, it may be noted that Lemma 3 can even be
shown for refinements of arbitrary majoritarian SCFs g whose choice set g(T ) does not
shrink when Condorcet losers are removed from T (rather than Pareto-optimal majoritarian
SCFs).

5. Proof Extraction

A major concern regarding computer-aided proofs is the difficulty of checking their correct-
ness. While our implementation correctly confirmed a number of existing results and this
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can be considered as testing, some doubts about the correctness of new results naturally
remain. Most SAT solvers offer some kind of proof trace, which can be checked by third-
party-software. This, however, does not guarantee correctness of the encoding but only
confirms the unsatisfiability of the corresponding CNF formula.

In this section, we show how human-readable proofs of the desired statements can be
extracted from our approach, which can then be verified just as any manual mathematical
proof. The general idea of this proof extraction technique lies in finding and analyzing a
minimal unsatisfiable core (also referred to as a minimal unsatisfiable set (MUS)) of the
SAT instance. An unsatisfiable core of a CNF formula is a subset of clauses that is already
unsatisfiable by itself. If any subset of clauses of the unsatisfiable core is satisfiable, then
the core is called minimal. In our case, the minimal unsatisfiable core contains information
about the concrete instances of axioms that have to be employed to obtain an impossibility
(e.g., manipulation instances, applications of Pareto optimality, etc). This information can
be extracted in a straightforward way and reveals the structure and arguments of the proof.

We exemplify this technique in Section 5.1, in which we extract a human-readable proof
of our main result (Theorem 3). In Section 5.2 we additionally enrich this proof by a set of
minimal corresponding preference profiles, which then shows that the result of Theorem 3
holds for any setting with at least seven voters.

In general, extracting human-readable proofs serves two separate purposes. On the
one hand, a human-readable proof can significantly raise confidence in the correctness of
the results, basically by making verification of the approach obsolete since now the results
themselves are directly verifiable. On the other hand, the extracted proofs sometimes
provide additional insight into the problems via their arguments and structure. In our case,
the number of voters required for the impossibility would not have been (easily) accessible
directly.

5.1 A Human-Readable Proof of Theorem 3

In order to extract a human-readable proof of Theorem 3, or actually its main ingredient
Lemma 4, we have to follow a series of three steps:

1. Obtain a suitable MUS of the CNF formula that encodes a PF-tournament-
strategyproof refinement of UC on five alternatives

2. Decode the MUS into a human-readable format

3. Interpret the human-readable MUS to obtain a human-readable proof

While the first two steps are computer-aided and can be largely automated, step three
requires some manual effort.

5.1.1 Obtaining a Suitable MUS of the CNF Formula

Extracting a minimal unsatisfiable core is a feature offered by a range of SAT solvers. In
this paper, we use PicoMUS (part of PicoSAT, Biere, 2008) for this job.24 It should be

24. Compiled with trace support in order to use core extraction in addition to clause selector variables. This
significantly improves the size of the resulting MUS.
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noted, however, that while an MUS is inclusion-minimal, it does not necessarily represent
a smallest unsatisfiable set (i.e., with a minimal number of clauses or variables).25

As the number of clauses turned out to be a good proxy for proof complexity and length,
we tried to find an MUS with a small number of clauses. When run on the complete,
optimized SAT encoding as described in Section 3.2, PicoMUS returns an MUS with
55 clauses. This is already a massive reduction compared to more than three million clauses
in the original problem instance, but we found an even smaller MUS with only 16 clauses
by randomly sampling sets of tournaments to be used instead of the full domain of all
tournaments when generating our problem files. Another heuristic approach of considering
“neighborhoods” of single tournaments (for instance, all tournaments that can be reached
by changing at most two edges in the transitive tournament) yielded a less significant
improvement with a total of 25 clauses.

While it seems natural that larger domains are generally better as they lead to the re-
quired impossibility more often than smaller domains, larger domains actually tend towards
larger proofs and even miss very small proofs. For instance, for the domain size s = 200
(consisting of s labeled tournaments) no proof smaller than 18 clauses was found, while the
same number of runs with s = 50 produced four proofs with just 16 clauses each.26

Therefore, in our setting, a medium-sized domain (s = 50 or s = 100 in our experiments)
appears to be best suited. The complete results of running time and proof size analysis given
different domain sizes s can be obtained from Figures 8 and 9 in Appendix C.

5.1.2 Decoding the MUS into a Human-Readable Format

The next step is to make the obtained MUS more accessible to humans. To this end, we first
(automatically) add comments to the original CNF for each manipulation clause during its
creation, and then select those comments that belong to clauses in the MUS. The comments
contain witnesses for the manipulation instances found, i.e., information about the original
tournament T , the manipulated tournament T ′, the respective choice sets f(T ) and f(T ′),
and the original preferences of the manipulator Rµ (compare Definition 3). Furthermore,
any variable symbol can easily be decoded into the tournament and choice set it represents,
which is helpful in particular for all non-manipulation clauses (orbit condition and Pareto-
optimality).

The result of this step is presented in Figure 6, where each tournament is represented
by a lower triangular representation of its adjacency matrix (see the proof of Lemma 4 in
Section 5.1.3 for graphical representations).

5.1.3 Interpreting the MUS and Obtaining a Human-Readable Proof

From the witnessed MUS it is just a small step to a textual, human-readable proof. With
a bit of practice, one can quickly understand the structure of the proof: it starts from the
orbit condition in the first line and the refinement condition in the last line, which each

25. While the tool CAMUS by Liffiton and Sakallah (2008) is theoretically capable of finding a smallest
MUS (with a minimal number of clauses), it did not terminate in a reasonable amount of time on our
very large CNF instances.

26. In addition, medium-sized domains are more efficient regarding their running time per generated proof,
which admittedly plays only a minor, but still important role given that the total running time for large
domains is about 20 hours.
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p cnf 341 16
218 231 232 233 234 247 248 0
−202 −330 0
c T: 1111111111 −> [ e ] ; T ’ : 1011100111 −> [ d , e ] ; P i : b , d , c , e , a
−233 −202 0
c T: 1101100111 −> [ e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−234 −202 0
c T: 1101100111 −> [ a , e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−218 −218 0
c T: 1101100111 −> [ a ] ; T ’ : 1001000100 −> [ e ] ; P i : e , c , a , d , b
−232 −232 0
c T: 1101100111 −> [ a , b , c , d ] ; T ’ : 1001000100 −> [ a , c , d , e ] ; P i : e , c , a , d , b
−248 −338 0
c T: 1101100111 −> [ a , b , c , d , e ] ; T ’ : 1100100101 −> [ b , c , e ] ; P i : b , e , c , d , a
−231 −202 0
c T: 1101100111 −> [ b , c , d ] ; T ’ : 1111111111 −> [ e ] ; P i : a , e , b , c , d
−247 −202 0
c T: 1101100111 −> [ b , c , d , e ] ; T ’ : 1111111111 −> [ e ] ; P i : a , e , b , c , d
−314 −314 0
c T: 1100101110 −> [ c ] ; T ’ : 1100100101 −> [ e ] ; P i : b , d , e , a , c
c T: 1100101110 −> [ c ] ; T ’ : 1100110110 −> [ b ] ; P i : b , c , d , e , a
−318 −318 0
c T: 1100101110 −> [ d ] ; T ’ : 1100100101 −> [ b ] ; P i : b , d , e , a , c
c T: 1100101110 −> [ d ] ; T ’ : 1100110110 −> [ a ] ; P i : b , c , e , a , d
−322 −322 0
c T: 1100101110 −> [ c , d ] ; T ’ : 1100110110 −> [ a , b ] ; P i : b , e , a , c , d
−326 −326 0
c T: 1100101110 −> [ e ] ; T ’ : 1100110110 −> [ d ] ; P i : b , c , d , e , a
−334 −202 0
c T: 1100101110 −> [ d , e ] ; T ’ : 1001111010 −> [ d ] ; P i : c , a , d , e , b
202 0
314 318 322 326 330 334 338 0

Figure 6: A version of the extracted MUS, in which all manipulation instances (here: binary
clauses) have been decoded into a human-readable format: two mappings of tournaments
(original T and manipulated T ′) to choice sets and the truthful preferences of the manipula-
tor Pµ. This information covers all variables and thus suffices to also decode the remaining
clauses.
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Truthful choice Manipulated choice
Manipulator’s

preferences

f(T1) =





{e}  
{a} ∪ {e}  
{b, c, d}  
{b, c, d} ∪ {e}  
{a}  
{a} ∪ {b, c, d}  

f(Ta) ⊆ UC (Ta) = {a} b, c, d, a, e

f(Te) ⊆ UC (Te) = {e} a, e, b, c, d

f(T ′1) =

{
{e} T ′1 is iso-

{a, c, d, e} morphic27 to T1

e, c, a, d, b

f(T2) =





{c}  
{d}  
{c, d}  
{e}  
{d, e}  

f(T ′2) =





{b}
{a} T ′2 is iso-

{a, b} morphic27 to T2

{d}

b, e, a, c, d

b, c, d, e, a

f(Td) ⊆ UC (Td) = {d} c, a, d, e, b

f(T ′e) ⊆ UC (T ′e) = {e} f(T2) = {c, e}  28 a, c, b, e, d

Table 2: Set of manipulation instances (one per line) to conclude that f(T1) = A =
{a, b, c, d, e} and f(T2) = {c, d, e}. Each of the truthful choices considered here leads
to a PF-tournament-manipulation instance (a contradiction to the assumption of PF-
tournament-strategyproofness). The tournaments are defined in Figure 7.

leave some (limited) possibilities for respective choice sets, and then excludes all possible
choices one after another by suitable manipulation instances. The full proof runs as follows.

Proof of Lemma 4. For a contradiction, let f be a majoritarian SCF on A = {a, b, c, d, e}
that satisfies PF-strategyproofness and Pareto-optimality. Recall that, by Theorem 1, f
is PF-tournament-strategyproof, too, and by Lemma 2 it has to be a refinement of UC
(i.e., f ⊆ UC ). Let furthermore T1 and T2 be the tournaments depicted in Figure 7. We
proceed in three steps: first, we show that f(T1) = UC (T1) = A. Second, we argue that
f(T2) = UC (T2) = {c, d, e}. And last, we prove that these two insights actually forms the
basis of a manipulation instance, which leads to the desired contradiction.

Let us start with f(T1) = UC (T1) = A. First, note that since the alternatives {b, c, d}
form an orbit we know that either {b, c, d} ⊆ f(T1) or {b, c, d}∩f(T1) = ∅ (cf. Definition 5).
We are going to exclude all remaining choice sets through PF-tournament-manipulation in-
stances. As a first example, suppose f(T1) = {e}. Then a voter with individual preferences
Pµ : b, c, d, a, e could reverse the edges (b, a) and (b, c) in T1 such that a transitive tourna-
ment Ta with Condorcet winner a results (which needs to be uniquely selected by f since
f ⊆ UC ). Since, however, {a} PF

µ {e}, this contradicts PF-tournament-strategyproofness.
The same example also works to exclude f(T1) = {a, e}. Note how these arguments cor-
respond to lines 5 to 8 of the extracted MUS in Figure 6. The (analogous) manipulation
instances for all possible choice sets other than A = {a, b, c, d, e} are given in Table 2 and
Figure 7.
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d c

b

e a

(a) T1

d c

b

e a

(b) T2

d c

b

e a

(c) Ta

d c

b

e a

(d) Te

d c

b

e a

(e) T ′1

d c

b

e a

(f) T ′2

d c

b

e a

(g) Td

d c

b

e a

(h) T ′′2

d c

b

e a

(i) T ′e

Figure 7: Tournaments which are required in the proof of Lemma 4. The uncovered sets are
marked in grey; edges that have been (for T ′e: will be) reversed by the manipulating voter
(cf. Table 2) are depicted as thick edges. Note the proof would also succeed with less edge
reversals in Ta, Te, Td, and T ′e (such that these tournaments only have Condorcet winners
rather than being transitive). These transitive tournaments are isomorphic, however, and
thus can be succinctly represented as the single clause 202 in the extracted MUS.

For f(T2) = UC (T2) = {c, d, e}, first observe that f(T2) ⊆ UC (T2) = {c, d, e} and hence
we only need to exclude any strict subset of {c, d, e}. Again we proceed by giving a possible
manipulation instance for each of those subsets. The complete list is to be found in Table 2
and Figure 7. Observe how the last line in Table 2 excludes f(T2) = {c, e} by considering
it as the manipulated choice for the (known) truthful choice f(T ′e) ⊆ UC (T ′e) = {e}.

As a last step, we provide a manipulation instance based on f(T1) = A and f(T2) =
{c, d, e}. For this, first observe that by renaming the alternatives we get f(T ′′2 ) = {b, c, e}
and so the manipulation instance results from a voter with preferences P ′µ : b, e, c, d, a. This

27. The isomorphisms are π1 =

(
a b c d e

b e c d a

)
and π2 =

(
a b c d e

d c a e b

)
, respectively.

28. The SAT solver actually returned an isomorphic copy of this instance, which we restructured to improve
readability.
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voter can reverse the edges (d, a) and (e, c) in T1 to create T ′′2 and obtain the PF-preferred
outcome {b, c, e}, a contradiction to the PF-strategyproofness of f .

Note that actually only the manipulation instance with f(T1) = {a} ∪ {b, c, d} and
f(T ′1) = {a, c, d, e} requires the Fishburn-extension; for the other instances the Kelly-
extension suffices.

5.2 Number of Voters Required

In the previous parts of the paper we have taken advantage of the fact that our condition
of tournament-strategyproofness abstracted away any reference to voters. It is interesting
to ask, however, how many voters are at least required for the obtained impossibility of
Theorem 3 to hold. The construction in the proof of Theorem 1 gives an implicit upper
bound of m2 −m− 1 = 19 voters, but this can be further improved to seven voters.

By slightly modifying the techniques described by Brandt, Geist, and Seedig (2014), we
were able to (automatically) construct minimal preference profiles for all steps in Proof 5.1.3.
While Brandt et al. (2014) provided a SAT-formulation of whether a given majority relation
can be induced by a given number of voters, we extended this framework to include axioms
for manipulation instances. In more detail, we re-used the axioms for linear preferences
and majority implications, but added axioms for the truthful preferences of the manipulator
and majority implications for the manipulated profile.

The profiles that we generated for all steps in the proof of Lemma 4 in Section 5.1.3
are given in Appendix D. The largest of these profiles contains seven voters, and all other
profiles can easily be extended to seven voters by adding pairs of voters with opposite
preferences. While this observation shows that seven is the smallest number of voters which
can be achieved with our extracted proof, it remains open whether, by another proof, the
number of voters can be further reduced below seven.

6. Conclusion

We have extended and applied computer-aided theorem proving based on SAT solving to
extensively analyze Kelly- and Fishburn-strategyproof majoritarian SCFs. This has led to a
range of results, both positive and negative. An important novel contribution of our work is
the ability to extract a human-readable proof from negative SAT instances. This eliminates
the need to verify the computer-aided method since impossibility results can directly be
checked based on their human-readable proofs. Based on the ease of adaptation of the
proposed method, we anticipate further insights to spring from the overall approach in the
future. Apart from simply applying our system to further investigate strategyproofness,
other potential applications related to our line of work include:

Unrestricted SCFs In order to reduce complexity, we have studied majoritarian SCFs
only. The framework, however, is applicable in the same way to general SCFs, which
“operate” on full preference profiles (rather than majority relations). The challenge then is
to find a suitable representation of such preference profiles and potentially corresponding
inductive arguments on the number of voters.
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Further axioms Some preliminary experiments suggest that our technique can easily
be applied to a range of properties other than strategyproofness, these deserve further
investigation. In many cases it suffices to just formalize and implement the additional
axioms. Of particular interest could be such properties that link the behavior of SCFs for
different domain sizes. As initial steps in this direction, we were able to extend the approach
to cover the property of participation (Brandl et al., 2015; Brandt et al., 2016c) as well as
a weak version of composition-consistency (cf. Section 4.1).

Smallest number of voters required As mentioned in Section 5.2, Theorem 3 holds
for any number of voters n ≥ 7, but it is not known whether this number is minimal. One
could adapt proof extraction as presented in Section 5 to search for a smallest proof in the
number of voters, rather than in the number of clauses, to settle this question.

Generalization of the inductive argument It appears reasonable to investigate
whether the inductive argument of Lemma 3 can be further generalized to a whole class of
properties/axioms, ideally based on their logical form. As in the work of Geist and Endriss
(2011), this would then enable an automated search for further theorems about SCFs.

Apart from these concrete ideas, applications of the general approach can be envisioned
in many areas of theoretical economics.

Acknowledgments

This material is based upon work supported by Deutsche Forschungsgemeinschaft under
grants BR 2312/7-2 and BR 2312/9-1. The paper benefitted from discussions at the COST
Action Meeting IC1205 on Computational Social Choice (Maastricht, 2014), the 13th In-
ternational Conference on Autonomous Agents and Multiagent Systems (Paris, 2014), the
5th International Workshop on Computational Social Choice (Pittsburgh, 2014), and the
Dagstuhl Seminar on Computational Social Choice: Theory and Applications (Dagstuhl,
2015). The authors in particular thank Jasmin Christian Blanchette, Markus Brill, Hans
Georg Seedig, and Bill Zwicker for helpful discussions and their support, and three anony-
mous reviewers for their valuable comments and suggestions to improve the paper.

Appendix A. Proof of Lemma 1

We first show that the orbit condition is equivalent to a statement about automorphisms:

Lemma 5. Let f be a tournament choice function. Then the following statement is equiv-
alent to the orbit condition:

α(f(Tc)) = f(Tc) for all canonical tournaments Tc and their automorphisms α. (8)

Proof. Let f be a tournament choice function and Tc a canonical tournament. For the di-
rection from left to right, let furthermore O ∈ OTc an orbit on Tc. Now pick two alternatives
a, b ∈ O. We show that either both alternatives are chosen by f or neither one is. Since a
and b are in the same orbit, there must be an automorphism α on Tc for which α(a) = b.
Observe that a ∈ f(Tc) if and only if b ∈ α(f(Tc)) if and only if b ∈ f(Tc), where the last
step is an application of Condition (8).
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For the converse, let α be an automorphism on Tc, pick an arbitrary alternative a ∈ A
and consider its inverse image α−1(a) =: b. Since a and b are in the same orbit, it holds by
the orbit condition that a ∈ f(Tc) if and only if b ∈ f(Tc). Furthermore, as α(b) = a we
get that a ∈ f(Tc) if and only if a ∈ α(f(Tc)). Thus, f(Tc) = α(f(Tc)), which is what we
wanted to prove.

Next we prove a general statement about how to split any isomorphism into a canonical
isomorphism and an automorphism.

Lemma 6. Any isomorphism π : Tc → T can be decomposed into the canonical isomorphism
πT and an automorphism α : Tc → Tc. I.e., for any isomorphism π : Tc → T there is an
automorphism α : Tc → Tc such that π = πT ◦ α.

Proof. Define α : Tc → Tc by setting α := π−1
T ◦ π. Since inverses and compositions of

isomorphisms are themselves isomorphisms, it follows directly that α is an automorphism.
Furthermore, πT ◦ α = πT ◦

(
π−1
T ◦ π

)
=
(
πT ◦ π−1

T

)
◦ π = π.

Lemmas 5 and 6 together can then be used to prove Lemma 1:

Lemma 1. For any tournament choice function, neutrality is equivalent to the conjunction
of the orbit condition and canonical isomorphism equality.

Proof. Let f be a tournament choice function and first note that by Lemma 5 we might use
Condition (8) rather than the orbit condition. Therefore, the direction from left to right is
trivially true.

For the direction from right to left, we first only show that canonical isomorphism
equality (2) together with Condition (8) implies neutrality for canonical tournaments: So
let Tc be a canonical tournament, π a permutation and define T ′ := π(Tc). By Lemma 6, we
can decompose the isomorphism π : Tc → T ′ such that π = π′T ◦ α for some automorphism
α on Tc. Then the following chain of equalities holds, which proves the claim for canonical
tournaments:

f(π(Tc)) = f(T ′)
(2)
= πT ′(f(T ′c)) = πT ′(f(Tc))

(8)
= πT ′(α(f(Tc))) = π(f(Tc)). (9)

For arbitrary tournaments T and permutations π, we write T as πT (Tc) and obtain

f(π(T )) = f(π(πT (Tc))) = f((π ◦ πT )(Tc)),

which, since Tc is canonical, is equal to

(π ◦ πT )(f(Tc))) = π(πT (f(Tc)))
(2)
= π(f(T ))

by Condition (9). This finishes the proof.
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Appendix B. Pseudo-Code for Encoding

We present (as an illustrative example) the simple pseudo-code of Algorithm 3 to gener-
ate the CNF form of Axiom 1 (functionality of the tournament choice function; cf. Sec-
tion 3.1.1).

foreach Tournament T do
foreach Set X do

variable(c(T,X));

newClause();
foreach Set Y do

foreach Set Z 6= Y do
variable not(c(T, Y ));
variable not(c(T,Z));
newClause();

Algorithm 3: Functionality of the tournament choice function

Appendix C. MUS Search Analysis (Running Time and Size of MUS)

In this appendix, we present the complete results of the running time (Figure 8) and MUS
size (measured in number of clauses; Figure 9) analyses given different sizes s of randomly
sampled domains. In our setting, sizes of s = 50 or s = 100 appear to offer good results
both in terms of running time and actually finding small proofs.
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Figure 8: Number of unsatisfiable instances (i.e., proofs found) and running time results
under heuristics with different numbers s of sampled tournaments (labeled, 1000 runs).
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Appendix D. Profiles for the Extracted Proof of Theorem 3

Here we display the MUS of Figure 6 enriched with minimal preference profiles for each
step in the proof of Theorem 3. The profiles were generated and checked for minimality on
a computer (and using a SAT solver) in less than a second each.

p cnf 341 16
218 231 232 233 234 247 248 0
Agent 0 : b , c , d , a , e
Agent 1 : a , e , c , d , b
Agent 2 : e , d , b , c , a

−202 −330 0
c T: 1111111111 −> [ e ] ; T ’ : 1011100111 −> [ d , e ] ; P i : b , d , c , e , a
Agent 0 : b , d , c , e , a
Agent 1 : c , d , a , e , b
Agent 2 : e , c , d , b , a
Agent 3 : a , e , d , c , b
Agent 4 : e , d , b , a , c
Manipulated p r e f e r e n c e s o f agent 0 : b , a , c , d , e

−233 −202 0
c T: 1101100111 −> [ e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
−234 −202 0
c T: 1101100111 −> [ a , e ] ; T ’ : 0010100111 −> [ a ] ; P i : b , c , d , a , e
Agent 0 : b , c , d , a , e
Agent 1 : a , e , d , b , c
Agent 2 : e , c , d , b , a
Manipulated p r e f e r e n c e s o f agent 0 : a , c , b , d , e

−218 −218 0
c T: 1101100111 −> [ a ] ; T ’ : 1001000100 −> [ e ] ; P i : e , c , a , d , b
−232 −232 0
c T: 1101100111 −> [ a , b , c , d ] ; T ’ : 1001000100 −> [ a , c , d , e ] ; P i : e , c , a , d , b
Agent 0 : e , c , a , d , b
Agent 1 : d , a , e , b , c
Agent 2 : d , a , e , b , c
Agent 3 : d , e , b , c , a
Agent 4 : c , e , b , d , a
Agent 5 : b , c , a , e , d
Agent 6 : b , a , c , e , d
Manipulated p r e f e r e n c e s o f agent 0 : b , a , c , d , e

−248 −338 0
c T: 1101100111 −> [ a , b , c , d , e ] ; T ’ : 1100100101 −> [ b , c , e ] ; P i : 1 > 4 >

2 > 3 > 0
Agent 0 : 1 > 4 > 2 > 3 > 0
Agent 1 : 2 > 3 > 0 > 4 > 1
Agent 2 : 2 > 4 > 3 > 1 > 0
Agent 3 : 0 > 4 > 3 > 1 > 2
Agent 4 : 1 > 0 > 4 > 2 > 3
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 2 > 0 > 4 > 3

−231 −202 0
c T: 1101100111 −> [ b , c , d ] ; T ’ : 1111111111 −> [ e ] ; P i : 0 > 4 > 1 > 2 > 3
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−247 −202 0
c T: 1101100111 −> [ b , c , d , e ] ; T ’ : 1111111111 −> [ e ] ; P i : 0 > 4 > 1 > 2 > 3
Agent 0 : 0 > 4 > 1 > 2 > 3
Agent 1 : 3 > 1 > 2 > 0 > 4
Agent 2 : 4 > 2 > 3 > 1 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
4 > 0 > 3 > 2 > 1

−314 −314 0
c T: 1100101110 −> [ c ] ; T ’ : 1100100101 −> [ e ] ; P i : 1 > 3 > 4 > 0 > 2
Agent 0 : 1 > 3 > 4 > 0 > 2
Agent 1 : 4 > 3 > 1 > 2 > 0
Agent 2 : 4 > 1 > 2 > 0 > 3
Agent 3 : 2 > 0 > 3 > 4 > 1
Agent 4 : 2 > 0 > 3 > 4 > 1
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 2 > 0 > 4 > 3
c T: 1100101110 −> [ c ] ; T ’ : 1100110110 −> [ b ] ; P i : 1 > 2 > 3 > 4 > 0
Agent 0 : 1 > 2 > 3 > 4 > 0
Agent 1 : 0 > 3 > 4 > 2 > 1
Agent 2 : 0 > 4 > 2 > 3 > 1
Agent 3 : 4 > 1 > 2 > 0 > 3
Agent 4 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4

−318 −318 0
c T: 1100101110 −> [ d ] ; T ’ : 1100100101 −> [ b ] ; P i : 1 > 3 > 4 > 0 > 2
c T: 1100101110 −> [ d ] ; T ’ : 1100110110 −> [ a ] ; P i : 1 > 2 > 4 > 0 > 3
Agent 0 : 1 > 2 > 4 > 0 > 3
Agent 1 : 3 > 4 > 1 > 2 > 0
Agent 2 : 4 > 0 > 2 > 3 > 1
Agent 3 : 2 > 0 > 3 > 4 > 1
Agent 4 : 1 > 0 > 3 > 4 > 2
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4

−322 −322 0
c T: 1100101110 −> [ c , d ] ; T ’ : 1100110110 −> [ a , b ] ; P i : 1 > 4 > 0 > 2 > 3
Agent 0 : 1 > 4 > 0 > 2 > 3
Agent 1 : 2 > 0 > 3 > 4 > 1
Agent 2 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
1 > 0 > 3 > 4 > 2

−326 −326 0
c T: 1100101110 −> [ e ] ; T ’ : 1100110110 −> [ d ] ; P i : 1 > 2 > 3 > 4 > 0
Agent 0 : 1 > 2 > 3 > 4 > 0
Agent 1 : 0 > 3 > 4 > 2 > 1
Agent 2 : 0 > 4 > 2 > 3 > 1
Agent 3 : 4 > 1 > 2 > 0 > 3
Agent 4 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 2 > 0 > 4
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−334 −202 0
c T: 1100101110 −> [ d , e ] ; T ’ : 1001111010 −> [ d ] ; P i : 2 > 0 > 3 > 4 > 1
Agent 0 : 2 > 0 > 3 > 4 > 1
Agent 1 : 1 > 4 > 0 > 2 > 3
Agent 2 : 3 > 4 > 1 > 2 > 0
Manipulated p r e f e r e n c e s o f agent 0 :
3 > 1 > 0 > 4 > 2

202 0
Agent 0 : 4 > 3 > 2 > 1 > 0

314 318 322 326 330 334 338 0
Agent 0 : 2 > 0 > 3 > 4 > 1
Agent 1 : 3 > 4 > 1 > 2 > 0
Agent 2 : 4 > 1 > 2 > 0 > 3
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Abstract
Voting rules are powerful tools that allow multi-
ple agents to aggregate their preferences in order
to reach joint decisions. A common flaw of some
voting rules, known as the no-show paradox, is
that agents may obtain a more preferred outcome
by abstaining from an election. We study strate-
gic abstention for set-valued voting rules based on
Kelly’s and Fishburn’s preference extensions. Our
contribution is twofold. First, we show that, when-
ever there are at least five alternatives, every Pareto-
optimal majoritarian voting rule suffers from the
no-show paradox with respect to Fishburn’s exten-
sion. This is achieved by reducing the statement
to a finite—yet very large—problem, which is en-
coded as a formula in propositional logic and then
shown to be unsatisfiable by a SAT solver. We
also provide a human-readable proof which we ex-
tracted from a minimal unsatisfiable core of the for-
mula. Secondly, we prove that every voting rule
that satisfies two natural conditions cannot be ma-
nipulated by strategic abstention with respect to
Kelly’s extension. We conclude by giving examples
of well-known Pareto-optimal majoritarian voting
rules that meet these requirements.

1 Introduction
Whenever a group of multiple agents aims at reaching a joint
decision in a fair and satisfactory way, they need to aggregate
their (possibly conflicting) preferences. Voting rules are stud-
ied in detail in social choice theory and are coming under in-
creasing scrutiny from computer scientists who are interested
in their computational properties or want to utilize them in
computational multiagent systems [Brandt et al., 2013].

A common flaw of many such rules, first observed by Fish-
burn and Brams [1983], who called it the no-show paradox,
is that agents may obtain a more preferred outcome by ab-
staining from an election. Following Moulin [1988], a vot-
ing rule is said to satisfy participation if it is immune to the
no-show paradox. Moulin has shown that all resolute, i.e.,
single-valued, scoring rules (such as Borda’s rule) satisfy par-
ticipation while all resolute Condorcet extensions suffer from
the no-show paradox. Condorcet extensions comprise a large

class of voting rules that satisfy otherwise rather desirable
properties.

In this paper, we study participation for irresolute, i.e.,
set-valued, social choice functions (SCFs). A proper defi-
nition of participation for irresolute SCFs requires the speci-
fication of preferences over sets of alternatives. Rather than
asking the agents to specify their preferences over all sub-
sets (which would be bound to various rationality constraints
and require exponential space), it is typically assumed that
the preferences over single alternatives can be extended to
preferences over sets. Of course, there are various ways how
to extend preferences to sets (see, e.g., [Gärdenfors, 1979;
Barberà et al., 2004]), each of which leads to a different
version of participation. A function that yields a (possibly
incomplete) preference relation over subsets of alternatives
when given a preference relation over single alternatives is
called a preference extension. In this paper, we focus on
two common preference extensions due to Kelly [1977] and
Fishburn [1972], both of which arise under natural assump-
tions about the agents’ knowledge of the tie-breaking mecha-
nism that eventually picks a single alternative from the choice
set (see, e.g., [Gärdenfors, 1979; Ching and Zhou, 2002;
Sanver and Zwicker, 2012; Brandt and Brill, 2011; Brandt,
2015]). Kelly’s extension, for example, can be motivated by
assuming that the agents possess no information whatsoever
about the tie-breaking mechanism. A common interpreta-
tion of Fishburn’s extension, on the other hand, is that ties
are broken according to the unknown preferences of a chair-
man. Since Fishburn’s extension is a refinement of Kelly’s
extension it follows that Fishburn-participation is stronger
than Kelly-participation. The idea pursued in this paper is
to exploit the uncertainty of the agents about the tie-breaking
mechanism in order to prevent strategic abstention. Our two
main results are as follows.
• Whenever there are at least four alternatives, Pareto-

optimality and Fishburn-participation are incompatible
in the context of majoritarian SCFs. When there are
at least five alternatives, this even holds for strict
preferences.
• Every SCF that satisfies set-monotonicity and indepen-

dence of indifferent voters satisfies Kelly-participation.
Every set-monotonic majoritarian SCF satisfies Kelly-
participation when preferences are strict.

The first result is obtained using computer-aided theorem
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proving techniques. In particular, we reduce the statement to
a finite—yet very large—problem, which is encoded as a for-
mula in propositional logic and then shown to be unsatisfiable
by a SAT solver. We also provide a human-readable proof for
this result, which we extracted from a minimal unsatisfiable
core of the SAT formula.

The conditions for the second result are easy to check and
satisfied by a small number of well-studied SCFs, including
Pareto-optimal majoritarian SCFs. In contrast to Moulin’s
negative result for resolute SCFs, there are appealing Con-
dorcet extensions that satisfy Kelly-participation.

Our negative result holds even for strict preferences while
our positive result holds even for weak preferences. The lat-
ter is somewhat surprising and stands in sharp contrast to the
related finding that no Condorcet extension satisfies Kelly-
strategyproofness when preferences are weak (recall that an
SCF is strategyproof if no agent can obtain a more preferred
outcome by misrepresenting his preferences) [Brandt, 2015].

Participation is similar to, but logically independent from,
strategyproofness. Manipulation by abstention is arguably a
more severe problem than manipulation by misrepresentation
for two reasons. First, agents might not be able to find a ben-
eficial misrepresentation. It was shown in various papers that
the corresponding computational problem can be intractable
(see, e.g., [Faliszewski et al., 2010]). Finding a successful
manipulation by strategic abstention, on the other hand, is
never harder than computing the outcome of the respective
SCF. Secondly, one could argue that agents will not lie about
their preferences because this is considered immoral (Borda
famously exclaimed “my scheme is intended only for honest
men”), while strategic abstention is deemed acceptable.1

2 Related Work
The problem of strategic abstention for irresolute SCFs has
been addressed by Pérez [2001], Jimeno et al. [2009], and
Brandt [2015]. Pérez [2001] examined the situation where
an agent can cause his most preferred alternative to be ex-
cluded from the choice set when joining an electorate and
showed that almost all Condorcet extensions suffer from this
paradox. Jimeno et al. [2009], on the other hand, proved that
manipulation by abstention is possible for most Condorcet
extensions when agents compare sets according to an opti-
mistic, pessimistic, or lexicographic extension. They men-
tioned the study of participation in the context of weak prefer-
ences and Fishburn’s extension as interesting research direc-
tions for future work. Both of these questions are addressed
in our paper. Brandt [2015] investigated strategyproofness
for Kelly’s extension and gave a simple argument connecting
strategyproofness and participation. Brandl et al. [2015] stud-
ied participation for probabilistic social choice functions and,
among other results, proposed functions where a participating
agent is always strictly better off (unless he already obtains
a most-preferred outcome). Abstention in slightly different
contexts than the one studied in this paper has recently also
caught the attention of computer scientists working on voting

1Alternatively, one could also argue that manipulation by mis-
representation is more critical because agents are tempted to act im-
morally, which is a valid, but different, concern.

equilibria and campaigning (see, e.g., [Desmedt and Elkind,
2010; Baumeister et al., 2012]).

The computer-aided techniques in this paper have been in-
spired by Tang and Lin [2009], who reduced well-known
impossibility results for resolute SCFs—such as Arrow’s
theorem—to finite instances, which can then be checked by a
SAT solver. Geist and Endriss [2011] extended this method to
a fully-automatic search algorithm for impossibility theorems
in the context of preference relations over sets of alternatives.
More recently, Brandt and Geist [2014] proved both impossi-
bility and possibility results regarding the strategyproofness
of irresolute SCFs using this computer-aided approach. We
strongly build on their methodology and extended it to cover
the notion of participation, which—as we will see—requires
a more advanced framework.

Also for other problems in economics the application of
SAT solvers has proven to be quite effective. A prominent ex-
ample is the ongoing work by Leyton-Brown [2014] in which
SAT solvers are used for the development and execution of
the FCC’s upcoming reverse spectrum auction.

In some respect, our approach also bears some similari-
ties to automated mechanism design (see, e.g., [Conitzer and
Sandholm, 2002]), where desirable properties are encoded
and mechanisms are computed to fit specific problem in-
stances.

3 Preliminaries
Let A be a finite set of alternatives and N a countable set
of agents of which we will consider finite subsets N ⊆ N.
Therefore, let F(N) denote the set of all finite and non-empty
subsets of N. A (weak) preference relation is a complete,
reflexive, and transitive binary relation on A. The preference
relation of agent i is denoted by %i. The set of all preference
relations is denoted by R. We write �i for the strict part
of %i, i.e., x �i y if x %i y but not y %i x, and ∼i for the
indifference part of %i, i.e., x ∼i y if x %i y and y %i x. A
preference relation %i is called strict if it additionally is anti-
symmetric, i.e., x �i y or y �i x for all distinct alternatives
x, y. We will compactly represent a preference relation as
a comma-separated list with all alternatives among which an
agent is indifferent placed in a set. For example x �i y ∼i z
is represented by %i : x, {y, z}.

A preference profile R is a function from a set of agents N
to the set of preference relations R. The set of all preference
profiles is denoted by RF(N). For a preference profile R ∈
RN and two agents i ∈ N , j ∈ N, we define

R−i = R \ {(i,%i)} and R+j = R ∪ {(j,%j)}.
The majority relation of R is denoted by %(R), where

x %(R) y iff |{i ∈ N : x %i y}| ≥ |{i ∈ N : y %i x}|.
Its strict part is denoted by �(R) and its indifference part
by ∼(R). An alternative x is a Condorcet winner in R if
x �(R) y for all y ∈ A \ {x}.

Our central objects of study are social choice functions
(SCFs), i.e., functions that map a preference profile to a set of
alternatives. Formally, an SCF is a function

f : RF(N) → 2A \ ∅.
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Two minimal fairness conditions for SCFs are anonymity
and neutrality. An SCF is anonymous if the outcome does
not depend on the identities of the agents and neutral if it is
symmetric with respect to alternatives. An SCF f is majori-
tarian (or a neutral C1 function) if it is neutral and for all
R,R′ ∈ RF(N), f(R) = f(R′) whenever �(R) = �(R′).
Even the seemingly narrow class of majoritarian SCFs con-
tains a variety of interesting functions (sometimes called tour-
nament solutions). Examples include Copeland’s rule, the
top cycle, and the uncovered set (see, e.g., [Brandt et al.,
2015]). These functions usually also happen to be Condorcet
extensions, i.e., SCFs that uniquely return a Condorcet winner
whenever one exists.

Next we introduce a very weak variable electorate condi-
tion which requires that a completely indifferent agent does
not affect the outcome. An SCF f satisfies independence of
indifferent voters (IIV) if

f(R) = f(R+i) for all R ∈ RF(N),

where i is an agent who is indifferent between all alternatives,
i.e., x ∼i y for all x, y ∈ A. It is easy to see that every
majoritarian SCF satisfies anonymity, neutrality, and IIV.

We say that R′ is an f -improvement over R if alternatives
that are chosen by f in R are not weakened from R to R′,
i.e., for all x ∈ f(R), y ∈ A, and i ∈ N , x %i y implies
x %′i y and y %′i x implies y %i x. An SCF f satisfies
set-monotonicity if

f(R) = f(R′) whenever R′ is an f -improvement over R.

The two preference extensions we consider in this pa-
per are Kelly’s extension and Fishburn’s extension. For all
X,Y ⊆ A and %i∈ R,

X %Ki Y iff x %i y for all x ∈ X , y ∈ Y , and (Kelly)

X %Fi Y iff X\Y %Ki Y and X %Ki Y \X . (Fishburn)

The strict part of these relations will be denoted by �Ki and
�Fi , respectively. It follows from the definitions that Fish-
burn’s extension is a refinement of Kelly’s extension, i.e.,
%Ki ⊆ %Fi for every %i ∈ R. In the interest of space, we
refer to Section 1 (and the references therein) for justifica-
tions of these extensions.

With the preference extensions at hand, we can now for-
mally define participation and strategyproofness. An SCF
f is Kelly-manipulable by strategic abstention if there ex-
ists a preference profile R ∈ RN with N ∈ F(N) and
an agent i ∈ N such that f(R−i) �Ki f(R). An
SCF f is Kelly-manipulable if there exist preference pro-
files R,R′ ∈ RN , and an agent i ∈ N , such that %j =
%′j for all agents j 6= i and f(R′) �Ki f(R). f is
said to satisfy Kelly-participation or Kelly-strategyproofness
if it is not Kelly-manipulable by strategic abstention or
Kelly-manipulable, respectively. Fishburn-participation and
Fishburn-strategyproofness are defined analogously.

The following example illustrates the definitions of Kelly-
participation and Fishburn-participation. Consider the prefer-
ence profile R with six agents and four alternatives depicted
below. The numbers on top of each column denote the iden-
tities of the agents with the respective preference relation.

1 2 3, 4 5, 6

c d a b
d b c a
b a d c
a c b d

R

a b

cd

�(R)

a b

cd

�(R−6)
The profile R induces the majority relation %(R) with its
strict part �(R). A well-studied majoritarian SCF is the bi-
partisan set [Laffond et al., 1993; Dutta and Laslier, 1999].
The bipartisan set of R is {a, b, c, d}. If agent 6 leaves the
electorate, we obtain the profile R−6, which induces the ma-
jority relation %(R−6) whose bipartisan set is {a, b, c}. Ob-
serve that {a, b, c} �F6 {a, b, c, d}, i.e., agent 6 can obtain a
preferred outcome according to Fishburn’s extension by ab-
staining from the election. Hence, the bipartisan set does
not satisfy Fishburn-participation. However, {a, b, c} �K6
{a, b, c, d} does not hold and, hence, agent 6 cannot manipu-
late by abstaining according to Kelly’s extension. In general,
the bipartisan set satisfies Kelly-participation because it sat-
isfies set-monotonicity and IIV (cf. Theorem 3).

We will relate participation and strategyproofness to
Pareto-optimality in the subsequent sections. An alternative x
is said to be Pareto-dominated (in R ∈ RN ) by another alter-
native y if y %i x for all i ∈ N and there exists j ∈ N
such that y �j x. Whenever there is no y ∈ A that Pareto-
dominates x, x is called Pareto-optimal. The Pareto rule
(PO) is defined as the SCF that selects all Pareto-optimal al-
ternatives.

4 Computer-aided Theorem Proving

For some of our results, we are going to make use of the
computer-aided proving methodology described by Brandt
and Geist [2014]. The main idea is to prove statements by
encoding a finite instance as a satisfiability problem, which
can be solved by a computer using a SAT solver, and provid-
ing a (simple) reduction argument, which extends this result
to arbitrary domain sizes. We extend their framework to also
cater for indifferences in the majority relations, which is an
important requirement for being able to deal with the notion
of participation: if an agent with at least one strict prefer-
ence abstains the election, the corresponding majority rela-
tion might already contain indifferences.

Note that the introduction of majority ties significantly in-
creases the size of the search space (see Table 1), which
makes any type of exhaustive search even less feasible. Apart
from being able to treat such large search spaces, another ma-
jor advantage of the computer-aided approach is that many
similar conjectures and hypotheses (here, e.g., statements
about other preference extensions) can be checked quickly
using the same framework.

In the coming subsections, we are going to explain our
extension and some core features of the computer-aided
method; for details of the original approach, however, the
reader is referred to Brandt and Geist [2014].
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|A| Brandt and Geist [2014] This paper

3 49 823,543
4 50,625 ∼ 2.5 · 1049

5 ∼ 7.9 · 1017 ∼ 9.4 · 10867

6 ∼ 5.8 · 10100 ∼ 6.8 · 1038649

Table 1: Number of different majoritarian SCFs. While
Brandt and Geist [2014] could assume an odd number of
agents with strict preferences, participation requires us to deal
with variable electorates, and therefore weak majority rela-
tions.

4.1 Encoding Participation
At the core of the computer-aided approach lies an encod-
ing of the problem to be solved as a SAT instance. For this,
all axioms involved need to be stated in propositional logic.
We take over the formalization of the optimized encoding by
Brandt and Geist [2014], which contains the following rel-
evant axioms: functionality of the choice function, the or-
bit condition, and Pareto-optimality. Pareto-optimality is en-
coded as being a refinement of the uncovered set. What re-
mains is to encode the notion of participation. While this en-
coding turns out to be similar to the one of strategyproofness
defined by Brandt and Geist [2014], it is more complex and
not straightforward. In particular, it requires a novel condi-
tion that is equivalent to participation for majoritarian SCFs,
which we are going to call majority-participation.

We are going to identify preference profiles with their cor-
responding majority relations (i.e., we write f(%) instead of
f(R)). Moreover, the inverse of % is denoted by -.

Definition 1. A majoritarian SCF f is Fishburn-majority-
manipulable by strategic abstention if there exist majority re-
lations %, %′ and a preference relation %µ ∈ R such that
f(%′) �Fµ f(%), with

� ∩≺′ = ∅, (1)
(% \%′) ∪ (-′ \-) ⊆ �µ , and (2)

∼ ∩∼′ ⊆ ∼µ. (3)

If the agents’ preferences are required to be strict, it addi-
tionally has to hold that either % or %′ is anti-symmetric. A
majoritarian SCF f satisfies Fishburn-majority-participation
if it is not Fishburn-majority-manipulable by strategic absten-
tion.

Conditions (1) to (3) can intuitively be phrased as follows:
(1) no strict relationship may be reversed between � and �′,
(2) %µ has to be in line with the changes from % to %′, and
(3) majority ties that occur in both majority relations must be
reflected by an indifference in %µ.

In the following lemma, we show that, for majoritarian
SCFs, the condition of Fishburn-majority-manipulability cor-
responds to an abstaining agent with preferences %µ who
thereby obtains a preferred outcome.2

2Note that both the definition of majority-participation and
Lemma 1 are independent of a specific preference extension, and
thus also applicable to, e.g., Kelly’s extension.

Lemma 1. A majoritarian SCF satisfies Fishburn-participa-
tion if and only if it satisfies Fishburn-majority-participation.

Proof. Due to space restrictions we will only provide a short
proof sketch here, the full proof is available from the authors
upon request.

In general, we show that for every preference profileR that
allows for a Fishburn-manipulation by abstention by agent µ,
the two majority graphs %(R) and %(R−µ) together with %µ
satisfy all required conditions. In return, whenever we have
two majority relations %, %′ and a preference relation %µ
with the properties stated in Definition 1, we can assign inte-
ger weights to all pairs of alternatives and, by Debord [1987],
use these to determine a preference profile R′ that induces
the majority relation %′. Together with R = R′+µ we ob-
tain %(R′) = %′, %(R) = % and thus f(R′) �Fµ f(R) for
majoritarian SCFs f .

Fishburn-majority-participation can then be encoded in
propositional logic (with variables f%,X representing f(%) =
X) as the following simple transformation shows:

¬
(
f(%′) �Fµ f(%)

)
≡

∧

Y�FµX
(¬f%,X ∨ ¬f%,Y )

for all majority relations %, %′ and preference relations %µ
satisfying conditions (1) to (3).

4.2 Proof Extraction
A very interesting feature of the approach by Brandt and
Geist [2014] is the possibility to extract human-readable
proofs from an unsatisfiability result by the SAT solver. This
is done by computing a minimal unsatisfiable set (MUS),
an inclusion-minimal set of clauses that is still unsatisfi-
able.3 This MUS can then, assisted by our encoder/decoder
program, be read and transformed into a standard human-
readable proof. Different proofs can be found by varying the
MUS extractor or by encoding the problem for different sub-
domains, such as neighborhoods of a set of profiles or ran-
domly sampled subdomains, respectively.

5 Results and Discussion
In general, participation and strategyproofness are not log-
ically related. However, extending an observation by
Brandt [2015], it can be shown that strategyproofness implies
participation under certain conditions. The proof of this state-
ment is omitted due to space restrictions.
Lemma 2. Consider an arbitrary preference extension. Ev-
ery SCF that satisfies IIV and strategyproofness satisfies par-
ticipation. When preferences are strict, every majoritarian
SCF that satisfies strategyproofness satisfies participation.

As a consequence of Lemma 2, some positive results
for Kelly-strategyproofness and Fishburn-strategyproofness
carry over to participation. We will complement these results
by impossibility theorems for Fishburn-participation and a
positive result for Kelly-participation, which specifically does
not hold for Kelly-strategyproofness.

3We used PICOMUS, which is part of the PICOSAT distribution
[Biere, 2008].
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5.1 Fishburn-participation
It turns out that Pareto-optimality is incompatible with
Fishburn-participation in majoritarian social choice. The cor-
responding Theorems 1 and 2 and their proofs were obtained
using the computer-aided method laid out in Section 4. In
order to simplify the original proofs, which were found by
the computer, we first state a lemma, which offers further
insights into the possible choices of majoritarian SCFs that
satisfy Fishburn-participation and Pareto-optimality.

To state Lemma 3 we introduce some additional notation:
an alternative x (McKelvey) covers an alternative y if x is at
least as good as y compared to every other alternative. For-
mally, x covers y if x � y and, for all z ∈ A, both y % z
implies x % z, and z % x implies z % y. The uncovered set
of %, denoted UC (%), is the set of all alternatives that are
not covered by any other alternative. By definition, UC is a
majoritarian SCF.

Brandt et al. [2014] have shown that every majoritarian and
Pareto-optimal SCF selects a subset of the (McKelvey) un-
covered set. We show that an SCF that additionally satisfies
Fishburn-participation furthermore only depends on the ma-
jority relation between alternatives in the uncovered set.
Lemma 3. Let f be a majoritarian and Pareto-optimal SCF
that satisfies Fishburn-participation. Let R,R′ be prefer-
ences profiles such that %(R)|UC (%(R)) = %(R′)|UC (%(R′)).
Then f(R) = f(R′) ⊆ UC (%(R)).

The proof of Lemma 3 is omitted due to space restrictions.4
Now, let us turn to our impossibility theorems. The

computer found these impossibilities even without using
Lemma 3. However, the formalization of the lemma allowed
the SAT solver to find smaller proofs and makes the human-
readable proofs more intuitive.
Theorem 1. There is no majoritarian and Pareto-optimal
SCF that satisfies Fishburn-participation if |A| ≥ 4.

Proof. Let f be a majoritarian and Pareto-optimal SCF sat-
isfying Fishburn-participation. We first prove the statement
for A = {a, b, c, d} and reason about the outcome of f for
some specific majority relations. Throughout this proof, we
are going to make extensive use of Lemma 1, which allows
us to apply Fishburn-majority-participation instead of regu-
lar Fishburn-participation. Intuitively, the proof strategy is
to alter the majority relations %, %′, and %′′ as depicted be-
low by letting varying agents join some underlying electorate,
which will exclude certain choices of f (by an application of
Fishburn-majority-participation), until we reach a contradic-
tion. In the figures of the strict part of the majority relations
we highlight alternatives that have to be chosen by f with a
thick border.

a b

cd

�

a b

cd

�+1

a b

cd

�+2

a b

cd

�+3

4Lemma 3 can be strengthened in various respects. It also holds
for the iterated uncovered set, all preference extensions satisfying
some mild conditions, and probabilisitic social choice functions.

First consider %. Adding an agent with preferences
%1 : {a, b, c}, d possibly yields %+1 where, due to symmetry,
f(%+1) = {a, b, c, d}. As f satisfies Fishburn-participation,
nothing that is strictly preferred to {a, b, c, d} according to
%F1 can be chosen in %. Thus, d ∈ f(%). Adding another
agent with %1 : b, {a, c, d} may also lead to %+1. Hence
f(%) 6= {b, d}, {a, b, d}, {b, c, d}.

a b

cd

�′

a b

cd

�′+1

a b

cd

�′+2

a b

cd

�′+3

In a similar fashion, we obtain—step by step and using the
majority relations depicted—that f(%) = {a, c, d}, f(%′) =
{a, b, d}, and finally f(%′′) = ∅, a contradiction. The details
of these cases have to be omitted due to space constraints and
are available from the authors upon request.

a b

cd

�′′

a b

cd

�′′+1

a b

cd

�′′+2

a b

cd

�′′+3

a b

cd

�′′+4

Now let |A| ≥ 5. It follows from Lemma 3 that the
choice of f does not depend on covered alternatives. Hence
the statement follows by extending the majority relations de-
picted above to A such that all alternatives but a, b, c, d are
covered.

We could verify with our computer-aided approach that
this impossibility still holds for strict preferences when there
are at least 5 alternatives.

Theorem 2. There is no majoritarian and Pareto-optimal
SCF that satisfies Fishburn-participation if |A| ≥ 5, even
when preferences are strict.

The shortest proof of Theorem 2 that we were able to ex-
tract from our computer-aided approach still uses 124 differ-
ent instances of manipulation by abstention. The proof of
Theorem 1, by comparison, consists of 10 such instances.
As a consequence, the complete proof of Theorem 2 has to
be omitted here; a computer-generated version, however, is
available from the authors upon request. Theorems 1 and 2
are both tight in the sense that, whenever there are less than
four or five alternatives, respectively, there exists an SCF that
satisfies the desired properties.

An interesting question is whether these impossibilities
also extend to other preference extensions. Given the
computer-aided approach, this can be easily checked by sim-
ply replacing the preference extension in the SAT encoder.
For instance, it turns out that the impossibility of Theorem 1
still holds if we consider a coarsening of Fishburn’s exten-
sion which can only compare sets that are contained in each
other. Kelly’s extension on the other hand does not lead to
an impossibility for |A| ≤ 5, which will be confirmed more
generally in the next section.
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Extension Property Strict preferences Weak preferences

Kelly
Participation ‘ All set-monotonic SCFs that satisfy IIV (Theorem 3)

Strategy-
proofness ‘ All set-monotonic SCFsb a No Condorcet extensionb

Fishburn

Participation
a No majoritarian & Pareto-optimal SCF (|A| ≥ 5)

(Theorem 2) a No majoritarian & Pareto-optimal SCF (|A| ≥ 4)
(Theorem 1)

‘ Few undiscriminating SCFs, e.g., CONDc, TC g , and POe (Lemma 2), and all scoring rulesf

Strategy-
proofness

a No majoritarian & Pareto-optimal SCF (|A| ≥ 5)d a No pairwise & Pareto-optimal SCF (|A| ≥ 4)a

‘ Few undiscriminating SCFs, e.g., CONDc, TC g , and POe

Table 2: Overview of results for participation and strategyproofness with respect to Kelly’s and Fishburn’s extension and
strict/weak preferences. The symbol ‘ marks sufficient conditions while a marks impossibility results. a: follows from a
result by Aziz et al. [2014] about probabilistic social choice functions, b: Brandt [2015], c: Brandt and Brill [2011], d: Brandt
and Geist [2014], e: Feldman [1979], f : Moulin [1988], g: Sanver and Zwicker [2012]

5.2 Kelly-participation
Theorems 1 and 2 are sweeping impossibilities within the do-
main of majoritarian SCFs. For Kelly’s extension, we ob-
tain a much more positive result that covers attractive ma-
joritarian and non-majoritarian SCFs. Brandt [2015] has
shown that set-monotonicity implies Kelly-strategyproofness
for strict preferences and that no Condorcet extension is
Kelly-strategyproof when preferences are weak. We prove
that set-monotonicity (and the very mild IIV axiom) im-
ply Kelly-participation even for weak preferences. We have
thus found natural examples of SCFs that violate Kelly-
strategyproofness but satisfy Kelly-participation.5

Theorem 3. Let f be an SCF that satisfies IIV and set-
monotonicity. Then f satisfies Kelly-participation.

Proof. Let f be an SCF that satisfies IIV and set-
monotonicity. Assume for contradiction that f does not sat-
isfy Kelly-participation. Hence there exist a preference pro-
file R and an agent i such that f(R−i) �Ki f(R). Let
X = f(R), Y = f(R−i), and Z = A \ (X ∪ Y ). By defini-
tion of Y �Ki X we have that x ∼i y for all x, y ∈ X ∩ Y .

We define a new preference relation %′i in which all al-
ternatives in Y are tied for the first place, followed by all
alternatives in X \ Y as they are ordered in %i, and all re-
maining alternatives in one indifference class at the bottom
of the ranking. Formally,

%i′ = (Y ×A) ∪%i|X ∪ (A× Z).
Let i′′ be an agent who is indifferent between all alterna-

tives, i.e., x ∼i′′ y for all x, y ∈ A. Since f satisfies IIV we
have that f(R−i+i′′) = f(R−i).

By definition, R−i+i′ is an f -improvement over both
R and R−i+i′′ . Hence, set-monotonicity implies that
f(R−i+i′) = f(R) and f(R−i+i′) = f(R−i+i′′). In sum-
mary, we obtain

f(R−i+i′) = f(R−i+i′′) = f(R−i) �Ki f(R) = f(R−i+i′),

which is a contradiction.
5It is easily seen that the proof of Theorem 3 straightforwardly

extends to group-participation, i.e., no group of agents can obtain a
unanimously more preferred outcome by abstaining.

Two rather undiscriminating SCFs that satisfy both IIV and
set-monotonicity are the Pareto rule and the omninomination
rule (which returns all alternatives that are ranked first by at
least one agent). Majoritarian SCFs satisfy IIV by definition
and there are several appealing majoritarian SCFs that sat-
isfy set-monotonicity, among those for instance the top cycle,
the minimal covering set, and the bipartisan set (see, e.g.,
[Brandt, 2015; Brandt et al., 2015]). These majoritarian SCFs
are sometimes criticized for not being discriminating enough.
The computer-aided approach described in this paper can be
used to find more discriminating SCFs that still satisfy Kelly-
participation. We thus found a refinement of the bipartisan
set that, for |A| = 5, selects only 1.43 alternatives on aver-
age, and satisfies Kelly-participation. For comparison, the bi-
partisan set (the smallest previously known majoritarian SCF
satisfying Kelly-participation) yields 2.68 alternatives on av-
erage.

6 Conclusion

Previous results have indicated a conflict between strate-
gic non-manipulability and Condorcet-consistency [Moulin,
1988; Pérez, 2001; Jimeno et al., 2009; Brandt, 2015]. For
example, Moulin [1988] has shown that no resolute Con-
dorcet extension satisfies participation and Brandt [2015] has
shown that no irresolute Condorcet extension satisfies Kelly-
strategyproofness. Theorem 3 addresses an intermediate
question and finds that—perhaps surprisingly—there are at-
tractive Condorcet extensions that satisfy Kelly-participation,
even when preferences are weak. On the other hand, we have
presented elaborate computer-generated impossibilities (The-
orems 1 and 2), which show that these encouraging results
break down once preferences are extended by the more re-
fined Fishburn extension. These findings improve our under-
standing of which behavioral assumptions allow for aggrega-
tion functions that are immune to strategic abstention.

An overview of the main results of this paper and how they
relate to other related results is given in Table 2.
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des préférences nettes et méthodes d’agrégation associées.
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ABSTRACT
Voting rules allow multiple agents to aggregate their pref-
erences in order to reach joint decisions. Perhaps one of
the most important desirable properties in this context is
Condorcet-consistency, which requires that a voting rule
should return an alternative that is preferred to any other
alternative by some majority of voters. Another desirable
property is participation, which requires that no voter should
be worse off by joining an electorate. A seminal result in so-
cial choice theory by Moulin [28] has shown that Condorcet-
consistency and participation are incompatible whenever
there are at least 4 alternatives and 25 voters. We lever-
age SAT solving to obtain an elegant human-readable proof
of Moulin’s result that requires only 12 voters. Moreover,
the SAT solver is able to construct a Condorcet-consistent
voting rule that satisfies participation as well as a number
of other desirable properties for up to 11 voters, proving
the optimality of the above bound. We also obtain tight
results for set-valued and probabilistic voting rules, which
complement and significantly improve existing theorems.

Keywords
Computer-aided theorem proving; social choice theory;
SAT; no-show paradox; participation; Condorcet

1. INTRODUCTION
Whenever a group of autonomous software agents or

robots needs to decide on a joint course of action in a fair
and satisfactory way, they need to aggregate their prefer-
ences. A common way to achieve this is to use voting rules.
Voting rules are studied in detail in social choice theory and
are coming under increasing scrutiny from computer scien-
tists who are interested in their computational properties or
want to utilize them in multiagent systems (see, e.g., [31, 9]).
In social choice theory, voting rules are usually compared

using desirable properties (so-called axioms) that they may
or may not satisfy. There are a number of well-known im-
possibility theorems—among which Arrow’s impossibility is
arguably the most famous—which state that certain axioms
are incompatible with each other. These results, which show
the non-existence of voting rules that satisfy a given set

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of axioms, are important because they clearly define the
boundary of what can be achieved at all. This applies to
the explicitly stated axioms as well as implicit ones such
as boundaries on the number of voters or alternatives. For
instance, if there are only two alternatives, Arrow’s theo-
rem does not apply and there are many voting rules, in-
cluding majority rule, that satisfy the conditions used in
Arrow’s theorem. One impossibility that requires unusu-
ally high bounds on the number of voters and alternatives is
Moulin’s no-show paradox [28], which states that the axioms
of Condorcet-consistency and participation are incompati-
ble whenever there are at least 4 alternatives and 25 voters.
Moulin proves that the bound on the number of alternatives
is tight by showing that the maximin voting rule (with lexi-
cographic tie-breaking) satisfies the desired properties when
there are at most 3 alternatives. The tightness of the more
restrictive condition on the number of voters was left open,
however. The goal of this paper is to give tight bounds
on the number of voters required for Moulin’s theorem and
related theorems that appear in the literature. To achieve
this, we encode these problems as formulas in propositional
logic and then use SAT solvers to decide their satisfiabil-
ity and extract minimal unsatisfiable sets (MUSes) in the
case of unsatisfiability. This approach is based on previous
work by Tang and Lin [35], Geist and Endriss [20], Brandt
and Geist [8], and Brandl et al. [4]. However, it turned
out that a straightforward application of this methodology
is insufficient to deal with the magnitude of the problems
we considered. Several novel techniques were necessary to
achieve our results. In particular, we extracted knowledge
from computer-generated proofs of weaker statements and
then used this information to guide the search for proofs of
more general statements.
As mentioned above, Moulin’s theorem uses the axioms

of Condorcet-consistency and participation. Condorcet-
consistency goes back to one of the most influential notions
in social choice theory, namely that of a Condorcet winner.
A Condorcet winner is an alternative that is preferred to
any other alternative by a majority of voters. The Mar-
quis de Condorcet, after whom this concept is named, ar-
gued that, whenever a Condorcet winner exists, it should be
elected [15]. A voting rule satisfying this condition is called
Condorcet-consistent. Apart from the intuitive appeal of
this condition, Condorcet-consistent rules are more robust
to changes in the of feasible alternatives and less suscepti-
ble to strategic manipulation than other voting rules (such
as Borda’s rule) (see, e.g., [11, 14]). While the desirabil-
ity of Condorcet-consistency—as that of any other axiom—
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has been subject to criticism, many scholars agree that it
is very appealing—if not indispensable—and a large part of
the social choice literature deals exclusively with Condorcet-
consistent voting rules (e.g., [17, 25, 9]). Participation was
first considered by Fishburn and Brams [18] and requires
that no voter should be worse off by joining an electorate,
or—alternatively—that no voter should benefit by abstain-
ing from an election. The desirability of this axiom in any
context with voluntary participation is evident. All the more
surprisingly, Fishburn and Brams have shown that single
transferable vote (STV), a common voting rule, violates par-
ticipation and referred to this phenomenon as the no-show
paradox. Moulin [28], perhaps even more startlingly, proved
that no Condorcet-consistent voting rule satisfies participa-
tion when there are at least 25 voters.
We leverage SAT solving to obtain an elegant human-

readable proof of Moulin’s result that requires only 12 vot-
ers. While computer-aided solving techniques allow us to
tackle difficult combinatorial problems, they usually do not
provide additional insight into these problems. Somewhat
surprisingly, the computer-aided proofs we found possess a
certain kind of symmetry that has not been exploited in pre-
vious proofs. Moreover, the SAT solver is able to construct
a Condorcet-consistent voting rule that satisfies participa-
tion as well as a number of other desirable properties for
up to 11 voters, proving the optimality of the above bound.
This computer-generated voting rule is compatible with the
maximin voting rule in 99.8% of all cases and, in contrast
to maximin, only selects alternatives from the top cycle. As
a practical consequence of our theorem, strategic abstention
need not be a concern for Condorcet-consistent voting rules
when there are at most 4 alternatives and 11 voters, for
instance when voting in a committee. We also use our tech-
niques to provide optimal bounds for related results about
set-valued and probabilistic voting rules [22, 36]. In partic-
ular, we give a tight bound of 17 voters for the optimistic
preference extension, 14 voters for the pessimistic extension,
and 12 voters for the stochastic dominance preference exten-
sion. These results are substantial improvements of previ-
ous results. For example, the previous statement for the
pessimistic extension requires an additional axiom, at least
5 alternatives, and at least 971 voters [22]. Our results are
summarized in Table 1.

2. RELATED WORK
The no-show paradox was first observed by Fishburn and

Brams [18] for the STV voting rule. Ray [30] and Lep-
elley and Merlin [26] investigate how frequently this phe-
nomenon occurs in practice. The main theorem addressed
in this paper is due to Moulin [28] and requires at least
25 voters. This bound was recently brought down to 21
voters by Kardel [23]. Simplified proofs of Moulin’s the-
orem are given by Schulze [33] and Smith [34]. Holzman
[21] and Sanver and Zwicker [32] strengthen Moulin’s theo-
rem by weakening Condorcet-consistency and participation,
respectively. Jimeno et al. [22] prove variants of Moulin’s
theorem for set-valued voting rules based on the optimistic
and the pessimistic preference extension. Pérez [29] defines
a weaker notion of participation in the context of set-valued
voting rules and shows that all common Condorcet exten-
sions except the maximin rule and Young’s rule violate this
property. Pérez notes that “a practical question, which has
not been dealt with here, refers to the number of candidates

and voters that are necessary to invoke the studied para-
doxes” ([29], p. 614).
When assuming that voters have incomplete prefer-

ences over sets or lotteries, participation and Condorcet-
consistency can be satisfies simultaneously and positive re-
sults for common Condorcet-consistent voting rules have
been obtained by Brandt [7] and Brandl et al. [4, 5, 6]. Ab-
stention in slightly different contexts than the one studied
in this paper recently caught the attention of computer sci-
entists working on voting equilibria and campaigning [16, 1].
The computer-aided techniques in this paper are inspired

by Tang and Lin [35], who reduced well-known impossi-
bility results from social choice theory—such as Arrow’s
theorem—to finite instances, which can then be checked by
a SAT solver. This methodology has been extended and
applied to new problems by Geist and Endriss [20], Brandt
and Geist [8], and Brandl et al. [4]. The results obtained
by computer-aided theorem proving have already found at-
tention in the social choice community [12]. More generally,
SAT solvers have also proven to be quite effective for other
problems in economics. A prominent example is the ongoing
work by Fréchette et al. [19] in which SAT solvers are used
for the development and execution of the FCC’s upcoming
reverse spectrum auction. In some respects, our approach
also bears some similarities to automated mechanism design
(see, e.g., [13]), where desirable properties are encoded and
mechanisms are computed to fit specific problem instances.

3. PRELIMINARIES
Let A be a set of m alternatives and N be a set of n

voters. Whether no-show paradoxes occur depends on the
exact values of m and n. By E(N ) := 2N \{∅} we denote the
set of electorates, i.e., non-empty subsets of N . For many
of our results, we will take A = {a, b, c, d}, and we use the
labels x, y for arbitrary elements of A.
A (strict) preference relation is a complete, antisymmet-

ric, and transitive binary relation on A. The preference re-
lation of voter i is denoted by <i. The set of all preference
relations over A is denoted by R. For brevity, we denote by
abcd the preference relation a <i b <i c <i d, eliding the
identity of voter i, and similarly for other preferences.
A preference profile R is a function from an electorate

N ∈ E(N ) to the set of preference relations R. The set of
all preference profiles is thus given by RE(N ). For the sake
of adding and deleting voters, we define for any preference
profile R ∈ RN with (i,<i) ∈ R, and j ∈ N \N , <j ∈ R

R− i := R \ {(i,<i)}, R + (j,<j) := R ∪ {(j,<j)}.

If the identity of the voter is clear or irrelevant we some-
times, in slight abuse of notation, refer to R− i by R−<i,
and write R +<j instead of R + (j,<j). If k voters with the
same preferences <i are to be added or removed, we write
R + k ·<i and R− k ·<i, respectively.
The majority margin of R is the map gR : A × A → Z

with gR(x, y) = |{i ∈ N | x <i y}| − |{i ∈ N | y <i x}|. The
majority margin can be viewed as the adjacency matrix of
a weighted tournament TR. We say that a preference profile
R induces the weighted tournament TR.
An alternative x is called Condorcet winner if it wins

against any other alternative in a majority contest, i.e., if
gR(x, y) > 0 for all y ∈ A \ {x}. Conversely, an alternative
x is a Condorcet loser if gR(x, y) < 0 for all y ∈ A \ {x}.
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n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Condorcet Thm 4 〉 〈 Thm 3 〈 [23] 〈 [28]
Maximin Thm 1 〉 〈 Thm 1
Kemeny Thm 2 〉 〈 Thm 2

optimistic Thm 5 〉 〈 Thm 6
pessimistic Thm 7 〉 〈 Thm 7

strong SD Thm 9 〉 〈 Thm 9

Possibility Impossibility

Table 1: Bounds on the number of voters for which Condorcet extensions can satisfy participation. Green
cells indicate the existence of a Condorcet extension satisfying participation (for m = 4). Red cells indicate
that no Condorcet extension satisfies participation (for m > 4).

Our central object of study are voting rules, i.e., functions
that assigns every preference profile a socially preferred al-
ternative. Thus, a voting rule is a function f : RE(N ) → A.
In this paper, we study voting rules that satisfy

Condorcet-consistency and participation.

Definition 1. A Condorcet extension is a voting rule
that selects the Condorcet winner whenever it exists. Thus,
f is a Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have f(R) = x. We
say that f is Condorcet-consistent.

Definition 2. A voting rule f satisfies participation if
all voters always weakly prefer voting to not voting, i.e., if
f(R) <i f(R− i) for all R ∈ RN and i ∈ N with N ∈ E(N ).

Equivalently, participation requires that for all preference
profiles R not including voter j, we have f(R+<j) <j f(R).

4. MAXIMIN AND KEMENY’S RULE
The proofs of both positive and negative results to come

were obtained through automated techniques that we de-
scribe in Section 5. To become familiar with the kind of
arguments produced in this way, we will now study a more
restricted setting which is of independent interest.
Specifically, let us consider voting rules that select winners

in accordance with the popular maximin and Kemeny rules.
For a preference profile R, an alternative x is amaximin win-
ner if it maximizes miny∈A\{x} gR(x, y); thus, x never gets
defeated too badly in pairwise comparisons. An alternative
x is a Kemeny winner if it is ranked first in some Kemeny
ranking. A Kemeny ranking is a preference relation <K ∈ R
maximizing agreement with voters’ individual preferences,
i.e., it maximizes the quantity

∑
i∈N |<K ∩<i|.

We call a voting rule a maximin extension (resp. Kemeny
extension) if it always selects a maximin winner (resp. Ke-
meny winner). Since a Condorcet winner, if it exists, is
always the unique maximin and Kemeny winner of a prefer-
ence profile, any such voting rule is also a Condorcet exten-
sion. We can now prove an easy version of Moulin’s theorem
for these more restricted voting rules.
To this end, we first prove a useful lemma allowing us to

extend impossibility proofs for 4 alternatives to also apply if
there are more than 4 alternatives. Its proof gives a first hint
on how Condorcet-consistency and participation interact.

Lemma 1. Suppose that f is a Condorcet extension satis-
fying participation. Let R be a preference profile and B ( A

a set of bad alternatives such that each voter ranks every
x ∈ B below every y ∈ A \B. Then f(R) /∈ B.

Proof. By induction on the number of voters |N | in R.
If R consists of a single voter i, then, since f is a Condorcet
extension, f(R) must return i’s top choice, which is not bad.
If R consists of at least 2 voters, and i ∈ N , then by partic-
ipation f(R) <i f(R − i). If f(R) were bad, then so would
be f(R− i), contradicting the inductive hypothesis.

The following computer-aided proofs, just like the more
complicated proofs to follow, can be understood solely by
carefully examining the corresponding ‘proof diagram’. An
arrow such as R R′+ abcd indicates that profile R′ is
obtained from R by adding a voter abcd, and is read as “if
one of the bold green alternatives (here ab) is selected at
R, then one of them is selected at R′” (by participation).
A circled node a indicates a profile admitting Condorcet
winner a, although in the proofs of Theorems 1 and 2, we use
it to refer to maximin and Kemeny winners, respectively.

Theorem 1. There is no maximin extension that satis-
fies participation for m > 4 and n > 7. (For m = 4 and
n 6 6, such a maximin extension exists.)

Proof. Let f be a maximin extension which satisfies par-
ticipation. Consider the following 6-voter profile R:

1 2 2 1
a b c d
b d a c
d c b a
c a d b

R
c

+ abcd

b

+ dcba

Suppose f(R) ∈ {a, b}. Adding an abcd vote leads to a
weighted tournament in which alternative c is the unique
maximin winner. But this contradicts participation since
the added voter would benefit from abstaining the election.
Symmetrically, if f(R) ∈ {c, d}, then adding a dcba vote

leads to a weighted tournament in which b is the maximin
winner, again contradicting participation. The symmetry of
the argument is due to an automorphism of R, namely the
relabelling of alternatives according to abcd 7→ dcba.
If m > 4, we add new bad alternatives x1, x2, . . . , xm−4 to

the bottom of R and of the additional voters. By Lemma 1,
f chooses from {a, b, c, d} at each step, completing the proof.
The existence result for n 6 6 is established by the meth-

ods described in Section 5.
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For 3 alternatives, Moulin [28] proved that the voting rule
that chooses the lexicographically first maximin winner sat-
isfies participation. Theorem 1 shows that this is not the
case for 4 alternatives, even if there are only 7 voters and
no matter how we pick among maximin winners.

Theorem 2. There is no Kemeny extension that satisfies
participation for m > 4 and n > 4. (For m = 4 and n 6 3,
such a Kemeny extension exists.)

Proof. Let f be a Kemeny extension which satisfies par-
ticipation. Consider the following 4-voter profile R:

1 1 1 1
a b c d
d a b c
c d a b
b c d a

R

a
− cbad

b
− dcba

c
− adcb d
− badc

Suppose f(R) = d. Then removing cbad from R yields
a weighted tournament in which a is the (unique) Kemeny
winner, which contradicts participation. Analogously, we
can exclude the other three possible outcomes for R by let-
ting a voter abstain, which always leads to a unique Kemeny
winner and a contradiction with participation. The argu-
ments are identical because R is completely symmetric in
the sense that for any pair of alternatives x and y, there is
an automorphism of R that maps x to y.
Just like for Theorem 1, if m > 4, we add new bad al-

ternatives x1, x2, . . . , xm−4 to the bottom of R and of the
additional voters. By Lemma 1, f chooses from {a, b, c, d}
at each step, completing the proof.

One remarkable and unexpected aspect of the computer-
aided proofs above is that their simplicity is due to automor-
phisms of the underlying preference profiles. Similar auto-
morphisms will also be used in the proofs of the stronger
theorems in Sections 6, 7, and 8. We emphasize that these
symmetries are not hard-coded into our problem specifica-
tion and, to the best of our knowledge, have not been ex-
ploited in previous proofs of similar statements.

5. METHOD: SAT SOLVING FOR
COMPUTER-AIDED PROOFS

The bounds in this paper were obtained with the aid of
a computer. In this section, we describe the method that
we employed. The main tool in our approach is an encod-
ing of our problems into propositional logic. We then use
SAT solvers to decide whether (in a chosen setting) there
exists a Condorcet extension satisfying participation. If the
answer is yes, the solver returns an explicit such voting rule.
If the answer is no, we use a process called MUS extraction
to find a short certificate of this fact which can be trans-
lated into a human-readable proof. By successively proving
stronger theorems and using the insights obtained through
MUS extraction, we arrived at results as presented in their
full generality in this paper.

5.1 SAT Encoding
“For n voters and 4 alternatives, is there a voting rule f

that satisfies Condorcet-consistency and participation?”

A natural encoding of this question into propositional
logic proceeds like this: Generate all profiles over 4 alter-
natives with at most n voters. For each such profile R,
introduce 4 propositional variables xR,a, xR,b, xR,c, xR,d,
where the intended meaning of xR,a is

xR,a is set true ⇐⇒ f(R) = a.

We then add clauses requiring that for each profile R, f(R)
takes exactly one value, and we add clauses requiring f to
be Condorcet-consistent and satisfy participation.
Sadly, the encoding sketched above is not tractable for

the values of n that we are interested in: the number of
variables and clauses used grows as Θ(24n), because there
are 4! = 24 possible preference relations over 4 alternatives
and thus 24n profiles with n voters. For n = 7, this leads to
more than 400 billion variables, and for n = 15 we exceed
1022 variables.
To escape this combinatorial explosion, we will temporar-

ily restrict our attention to pairwise voting rules. This
means that we assign an outcome alternative f(T ) to ev-
ery weighted tournament T . We then define a voting rule
that assigns the outcome f(TR) to each preference profile R,
where TR is the weighted tournament induced by R.
The number of tournaments induced by profiles with n

voters grows much slower than the number of profiles—our
computer enumeration suggests a growth of order about
1.5n. This much more manageable (yet still exponential)
growth allows us to consider problem instances up to n ≈ 16
which turns out to be just enough.
Other than referring to (weighted) tournaments instead

of profiles, our encoding into logic now proceeds exactly like
before. For each tournament T , we introduce the variables
xT,a, xT,b, xT,c, xT,d and define the formulas

non-emptyT := xT,a ∨ xT,b ∨ xT,c ∨ xT,d

mutexT :=
∧

x6=y

(¬xT,x ∨ ¬xT,y)

With our intended interpretation of the variables xT,x, all
models of

∧
T

non-emptyT ∧mutexT are functions from tour-
naments into {a, b, c, d}. (The word mutex abbreviates ‘mu-
tual exclusion’ and corresponds to the voting rule selecting
a unique winner.)
Since we are interested in voting rules that satisfy partici-

pation, we also need to encode this property. To this end, let
T = TR be a tournament induced by R and let < be a pref-
erence relation. Define T + < := TR+<. (The tournament
T + < is independent of the choice of R.) We define

participationT,< :=
∧

x

(
xT,x →

∨

y<x

xT+<,y

)
.

Requiring f to be Condorcet-consistent is straightforward:
if tournament T admits b as the Condorcet winner, we add

condorcetT := ¬xT,a ∧ xT,b ∧ ¬xT,c ∧ ¬xT,d,

and we add similar formulas for each tournament that ad-
mits a Condorcet winner. Then the models of the conjunc-
tion of all the non-empty, mutex, participation, and condorcet
formulas are precisely the pairwise voting rules satisfying
Condorcet-consistency and participation.
By adapting the condorcet formulas, we can impose more

stringent conditions on f—this is how our results for max-
imin and Kemeny extensions are obtained. We can also
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use this to exclude Pareto-dominated alternatives, and to
require f to always pick from the top cycle.
For some purposes it will be useful not to include the

mutex clauses in our final formula. Models of this formula
then correspond to set-valued voting rules that satisfy par-
ticipation interpreted according to the optimistic preference
extension. See Section 7 for results in this setting.

5.2 SAT Solving and MUS Extraction
The formulas we have obtained above are all given in con-

junctive normal form (CNF), and thus can be evaluated
without further transformations by any off-the-shelf SAT
solver. In order to physically produce a CNF formula as
described, we employ a straightforward Python script that
performs a breadth-first search to discover all weighted tour-
naments with up to n voters (see Algorithm 1 for a schematic
overview of the program). The script outputs a CNF for-
mula in the standard DIMACS format, and also outputs
a file that, for each variable xT,x, records the tournament
T and alternative x it denotes. This is necessary because
the DIMACS format uses uninformative variable descriptors
(consecutive integers) and memorizing variable meanings al-
lows us to interpret the output of the SAT solver.

Algorithm 1 Generate formula for up to n voters
T0 ← {weighted tournament on {a, b, c, d} with

all edges having weight 0}.
for k = 1, . . . , n do

Tk ← ∅
for T ∈ Tk−1 do

for < ∈ R do
Calculate T ′ := T + <
Add T ′ to Tk
Write non-emptyT ′ , mutexT ′ , condorcetT ′

Write participationT,<

As an example, the output formula for n = 15 in DI-
MACS format has a size of about 7 GB and uses 50 million
variables and 2 billion clauses, taking 6.5 hours to write.
Plingeling [3], a popular SAT solver that we used for all re-
sults in this paper, solves this formula in 50 minutes of wall
clock time, half of which is spent parsing the formula.
In case a given instance is satisfiable, the solver returns

a satisfying assignment, giving us an existence proof and a
concrete example for a voting rule satisfying participation
(and any further requirements imposed). In case a given
instance in unsatisfiable, we would like to have short certifi-
cate of this fact as well. One possibility for this is having
the SAT solver output a resolution proof (in DRUP format,
say). This yields a machine-checkable proof, but has two
major drawbacks: the generated proofs can be uncomfort-
ably large [24], and they do not give human-readable insights
about why the formula is unsatisfiable.
We handle this problem by computing a minimal unsat-

isfiable subset (MUS) of the unsatisfiable CNF formula. An
MUS is a subset of the clauses of the original formula which
itself is unsatisfiable, and is minimally so: removing any
clause from it yields a satisfiable formula. We used the tools
MUSer2 [2] and MARCO [27] to extract MUSes. If an unsat-
isfiable formula admits a very small MUS, it is often possible
to obtain a human-readable proof of unsatisfiability from it
[8, 4].

Note that for purposes of extracting human-readable
proofs, it is desirable for the MUS to be as small as possible,
and also to refer to as few different tournaments as possible.
The first issue can be addressed by running the MUS ex-
tractor repeatedly, instructing it to order clauses randomly
(note that clause sets of different cardinalities can be mini-
mally unsatisfiable with respect to set inclusion); similarly,
we can use MARCO to enumerate all MUSes and look for
small ones. The second issue can be addressed by comput-
ing a group MUS : here, we partition the clauses of the CNF
formula into groups, and we are looking for a minimal set
of groups that together are unsatisfiable. In our case, the
clauses referring to a given tournament T form a group. In
practice, finding a group MUS first and then finding a stan-
dard (clause-level) MUS within the group MUS yielded sets
of size much smaller than MUSes returned without the in-
termediate group-step (often by a factor of 10).
To translate an MUS into a human-readable proof, we

created another program that visualized the MUS in a con-
venient form.1 Indeed, this program outputs the ‘proof di-
agrams’ like Figure 1 that appear throughout this paper
(though we re-typeset them). We think that interpreting
these diagrams is quite natural (and is perhaps even easier
than reading a textual translation). More importantly, the
automatically produced graphs allowed us to quickly judge
the quality of an extracted MUS.

5.3 Incremental Proof Discovery
The SAT encoding described in Section 5.1 only concerns

pairwise voting rules, yet none of the (negative) results in
this paper require or use this assumption. This is the prod-
uct of multiple rounds of generating and evaluating SAT for-
mulas, extracting MUSes, and using the insights generated
by this as ‘educated guesses’ to solve more general problems.
Following the process as described so far led to a proof

that for 4 alternatives and 12 voters, there is no pairwise
Condorcet extension that satisfies participation. That proof
used the assumption of pairwiseness, i.e., it assumed that the
voting rule returns the same alternative on profiles inducing
the same weighted tournament. However, intriguingly, the
preference profiles mentioned in the proof did not contain
all 4! = 24 possible preference relations over {a, b, c, d}. In
fact, it only used 10 of the possible orders. Further, each
profile included R0 = {abdc, bdca, cabd, dcab} as a subpro-
file. As we argued at the start of Section 5.1, it is intractable
to search over the entire space of preference profiles. On the
other hand, it is much easier to merely search over all ex-
tensions of R0 that contain at most n = 12 voters and only
contain copies of the 10 orders previously identified. The
SAT formula produced by doing exactly this turned out to
be unsatisfiable, and a small MUS extracted from it gave
rise to Theorem 3.
The proof of Theorem 6 for 17 voters was obtained by run-

ning Algorithm 1 with T0 initialized to the weighted tour-
nament induced by the initial profile R used in the proof of
Theorem 3. Before finding this tournament, we tried var-
ious other tournaments as T0, including ones featuring in
Moulin’s original proof, and ones occurring at other steps in
the proof of Theorem 3, but R turned out to give the best
1Roughly, the visualization program proceeds by drawing
an edge for every participationT,< clause that occurs in the
MUS, and marks the nodes for which condorcetT clauses
appear in the MUS.
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2 3 3 2
a b c d
b d a c
d c b a
c a d b

R

Rα

Rβ

a
+ badc

b

+ 3 · dcba

− abcd

− 2 · cabd

− dcab

c

+ acdb

− 2 · bdca

+ 2 · abcd
R′α

b

+ dbac

− 2 · cabd

R′β

c

+ 3 · abcd

− dcba
d

+ cdab

− 2 · bdca

− abdc

+ 2 · dcba

Figure 1: Computer-aided proof of Theorem 3 in graphical form, showing that there is no Condorcet extension
that satisfies participation for m > 4 and n > 12. See Section 4 for an explanation of how to read this diagram.

(and indeed a tight) bound, and additionally exhibits a lot
of symmetry that was also present in the MUS we extracted.

6. MAIN RESULT
We are now in a position to state and prove our main

claim that Condorcet extensions cannot avoid the no-show
paradox for 12 or more voters (when there are at least 4 al-
ternatives), and that this result is optimal.

Theorem 3. There is no Condorcet extension that satis-
fies participation for m > 4 and n > 12.

Proof. The proof follows the structure depicted in Fig-
ure 1. Let R be the preference profile shown there.
Since R remains fixed after relabelling alternatives ac-

cording to abcd 7→ dcba, we may assume without loss of
generality that f(R) ∈ {a, b}. (An explicit proof in case
f(R) ∈ {c, d} is indicated in Figure 1.)
By participation, it follows from f(R) ∈ {a, b} that also

f(Rα := R + 2 · abcd) ∈ {a, b} since the voters with prefer-
ences abcd cannot be worse off by joining the electorate. If
f(Rα) = a, again by participation, removing 2 voters with
preferences bdca does not change the winning alternative
(so f(Rα − 2 · bdca) = a), and neither does adding acdb, so
f(Rα − 2 · bdca + acdb) = a, which, however, is in conflict
with Rα − 2 · bdca + acdb having a Condorcet winner, c.
Thus we must have f(Rα) = b, which implies that f(Rα−

dcab) = b, and thus f(Rβ := Rα− dcab− 2 · cabd) ∈ {b, d}.
We again proceed by cases: If f(Rβ) = b, we can add

a voter badc to obtain a profile with Condorcet winner a,
which contradicts participation. But then, if f(Rβ) = d, we
get that f(Rβ − abcd) = d and, by another application of
participation, that f(Rβ − abcd + 3 · dcba) = d in contrast
to the existence of Condorcet winner b, a contradiction.
If m > 4, we add bad alternatives x1, x2, . . . , xm−4 to the

bottom of R and all other voters. By Lemma 1, f chooses
from {a, b, c, d} at each step, completing the proof.

The following result establishes that our bound on the
number of voters is tight. A very useful feature of our
computer-aided approach is that we can easily add addi-
tional requirements for the desired voting rule. Two com-
mon requirements for voting rules are that they should only

return alternatives that are Pareto-optimal and contained in
the top cycle (also known as the Smith set) (see, e.g., [17]).

Theorem 4. There is a Condorcet extension f that sat-
isfies participation for m = 4 and n 6 11. Moreover, f is
pairwise, Pareto-optimal, and a refinement of the top cycle.
The Condorcet extension f is given as a look-up table,

which is derived from the output of a SAT solver. The look-
up table lists all 1, 204, 215 weighted tournaments inducible
by up to 11 voters and assigns each an output alternative
(see Figure 2 for an excerpt). The relevant text file has a
size of 28 MB (gzipped 4.5 MB) and is available as part of
an arXiv version of this paper [10].
Comparing this voting rule with known voting rules, it

turns out that it picks a maximin winner in 99.8% and a Ke-
meny winner in 98% of all weighted tournaments. Moreover,
the rule agrees with the maximin rule with lexicographic
tie-breaking on 95% of weighted tournaments. The similar-
ity with the maximin rule is interesting insofar as a well-
documented flaw of the maximin rule is that it fails to be a
refinement of the top cycle (and may even return Condorcet
losers). Our computer-generated rule always picks from the
top cycle while it remains very close to the maximin rule.
80% of the considered weighted tournaments admit a Con-

dorcet winner, which uniquely determines the output of the
rule; this can be used to reduce the size of the look-up table.

7. SET-VALUED VOTING RULES
A drawback of voting rules, as we defined them so far, is

that that the requirement to always return a single winner is
in conflict with basic fairness conditions, namely anonymity
and neutrality. A large part of the social choice litera-
ture therefore deals with set-valued voting rules, where ties
are usually assumed to be eventually broken by some tie-
breaking mechanism.
A set-valued voting rule (sometimes known as a voting

correspondence or as an irresolute voting rule) is a function
F : RE(N ) → 2A \ {∅} that assigns each preference profile R
a non-empty set of alternatives. The function F is a (set-
valued) Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have F (R) = {x}.
Following the work of Pérez [29] and Jimeno et al. [22],

we seek to study the occurrence of the no-show paradox in
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a,#1,(1,1,1,1,1,1)
a,#1,(1,1,1,1,1,-1)
a,#1,(1,1,1,-1,1,1)
a,#1,(1,1,1,-1,-1,1)
a,#1,(1,1,1,1,-1,-1)
a,#1,(1,1,1,-1,-1,-1)
b,#1,(-1,1,1,1,1,1)
b,#1,(-1,1,1,1,1,-1)
b,#1,(-1,-1,1,1,1,1)
b,#1,(-1,-1,-1,1,1,1)
b,#1,(-1,1,-1,1,1,-1)
b,#1,(-1,-1,-1,1,1,-1)
c,#1,(1,-1,1,-1,1,1)
c,#1,(1,-1,1,-1,-1,1)

a,#11,(9,11,3,9,1,-9)
a,#11,(11,9,3,7,1,-9)
c,#11,(5,-9,-1,-11,-1,7)
c,#11,(5,-9,-1,-11,-1,5)
c,#11,(3,-11,-1,-9,1,7)
c,#11,(3,-11,-3,-9,1,7)
c,#11,(3,-11,-3,-11,-1,7)
b,#11,(-1,3,-5,-3,5,-3)
b,#11,(-3,3,-7,-3,5,-3)
b,#11,(-3,1,-7,-3,5,-3)
c,#11,(-3,1,-5,-5,5,-1)
a,#11,(3,7,11,-3,9,11)
a,#11,(3,7,11,-3,9,9)
a,#11,(3,7,11,-5,9,11)

Figure 2: Excerpt of look-up table giving
a pairwise Condorcet extension satisfying par-
ticipation for n 6 11 voters (from Theo-
rem 4). Each row lists a weighted tournament as
(gR(a, b), gR(a, c), gR(a, d), gR(b, c), gR(b, d), gR(c, d)) with
a chosen alternative, and with the number of voters
inducing the tournament.

this setting. To do so, we need to define appropriate notions
of participation, and for this we will need to specify agents’
preferences over sets of alternatives. Here, we use the op-
timistic and pessimistic preference extensions. An optimist
prefers sets with better most-preferred alternative, while a
pessimist prefers sets with better least-preferred alternative.
For example, if U = {a, b, d} and V = {b, c}, then an opti-
mist with preferences abcd prefers U to V , while a pessimist
prefers V to U . With these notions, we extend the partici-
pation property to set-valued voting rules.

Definition 3. A set-valued voting rule F satisfies opti-
mistic participation if max<i F (R + <i) <i max<i F (R).
A set-valued voting rule F satisfies pessimistic participa-

tion if min<i F (R) <i min<i F (R− i).

A set-valued voting rule F is called resolute if it al-
ways selects a single alternative, so that for all R we have
|F (R)| = 1. A (single-valued) voting rule f is naturally
identified with a resolute set-valued voting rule F ; if f sat-
isfies participation, then this F satisfies both optimistic and
pessimistic participation. Hence, by Theorem 4, there is
a (resolute) set-valued Condorcet extension F that satis-
fies both optimistic and pessimistic participation. However,
there might be hope that allowing voting rules to be irres-
olute also allows for participation to be attainable for more
voters, and indeed this is the case.

Theorem 5. There is a set-valued Condorcet extension F
that satisfies optimistic participation for m = 4 and n 6 16,
and also is Pareto-optimal and a refinement of the top cycle.

The SAT solver indicates that no such set-valued voting
rule is pairwise. Theorem 5 is optimal in the sense that
optimistic participation cannot be achieved if we allow for
one more voter.

Theorem 6. There is no set-valued Condorcet extension
that satisfies optimistic participation for m > 4 and n > 17.

Proof. Let F be such a function, and consider the fol-
lowing 10-voter profile R:

2 3 3 2
a b c d
b d a c
d c b a
c a d b

R
Rα

a
+ 5 · bacd

c
+ 3 · acbd

+ 2 · abcd

R′α

b
+ 3 · dbca

d
+ 5 · cdba

+ 2 · dcba

Suppose that either a ∈ F (R) or b ∈ F (R). (The case
of c ∈ F (R) or d ∈ F (R) is symmetric.) Then let Rα :=
R+2·abcd. By optimistic participation, we then have either
a ∈ F (Rα) or b ∈ F (Rα). If we had a ∈ F (Rα), then also
a ∈ F (Rα + 3 · acbd) but this profile has Condorcet winner
c, and if b ∈ F (Rα) then also b ∈ F (Rα + 5 · bacd) but this
profile has Condorcet winner a. This is a contradiction.
This argument extends to more than 4 alternatives by

appealing to a set-valued analogue of Lemma 1.

Inspecting Moulin’s original proof [28] shows that it also
establishes an impossibility for optimistic participation (for
25 voters). Apparently unaware of this, Jimeno et al. [22]
explicitly establish such a result for 27 voters and 5 alter-
natives. It is worth observing that each step of the proof
of Theorem 6 involves adding voters to the current profile,
and we never remove voters. In light of Definition 3, this is
the reason why the proof establishes a result for optimistic
participation. If we restrict ourselves to deleting voters, we
obtain a result for pessimistic participation.

Theorem 7. There is no set-valued Condorcet extension
that satisfies pessimistic participation for m > 4 and n > 14.
On the other hand, for m = 4 and n 6 13, there exists such
a set-valued voting rule.

Proof Sketch. The proof has a similar structure to the
proof of Theorem 3, displayed in Figure 1. The initial profile
of this proof is R + 2 · abcd + 2 · dcba, taking R to be the
profile of Figure 1. We further replace proof steps in which
voters are added by similar ones where voters are deleted,
and invoke pessimistic participation at each such step to
obtain a contradiction.

This result strengthens a result of Jimeno et al. [22], who
show that for m > 5 no set-valued Condorcet extension sat-
isfying a property called “weak translation invariance” can
also satisfy pessimistic participation. Our proof does not
need the extra assumption, already works for m = 4 alter-
natives, and uses just 14 instead of 971 voters.2
As previously observed, adding voters in our impossibility

proofs corresponds to optimistic participation, while remov-
ing voters corresponds to pessimistic participation. In the
proof of Theorem 3, we use both operations, which allows for
a tighter bound of just 12 voters. In the set-valued setting,
we can formulate this result in a slightly stronger way.

2The large number of voters is due to several applications of
the “weak translation invariance” axiom, each of which adds
5! = 120 voters to the preference profile under consideration.
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Theorem 8. There is no set-valued Condorcet extension
that satisfies optimistic and pessimistic participation simul-
taneously for m > 4 and n > 12. On the other hand, for
m = 4 and n 6 11 such a set-valued rule exists (and also is
Pareto-optimal and a refinement of the top cycle).

Proof. Use the proof of Theorem 3, invoking optimistic
participation for edges labelled with the addition of a voter
(+), and invoking pessimistic participation for edges labelled
with removal of a voter (−). On the other hand, the (single-
valued) voting rule of Theorem 4 clearly satisfies both opti-
mistic and pessimistic participation.

The preference extension combining the optimistic and
pessimistic preference extension is also known as the Egli-
Milner extension.

8. PROBABILISTIC VOTING RULES
A probabilistic voting rule (also known as a social decision

scheme) assigns to each preference profile R a probability
distribution (or lottery) over A. Thus, a probabilistic voting
rule might assign a fair coin flip between a and b as the
outcome of an election.
Formally, let ∆(A) = {p : A → [0, 1] :

∑
x∈A p(x) = 1}

be the set of lotteries over A; a lottery p ∈ ∆(A) assigns
probability p(x) to alternative x. A probabilistic voting rule
f is a function f : RE(N ) → ∆(A). In this context, we say
that f is a Condorcet extension if f(R) puts probability 1 on
the Condorcet winner of R whenever it exists: if R admits
x as the Condorcet winner, then f(R)(x) = 1.
As in the set-valued case, we need a notion of comparing

outcomes in order to extend the definition of participation.
Here, we use the concept of stochastic dominance (SD).

Definition 4. Let < ∈ R be a preference relation
over A, and let p, q ∈ ∆(A) be lotteries. Then p is (weakly)
SD-preferred over q by < if for each alternative x, we have

∑
y<x p(y) >

∑
y<x q(y).

In this case, we write p <SD q.

For example, the lottery 2
3 a + 1

3 c is SD-preferred to the
lottery 1

3 a + 1
3 b + 1

3 c by a voter with preferences abcd. A
voter with preferences bacd will feel the other way around.
The main appeal of stochastic dominance stems from the
following equivalence: p <SD q if and only if p yields at
least as much von-Neumann-Morgenstern utility as q under
any utility function that is consistent with the ordinal pref-
erences <. Using this notion of comparing lotteries, we can
define participation analogously to the previous settings.

Definition 5. A probabilistic voting rule f satisfies
strong SD-participation if f(R) <SD

i f(R−i) for all R ∈ RN
and i ∈ N with N ∈ E(N ).

Any (single-valued) voting rule f can be seen as a prob-
abilistic voting rule that puts probability 1 on its chosen
alternative. If f satisfies participation, then this derived
probabilistic voting rule is easily seen to satisfy strong SD-
participation. Hence Theorem 4 gives us a probabilistic
Condorcet extension that satisfies strong SD-participation
for n 6 11 voters and m = 4 alternatives.
We now establish a connection between strong SD-

participation and the set-valued notions of participation

that we considered in Section 7. This connection will al-
low us to translate the impossibility results we obtained
there to the probabilistic setting. To set up this connec-
tion, let us define the support of a lottery p ∈ ∆(A) to be
supp(p) := {x ∈ A : p(x) > 0}.

Proposition 1. Let f be a probabilistic voting rule sat-
isfying strong SD-participation. Let F = supp ◦f be the sup-
port of f , i.e., F (R) = supp(f(R)) for all profiles R. Then
F satisfies both optimistic and pessimistic participation.

Proof. We only verify optimistic participation; the pes-
simistic case is similar. Let R be a preference profile with
electorate N ∈ E(N ), and let i ∈ N \N be a voter with pref-
erences <i. Let x = max<i F (R), and let U = {y : y <i x}.
We need to show that max<i F (R +<i) <i x, by finding an
alternative y ∈ U that is in the support of f(R + <i).
But since f satisfies strong SD-participation, we have

∑
y∈U f(R + <i)(y) >

∑
y∈U f(R)(y) > 0,

where the strict inequality follows from the definition of the
support and of x. Hence some alternative from U is in the
support of f(R + <i), as required.
Putting these results together with the impossibility result

of Theorem 8, we obtain the following.

Theorem 9. There is no probabilistic Condorcet exten-
sion that satisfies strong SD-participation for n > 12 and
m > 4. On the other hand, for m = 4 and n 6 11, such a
probabilistic voting rule exists.

Theorem 9 resolves an open problem mentioned by Brandl
et al. [5, Sec. 6].

9. CONCLUSIONS AND FUTURE WORK
We have given tight results delineating in which situa-

tions no-show paradoxes must occur. As such, our results
nicely complement recent advances to satisfy Condorcet-
consistency and participation by exploiting uncertainties of
the voters about their preferences or about the voting rule’s
tie-breaking mechanism [4, 5, 6].
Due to unmanageable branching factors when there are

5 alternatives (and hence 5! = 120 possible preference rela-
tions), we were unable to check using our approach whether
no-show paradoxes occur with even less voters when the
number of alternatives grows. It would be interesting to gain
a deeper understanding of the computer-generated Con-
dorcet extension that satisfies participation for up to 11 vot-
ers. So far, we only know that it (slightly) differs from all
Condorcet extensions that are usually considered in the lit-
erature. As a first step, it would be desirable to obtain a
representation of this rule that is more concise than a look-
up table.
Another interesting topic for future research is to find op-

timal bounds for a variant of the no-show paradox due to
Sanver and Zwicker [32], in which participation is weakened
to half-way monotonicity. Their proof requires 702 voters.
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Abstract
Two important requirements when aggregating the
preferences of multiple agents are that the outcome
should be economically efficient and the aggrega-
tion mechanism should not be manipulable. In
this paper, we provide a computer-aided proof of a
sweeping impossibility using these two conditions
for randomized aggregation mechanisms. More
precisely, we show that every efficient aggregation
mechanism can be manipulated for all expected
utility representations of the agents’ preferences.
This settles a conjecture by Aziz et al. [2013b] and
strengthens a number of existing theorems, includ-
ing statements that were shown within the special
domain of assignment. Our proof is obtained by
formulating the claim as a satisfiability problem
over predicates from real-valued arithmetic, which
is then checked using an SMT (satisfiability mod-
ulo theories) solver. To the best of our knowledge,
this is the first application of SMT solvers in com-
putational social choice.

1 Introduction
Models and results from microeconomic theory, in particu-
lar from game theory and social choice, have proven to be
very valuable when reasoning about computational multia-
gent systems. Two fundamental notions in this context are
efficiency—no agent can be made better off without making
another one worse off—and strategyproofness—no agent can
obtain a more preferred outcome by manipulating his prefer-
ences. Gibbard [1973] and Satterthwaite [1975] have shown
that every strategyproof social choice function is either dic-
tatorial or imposing. Hence, strategyproofness can only be
achieved at the cost of discriminating among the agents or
among the alternatives. One natural possibility to restore fair-
ness, which is particularly popular in computer science, is
to allow for randomization. Functions that map a profile of
individual preferences to a probability distribution over al-
ternatives (a so-called lottery) are known as social decision
schemes (SDSs).

Generalizing his previous result, Gibbard [1977] proved
that the only strategyproof and ex post efficient social de-
cision schemes are randomizations over dictatorships. Gib-

bard’s notion of strategyproofness requires that no agent is
better off by manipulating his preferences for some expected
utility representation of the agents’ ordinal preferences. This
condition is quite demanding because an SDS may be deemed
manipulable just because it can be manipulated for a con-
trived and highly unlikely utility representation. In this paper,
we adopt a weaker notion of strategyproofness, first used by
Postlewaite and Schmeidler [1986] and popularized by Bo-
gomolnaia and Moulin [2001]. This notion requires that no
agent should be better off by manipulating his preferences
for all expected utility representations of the agents’ prefer-
ences. At the same time, we use a stronger notion of effi-
ciency than Gibbard [1977]. This notion is defined in anal-
ogy to our notion of strategyproofness and requires that no
agent can be made better off for all utility representations of
the agents’ preferences, without making another one worse
off for some utility representation. This type of efficiency
was introduced by Bogomolnaia and Moulin [2001] and is
also known as ordinal efficiency or SD-efficiency where SD
stands for stochastic dominance.

Our main result establishes that no anonymous and neu-
tral SDS satisfies efficiency and strategyproofness. This set-
tles a conjecture by Aziz et al. [2013b] and generalizes theo-
rems by Aziz et al. [2013b], Aziz et al. [2014], and Brandl
et al. [2016b]. It also strengthens related statements by
Zhou [1990], Bogomolnaia and Moulin [2001], and Katta and
Sethuraman [2006], which were shown within the special do-
main of assignment.

Our proof of this theorem heavily relies on computer-aided
solving techniques. Some of these have already been ap-
plied in computational social choice, where, due to the rig-
orous axiomatic foundation, computer-aided theorem prov-
ing appears to be a particularly promising line of research.
Perhaps the best known result in this context stems from
Tang and Lin [2009], who reduce well-known impossibility
results, such as Arrow’s theorem, to finite instances, which
can then be checked by a Boolean satisfiability (SAT) solver.
Their work has sparked a number of contributions which, be-
sides using this general idea for more complex settings or ax-
ioms, focus on proving novel results [Geist and Endriss, 2011;
Brandl et al., 2015; Brandt et al., 2016; Brandt and Geist,
2016].

In this paper, we go beyond the SAT-based techniques of
previous contributions by designing an SMT (satisfiability
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modulo theories) encoding that captures axioms for random-
ized social choice. SMT can be viewed as an enriched form of
the satisfiability problem (SAT) where Boolean variables are
replaced by statements from a theory, such as specific data
types or arithmetics. Similar to SAT, there is a range of SMT
solvers developed by an active community that runs annual
competitions [Barrett et al., 2013]. Typically, SMT solvers
are used as backends for verification tasks such as the verifi-
cation of software. To capture axioms about lotteries, we use
the theory of (quantifier-free) linear real arithmetic. Solving
this version of SMT can be seen as an extension to linear pro-
gramming in which arbitrary Boolean operators are allowed
to connect (in-)equalities.

We follow the idea of Brandt and Geist [2016] and ex-
tract a minimal unsatisfiable set (MUS) of constraints in order
to verify our result. Despite its relatively complex 94 (non-
trivial) constraints, the MUS enables manual and computer-
aided verification of the encoding, and, hence, releases any
need to verify our program for generating it.

2 The Model
Let A be a finite set of m alternatives and N = {1, . . . , n}
a set of agents. A (weak) preference relation is a complete
and transitive binary relation on A. The preference relation
reported by agent i is denoted by %i, and the set of all pref-
erence relations by R. In accordance with conventional no-
tation, we write �i for the strict part of %i, i.e., x �i y
if x %i y but not y %i x, and ⇠i for the indifference part
of %i, i.e., x ⇠i y if x %i y and y %i x. A preference
relation %i is linear if x �i y or y �i x for all distinct
alternatives x, y 2 A. We will compactly represent a prefer-
ence relation as a comma-separated list with all alternatives
among which an agent is indifferent placed in a set. For
example, x �i y ⇠i z is represented by %i : x, {y, z}. A
preference profile R = (%1, . . . ,%n) is an n-tuple contain-
ing a preference relation %i for each agent i 2 N . The set
of all preference profiles is thus given by RN . For a given
R 2 RN and % 2 R, Ri 7!% denotes a preference pro-
file identical to R except that %i is replaced with %, i.e.,
Ri 7!% = R \ {(i,%i)} [ {(i,%)}.

2.1 Social Decision Schemes
Our central objects of study are social decision schemes:
functions that map a preference profile to a lottery (or prob-
ability distribution) over the alternatives. The set of all lot-
teries over A is denoted by �(A), i.e., �(A) = {p 2
RA

�0 :
P

x2A p(x) = 1}, where p(x) is the probability that
p assigns to x. Then, formally, a social decision scheme
(SDS) is a function f : RN ! �(A). By supp(p) we de-
note the support of a lottery p 2 �(A), i.e., the set of all
alternatives to which p assigns positive probability. Two com-
mon minimal fairness conditions for SDSs are anonymity
and neutrality, i.e., symmetry with respect to agents and al-
ternatives, respectively. Formally, anonymity requires that
f(R) = f(R � �) for all R 2 RN and permutations
� : N ! N over agents. Neutrality, on the other hand, is de-
fined via permutations over alternatives. An SDS f is neutral

if f(R)(x) = f(⇡(R))(⇡(x)) for all R 2 RN , permutations
⇡ : A! A, and x 2 A.1

2.2 Efficiency and Strategyproofness
Many important properties of SDSs, such as efficiency and
strategyproofness, require us to reason about the preferences
that agents have over lotteries. This is commonly achieved
by assuming that in a preference profile R every agent i, in
addition to this preference relation %i, is equipped with a von
Neumann-Morgenstern (vNM) utility function uR

i : A ! R.
By definition, a utility function uR

i has to be consistent with
the ordinal preferences, i.e., for all x, y 2 A, uR

i (x) � uR
i (y)

iff x %i y. A utility representation u then associates with
each preference profile R an n-tuple (uR

1 , . . . , uR
n ) of such

utility functions. Whenever the preference profile R is clear
from the context, the superscript will be omitted and we write
ui instead of the more cumbersome uR

i .
Given a utility function ui, agent i prefers lottery p to lot-

tery q iff the expected utility for p is at least as high as that
of q. With slight abuse of notation the domain of utility func-
tions can be extended in the canonical way to �(A) by letting

ui(p) =
X

x2A

p(x)ui(x).

It is straightforward to define efficiency and strategyproofness
using expected utility. For a given utility representation u
and a preference profile R, a lottery p u-(Pareto-)dominates
another lottery q if

ui(p) � ui(q) for all i 2 N , and
ui(p) > ui(q) for some i 2 N .

An SDS f is u-efficient if it never returns u-dominated lotter-
ies, i.e., for all R 2 RN , f(R) is not u-dominated. The no-
tion of u-strategyproofness can be defined analogously: for a
given utility representation u, an SDS can be u-manipulated
if there are R 2 RN , i 2 N , and % 2 R such that

uR
i (f(Ri 7!%)) > uR

i (f(R)).

An SDS is u-strategyproof if it cannot be u-manipulated.
The assumption that the vNM utility functions of all agents

(and thus their complete preferences over lotteries) are known
is quite unrealistic. Often even the agents themselves are un-
certain about their preferences over lotteries and only know
their ordinal preferences over alternatives.2 A natural way to
model this uncertainty is to leave the utility functions unspec-
ified and instead quantify over all utility functions that are
consistent with the agents’ ordinal preferences. This model
leads to much weaker notions of efficiency and strategyproof-
ness.

1⇡(R) is the preference profile obtained from ⇡ by replacing
%i with %⇡

i for every i 2 N , where ⇡(x) %⇡
i ⇡(y) if and only if

x %i y.
2When assuming that all agents possess vNM utility functions,

these utility functions could be taken as inputs for the aggregation
function. Such aggregation functions are called cardinal decision
schemes (see, e.g., [Dutta et al., 2007]). In addition to the fact that
concrete vNM utility functions are typically unavailable, their rep-
resentation may require infinite space.
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Definition 1. An SDS is efficient if it never returns a lottery
that is u-dominated for all utility representations u.

As mentioned in the introduction, this notion of efficiency
is also known as ordinal efficiency or SD-efficiency (see, e.g.,
[Bogomolnaia and Moulin, 2001; Aziz et al., 2014; 2015]).
The relationship to stochastic dominance will be discussed in
more detail in Section 4.2.
Example 1. For illustration consider A = {a, b, c, d} and the
preference profile R = (%1, . . . ,%4),

%1 : {a, c}, {b, d}, %2 : {b, d}, {a, c},
%3 : {a, d}, b, c, %4 : {b, c}, a, d

Observe that the lottery 7/24 a+7/24 b+5/24 c+5/24 d, which is
returned by the well-known SDS random serial dictatorship
(RSD), is u-dominated by 1/2 a + 1/2 b for every utility rep-
resentation u. Hence, any SDS that returns this lottery for the
profile R would not be efficient. On the other hand, the lot-
tery 1/2 a + 1/2 b is not u-dominated, which can, for instance,
be checked via linear programming (see Lemma 4).

We can also define a weak notion of strategyproofness in
analogy to our notion of efficiency.
Definition 2. An SDS is strategyproof if it cannot be u-
manipulated for all utility representations u.

Alternatively, there is a stronger version of strategyproof-
ness by Gibbard [1977], in which an SDS should not be u-
manipulable for some utility representation u.

For more information concerning the relationship between
sets of possible utility functions and preference extensions,
such as stochastic dominance, the reader is referred to Aziz
et al. [2015].

3 The Result
Our main result shows that efficiency and strategyproofness
are incompatible with basic fairness properties. Aziz et
al. [2013b] raised the question whether there exists an anony-
mous, efficient, and strategyproof SDS. When additionally
requiring neutrality, we can answer this question in the nega-
tive.
Theorem 1. If m � 4 and n � 4, there is no anonymous and
neutral SDS that satisfies efficiency and strategyproofness.

The proof of Theorem 1, which heavily relies on computer-
aided solving techniques, is discussed in Section 4. Let us
first discuss the independence of the axioms and relate the
result to existing theorems. RSD satisfies all axioms except
efficiency; another SDS known as maximal lotteries satisfies
all axioms except strategyproofness (cf. [Aziz et al., 2013b]).
Serial dictatorship, the deterministic version of RSD , satis-
fies neutrality, efficiency, and strategyproofness but violates
anonymity. It is unknown whether Theorem 1 still holds when
dropping the assumption of neutrality. Our proof, however,
only requires a technical weakening of neutrality (cf. Sec-
tion 4.1).

3.1 Related Results for Social Choice
Our result generalizes several existing results and is closely
related to a number of results in subdomains of social choice.

Aziz et al. [2013b] proved a weak version of Theorem 1 for
the rather restricted class of majoritarian SDSs, i.e., SDSs
whose outcome may only depend on the pairwise majority
relation. This statement has later been generalized by Aziz
et al. [2014] to all SDSs whose outcome only depends on
the weighted majority relation. More recently, Brandl et
al. [2016b] have shown that while random dictatorship is ef-
ficient and strategyproof on the domain of linear preferences,
it cannot be extended to the full domain of weak preferences
without violating at least one of these properties. Their theo-
rem, which also assumes anonymity and neutrality, is a direct
consequence of Theorem 1. Other impossibility results have
been obtained for stronger notions of efficiency and strat-
egyproofness, which weakens the corresponding statements
[Aziz et al., 2014].

3.2 Related Results for Assignment
A subdomain of social choice that has been thoroughly stud-
ied in the literature is the assignment (aka house allocation or
two-sided matching with one-sided preferences) domain. An
assignment problem can be associated with a social choice
problem by letting the set of alternatives be the set of deter-
ministic allocations and postulating that agents are indifferent
among all allocations in which they receive the same object
(see, e.g., [Aziz et al., 2013a]).3 Thus, impossibility results
for the assignment setting can be interpreted as impossibility
results for the social choice setting because they even hold in
a smaller domain.

In the following we discuss impossibility results in the as-
signment domain which, if interpreted for the social choice
domain, can be seen as weaker versions of Theorem 1 be-
cause they are based on stronger notions of efficiency or strat-
egyproofness or require additional properties. In a very in-
fluential paper, Bogomolnaia and Moulin [2001] have shown
that no randomized assignment mechanism satisfies both effi-
ciency and a strong notion of strategyproofness while treating
all agents equally. The underlying notion of strategyproof-
ness is identical to the one used by Gibbard [1977] and pre-
scribes that the SDS cannot be u-manipulated for some util-
ity representation u. The result by Bogomolnaia and Moulin
even holds when preferences over objects are linear. (Nev-
ertheless, when transferred to the social choice domain, the
preferences over allocations will contain ties.) In a related
paper, Katta and Sethuraman [2006] proved that no assign-
ment mechanism satisfies efficiency, strategyproofness, and
envy-freeness for the full domain of preferences.

Settling a conjecture by Gale [1987], Zhou [1990] showed
that no cardinal assignment mechanism satisfies u-efficiency
and u-strategyproofness while treating all agents equally.4
The relationship between Zhou’s result and Theorem 1 is not
obvious because Zhou’s theorem concerns cardinal mecha-
nisms, i.e., functions that take a utility profile rather than a

3Note that this transformation turns assignment problems with
linear preferences over k objects into social choice problems with
non-linear preferences over k! allocations.

4The theorem by Zhou only requires that agents with the same
utility function receive the same amount of utility but not necessar-
ily the same assignment. Gale’s original conjecture assumed equal
treatment of equals.

118
106



preference profile as input. However, every cardinal assign-
ment mechanism can be associated with an ordinal assign-
ment mechanism. Hence, Theorem 1 implies that there is no
anonymous, neutral, u-efficient, and u-strategyproof cardinal
decision scheme.

4 Proving the Result
In this section, we first reduce the statement of Theorem 1
to the case of m = 4 and n = 4, which we then prove via
SMT solving. We present an encoding for any finite instance
of Theorem 1 as an SMT problem in the logic of (quantifier-
free) linear real arithmetic (QF LRA). For compatibility with
different SMT solvers our encoding adheres to the SMT-LIB
standard [Barrett et al., 2010]. In total, we are going to de-
sign the following four types of SMT constraints: lottery def-
initions (Lottery), the orbit condition which models a part
of neutrality (Orbit), strategyproofness (SP), and efficiency
(Efficiency). Other conditions such as anonymity are taken
care of by the representation of preference profiles.

We then, first, apply an SMT solver to show that this set of
constraints for the case of m = 4 and n = 4 is unsatisfiable,
i.e., no SDS f with the desired properties exists. Second, we
explain how the output of the solver can be used to obtain a
human-verifiable proof of this result.

But let us start with the reduction lemma before we turn to
the concrete encoding in the following subsections.

Lemma 1. If there is an anonymous and neutral SDS f that
satisfies efficiency and strategyproofness for |A| = m alter-
natives and |N | = n agents then we can also find an SDS
f 0 defined for m0  m alternatives and n0  n agents that
satisfies the same properties.

Proof. Let f be an anonymous and neutral SDS that satis-
fies efficiency and strategyproofness for m alternatives and n
agents. We define a projection f 0 of f onto A0 ✓ A, |A0| =
m0  m and N 0 = {1, 2, . . . , n0} ✓ N, n0  n that satisfies
all required properties:

For every preference profile R0 on A0 and N 0, let f 0(R0) =
f(R), where R is defined by the following conditions:

%i \ (A0 ⇥A0) = %0
i for all i 2 N 0, (1)

x �i y for all x 2 A0, y 2 A \ A0 and i 2 N 0, (2)

y ⇠i z for all y, z 2 A \ A0 and i 2 N 0, and (3)

y ⇠i z for all y, z 2 A and i 2 N \ N 0. (4)

Informally, by (1) agents in N 0 have the same preferences
over alternatives from A0 in R and R0. Moreover, by (2) they
like every alternative in A0 strictly better than every alterna-
tive not in A0 and by (3) they are indifferent between all al-
ternatives not in A0. Finally, by (4) all agents in N \ N 0 are
completely indifferent. With these conditions, R is uniquely
specified given R0, and only lotteries p with supp(p) ✓ A0

are efficient in R. Thus, f 0 is well-defined and it is left to
show that f 0 inherits the relevant properties from f . The SDS
f 0 is anonymous since f is anonymous and agents in N can
only differ by their preferences over A0. Neutrality follows
as f is neutral and all agents are indifferent between all al-
ternatives not in A0. Efficiency is satisfied by f 0 since f is

efficient and the same set of lotteries is efficient in R and R0.
Finally, f 0 is strategyproof because f is strategyproof and the
outcomes of f 0 under the two profiles R0 and (R0)i 7!%0

are
equal to the outcomes of f under the two (extended) profiles
R and Ri 7!%, respectively.

4.1 Framework, Anonymity, and Neutrality
For a given number of agents n and set of alternatives A,
we encode an arbitrary SDS f : RN ! �(A) by a set of
real-valued variables pR,x with R 2 RN and x 2 A. Each
pR,x then represents the probability with which alternative x
is selected for profile R, i.e., pR,x = f(R)(x).

This encoding of lotteries leads to the first simple con-
straints for our SMT encoding, which ensure that for each
preference profile R the corresponding variables pR,x, x 2 A
indeed encode a lottery:X

x2A

pR,x = 1 for all R 2 RN , and

pR,x � 0 for all R 2 RN and x 2 A.
(Lottery)

We are now going to argue that, in conjunction with
anonymity and neutrality (see Section 2), it suffices to con-
sider these constraints for a subset of preference profiles.
This is because, in contrast to the other axioms, we directly
incorporate anonymity and neutrality into the structure of
the encoding rather than formulating them as actual con-
straints. Similar to the construction involving canonical tour-
nament representations by Brandt and Geist [2016], we model
anonymity and neutrality by computing for each preference
profile R 2 RN a canonical representation Rc 2 RN with
respect to these properties. In this representation, two pref-
erence profiles R and R0 are equal (i.e., Rc = R0

c) iff one
can be transformed into the other by renaming the agents and
alternatives. Equivalently, Rc = R0

c iff, for every anonymous
and neutral SDS f , the lotteries f(R) and f(R0) are equal
(modulo the renaming of the alternatives).

The SMT constraints and SMT variables are then instan-
tiated only for these canonical representations RN

c ✓ RN .
Apart from enabling an encoding of anonymous and neutral
SDSs without any explicit reference to permutations, this also
offers a substantial performance gain compared to consider-
ing the full domain RN of (non-anonymous and non-neutral)
preference profiles.

Technically, we compute the canonical representation Rc

as follows: Let R = (%1, . . . ,%n) 2 RN be a preference
profile. First, we identify R with a function r : R! N, which
we call anonymous preference profile, and which counts the
number of agents with a certain preference relation, i.e.,
r(%) = |{i 2 N | %i = %}|, thereby ignoring the identity of
the agents. This representation fully captures anonymity.

To additionally enforce neutrality, we had to resort to
a computationally demanding, naive solution: given r, we
compute all anonymous preference profiles ⇡(r) that can be
achieved via a permutation ⇡ : A! A, and, among those pro-
files, choose the one ⇡lexmin(r) with lexicographically mini-
mal values (for some fixed ordering of preference relations).
For the canonical representation Rc we then pick any prefer-
ence profile R 2 RN which agrees with ⇡lexmin(r), for in-
stance, by again using the same fixed ordering of preference
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relations. Fortunately, this approach is still feasible for the
small numbers of alternatives with which we are dealing.

While this representation of preference profiles does
not completely capture neutrality—the orbit condition (see
[Brandt and Geist, 2016]) is missing—this weaker version
suffices to prove the impossibility. In favor of simpler proofs
we, however, include the simple constraints corresponding to
a randomized version of the orbit condition.

In our context, an orbit O of a preference profile R is an
equivalence class of alternatives. Two alternatives x, y 2 A
are considered equivalent if ⇡(x) = y for some permutation
⇡ : A ! A that maps the anonymous preference profile as-
sociated with R to itself (i.e., ⇡ is an automorphism of the
anonymous preference profile). In such a situation, every
anonymous and neutral SDS has to assign equal probabili-
ties to x and y. We hence require that, for each orbit O 2 OR

of a (canonical) profile R, the probabilities pR,x are equal for
all alternatives x 2 O. As an SMT constraint, this reads

pR,x = pR,y (Orbit)

for all R 2 RN
c , O 2 OR, and x, y 2 O.

Example 2. Consider the anonymous preference profile r
based on R from Example 1 and the permutation

⇡ =

✓
a b c d
b a d c

◆
.

As ⇡(r) = r (and since no other non-trivial permutation has
this property) the set of orbits of R is OR = {{a, b}, {c, d}}.

4.2 Stochastic Dominance
In order to avoid quantifying over utility functions, we
leverage well-known representations of efficiency and strat-
egyproofness via stochastic dominance (SD) (cf. [Bogomol-
naia and Moulin, 2001; McLennan, 2002; Aziz et al., 2015]).
A lottery p stochastically dominates a lottery q for an agent i
(short: p %SD

i q) if for every alternative x, lottery p is at least
as likely as lottery q to yield an alternative at least as good as
x. Formally,

p %SD
i q iff

X

y%ix

p(y) �
X

y%ix

q(y) for all x 2 A.

When p %SD
i q and not q %SD

i p we write p �SD
i q.

As an example, consider the preference relation %i : a, b, c.
We then have that

(2/3 a + 1/3 c) �SD
i (1/3 a + 1/3 b + 1/3 c)

while 2/3 a + 1/3 c and b are incomparable according to
stochastic dominance.
Lemma 2. A lottery p SD-dominates another lottery q for an
agent i iff u

%i

i (p) � u
%i

i (q) for every utility function u
%i

i . As
a consequence,

1. an SDS f is efficient iff, for all R 2 RN , there is no
lottery p such that p %SD

i f(R) for all i 2 N and p �SD
i

f(R) for some i 2 N , and
2. an SDS f is manipulable iff there exist a preference pro-

file R, an agent i, and a preference relation % such that
f(Ri 7!%) �SD

i f(R).

In words, Lemma 2 shows that an SDS f is efficient if
and only if f(R) is Pareto-efficient with respect to stochas-
tic dominance for all preference profiles R. Secondly, f is
manipulable if and only if some agent can misrepresent his
preferences to obtain a lottery that he prefers to the lottery
obtained by sincere voting with respect to stochastic domi-
nance.

Encoding Strategyproofness
Starting from the above equivalence, encoding strategyproof-
ness as an SMT constraint is now a much simpler task. For
each (canonical) preference profile R 2 RN

c , agent i 2 N ,
and preference relation % 2 R, we encode that the manip-
ulated outcome f(Ri 7!%) is not SD-preferred to the truthful
outcome f(R) by agent i:

¬
⇣
f(Ri 7!%) �SD

i f(R)
⌘

⌘ f(Ri 7!%) 6%SD
i f(R) _ f(R) %SD

i f(Ri 7!%)

⌘

0
@(9x 2 A)

X

y%ix

f(Ri 7!%)(y) <
X

y%ix

f(R)(y)

1
A_

0
@(8x 2 A)

X

y%ix

f(Ri 7!%)(y)
(⇤)


X

y%ix

f(R)(y)

1
A

⌘

0
@_

x2A

X

y%ix

p
(Ri 7!%)c,⇡Ri 7!%

c (y)
<
X

y%ix

pR,y

1
A_

0
@^

x2A

X

y%ix

p
(Ri 7!%)c,⇡Ri 7!%

c (y)

(⇤⇤)
=
X

y%ix

pR,y

1
A ,

(SP)

where ⇡Ri 7!%
c stands for a permutation of alternatives that (to-

gether with a potential renaming of alternatives) leads from
Ri 7!% to (Ri 7!%)c. The inequality (⇤) can be replaced by the
equality (⇤⇤) since the case of at least one strict inequality is
captured by the corresponding disjunctive condition one line
above.

Encoding Efficiency
While Lemma 2 helps to formulate efficiency as an SMT ax-
iom it is not yet sufficient since a quantification over the set
of all lotteries �(A) remains. In order to get rid of this quan-
tifier, we apply two lemmas by Aziz et al. [2015]. The first
lemma states that efficiency of a lottery only depends on its
support. The second lemma shows that deciding whether a
lottery is efficient reduces to solving a linear program; for this
statement we include a (slightly simplified) proof in favor of
a self-contained presentation.

Lemma 3 (Aziz et al., 2015). A lottery p 2 �(A) is effi-
cient iff every lottery p0 2 �(A) with supp(p0) ✓ supp(p) is
efficient.

Lemma 4 (Aziz et al., 2015). Whether a lottery p 2 �(A) is
efficient for a given preference profile R can be computed in
polynomial time by solving a linear program.
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Proof. Given the equivalence from Lemma 2, a lottery p is
easily seen to be efficient iff the optimal objective value of
the following linear program is zero (since then there is no
lottery q that SD-dominates p):

max
q,r

X

i2N

X

x2A

ri,x subject to

X

y%ix

qy � ri,x =
X

y%ix

py for all x 2 A, i 2 N ,

X

x2A

qx = 1, qx � 0 for all x 2 A,

ri,x � 0 for all x 2 A, i 2 N .

Recall that an SDS is efficient if it never returns a dom-
inated lottery. By Lemma 3, this is equivalent to never re-
turning a lottery with inefficient support. To capture this, we
encode, for each (canonical) preference profile R 2 RN

c , that
the probability for at least one alternative in every (inclusion-
minimal) inefficient support IR ✓ A is zero:_

x2IR

pR,x = 0. (Efficiency)

4.3 Restricted Domains
Since RSD (cf. Section 3) is known to satisfy both strate-
gyproofness as well as efficiency for up to 3 alternatives, a
search for an impossibility has to start at m = 4 alternatives.
For n = 3 agents, the encoding is solved as satisfiable; for
n = 4, an encoding of the full domain, unfortunately, be-
comes prohibitively large. Hence, for m = 4 and n = 4, one
has to carefully optimize the domain under consideration, on
the one hand, to include a sufficient number of profiles for a
successful proof, and, on the other hand, not to include too
many profiles, which would prevent the solver from terminat-
ing within a reasonable amount of time.

The following incremental strategy was found to be suc-
cessful. We start with a specific profile R, from which we
only consider sequences of potential manipulations as long
as (in each step) the manipulated individual preferences are
not too distinct from the truthful preferences. To this end,
we measure the magnitude of manipulations by the Kendall
tau distance ⌧ , which counts pairwise disagreements between
Ri and R0

i (see also [Sato, 2013]). A change in the individ-
ual preferences of an agent will be called a k-manipulation
if ⌧(Ri, R

0
i)  k. Then, for example, strategically swapping

two alternatives is a 2-manipulation, and breaking or intro-
ducing a tie between two alternatives is a 1-manipulation.

On the domain which starts from the preference profile
R from Example 1 and allows sequences of (1, 2, 1, 2)-
manipulations, we were able to prove the result within a few
minutes of running-time.5,6 On similar, but smaller domains
(e.g., (1, 2, 2)) the axioms are still compatible.

5The SMT solver MathSAT [Cimatti et al., 2013] terminates
quickly within less than 3 minutes with the suggested competi-
tion settings, whereas z3 [de Moura and Bjørner, 2008] requires
some additional configuration, but then also supports core extrac-
tion within the same time frame.

6Showing the result on this domain implies a slightly stronger

4.4 Verification of Correctness
For verification of the result, one would ideally construct a
human-readable proof from the output of the SMT solver.
While the approach described by Brandt and Geist [2016] for
SAT solving—of finding a minimal unsatisfiable set (MUS) of
constraints, i.e., an inclusion-minimal set of constraints such
that this set is still unsatisfiable—is theoretically also appli-
cable to SMT solving, it is less clear how these “proof ingre-
dients” have to be combined.7 The proof object that z3 can
produce, which also contains information of how the MUS
constraints have to be combined, unfortunately, is too long
and complicated for humans to parse.

Hence two aspects of our approach still deserve verifica-
tion: the correctness of the constraints in the MUS and the
unsatisfiability of the MUS. In addition to manual inspection
of the constraints and some sanity-checks,8 we have certified
in Isabelle/HOL that all constraints logically follow from the
original axioms presented in Section 2. This also releases any
need to verify our program for generating the constraints. The
unsatisfiability of the MUS, on the other hand, has been ver-
ified by the solvers CVC4, MathSAT, Yices2, z3, and even
by the Isabelle/HOL kernel.

Furthermore, based on the MUS, a proof of Theorem 1
which no longer relies on SMT solving has been created in
Isabelle/HOL. This proof, however, is tedious to verify by
hand since it is rather large (more than 500 lines of code) and
offers little insight.

5 Conclusion
In this paper, we have leveraged computer-aided solving tech-
niques to prove a sweeping impossibility for randomized ag-
gregation mechanisms.

It seems unlikely that this proof would have been found
without the help of computers because manual proofs of sig-
nificantly weaker statements already turned out to be quite
complex. Nevertheless, now that the theorem has been estab-
lished, our computer-aided methods may guide the search for
related, perhaps even stronger statements that allow for more
intuitive proofs and provide more insights.

Generally speaking, we believe that SMT solving is ap-
plicable to a wide range of problems in randomized so-
cial choice. In particular, extending our result to the spe-
cial domain of assignment (see Section 3.2) is desirable
as this would strengthen a number of existing theorems.
Other interesting questions are whether the impossibility still
holds when weakening strategyproofness even further to BD-
strategyproofness (see, e.g., [Aziz et al., 2014]) or when
omitting neutrality.

statement where strategyproofness only applies to “small” lies (of at
most Kendall tau distance 2).

7Here we have an MUS of 94 constraints, not counting the (triv-
ial) lottery definitions. This MUS, annotated with e.g., the 47 re-
quired canonical preference profiles, is available as part of an arXiv
version of this paper [Brandl et al., 2016a].

8Such as running solvers on multiple variants of the encod-
ing which represent known theorems. This way, we reproduced
(amongst others) the results by Bogomolnaia and Moulin [2001]
and Katta and Sethuraman [2006], as well as the possibility result
for m < 4.
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relation Ri ⊆ A × A.1 The interpretation of (x, y) ∈ Ri , usually denoted by x Ri y,
is that agent i values alternative x at least as much as alternative y. In accordance with
conventional notation, we write Pi for the strict part of Ri , i.e., x Pi y if x Ri y but
not y Ri x . Since Ri is antisymmetric, x Pi y iff x Ri y and x �= y. A preference
profile R is a finite vector of pairs which associate each agent i with its corresponding
preference relation Ri . For a given preference profile, NR denotes the set of agents
represented in R. In particular, we do not assume a fixed number of agents. For
convenience, we furthermore define nR(x, y) := |{i ∈ NR | x Ri y}|. The relations
RMaj and RPar of a given preference profile R are then given by

x RMaj y iff nR(x, y) ≥ nR(y, x), and

x RPar y iff nR(x, y) = |NR |.

By convention, again PMaj denotes the strict part of RMaj and PPar the strict part of
RPar. Thus, x PPar y iff x Ri y for all i and x Pj y for some j . The relation RMaj will
be called the majority relation and PPar the Pareto relation of R, respectively. Note
that, by definition, RMaj is complete whereas PPar is transitive and antisymmetric.

We say that a profile R is consistent with the majority relation R′
Maj of another

profile R′ if RMaj = R′
Maj. In this case, R is also said to be consistent with R′.

An alternative x ∈ A is called a Condorcet winner of a given (majority) relation
RMaj if it strictly dominates all other alternatives, i.e., if x PMaj y for all y ∈ A\{x}.

Given a preference profile R, an alternative x is said to be Pareto optimal whenever
there is no alternative y with y PPar x , i.e., if x is a maximal element of RPar.2

A social choice function (SCF) f associates with every preference profile R over
a set A of alternatives a nonempty subset f (R) of A. An SCF f is called a refinement
of another SCF g if f (R) ⊆ g(R) for all preference profiles R. In short, we write
f ⊆ g in this case and also say that g is coarser than f . An example of an SCF is the
Pareto set PO, which selects the alternatives that are Pareto optimal, i.e.,

PO(R) = {x ∈ A | y PPar x for no y ∈ A}

An SCF f is calledPareto optimal if it is a refinement of the Pareto set, i.e., if f ⊆ PO.
We will restrict attention to so-called majoritarian SCFs, whose outcomes only

depend on the majority relation, i.e., to SCFs f such that, for all preference profiles
R, R′,

RMaj = R′
Maj implies f (R) = f (R′).

1 Antisymmetry is not required for any of our results to hold. In fact, Theorem 1 is even stronger when
also assuming antisymmetric individual preferences (since this only increases the difficulty of constructing
a suitable preference profile).
2 Some authors call this strong Pareto optimality. In contrast, an alternative x would be weakly Pareto
optimal if there is no alternative y with y Pi x for all i ∈ NR . In the case of antisymmetric preferences,
the two notions coincide.

123

114



A note on the McKelvey uncovered set and Pareto optimality 83

An interesting class of majoritarian SCFs are defined using certain refinements
of the majority relation called covering relations. For a given covering relation, the
uncovered set contains those alternatives that are not covered by any other alternative.
For a comprehensive overview of the theory of covering relations and uncovered sets,
see Duggan (2013). A range of varying definitions of the covering relation exist,
all of which coincide when restricted to antisymmetric majority relations. We will be
concerned with what Duggan refers to asMcKelvey covering (Bordes 1983;McKelvey
1986).

In order to define the McKelvey covering relation, we need to introduce the notions
of strict and weak dominators of a given alternative. The strict dominators PMaj(x)
of an alternative x ∈ A are defined by the set of all alternatives y ∈ A that are strictly
majority preferred to x , i.e., PMaj(x) := {y ∈ A | y PMaj x}. Analogously, the weak
dominators RMaj(x) of an alternative x ∈ A are defined as the set of all alternatives
y ∈ A that are weakly majority preferred to x , i.e., RMaj(x) := {y ∈ A | y RMaj
x}

Let CRMaj denote the (McKelvey) covering relation, i.e., for any pair of alternatives
x, y, the relation x CRMaj y holds iff each of the following three conditions is satisfied:

(i) x PMaj y,
(ii) PMaj(x) ⊆ PMaj(y), and
(iii) RMaj(x) ⊆ RMaj(y).

As can easily be seen, CRMaj is transitive and asymmetric. The (McKelvey) uncovered
set UC is then defined as

UC(R) := {
y ∈ A | x CRMaj y for no x ∈ A

}
.

Alternative, but equivalent, definitions of the McKelvey uncovered set were used by
Dutta and Laslier (1999), Peris and Subiza (1999), and Brandt and Fischer (2008).

It is also well-known (see, e.g., Duggan 2013) that the McKelvey uncovered set
can be characterized as the set of alternatives that dominate every other alternative
in at most two steps (of which at most one may be a tie). Formally, the McKelvey
uncovered set then consists of all alternatives x ∈ A such that for all y ∈ A\{x} at
least one of the following three conditions is satisfied:

(i) x RMaj y,
(ii) there is a z ∈ A such that x RMaj z PMaj y, or
(iii) there is a z ∈ A such that x PMaj z RMaj y.

For brevity, we will omit any reference to McKelvey in the following and just write
“covering” and “uncovered set.”

2 The structure of the McKelvey covering relation

In this sectionwe consider the structural properties of the covering relation and observe
that any transitive and asymmetric relation can be obtained as the covering relation of
some preference profile.
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Proposition 1 Let Q ⊆ A×A be a binary relation. Then the following are equivalent:

(i) Q is transitive and asymmetric.
(ii) There exists a preference profile R such that CRMaj= Q.

Proof The implication from (ii) to (i) is immediate, as for every preference profile R the
covering relation CRMaj is transitive and asymmetric. For the other direction, assume
that Q is transitive and asymmetric and let R be a preference profilewith PMaj = Q. By
virtue of McGarvey’s Theorem (McGarvey 1953) we know such a preference profile
exists. It then remains to observe that (x, y) ∈ CRMaj iff (x, y) ∈ Q. The “if”-direction
is immediate. For the “only if”-direction, consider an arbitrary edge (x, y) ∈ Q.
By construction of R, also x PMaj y and, by transitivity of Q = PMaj, we obtain
PMaj(x) ⊆ PMaj(y). To see that also RMaj(x) ⊆ RMaj(y), consider an arbitrary
z ∈ RM (x) and assume for contradiction that y PMaj z. Again by transitivity of PMaj,
then x PMaj z, a contradiction. It follows that z ∈ RMaj(y). ��

Interestingly, the implication from (i) to (ii) does not hold if RMaj is required to
be antisymmetric (e.g., when the number of agents is odd). We are not aware of a
non-trivial characterization of potential covering relations for this case.3

A result analogous to Proposition 1 was shown by Dushnik and Miller (1941)
for the Pareto relation. They proved that for any transitive and asymmetric relation
Q ⊆ A× A there exists a preference profile R such that PPar = Q. Note that this does
not imply Proposition 1 as the majority relation outside Q may be very different in the
preference profile R instantiating Q as the Pareto relation, and a preference profile R′
instantiating Q as the covering relation. In our proof, in particular, all edges outside
Q are required to be majority ties.

Regarding the internal structure of the uncovered set, it was already shown by
Moulin (1986) that any complete binary relation without a (non-trivial) Condorcet
winner is the majority relation between uncovered alternatives for some preference
profile. While Moulin (1986) proved this result for tournaments only, the argument
can easily be adapted to cover our setting, in which majority ties are allowed.

3 The McKelvey uncovered set and the Pareto set
are majority-equivalent

In this section, we consider the relationship between the uncovered set and the Pareto
set for profiles that yield the samemajority relation (i.e., consistent preferenceprofiles).

Our main result shows that for every preference profile R, we can find another
preference profile R′ consistent with RMaj such that the uncovered set of R and the
Pareto set of R′ coincide. This has a number of consequences. First, if we assume
that only the majority relation is known, the uncovered set not only coincides with the
Pareto optimal alternatives for some consistent preference profile, but also consists
of precisely those alternatives that are Pareto optimal for every consistent preference
profile. Moreover, there exists a consistent profile in which all covered alternatives

3 Consider, for instance, the simple case of A = {a, b, c} and Q = {(a, b), (a, c)}, which is easily seen
not to be the covering relation for any preference profile.
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are Pareto dominated. Secondly, the theorem implies that the uncovered set can be
characterized as the coarsest majoritarian Pareto optimal SCF.

Theorem 1 For every preference profile R, there is another preference profile R′ with
RMaj = R′

Maj such that

UC(R) = PO(R′).

Proof Consider an arbitrary preference profile R. Then, for every alternative y /∈
UC(R) there is some x ∈ UC(R) such that x CRMaj y. Thus, letUC(R) = {x1, . . . , x�}
and associate with every xi ∈ UC(R) a (possibly empty) set f (xk) ⊆ {x ′ ∈ A |
x CRMaj x

′} such that

f (xk) ∩ f (xk′) = ∅ for 1 ≤ k < k′ ≤ � and f (x1) ∪ · · · ∪ f (x�) = A\UC(R).

Define the relation F ⊆ CRMaj such that, for all alternatives x and y,

x F y iff x ∈ UC(R) and y ∈ f (x).

We construct a preference profile R′ such that R′
Maj = RMaj and R′

Par = F . It can
readily be appreciated that then UC(R) = PO(R′), as desired.

For notational conveniencewe denote f (xk) by Xk . For any subsetY of alternatives,

by
→
Y and

←
Y we denote an enumeration of Y and its inverse, respectively, i.e., if

→
Y =

y1, . . . , yk then
←
Y = yk, . . . , y1.

First, we generate the relation F . To this end, we introduce two agents, iF
and jF with preferences given by the following two sequences:

iF : x1,
→
X1, . . . , x�,

→
X�,

jF : x�,
←
X�, . . . , x1,

←
X1.

Letting RF = (RiF , R jF ), we thus have RF
Par = F .

Furthermore, for every pair (v,w) in RMaj that is not contained in F we also intro-
duce two additional agents ivw and jvw. We distinguish five cases and denote by Rvw

the profile (Rivw , R jvw ). Without loss of generality and for notational convenience, we
will usually assume that v+ = x1 and w+ = x2.

Case 1 There is a v+ ∈ UC(R) such that v,w ∈ f (v+). Let V = f (v+)\{v,w}.
For an illustration see Fig. 1a. Then, define the preferences of ivw and jvw by the
following lists:

ivw : v+, v, w,
→
V , x2,

→
X2, . . . , x�,

→
X�,

jvw : x�,
←
X�, . . . , x2,

←
X2, v

+,
←
V , v, w.

Observe that in this case, we have Pvw
Maj= F ∪ {(v,w)}.
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vx1

v+

xk1
w

(a) Case 1

v+

x1 xk1
v

w+

x1 xk2
w. . . . . .. . . . . . . . . . . .. . . . . .

(b) Case 2

v+

x1 xk1

w+

x1 xk2
. . . . . . . . . . . . . . . . . .

. . . . . .

(c) Case 3

v+

x1 xk1

w+

x1 xk2
w. . . . . . . . . . . . . . .. . . . . .

(d) Case 4

v+

x1 xk1
v

w+

x1 xk2
. . . . . . . . .. . . . . .. . . . . .

(e) Case 5

Fig. 1 The five cases distinguished in the Proof of Theorem 1. The relation F is indicated by double arrows

Case 2 There are v+, w+ ∈ UC(R) with v ∈ f (v+) and w ∈ f (w+). Let
V = f (v+)\{v} and W = f (w+)\{w}. Observe that in this case we have that
v+ CRMaj v for R and, hence, also v+ PMaj w. For an illustration see Fig. 1b. In
this case define the preferences of ivw and jvw as

ivw : v+,
→
V , v, w+, w,

→
W , x3,

→
X3, . . . , x�,

→
X�,

jvw : x�,
←
X�, . . . , x3,

←
X3, w

+,
←
W , v+, v, w,

←
V .

It thus follows that Pvw
Maj= F ∪ {(v,w), (v+, w)}.

Case 3 There are v+, w+ ∈ UC(R) with v = v+ and w = w+. Let V = f (v+)

and W = f (w+). Observe that in this case we have for R that w+ CRMaj x and,
hence, also v+ PMaj x for all x ∈ W . The situation is depicted in Fig. 1c. Now
define

ivw : v+,
→
V , w+,

→
W , x3,

→
X3, . . . , x�,

→
X�,

jvw : x�,
←
X�, . . . , x3,

←
X3, v

+, w+,
←
W ,

←
V .
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Observe that now Pvw
Maj= F ∪ {(v+, w+)} ∪ {(v+, x) | x ∈ W }.

Case 4 There are v+, w+ ∈ UC(R)with v = v+ andw ∈ f (w+). Let V = f (v+)

and W = f (w+)\{w}. The situation is depicted in Fig. 1d. In this case define the
preferences of ivw and jvw as follows:

ivw : v+,
→
V , w+, w,

→
W , x3,

→
X3, . . . , x�,

→
X�,

jvw : x�,
←
X�, . . . , x3,

←
X3, w

+,
←
W , v+, w,

←
V .

Accordingly, we also have Pvw
Maj= F ∪ {(v+, w)}.

Case 5 There are v+, w+ ∈ UC(R) with v ∈ f (v+) and w = w+. Let V =
f (v+)\{v} andW = f (w+). Observe that in this casewe have for R that v+ CRMaj

v and w+ CRMaj x for all x ∈ W . As a consequence, also v+ PMaj w+, and thus
v+ PMaj x and v PMaj x for all x ∈ W . The situation is depicted in Fig. 1e. In
this case define:

ivw : v+,
→
V , v, w+,

→
W , x3,

→
X3, . . . , x�,

→
X�,

jvw : x�,
←
X�, . . . , x3,

←
X3, v

+, v, w+,
←
W ,

←
V .

Hence, Pvw
Maj= F ∪ ({v+, v} × (W ∪ {w+})).

Let RMaj\F be given by {(v1, w1), . . . , (vp, wp)} and consider the profile

R′ = (R1, . . . , R2p+2) = (RiF , R jF , Riv1w1
, . . . , Rivpwp

).

Some reflection reveals that R′
Maj = RMaj. Also observe that F ⊆ Ri for all 1 ≤ i ≤

2p + 2. Moreover, x PiF y iff y PjF x , for all (x, y) /∈ F . Hence, R′
Par = F . Since,

x /∈ UC(R) iff y F x for some y ∈ UC(R), it follows that PO(R′) = UC(R), which
concludes the proof. ��

For the next corollary we additionally need the (easy-to-prove) fact that the uncov-
ered setUC is Pareto optimal, which to the best of our knowledge was first mentioned
by Bordes (1983). We formalize it in the following lemma for the sake of complete-
ness. Note that this result relies on the definition of the majority relation via simple
majority rule (see, e.g.,Gaertner 2009, p. 39). If majorities are defined via (the less
common) absolute majority rule, then the uncovered set only satisfies weak Pareto
optimality (Duggan 2013).

Lemma 1 (Bordes 1983) The Pareto relation is a subrelation of the McKelvey cover-
ing relation. Hence, UC ⊆ PO.

Proof Let R be a preference profile and x, y ∈ A alternatives such that x PPar y. To
show that then also x CRMaj y, first suppose z PMaj x for some alternative z ∈ A.
Since individual preferences are assumed to be transitive it follows that z PMaj y. The
case of z RMaj x (implying z RMaj y) is analogous and x PMaj y is an immediate
consequence of x PPar y. ��
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The following corollary, which follows from Theorem 1 and Lemma 1, provides a
characterization of the McKelvey uncovered set via Pareto optimality.4

Corollary 1 A majoritarian SCF f is Pareto optimal iff f ⊆ UC. Consequently, the
McKelvey uncovered set is the coarsest Pareto optimal majoritarian SCF.

Proof Lemma 1 establishes that the McKelvey uncovered setUC (and any refinement
of it) is Pareto optimal. To prove the other direction by contraposition, consider an
arbitrary majoritarian SCF f such that f � UC. Then, there is a profile R and an
alternative a such that a ∈ f (R) and a /∈ UC(R). By Theorem 1, some preference
profile R′ exists such that RMaj = R′

Maj andUC(R) = PO(R′). Having assumed f to
be majoritarian, f (R′) = f (R) and hence a ∈ f (R′). It also follows that a /∈ PO(R′)
and we may conclude that f is not Pareto optimal. ��

4 Potential extensions

We consider two natural extensions of Theorem 1 and show that neither of them holds.

4.1 Constant number of agents

The proof of Theorem 1 crucially depends on the assumption of a variable electorate
since R′ usually has a different number of agents than R. The fact that the same result
cannot be achieved with a constant number of agents is exhibited by the following
minimal, computer-generated example.5 The majority relation RMaj depicted in Fig. 2
contains a unique covering edge a CRMaj b and can be realized by 3 agents.6 If we,
however, require b to be Pareto dominated, i.e., x PPar b for at least one of the
alternatives x PMaj b, then the minimal number of agents required to realize RMaj
(together with the additional requirement of x PPar b) rises to 5, which has been
verified on a computer.7

This example also shows that Corollary 1 does not in general hold for all constant
electorates. To see this, let the number of agents be fixed at three and define an SCF f
such that for all preference profiles R′,

f (R′) =
{
A if R′ is consistent with RMaj,

UC(R′) otherwise,

where RMaj is the majority relation in Fig. 2. Thus, f is a coarsening of UC but, due
to the electorate being fixed at three agents, f is still Pareto optimal.

4 Corollary 1 also entails an analogousweaker result for the special case of tournaments (i.e., antisymmetric
majority relations RMaj), which was used as a Lemma by Brandt and Geist (2014).
5 The whole example was obtained from and proved minimal by an automated computer search based on
the method developed by Brandt et al. (2014).
6 In fact, any tournament of size 7 can be realized by 3 agents.
7 This even holds when individual preferences are allowed to be weak orders.
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d e

f

g

a

b

c

(a) majority relation RMaj

1 1 1

e c b
f a d
c d g
g f a
a g e
b b f
d e c

(b) a consistent preference profile R

Fig. 2 A minimal example of a majority relation RMaj for which the transition from b /∈ UC(R) to
b /∈ PO(R) increases the minimal number of agents required to realize this relation

4.2 Equivalence of the covering relation and the Pareto relation

With Theorem 1 in mind, it is a natural question whether, given a preference profile
R, one can even obtain a consistent preference profile R′ (i.e., RMaj = R′

Maj) in
which the Pareto relation coincides with the covering relation (i.e., P ′

Par = CRMaj).
Unfortunately, the answer to this question is negative as the following counterexample
shows.

Consider the preference profile R and the corresponding majority relation RMaj in
Fig. 3 and note that all strictmajority edges are also covering edges, i.e., PMaj = CRMaj .
Therefore, constructing a consistent preference profile R′ with P ′

Par = CRMaj , in this
particular example, means to construct a consistent preference profile R′ such that
P ′
Par = CRMaj = PMaj. We now show—using computer-aided solving techniques—

that such a profile does not exist.
For P ′

Par = PMaj to hold, R′ may only contain agents with individual prefer-
ences R′

i that respect all given strict majority edges as Pareto edges, i.e., for which
P ′
i ⊇ PMaj. This will stand in conflict with being able to maintain the majority ties

in R′
Maj = RMaj. We used an ASP program (Answer Set Programming, a declar-

ative problem-solving paradigm; see, e.g., Gebser et al. (2011, 2012); in our case
the packaged grounder/solver clasp) to compute all 22 candidates R′′

i for complete,
antisymmetric, and transitive preference relations such that P ′′

i ⊇ PMaj. (One such
ordering is e, d, a, f, b, c.) We would now have to construct a preference profile using
only these 22 candidates for individual preference relations as building blocks. A
small IP (Integer Program, see, e.g., Schrijver (1986); the performance of the open-
source solver lpsolve satisfied our requirements) suffices to show that this is not
possible: it contains 22 integer-valued variables xR′′

i
, which denote, for each of the

22 preference relations, how many agents with this particular preference relation are
contained in R′. Furthermore, it contains one constraint per indifference edge in the
majority relation (of which there are 7, namely (a, d), (a, e), (b, d), (b, e), (b, f ),
(c, f ), and (d, f )). Each of these constraints postulates for one indifference edge
(y, z) that 0 = ∑

R′′
i
s((y, z), R′′

i ) · xR′′
i
, where s((y, z), R′′

i ) = 1 if (y, z) ∈ R′′
i , and
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f

a e

b d

c

(a) majority relation RMaj, whose
strict part PMaj coincides with
the covering relation CRMaj

1 1 1 1

a a e e
b f d d
e b a a
c e f b
f d b c
d c c f

(b) a consistent preference profile R

Fig. 3 An example of a majority relation RMaj whose covering relation CRMaj cannot be obtained as the
Pareto relation of a consistent preference profile

s((y, z), R′′
i ) = −1 otherwise. With the additional constraints that xR′′

i
≥ 0 for all

R′′
i and

∑
R′′
i
xR′′

i
≥ 1 the IP solver returns that there are no feasible solutions to this

problem, which completes the proof.8
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ABSTRACT
Many voting rules—including single-valued, set-valued, and
probabilistic rules—only take into account the majority di-
graph. The contribution of this paper is twofold. First, we
provide a surprisingly efficient implementation for comput-
ing the minimal number of voters that is required to induce
a given digraph. This implementation relies on an encoding
of the problem as a Boolean satisfiability (SAT) problem
which is then solved by a SAT solver. Secondly, we exper-
imentally evaluate how many voters are required to induce
the majority digraphs of real-world and generated prefer-
ence profiles. Our results are based on datasets from the
PrefLib library and preferences generated using stochastic
models such as impartial culture, impartial anonymous cul-
ture, Mallows mixtures, and spatial models. It turns out
that all tournaments checked in these experiments can be
induced by at most five voters whereas all other digraphs
can be induced by at most eight voters. We also confirm
a conjecture by Shepardson and Tovey by verifying that all
tournaments with less than eight vertices can be induced by
three voters.

1. INTRODUCTION
Perhaps one of the most natural ways to aggregate bi-

nary preferences from individual voters to a group of voters
is simple majority rule, which prescribes that one alterna-
tive is socially preferred to another whenever a majority of
voters prefers the former to the latter. Majority rule has
an intuitive appeal to democratic principles, is easy to un-
derstand and—most importantly—satisfies some attractive
formal properties [25]. Moreover, almost all common voting
rules coincide with majority rule in the two-alternative case.
It would therefore seem that the existence of a majority of
individuals preferring alternative x to alternative y signifies
something fundamental and generic about the group’s pref-
erences over x and y. Indeed, many voting rules—including
single-valued, set-valued, and probabilistic rules—only take
into account the majority digraph.

The central role of majority rule establishes an interest-
ing connection between voting theory and graph theory. The
earliest (and most fundamental) result in this context is Mc-
Garvey’s theorem, which states that, given sufficiently many
voters with linear preferences, every digraph may be induced
by the majority rule [26]. In this paper, we will be concerned

Appears at: 1st Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems. May 6th, 2014.
Paris, France.

with the minimal number of voters v(G) required to induce
a given digraph G.

McGarvey’s original construction requires two voters for
each edge of the digraph, thus showing that v(G) ≤ 2

(
n
2

)

where n is the number of vertices of G. Consequently, this
implied that the minimal number of voters v(n) required to
induce any digraph on n vertices is in O(n2). This bound
was subsequently improved by Stearns [32], who showed that
v(n) = Ω(n/logn). Erdős and Moser [11] non-constructively
provided a matching upper bound by proving that v(n) =
Θ(n/logn). More recently, Fiol [13] showed that v(G) ≤ n−
logn+ 1.

A digraph is a k-majority digraph if it can be induced by
k voters. Interestingly, surprisingly little is known about
the structure of k-majority digraphs. Dushnik and Miller
[10] gave a complete characterization of 2-majority digraphs
and Yannakakis [34] showed that the characterizing prop-
erties can be verified in polynomial time. Brandt et al. [8]
provided a similar characterization for 3-majority digraphs.
However, the computational complexity of checking whether
a given digraph is a 3-majority digraph remains open. For
the special case of tournaments, i.e., asymmetric and com-
plete digraphs, Alon et al. [1] showed that the domination
number of k-majority tournaments is bounded whereas Mi-
lans et al. [27] showed that every k-majority tournament
contains a transitive subtournament whose size is at least
polynomial in n.

The contribution of this paper is twofold. First, we pro-
vide a practical implementation for computing v(G) for a
given digraph G by encoding the problem as a Boolean sat-
isfiability (SAT) problem which is then solved by a SAT
solver. This technique turns out to be surprisingly efficient
and easily outperforms an implementation for 3-majority
digraphs based on the graph-theoretic characterization by
Brandt et al. [8]. Secondly, we experimentally evaluate how
many voters are required to induce the majority relations of
real-world and generated preference profiles. Our results are
based on datasets from the PrefLib library and preferences
generated using stochastic models such as impartial culture,
impartial anonymous culture, Mallows-φ, and spatial mod-
els. It turns out that all tournaments checked in these exper-
iments are 5-majority tournaments whereas all other checked
digraphs are 8-majority digraphs. Among other things, this
shows that perhaps v(G) itself may be used as a parameter
to govern the generation of realistic preference profiles. We
also confirm a conjecture by Shepardson and Tovey [31] by
verifying that all tournaments with less than eight vertices
are 3-majority digraphs.
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Figure 1: A smallest 6-majority digraph with a minimal
inducing preference profile.

2. PRELIMINARIES
Let A be a set of n alternatives and K = {1, . . . , k} a set of

voters. The preferences of voter i ∈ K are represented by a
linear (i.e., reflexive, complete, transitive, and antisymmet-
ric) preference relation Ri ⊆ A × A. The interpretation of
(a, b) ∈ Ri, usually denoted by a Ri b, is that voter i values
alternative a at least as much as alternative b. A preference
profile R = (R1, . . . , Rk) is a k-tuple containing a preference
relation Ri for each agent i ∈ K. For a preference profile R
and two alternatives a, b ∈ A, the majority margin gR(a, b)
is defined as the difference between the number of voters
who prefer a to b and the number of voters who prefer b
to a, i.e.,

gR(a, b) = |{i ∈ K | a Ri b}| − |{i ∈ K | b Ri a}|.
Thus, gR(b, a) = −gR(a, b) for all a, b ∈ A.

The majority relation �R of a given preference profile is
defined as

a �R b iff gR(a, b) > 0.

Every majority relation �R is fully represented by a digraph
G and we say that R induces G. If R has k voters, we say
that G is k-inducible, or, equivalently, that G is a k-majority
digraph.

If a digraph is complete, which is always the case if the
number of voters is odd, we speak of a tournament T =
(A,�).

For any digraph G, by v(G) we denote the minimal num-
ber of voters k such that G is a k-majority digraph. Oc-
casionally, we will call this number the voter complexity of
G.1

Example 1. Consider the digraph G depicted on the left
of Figure 1. We found that G is not 4-inducible. It cannot
be 5-inducible either, because it is not a tournament as there
is no strict relation between a and c. The profile R on the
right of Figure 1, however, induces G and therefore G is a
6-majority digraph (or, equivalently, v(G) = 6). It turns
out that G is a smallest digraph (in terms of the number of
nodes) with voter complexity larger than 5.

In this work, we address the computational problem of
computing the voter complexity. To this end, we define the
problem of checking whether for a given digraph G there
exists a preference profile with k voters that induces G, i.e.,
whether G is a k-majority digraph.

1This complexity measure of digraphs can also be inter-
preted as a complexity measure for preference profiles. The
voter complexity of a given preference profile is then sim-
ply defined as the voter complexity of the induced majority
graph.

Name: Check-k-Majority
Instance: A digraph G and a positive integer k.
Question: Is G a k-majority digraph?

Note that the following two simple observations reduce the
candidates for v(G) to odd and even numbers, respectively,
depending on whether G is a complete digraph or not.

Observation 1. For all tournaments T , the voter com-
plexity v(T ) is odd.

Proof. Assume v(T ) = k was even. Then there exists
a preference profile R with k voters that induces T . Since
k is even, the majority margin must be even for every pair
of alternatives and can furthermore never be 0 as T is a
tournament. Therefore, removing any single voter from R
gives a profile R′ with just k− 1 voters that still induces T ,
a contradiction.

Observation 2. For all incomplete digraphs G, the voter
complexity v(G) is even. It even holds that G is no k-
majority digraph for k odd.

Proof. This follows directly from the fact that for all
preference profiles R with an odd number of voters k, the
majority relation �R is complete and anti-symmetric (as no
majority ties can occur).

3. METHODOLOGY
The number of objects potentially involved in the Check-

k-Majority problem are given in Table 1. It is immediately
clear that a näıve algorithm will not solve the problem in a
satisfactory manner. This section describes our algorithmic
efforts to solve this problem for reasonably large instances.

3.1 Translation to propositional logic (SAT)
In order to answer Check-k-Majority, we follow a sim-

ilar approach as Tang and Lin [33], Geist and Endriss [16],
and Brandt and Geist [4]: we translate the problem to
propositional logic (on a computer) and use state-of-the-art
SAT solvers to find a solution. At a glance, the overall solv-
ing steps are shown in Algorithm 1.

Generally speaking, the problem at hand can be under-
stood as the problem of finding a preference profile that
satisfies certain conditions—here: inducing a given digraph.
Thus, a satisfying instance of the propositional formula to
be designed should represent a preference profile. To cap-
ture this, a surprisingly simple formalization involving just
one type of variable suffices: in our encoding the boolean
variable ri,a,b represents a Ri b, i.e., voter i ranking alterna-
tive a at least as high as alternative b. As it turns out, this
one variable type also suffices for the additional condition of
inducing the given digraph.

In more detail, the following three conditions/axioms need
to be formalized:

1. All k voters have linear orders over the n alternatives
as their preferences (short: linear preferences)

2. For each majority edge x � y in the digraph, a major-
ity of voters needs to prefer x over y (short: majority
implications)
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Preference profiles n = 4 n = 5 n = 10 n = 25 n = 50

k = 1 24 120 ∼ 3.6 · 106 ∼ 1.6 · 1025 ∼ 3.0 · 1064

k = 3 13,824 ∼ 1.7 · 106 ∼ 4.8 · 1019 ∼ 3.7 · 1075 ∼ 2.8 · 10193

k = 5 ∼ 8.0 · 106 ∼ 2.5 · 1010 ∼ 6.3 · 1032 ∼ 9.0 · 10125 ∼ 2.6 · 10322

Tournaments (unlabeled) 4 12 ∼ 9.7 · 106 ∼ 1.3 · 1065 ∼ 1.9 · 10305

Table 1: Number of objects involved in the Check-k-Majority problem for one, three, and five voters.

Input: digraph (A,�), positive integer k
Output: whether (A,�) is a k-majority digraph
/* Encoding of problem in CNF */

File cnfFile;
foreach voter i do

cnfFile += Encoder.reflexivePreferences(i);
cnfFile += Encoder.completePreferences(i);
cnfFile += Encoder.transitivePreferences(i);
cnfFile += Encoder.antisymmetricPreferences(i);

cnfFile += Encoder.majorityImplications((A,�));
if � is not complete then

cnfFile +=
Encoder.indifferenceImplications((A,�));

/* SAT solving */

satisfiable = SATsolver.solve(cnfFile);
if instance is satisfiable then

return true;

else
return false

Algorithm 1: SAT-Check-k-Majority

3. For each missing edge (x � y and y � x) in the di-
graph, exactly half the voters need to prefer x over y
(short: indifference implications)2

For the first axiom, we encode reflexivity, completeness,
transitivity, and anti-symmetry of the relation Ri for all vot-
ers i. The complete translation to CNF (conjunctive normal
form, the established standard input format for SAT solvers)
is given exemplarily for the case of transitivity; the other ax-
ioms are converted analogously.

In formal terms transitivity can be written as

(∀i)(∀x, y, z) (x Ri y ∧ y Ri z → x Ri z)

≡ (∀i)(∀x, y, z) (ri,x,y ∧ ri,y,z → ri,x,z)

≡
∧

i

∧

x,y,z

(¬ (ri,x,y ∧ ri,y,z) ∨ ri,x,z)

≡
∧

i

∧

x,y,z

(¬ri,x,y ∨ ¬ri,y,z ∨ ri,x,z) ,

which then translates to the pseudo code in Algorithm 2 for
generating the CNF file. The key in the translation of the
inherently higher order axioms to propositional logic is (as
pointed out by Geist and Endriss [16] already) that because
of finite domains, all quantifiers can be replaced by finite
conjunctions or disjunctions, respectively.

In all algorithms, a subroutine r(i, x, y) takes care of the
compact enumeration of variables.3

2Note that this axiom is only required for incomplete di-
graphs.
3The DIMACS CNF format only allows for integer names of

foreach Voter i do
foreach Alternative x do

foreach Alternative y do
foreach Alternative z do

variable not(r(i, x, y));
variable not(r(i, y, z));
variable(r(i, x, z));
newClause;

Algorithm 2: Encoding of transitivity of individual pref-
erences

The axioms of majority and indifference implications can
be formalized in a similar fashion. We describe the transla-
tion for the majority implications here; the procedure for the
indifference implications (needed for incomplete digraphs)
is analogous again. In the following, we denote the small-
est number of voters required for a positive majority margin
by m(k) := bk · 1

2
c + 1. Note that then, because of anti-

symmetry of the individual preferences, for x � y it suffices
that there exists a set of m(k) many voters who prefer x to
y. In formal terms:

(∀x, y) (x � y → |{i | x Ri y}| > |{i | y Ri x}|)
≡ (∀x, y) (x � y → |{i | x Ri y}| ≥ s(n))

≡ (∀x, y) (x � y →
(∃M ⊆ K)|M | = m(k) ∧ (∀i ∈M)x Ri y)

≡
∧

x�y

∨

|M|=m(k)

∧

i∈M
ri,x,y.

In order to avoid an exponential blow-up when convert-
ing this formula to CNF, variable replacement (a standard
procedure also known as Tseitin transformation) is applied.
In our case, we replaced

∧
i∈M ri,x,y by new variables of the

form hM,x,y and introduced the following defining clauses:

∧

M

∧

x,y

(
hM,x,y →

∧

i∈M
ri,x,y

)

≡
∧

M

∧

x,y

(
¬hM,x,y ∨

∧

i∈M
ri,x,y

)

≡
∧

M

∧

x,y

∧

i∈M
(¬hM,x,y ∨ ri,x,y) .

In this case, the helper variables even have an intuitive
meaning as hM,x,y enforces that all the voters i ∈M prefer
alternative x over alternative y.

variables. But since we know in advance how many voters
and alternatives there are, we can simply use a standard
enumeration method for tuples of objects.
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Note that the conditions like |M | = m(k) can easily be
fulfilled during generation of the corresponding CNF formula
on a computer. For enumerating all subsets of voters of a
given size we, for instance, used Gosper’s Hack [18]. The
corresponding pseudo code for majority implications can be
found in Algorithm 3.

foreach Pair of alternatives x � y do
foreach M ⊆ K, |M | = m(k) do

variable(h(M,x, y));

newClause;

/* start of helper variable definition */

foreach Pair of alternatives x � y do
foreach M ⊆ K, |M | = m(k) do

foreach i ∈M do
variable not(h(M,x, y));
variable(r(i, x, y));
newClause;

Algorithm 3: Encoding of majority implications

This encoding leads to a total of k · n2 +
(

k
m(k)

)
· n2 =

n2 ·
(
k +

(
k

m(k)

))
variables for the case of tournaments

and n2 ·
(
k +

(
k

m(k)

)
+
(
k
k/2

))
variables for incomplete di-

graphs.The number of clauses is equal to k · (n3 + n2) +
n2−n

2
·
(

1 +
(

k
m(k)

)
·m(k)

)
and at most k · (n3 +n2) + (n2−

n)·
(

1 +
(
k
k/2

)
· k

2

)
for tournaments and incomplete digraphs,

respectively.
With all axioms formalized in propositional logic, we are

now ready to analyze arbitrary digraphs G for their voter
complexity v(G). Before we do so, however, we describe an
optimization technique for tournament graphs, which, for
certain instances, speeds up the computation significantly.

3.2 Optimized computation for tournaments
via components

An important structural property in the context of tour-
naments is whether a tournament admits a non-trivial de-
composition. Brandt et al. [7] show that this decomposition
allows for a recursive computation of certain concepts, which
is particularly helpful if the original computation is costly
for large instances.4 We are now going to prove that a sim-
ilar optimization can be carried out for the computation of
the voter complexity v(T ) of a given tournament T . In par-
ticular, we show that the voter complexity of a tournament
is equal to the maximum of the voter complexities of its
components and the corresponding summary.

In formal terms, a non-empty subset B of A is a compo-
nent of a tournament T = (A,�) if for all a ∈ A \ B either
B � a or a � B, where B � a stands for (∀b ∈ B)b � a. A
decomposition of T is a set of pairwise disjoint components
{B1, . . . , Bp} of T such that A =

⋃p
j=1Bj . The decom-

position is proper if p > 1 and not all Bj are singletons.
Every tournament admits a decomposition that is minimal
in a well-defined sense [20]. Given a particular decomposi-

tion B̃ = {B1, . . . , Bp}, the summary of T with respect to

4As Brandt et al. [7] point out, the decomposition of a tour-
nament can be computed in linear time.

B̃ is defined as the tournament TB = ({1, . . . , p}, �̃) on the
individual components rather than the alternatives, i.e.,

q �̃ r if and only if Bq � Br.
Each component Bj (including A) naturally induces a sub-
tournament TBj which is the summary of T |Bj with respect
to its minimal decomposition.

The following lemma then enables the recursive computa-
tion of v(T ) along the component structure of T :

Lemma 1. Let T be a tournament and B̃ = {B1, . . . , Bp}
a decomposition of T . Then

v(T ) = max
j
{v(TBj ), v(TB)}.

Proof. Let R be a minimal profile inducing T . Then,
R|Bj induces TBj for every Bj establishing v(T ) ≥ v(TBj ).
That v(T ) ≥ v(TB) holds is also easy to see by consider-
ing a variant of R in which from each component all but
one node are arbitrarily chosen and removed. The remain-
ing profile then induces TB . For the other direction, let
v′(T ) = maxj{v(TBj ), v(TB)}. We know, by Observation 1,
that v(T ′) and every v(TBj ) is odd, as these are all tourna-

ments. Each TBj (and TB) has a minimal profile Rj (and
R, respectively). We can add pairs of voters with oppos-
ing preferences to each profile without changing its major-
ity relation. This way, we get profiles R′j (and R′) that
still induce TBj (or TB) but now all have the same num-

ber of voters v′(T ). Now, create a new profile R̂ from R′

in which Rji replaced alternative j as a segment in R′i for
each voter i and every alternative j as in [19]. It is easy

to check that R̂ has v′(T ) voters and still induces T , i.e.,
v(T ) ≥ v′(T ) = v(TBj ).

We have implemented this optimization and found that
many real-world majority digraphs exhibit proper decom-
positions, speeding up the computation of SAT-Check-k-
Majority.

3.3 Data sources and method of analysis
In the preference library PrefLib [23], scholars have con-

tributed data sets from real world scenarios ranging from
preferences over movies or sushi via Formula 1 championship
results to real election data. Accordingly, the number of
voters whose preferences originally induced these data sets
vary heavily between 4 and 44000. At the time of writing,
PrefLib contained 354 tournaments induced from pairwise
majority comparisons as well as 185 incomplete majority di-
graphs.

Additionally, we consider stochastic models to generate
tournaments of a given size n. Many different models for
linear preferences (or orderings) have been considered in the
literature. We refer the interested reader to [9, 22, 24, 6].
In this work, we decided to examine tournaments generated
with five different stochastic models.

In the uniform random tournament model, the same prob-
ability is assigned to each labeled tournament of size n, i.e.,

Pr(T ) =
1

2(n2)
for each T with |T | = n.

In all of the remaining models, we sample preference profiles
and work with the tournament induced by the majority re-
lation. In accordance with [6], we generated profiles with 51
voters.
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The impartial culture model (IC) is the most widely-
studied model for individual preferences in social choice. It
assumes that every possible preference ordering has the same
probability of 1

n!
. If we add anonymity by having indistin-

guishable voters, the set of profiles is partitioned into equiv-
alence classes. In the impartial anonymous culture (IAC),
each of these equivalence classes is chosen with equal prob-
ability.

In Mallows-φ model [21], the distance to a reference rank-
ing is measured by means of the Kendall-tau distance which
counts the number of pairwise disagreements. Let R0 be
the reference ranking. Then, the Kendall-tau distance of a
preference ranking R to R0 is

τ(R,R0) =

(
n

2

)
− |R ∩R0| .

According to the model, this induces the probability of a
voter having R as his preferences to be

Pr(R) =
φτ(R,R0)

C

where C is a normalization constant and φ ∈ (0, 1] is a
dispersion parameter. Small values for φ put most of the
probability on rankings very close to R0 whereas for φ = 1
the model coincides with IC.

A very different kind of model is the spatial model. Here,
alternatives and voters are uniformly at random placed in a
multi-dimensional space and the voters’ preferences are de-
termined by the (Euclidian) distanced to the alternatives.
The spatial model has played an important role in politi-
cal and social choice theory where the dimensions are inter-
preted as different aspects or properties of the alternatives
(see, e.g., [28, 2]).

4. RESULTS
All experiments were run on a Intel Core i5, 2.66GHz

(quad-core) machine with 12 GB RAM using the SAT solver
plingeling [3].

4.1 Exhaustive analysis
We generated all tournaments with up to 10 alternatives

and found that all of these are 5-inducible. In fact, all tour-
naments of size up to seven are even 3-inducible, confirm-
ing a conjecture by Shepardson and Tovey [31]. They also
showed that there exist tournaments of size 8 that are not
3-inducible. We find that the exact number of such tourna-
ments is 96 (out of 6880).

Brandt and Seedig [5] presented a highly structured tour-
nament on 24 alternatives that serves as the current minimal
counterexample to a now disproved conjecture by Schwartz
[30] in social choice theory. We found it to be a 5-majority
tournament, implying that the negative theoretical conse-
quences of the counterexample already hold for scenarios
with only 5 voters (and at least 24 alternatives).

4.2 Empirical analysis
Among the tournaments in PrefLib, 58 are 3-inducible.

Out of the two largest tournaments in the data set with 240
and 242 alternatives, respectively, the first is a 5-majority
tournament while on the second the SAT solver did not ter-
minate within one day. The remaining tournaments are

n uniform IC IAC
Mallows-φ
(φ = 0.95)

spatial
(dim = 2)

3 1.40 1.13 1.13 1.13 1.00
5 3.00 1.67 2.13 1.33 1.13
7 3.00 2.67 2.67 2.47 1.33
9 3.13 3.00 3.00 2.67 1.60
11 3.93 3.07 3.00 2.87 2.33
13 4.80 3.07 3.20 2.93 2.53
15 5.00 3.27 3.40 3.00 2.67
17 5.00 3.40 3.80 2.93 2.80
19 5.00 4.27 4.20 3.00 2.80
21 5.00 4.47 4.33 3.00 2.87

Table 2: Average voter complexity in tournaments gener-
ated by stochastic (preference) models. The given values
are averaged over 30 samples each.

transitive and thus 1-inducible. Therefore, all checkable
tournaments in PrefLib are inducible by only 5 voters.

For the non-complete majority digraphs in PrefLib, we
found that the indifference constraints which are imposed
on missing edges change the picture. Not only does it nega-
tively affect the running time of SAT-Check-k-Majority
in comparison to tournaments which made us restrict our
attention to instances with at most 40 alternatives, but it
also seems to result in higher voter complexities of up to
8 among the 85 feasible instances. However, given that the
number of voters in the profiles that originally induced these
majority digraphs are often in the hundreds or thousands,
we still consider these low voter complexities.

4.3 Stochastic analysis
For up to 21 alternatives, we sampled preference pro-

files (each consisting of 51 voters5) from the aforementioned
stochastic models and examined the corresponding major-
ity graphs for their voter complexity using SAT-Check-k-
Majority. The average complexities over 30 instances of
each size are shown in Table 2. We see that the unbiased
models (IC, IAC, uniform) tend to induce digraphs with
higher voter complexity. We encountered no tournament
that was not a 5-majority tournament.6

4.4 Runtime analysis
A characterization by Brandt et al. [8] of 3-majority di-

graphs allows for a straightforward algorithm, which is ex-
pected to have a much better running time than any näıve
implementation enumerating all preference profiles (also
compare Table 1). The characterization is given in Lemma 2
below, as is the corresponding algorithm 2-Partition-
Check-3-Majority (Algorithm 4). Besides enumerating
all 2-partitions of the majority relations, the only non-trivial
part is to check whether a relation has a transitive reorien-
tation. This can be done efficiently using an algorithm by
Pnueli et al. [29].

We compared the running times of 2-Partition-Check-
3-Majority with the ones of our implementation via SAT

5In another study [6], this size turned out to be suffi-
ciently large to discriminate the different underlying stochas-
tic models.
6Our efforts also included checking more than 8 million uni-
form random tournaments with 12 alternatives.
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as described in Section 3.1 (see also Algorithm 1).7

Surprisingly, it turns out that—even though it is much
more universal—SAT-Check-3-Majority offers signifi-
cantly better running times. Preliminary data is displayed
in Table 3. Note that in addition to being more efficient,
SAT-Check-k-Majority is even able to return a prefer-
ence profile with k voters that induces the given digraph
(without the need for additional computations).

Further runtimes, which exhibit the practical power of our
SAT approach (and its limits), can be obtained from Table 4.

Lemma 2 (Brandt et al.). A digraph (A,�) is a 3-
majority digraph if and only if � is complete and there are
disjoint sets �1,�2 with �= (�1 ∪ �2) such that

• (A,�1) is a 2-majority digraph and

• �2 is acyclic.

Whether (A,�1) is a 2-majority digraph can efficiently be
checked [34] via the following characterization by Dushnik
and Miller [10]:

Lemma 3 (Dushnik and Miller). A digraph (A,�)
is a 2-majority digraph if and only if

• � is transitive and

• there exists a reorientation of
(
(A×A) \

(
� ∪ �−1

))

that is transitive and asymmetric.

Input: digraph (A,�)
Output: whether (A,�) is a 3-majority digraph
if � is complete then

foreach 2-partition {�1,�2} of � do
if �1 is transitive and �2 is acyclic and �2 has
a transitive reorientation then

return true;

else
return false;

else
return false;

Algorithm 4: 2-Partition-Check-3-Majority

5. OUTLOOK AND FUTURE WORK
The following two insights of this work have been most

surprising to us.

• First, our SAT-based implementation significantly out-
performs the best direct algorithm known to us, while
at the same time being much more flexible and pow-
erful.8

• Second, the voter complexity of any majority digraph
we could analyze does not exceed five for tournaments,
and eight for incomplete digraphs, respectively.

7As a programming language Java was used in both cases.
8In the sense that it can also solve instances for k ≥ 3.

Both of these points offer many directions for future work.
Our implementation might be useful to find concrete tour-
naments that are not k-inducible, a problem that has occu-
pied graph theorists. For example, the order of the smallest
tournament that is not 5-inducible is currently unknown.
Analytical results by Alon et al. [1], Graham and Spencer
[17], and Fidler [12] can be used to narrow down the search
for such tournaments. Preliminary results suggest that
quadratic residue tournaments are good candidates for tour-
naments that can only be induced by a large number of vot-
ers. We intend to further pursue this direction in future
work.

As other solving techniques are concerned, a natural
choice for the problem at hand are techniques that can han-
dle cardinality constraints natively (rather than encoding
them in SAT/CNF as we did). ASP (answer set program-
ming, see, e.g., Gebser et al. [15]) is an example of such a
technique. We were able to obtain preliminary results us-
ing an ASP formulation of the problem (see Figure 2) and
a corresponding solver (clasp with grounder Gringo [14]).
While due to its richer problem description language (which
also includes cardinality constraints) the formalization is
much more compact than the corresponding SAT/CNF for-
mulation, interestingly, performance appears to be similar or
even slightly worse compared to current SAT solvers. Other
solvers with cardinality constraints, however, might lead to
different performance results.

Our approach can also be used to treat a range of related
problems and questions. For instance, one could define nat-
ural variants of the notion of k-majority digraphs such as
voters having weak (i.e., ties are allowed) or even incomplete
preferences. Because of the high flexibility of our SAT for-
malization, one can easily apply the same method to analyze
these related concepts and questions.9 Even weighted ma-
jority graphs, i.e., graphs which carry the majority margin
as weights on edges, can be analyzed regarding their voter
complexity by slightly adapting our SAT or ASP encodings.
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%Alternatives

#const m=19.

alt(1..m).

%Number of voters

#const n=6.

voter(1..n).

#const simple_majority=4.

#const indifference_majority=3.

%Completeness and Antisymmetry

1{r(I,X,Y);r(I,Y,X)}1 :- voter(I), alt(X;Y), X!=Y.

%Reflexivity

r(I,X,X) :- voter(I), alt(X).

%Transitivity

r(I,X,Z) :- r(I,X,Y), r(I,Y,Z).

%Majority implications

simple_majority{r(I,X,Y):voter(I)} :- g(X,Y), X!=Y.

%Indifference implications

indifference_majority{r(I,X,Y):voter(I)}

indifference_majority :- i(X,Y), X!=Y.

g(1,2).

g(1,3).

g(1,4).

# (...) graph encoding mostly ommitted

g(19,14).

g(19,18).

#show r/3.

Figure 2: Problem description in ASP for k = 6 and a ma-
jority digraph with n = 19 nodes. Parts of the majority
graph have been omitted to increase readability.
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lot, and A. Tsoukiàs, editors, Proceedings of the 3rd
International Conference on Algorithmic Decision The-
ory (ADT), volume 8176 of Lecture Notes in Computer
Science (LNCS), pages 259–270. Springer, 2013.

[24] N. Mattei, J. Forshee, and J. Goldsmith. An empiri-
cal study of voting rules and manipulation with large

datasets. In Proceedings of the 4th International Work-
shop on Computational Social Choice (COMSOC),
2012.

[25] K. May. A set of independent, necessary and sufficient
conditions for simple majority decisions. Econometrica,
20:680–684, 1952.

[26] D. C. McGarvey. A theorem on the construction of
voting paradoxes. Econometrica, 21(4):608–610, 1953.

[27] K. G. Milans, D. H. Schreiber, and D. B. West. Acyclic
sets in k-majority tournaments. The Electronic Journal
of Combinatorics, 18(1), 2011.

[28] P. Ordeshook. The spatial analysis of elections and
committees: four decades of research. Mimeo, 1993.

[29] A. Pnueli, A. Lempel, and S. Even. Transitive orienta-
tion of graphs and identification of permutation graphs.
Canadian Journal of Mathematics, 23:160–175, 1971.

[30] T. Schwartz. Cyclic tournaments and cooperative ma-
jority voting: A solution. Social Choice and Welfare, 7
(1):19–29, 1990.

[31] D. Shepardson and C. A. Tovey. Smallest tournament
not realizable by 2

3
-majority voting. Social Choice and

Welfare, 33(3):495–503, 2009.

[32] R. Stearns. The voting problem. American Mathemat-
ical Monthly, 66(9):761–763, 1959.

[33] P. Tang and F. Lin. Computer-aided proofs of Ar-
row’s and other impossibility theorems. Artificial In-
telligence, 173(11):1041–1053, 2009.

[34] M. Yannakakis. The complexity of the partial order
dimension problem. SIAM Journal on Algebraic and
Discrete Methods, 3(3):351–358, 1982.

132



solving-based algorithms 133

finding preference profiles of condorcet
dimension k via sat [7]

Technical Report

Author: C. Geist

In: http://arxiv.org/abs/1402.4303, 2014

Abstract: Condorcet winning sets are a set-valued generalization
of the well-known concept of a Condorcet winner. As supersets
of Condorcet winning sets are always Condorcet winning sets
themselves, an interesting property of preference profiles is the size
of the smallest Condorcet winning set they admit. This smallest size
is called the Condorcet dimension of a preference profile. Since little
is known about profiles that have a certain Condorcet dimension,
we show in this paper how the problem of finding a preference
profile that has a given Condorcet dimension can be encoded as
a satisfiability problem and solved by a SAT solver. Initial results
include a minimal example of a preference profile of Condorcet
dimension 3, improving previously known examples both in terms
of the number of agents as well as alternatives. Due to the high
complexity of such problems it remains open whether a preference
profile of Condorcet dimension 4 exists.

http://arxiv.org/abs/1402.4303


ar
X

iv
:1

40
2.

43
03

v2
  [

cs
.M

A
] 

 2
 M

ar
 2

01
6

Finding Preference Profiles of Condorcet Dimension k
via SAT

Christian Geist
Technische Universität München

Munich, Germany
geist@in.tum.de

ABSTRACT
Condorcet winning sets are a set-valued generalization of the
well-known concept of a Condorcet winner. As supersets of
Condorcet winning sets are always Condorcet winning sets
themselves, an interesting property of preference profiles is
the size of the smallest Condorcet winning set they admit.
This smallest size is called the Condorcet dimension of a
preference profile. Since little is known about profiles that
have a certain Condorcet dimension, we show in this paper
how the problem of finding a preference profile that has a
given Condorcet dimension can be encoded as a satisfiability
problem and solved by a SAT solver. Initial results include a
minimal example of a preference profile of Condorcet dimen-
sion 3, improving previously known examples both in terms
of the number of agents as well as alternatives. Due to the
high complexity of such problems it remains open whether
a preference profile of Condorcet dimension 4 exists.

1. INTRODUCTION
The contribution of this paper is twofold. Firstly, we pro-

vide a practical implementation for finding a preference pro-
file for a given Condorcet dimension by encoding the prob-
lem as a boolean satisfiability (SAT) problem [2], which is
then solved by a SAT solver. This technique has proven use-
ful for a range of other problems in social choice theory (see,
e.g., [9, 7, 4, 3]) and can easily be adapted. For instance, only
little needs to be altered in order answer similar questions for
dominating sets rather than Condorcet winning sets. Sec-
ondly, we give an answer to an open question by Elkind et al.
[5] and provide a minimal example of a preference profile of
Condorcet dimension 3, which we computed using our im-
plementation. This profile involves 6 alternatives and agents
only, improving the size of previous examples both in terms
of agents and alternatives.1 The formalization in SAT turns
out to be efficient enough, not only to discover this partic-
ular profile of Condorcet dimension 3, but also to show its
minimality.

1For instance, the example in Elkind et al. [5] required 15
alternatives and agents.

Appears in: Proceedings of the 13th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2014), Lomuscio, Scerri, Bazzan, Huhns (eds.), May,
5–9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. PRELIMINARIES
Let A be a set of m alternatives and N = {1, . . . , n} a set

of agents. The preferences of agent i ∈ N are represented
by a linear (i.e., reflexive, complete, transitive, and antisym-
metric) preference relation Ri ⊆ A× A. The interpretation
of (a, b) ∈ Ri, usually denoted by a Ri b, is that agent i
values alternative a at least as much as alternative b. A
preference profile R = (R1, . . . , Rn) is an n-tuple containing
a preference relation Ri for each agent i ∈ N .

Let R be a preference profile. As introduced by Elkind
et al. [5], we now define the notion of a Condorcet win-
ning set through an underlying covering relation between
sets of alternatives and alternatives: A set of alternatives X
θ-covers an alternative y (short: X ≻θ

R y) if

|{i ∈ N | ∃x ∈ X such that x Ri y}| > θn.

A set of alternatives X is called a Condorcet winning set
if for each alternative y /∈ X the set X 1

2
-covers y. The set

of all Condorcet winning sets of R will be denoted by C(R).
The Condorcet dimension dimC(R) is defined as the size of
the smallest Condorcet winning set the profile R admits, i.e.,

dimC(R) := min{k ∈ N | k = |S| and S ∈ C(R)}.

Example 1. Consider the preference profile R depicted
in Figure 1. As R does not have a Condorcet winner
dimC(R) ≥ 2. It can easily be checked that {a, b} (like any
other two-element set in this case) is a Condorcet winning
set of R and, thus, dimC(R) = 2.

1 1 1
a b c
b c a
c a b

Figure 1: A preference profile of Condorcet dimension 2.

In this work, we address the computational problem of
finding a preference profile of a given Condorcet dimension.
To this end, we define the problem of checking whether for
a given number of agents n and alternatives m there exists
a preference profile R with dimC(R) = k.

Name: Check-Condorcet-Dimension-k
Instance: A pair of natural numbers n and m.
Question: Does there exist a preference profile R with n
agents and m alternatives that has Condorcet dimension of
at least k?
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Preference profiles n = 3 n = 5 n = 6 n = 7 n = 10 n = 15

m = 5 ∼ 1.7 · 106 ∼ 2.5 · 1010 ∼ 3.0 · 1012 ∼ 3.6 · 1014 ∼ 6.2 · 1020 ∼ 1.5 · 1031
m = 6 ∼ 3.7 · 108 ∼ 1.9 · 1014 ∼ 1.4 · 1017 ∼ 1.0 · 1020 ∼ 3.7 · 1028 ∼ 7.2 · 1042
m = 7 ∼ 1.3 · 1011 ∼ 3.3 · 1018 ∼ 1.6 · 1022 ∼ 8.3 · 1025 ∼ 1.1 · 1037 ∼ 3.4 · 1055
m = 10 ∼ 4.8 · 1019 ∼ 6.3 · 1032 ∼ 2.3 · 1039 ∼ 8.3 · 1045 ∼ 4.0 · 1065 ∼ 2.5 · 1098

Table 1: Number of objects involved in the Check-Condorcet-Dimension-3 problem. For k = 3 the subsets of size 2 are
the candidates for Condorcet winning sets.

Note that the following simple observation can be used to
prune the search space in terms of the number of alterna-
tives.

Observation 1. If there is a preference profile R of Con-
dorcet dimension dimC(R) involving m alternatives, then
there is also one of the same dimension involving m + 1
alternatives.

Proof. Let R be a preference profile on a set of m alter-
natives A with dimC(R). We need to construct a preference
profile R′ on a set of m + 1 alternatives A′ = A ∪ {a′} with
a′ /∈ A such that dimC(R′) = dimC(R). For each i, define
R′

i := Ri ∪ {(x, a′) | x ∈ A}, i.e., add a′ in the last place of
agent i’s preference ordering. It is then immediately clear
that C(R) ⊆ C(R′), which establishes dimC(R) ≥ dimC(R′).
On the other hand, if we assume dimC(R) > dimC(R′),
then there exist a Condorcet winning set S′ for R′ of size
k := |S′| < dimC(R). This set, however, must–by the con-
struction of R′–also be a Condorcet winning set for R; a
contradiction.

3. METHODOLOGY
The number of objects potentially involved in the Check-

Condorcet-Dimension-k problem are given in Table 1 for
k = 3. It is immediately clear that a näıve algorithm will
not solve the problem in a satisfactory manner. This section
describes our algorithmic efforts to solve this problem for
reasonably large instances.

3.1 Translation to propositional logic (SAT)
In order to solve the problem Check-Condorcet-

Dimension-k for arbitrary k ∈ N, we follow a similar ap-
proach as Brandt et al. [4]: we translate the problem to
propositional logic (on a computer) and use state-of-the-art
SAT solvers to find a solution. At a glance, the overall solv-
ing steps are shown in Algorithm 1.

Generally speaking, the problem at hand can be under-
stood as the problem of finding a preference profile that
satisfies certain conditions—here: having a Condorcet di-
mension of at least k). Thus, a satisfying instance of the
propositional formula to be designed should represent a pref-
erence profile. To capture this, a formalization based on two
types of variables suffices. The boolean variable ri,a,b rep-
resents a Ri b, i.e., agent i ranking alternative a at least as
high as alternative b; and the variable cS,y stands for the set
S covering alternative y.

In more detail, the following conditions/axioms need to
be formalized:2

2The further axiom for neutrality is not required for correct-
ness, but speeds up the solving process. It is discussed in
Section 3.2.

Input: positive integers n and m
Output: whether there exists a preference profile R
with n agents and m alternatives and dimC(R) ≥ k
/* Encoding of problem in CNF */

File cnfFile;
foreach agent i do

cnfFile += Encoder.reflexivePreferences(i);
cnfFile += Encoder.completePreferences(i);
cnfFile += Encoder.transitivePreferences(i);
cnfFile += Encoder.antisymmetricPreferences(i);

foreach set S ⊆ A with |S| = k − 1 do
cnfFile += Encoder.noCondorcetWinningSet(S);

/* Symmetry breaking */

cnfFile += Encoder.neutrality();
/* SAT solving */

satisfiable = SATsolver.solve(cnfFile);
if instance is satisfiable then

return true;

else
return false

Algorithm 1: SAT-Check-Condorcet-Dimension-k

1. All n agents have linear orders over the m alternatives
as their preferences (short: linear preferences)

2. For each set S ⊆ A with |S| = k − 1, it is not the case
that S is a Condorcet winning set (short: no Condorcet
set)

For the first axiom, we encode reflexivity, completeness,
transitivity, and anti-symmetry of the relation Ri for all
agents i. The complete translation to CNF (conjunctive
normal form, the established standard input format for SAT
solvers) is given exemplarily for the case of transitivity; the
other axioms are converted analogously.

In formal terms transitivity can be written as

(∀i)(∀x, y, z) (x Ri y ∧ y Ri z → x Ri z)

≡ (∀i)(∀x, y, z) (ri,x,y ∧ ri,y,z → ri,x,z)

≡
∧

i

∧

x,y,z

(¬ (ri,x,y ∧ ri,y,z) ∨ ri,x,z)

≡
∧

i

∧

x,y,z

(¬ri,x,y ∨ ¬ri,y,z ∨ ri,x,z) ,

which then translates to the pseudo code in Algorithm 2 for
generating the CNF file. The key in the translation of the
inherently higher order axioms to propositional logic is (as
pointed out by Geist and Endriss [7] already) that because
of finite domains, all quantifiers can be replaced by finite
conjunctions or disjunctions, respectively.

In all algorithms, a subroutine r(i, x, y) takes care of the
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foreach agent i do
foreach alternative x do

foreach alternative y do
foreach alternative z do

variable not(r(i, x, y));
variable not(r(i, y, z));
variable(r(i, x, z));
newClause;

Algorithm 2: Encoding of transitivity of individual pref-
erences

compact enumeration of variables.3

The axiom “no Condorcet set” can be formalized in a sim-
ilar fashion, but requires further subroutines to avoid an
exponential blow-up of the size of the formula in CNF. In
short, the axiom can be written as

(∀S ⊆ A) (|S| = k − 1→ S /∈ C(R))

≡ (∀S ⊆ A)
(
|S| = k − 1→ (∃y /∈ X)S ⊁θ

R y
)

≡
∧

S⊆A
|S|=k−1

∨

y /∈X

¬cS,y .

It remains as part of this axiom to define a sufficient con-
dition for S ≻θ

R y. In the following, we denote the small-
est number of agents required for a strict θ-majority by
m(n) := ⌊θk⌋ + 1. In formal terms, we write for each set
S ⊆ A with |S| = k − 1 and each alternative y /∈ X:

S ≻θ
R y ← ((∃M ⊆ N)|M | = m(n)∧

(∀i ∈M)(∃x ∈ S)x Ri y)

≡ S ≻θ
R y ∨ ((∀M ⊆ N)|M | = m(n)→

(∃i ∈M)(∀x ∈ S)¬x Ri y)

≡ cS,y ∨




∧

M⊆N
|M|=m(n)

∨

i∈M

∧

x∈S

¬ri,x,y


 .

In order to avoid an exponential blow-up when converting
this formula to CNF, variable replacement (a standard pro-
cedure also known as Tseitin transformation) is applied. In
our case, we replaced

∧
x∈S ¬ri,x,y by new variables of the

form hS,y,i and introduced the following defining clauses:4

∧

S⊆A
|S|=k−1

∧

y∈A

∧

i∈N

(
hS,y,i →

∧

x∈S

¬ri,x,y

)

≡
∧

S⊆A
|S|=k−1

∧

y∈A

∧

i∈N

(
¬hS,y,i ∨

∧

x∈S

¬ri,x,y

)

≡
∧

S⊆A
|S|=k−1

∧

y∈A

∧

i∈N

∧

x∈S

(¬hS,y,i ∨ ¬ri,x,y) .

3The DIMACS CNF format only allows for integer names of
variables. But since we know in advance how many agents
and alternatives there are, we can simply use a standard
enumeration method for tuples of objects.
4Note that one direction of the standard bi-implication suf-
fices here.

In this case, the helper variables even have an intuitive
meaning as hS,y,i enforces that for no alternative x ∈ S it
is the case that agent i prefers alternative y over alternative
x, i.e., agent i does not contribute to S θ-covering y.

Note that the conditions like |S| = k − 1 can easily be
fulfilled during generation of the corresponding CNF formula
on a computer. For enumerating all subsets of alternatives
of a given size we, for instance, used Gosper’s Hack [8].

The corresponding pseudo code for the“no Condorcet set”
axiom can be found in Algorithm 3.

foreach set S ⊆ A with |S| = k − 1 do
foreach alternative y /∈ S do

variable not(c(S, y));

newClause;
/* Definition of variable cS,y */

foreach set M ⊆ N with |M | = m(n) do
variable(c(S, y));
foreach agent i ∈M do

variable(h(S, y, i));

newClause;

/* Definition of auxiliary variable hS,y,i */

foreach agent i ∈ N do
foreach x ∈ S do

variable not(r(i, x, y));
variable not(h(S, y, i));
newClause;

Algorithm 3: Encoding of the axiom “no Condorcet set”

With all axioms formalized in propositional logic, we are
now ready to search for preference profiles R of Condorcet
dimension dimC(R) ≥ k. Before we do so, however, we de-
scribe a (standard) optimization technique called symmetry
breaking, which speeds up the solving process of the SAT
solver.

3.2 Optimized computation
Observe that from a given example of a preference profile

R with dimC(R) ≥ k we can always generate further exam-
ples simply by permuting the (names of the) alternatives.
One could say that all positive witnesses to the SAT-Check-
Condorcet-Dimension-k problem are invariant under per-
mutations of the alternatives. Therefore, we implemented a
standard technique in SAT solving called symmetry break-
ing; here in the form of setting agent 1’s preferences to a
fixed preference ordering, for instance to lexicographic pref-
erences. This trims the search space for the SAT solver and
therefore reduces the runtime of the solving process. An en-
coding can be achieved simply by adding a subformula of
the form ∧

x<y

r(n1, x, y),

which sets the first agents preferences to lexicographic or-
dering.

4. INITIAL RESULTS
All computations were run on a Intel Core i5, 2.66GHz

(quad-core) machine with 12 GB RAM using the SAT solver
plingeling [1].
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a b c d e f
b c d f a e
c e f b d a
d d a e b b
e f e a c c
f a b c f d

Figure 2: A smallest preference profile of Condorcet dimen-
sion 3 (with n = 6 agents m = 6 alternatives).

When called with the parameters n = m = 6, our im-
plementation of SAT-Check-Condorcet-Dimension-k re-
turns the preference profile Rdim3 within about one second.
Rdim3 is a smallest preference profile of Condorcet dimension
3 and is shown in Figure 2.5

Furthermore, it turns out that this preference profile is
a smallest profile of Condorcet dimension 3. All strictly
smaller profiles (i.e., with less agents and at most as many
alternatives, or with less alternatives and at most as many
agents) can be shown to have a Condorcet dimension of at
most 2 via SAT-Check-Condorcet-Dimension-3.6

An overview of further (preliminary) results can be found
in Table 2.

Model (decoding of satisfying assignment) found:

Agent 0: 0 > 1 > 2 > 3 > 4 > 5

Agent 1: 2 > 3 > 5 > 0 > 4 > 1

Agent 2: 5 > 4 > 0 > 1 > 2 > 3

Agent 3: 3 > 5 > 1 > 4 > 0 > 2

Agent 4: 4 > 0 > 3 > 1 > 2 > 5

Agent 5: 1 > 2 > 4 > 3 > 5 > 0

does not have a Condorcet winning set of size 2

(6 agents and 6 alternatives).

Witnesses:

{0, 1} does not cover alternative(s): 5

{0, 2} does not cover alternative(s): 4

{1, 2} does not cover alternative(s): 0

{0, 3} does not cover alternative(s): 4

{1, 3} does not cover alternative(s): 0

{2, 3} does not cover alternative(s): 0

{0, 4} does not cover alternative(s): 5

{1, 4} does not cover alternative(s): 5

{2, 4} does not cover alternative(s): 1

{3, 4} does not cover alternative(s): 2

{0, 5} does not cover alternative(s): 3

{1, 5} does not cover alternative(s): 3

{2, 5} does not cover alternative(s): 1

{3, 5} does not cover alternative(s): 2

{4, 5} does not cover alternative(s): 3

Figure 3: Output of SAT-Check-Condorcet-Dimension-
3 for n = 6 agents and m = 6 alternatives.

5The witnesses for all sets S ⊆ A with |S| = 2 not being
Condorcet winning sets are also returned by SAT-Check-
Condorcet-Dimension-3 and can be obtained from the
output in Figure 3. That there is a larger set (e.g., {a, b, c})
which forms a Condorcet winning set can easily be con-
firmed manually (or by calling SAT-Check-Condorcet-
Dimension-4).
6The running time to check all cases again is only a few
seconds.

m\n 1 2 3 4 5 6 7 8 9 10 11 12

1 – – – – – – – – – – – –
2 – – – – – – – – – – – –
3 – – – – – – – – – – – –
4 – – – – – – – – – – – –
5 – – – – – – – – – – – –
6 – – – – – + – – – – +
7 – – – – – + – – + +
8 – – – – + + +
9 – – – + + +
10 – – – + + +

Table 2: Preliminary collection of results obtained with
SAT-Check-Condorcet-Dimension-3 for different num-
bers of alternatives m and voters n. A plus (+) stands for
a preference profile found; a minus (–) for the fact that all
preference profiles have a Condorcet winning set of size 2.

5. OUTLOOK AND FUTURE WORK
Our implementation might be useful to find preference

profiles of Condorcet dimension 4, a problem that has been
raised by Elkind et al. [5]. Even though with the current
formalization the solving process did not terminate within a
reasonable amount of time, we intend to further pursue this
direction in future work. Adding further symmetry break-
ing clauses (which make use of anonymity in addition to
neutrality) could be a first step in this direction.

Furthermore, one could extend the notion of Condorcet
dimension to other individual preferences, e.g., with agents
having weak (i.e., ties are allowed) or even incomplete pref-
erences. Because of the high flexibility of our SAT formal-
ization, one can easily apply the same method to analyze
these related concepts and questions.7

A formalization with other solving techniques, e.g., ASP
[6], might be another way to achieve the desired perfor-
mance.
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ABSTRACT
Results from social choice theory are increasingly used to ar-
gue about collective decision making in computational mul-
tiagent systems. A large part of the social choice literature
studies voting paradoxes in which seemingly mild proper-
ties are violated by common voting rules. In this paper, we
investigate the likelihood of the Condorcet Loser Paradox
(CLP) and the Agenda Contraction Paradox (ACP) using
Ehrhart theory, computer simulations, and empirical data.
We present the first analytical results for the CLP on four
alternatives and show that our experimental results, which
go well beyond four alternatives, are in almost perfect con-
gruence with the analytical results. It turns out that the
CLP—which is often cited as a major flaw of some Con-
dorcet extensions such as Dodgson’s rule, Young’s rule, and
MaxiMin—is of no practical relevance. The ACP, on the
other hand, frequently occurs under various distributional
assumptions about the voters’ preferences. The extent to
which it is real threat, however, strongly depends on the
voting rule, the underlying distribution of preferences, and,
somewhat surprisingly, the parity of the number of voters.

Keywords
Social choice theory; voting; Ehrhart theory

1. INTRODUCTION
Results from social choice theory are increasingly used

to argue about collective decision making in computational
multiagent systems (see, e.g., [12, 8, 30, 9]). A large part of
the social choice literature studies voting paradoxes in which
seemingly mild properties are violated by common voting
rules. Moreover, there are a number of sweeping impossibil-
ities, which entail that there exists no “optimal” voting rule
that avoids all paradoxes. As a consequence, much of the
research in social choice theory is concerned with whether
a paradox can appear for a given voting rule or not. How-
ever, it turns out that some paradoxes—while possible in
principle—will almost never occur in practice.

An extreme example of this phenomenon was recently re-
vealed for the voting rule TEQ . Due to its unwieldy re-
cursive definition, it was unknown for more than 20 years

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

whether TEQ satisfies any of a number of very basic de-
sirable properties. In 2011, Brandt et al. [7] have shown
that TEQ violates all of these properties. However, their
proof is non-constructive and only shows the existence of
astronomically large counterexamples requiring about 10136

alternatives. While there are smaller computer-generated
counterexamples [4], computer experiments have shown that
these counterexamples are extremely rare and that TEQ sat-
isfies the desirable properties for all practical purposes [6].
These findings motivated us to provide analytical, experi-
mental, and empirical justifications for such statements.

In this paper, we study two voting paradoxes. The first is
the well-known Condorcet loser paradox (CLP), which oc-
curs when a voting rule selects the Condorcet loser, an alter-
native that loses against every other alternative in pairwise
majority contests. Perhaps surprisingly, this paradox affects
some Condorcet extensions, i.e., voting rules that are guar-
anteed to select an alternative that wins against every other
alternative in pairwise majority contests. Common affected
Condorcet extensions are Dodgson’s rule, Young’s rule, and
MaxiMin [18]. The second paradox, called agenda contrac-
tion paradox (ACP), occurs when removing losing alterna-
tives changes the set of winners. There are only few voting
rules that do not suffer from this paradox, one of them be-
ing the essential set. In fact, all common voting rules that
violate the CLP also violate the ACP.

In principle, quantitative results on voting paradoxes can
be obtained via three different approaches. The analyt-
ical approach uses theoretical models to quantify para-
doxes based on certain assumptions about the voters’ pref-
erences. Analytical results usually tend to be quite hard to
obtain and are limited to simple—and often unrealistic—
assumptions. The experimental approach uses computer
simulations based on underlying stochastic models of how
the preference profiles are distributed. Experimental results
have less general validity than analytical results, but can be
obtained for arbitrary distributions of preferences. Finally,
the empirical approach is based on evaluating real-world
data to analyze how frequently paradoxes actually occur or
how frequently they would have occurred if certain voting
rules had been used for the given preferences. Unfortunately,
only very limited real-world data for elections is available.

Our main results are as follows.
Using Ehrhart theory, we compute upper bounds for the

CLP as well as the exact probabilities under which the
CLP occurs for MaxiMin when there are four alternatives
and preferences are distributed according to the Impartial
Anonymous Culture (IAC) distribution. This approach also
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yields the exact limit probabilities (for CLP and ACP) when
the number of voters goes to infinity. To the best of our
knowledge, these are the first analytical results for the CLP
on four alternatives (which is the minimal number of alter-
natives for which the voting rules we consider exhibit the
CLP).

For both the CLP and the ACP, we throughly analyze a
variety of other settings with more alternatives and other
stochastic preference models using computer simulations.
For those settings in which the analytical approach is also
feasible, our results are in almost perfect congruence with
the analytical results. This is strong evidence for the accu-
racy of our simulation results.

It turns out that the CLP—which is often cited as a ma-
jor flaw of some Condorcet extensions—is of no practical
relevance. The maximum probability under all preference
models we studied is 2.2% (for MaxiMin, three voters, four
alternatives, and IAC). In more realistic settings, it is much
lower. For Dodgson’s rule, it never exceeds 0.01%. We did
not find any occurrence of the paradox in real-world data,
neither in the PrefLib library [25] nor in millions of elec-
tions based on data from the Netflix Prize [3].

The ACP, on the other hand, frequently occurs under vari-
ous distributional assumptions about the voters’ preferences.
The extent to which it is real threat, however, strongly
depends on the voting rule, the underlying distribution of
preferences, and the parity of the number of voters. If the
number of voters is much larger than the number of alter-
natives, less discriminating voting rules seem to fare better
than more discriminating ones. For example, when there
are 1,000 voters and four alternatives, the probability for
the ACP under Copeland’s rule and IAC is 9% while it oc-
curs with a probability of 33% for Borda’s rule. When there
are fewer voters, the parity of the number of voters plays a
surprisingly strong role. For example, if there are 6 alterna-
tives, the ACP probability for Copeland’s rule is 44% for 50
voters, but only 26% for 51 voters. These results are in line
with the empirical data we analyzed.

2. RELATED WORK
There is a huge body of research on the quantitive study

of voting paradoxes. Gehrlein [19] focusses on the non-
existence of Condorcet winners, arguably the most studied
voting paradox. Gehrlein and Lepelley [20], on the other
hand, provide an overview of many paradoxes and, in par-
ticular, analyze the influence of group coherence. In addi-
tion, Gehrlein and Lepelley [20] survey different tools and
techniques that have been applied over the years for the
quantitive study of voting paradoxes.

The analytical study of voting paradoxes under the as-
sumption of IAC is most effectively done via Ehrhart the-
ory, which goes back to the year 1962 and the French math-
ematician Eugène Ehrhart [16]. Interestingly, parts of these
results have been reinvented (in the context of social choice)
by Huang and Chua [22] in 2000, before Ehrhart’s origi-
nal work was independently rediscovered for social choice
by Wilson and Pritchard [34] and Lepelley et al. [23] more
than forty years later.

Current research on the probability of voting paradoxes
under IAC is based on algorithms that build upon Ehrhart’s
results, such as the algorithm developed by Barvinok [2].
For many years, these approaches were limited to cases with

three or fewer alternatives. Recent advances in software
tools and mathematical modeling enabled the study of elec-
tions with four alternatives. Bruns and Söger [10] and Schür-
mann [31] provide such results for Condorcet’s paradox, the
Condorcet efficiency of plurality and the similarity between
plurality and plurality with runoff. Schürmann [31] further
shows how symmetries in the formulation of the paradoxes
can be exploited to facilitate the corresponding computa-
tions.

For the CLP (sometimes also referred to as “Borda’s para-
dox”) many quantitive results are known [20], which are,
however, limited to simple voting rules and scoring rules in
particular. These results also include some empirical evi-
dence for the paradox under plurality ([20], p.15) and sug-
gest that it is an unlikely yet possible problem in practice.
Interestingly, the CLP for Condorcet extensions has—to the
best of our knowledge—only been considered by Plassmann
and Tideman [28]. However, they restrict their analysis to
the three-alternative case and find that the CLP never oc-
curs, which is unsurprising since provably four alternatives
are required for the Condorcet extensions they considered.

The ACP appears to have received less attention in the
quantitative literature on voting paradoxes. Some limit
probabilities for scoring rules were obtained by Gehrlein and
Fishburn (see [20], p. 282–284). Fishburn [17] experimen-
tally studied a variant of this paradox called “winner turns
loser paradox” for Borda’s rule under Impartial Culture. For
Condorcet extensions, Plassmann and Tideman [28] consid-
ered another variant of the ACP under a spatial model, but
again limit their experiments to three alternatives. These
few results already seem to indicate that the ACP might
occur even under realistic assumptions. However, there are
no results for more than three alternatives, Condorcet ex-
tensions, and the ACP in its full generality.

The preference models we consider (such as IC, IAC,
and the Mallows-φ model) have also found widespread
acceptance for the experimental analysis of voting rules
within the multiagent systems and AI community (see, e.g.,
[1, 5, 21, 27]).

3. MODELS AND DEFINITIONS
Let A be a set of m alternatives and N = {1, . . . , n} a

set of voters. Each voter is equipped with a (strict) prefer-
ence relation �i, i.e., a connex,1 transitive, and asymmetric
binary relation on A. We read x �i y as voter i (strictly)
preferring alternative x to alternative y.

A (preference) profile (or an election) is an n-tuple of pref-
erence relations and will be denoted by R := (�1, . . . ,�n).
We will sometimes consider the restriction of �i to a subset
of alternatives B ⊆ A, called an agenda. Such a restriction
will be denoted by R|B := (�1|B , . . . ,�n|B).

3.1 Stochastic Preference Models
In this paper we consider five of the most common stochas-

tic preference models. These models vary in their degree of
realism. Impartial culture (IC) and impartial anonymous
culture (IAC), for example, are usually considered as rather
unrealistic. However, the simplicity of these models enables

1A binary relation �i on A is connex if x �i y ∨ y �i x
for all x 6= y ∈ A. One may alternatively define �i as
the irreflexive component of a complete, antisymmetric, and
transitive relation <i.
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the use of analytical tools that cannot be applied to the other
models. IC and IAC typically yield higher probabilities for
paradoxes than other preference models and can therefore be
seen as worst-case estimates (see, e.g., [29]). We only give
informal definitions here; for more extensive treatments see,
e.g., Critchlow et al. [14] and Marden [24].

Impartial culture The most widely-studied distribution
is the so-called impartial culture (IC), under which every
possible preference relation has the same probability of 1

m!
.

Thus, every preference profile is equally likely to occur.

Impartial anonymous culture In contrast to IC the
impartial anonymous culture (IAC) is not based on the prob-
abilities of individual preferences but on the probabilities of
whole profiles. Under IAC one assumes that each possible
anonymous preference profile on n voters is equally likely to
occur. A more formal definition is given in Section 4.1.

Mallows-φ model In Mallows-φ model, the distance to
a reference ranking (or ground truth) is measured by means
of the Kendall-tau distance2 and a parameter φ is used to
indicate the dispersion. The case of φ = 1 means absolute
dispersion and coincides with IC, the case φ = 0 corresponds
to no dispersion and every voter always picks the“true”rank-
ing. We chose φ = 0.8 to simulate voters with relatively bad
estimates, which leads to situations in which paradoxes are
more likely to occur.

Pólya-Eggenberger urn model In the Pólya-
Eggenberger urn model, each possible preference relation is
represented by a ball in an urn from which individual pref-
erences are drawn. After each draw, the chosen ball is put
back and α ∈ N0 new balls of the same kind are added to the
urn. While the urn model subsumes both impartial culture
(α = 0) and impartial anonymous culture (α = 1), we set
α = 10 to obtain a reasonably realistic interdependence of
individual preferences.

Spatial model In the spatial model alternatives and
agents are placed in a multi-dimensional space uniformly at
random and the agents’ preferences are then determined by
the Euclidean distances to the alternatives (closer alterna-
tives are preferred to more distant ones). The spatial model
is considered particularly realistic in political science where
the dimensions are interpreted as different aspects of the al-
ternatives [32]. We chose the simple case of two dimensions
for our analysis.3

3.2 Voting Rules
A voting rule is a function f that maps a preference profile

to a non-empty set of winners.
For a preference profile R, let gxy := |{i ∈ N : x �i y}| −
|{i ∈ N : y �i x}| denote the majority margin of x against
y. A very influential concept in social choice is the notion
of a Condorcet winner, an alternative that wins against any
other alternative in a pairwise majority contest. Alternative
x is a Condorcet winner (CW) of a profile R if gxy > 0 for all
y ∈ A \ {x}. Conversely, alternative x is a Condorcet loser
(CL) if gyx > 0 for all y ∈ A \ {x}. Neither CWs nor CLs

2The Kendall-tau distance counts the number of pairwise
disagreements.
3In a related study, Brandt and Seedig [5] have found that
the number of dimensions does not seem to have a large
impact on the results as long as it is at least two.

necessarily exist, but whenever they do they are unique. A
voting rule f is called a Condorcet extension if f(R) = {x}
whenever x is the CW in R.

In the following paragraphs we briefly introduce the voting
rules considered in this paper.

Borda’s Rule Under Borda’s rule each alternative re-
ceives from 0 to |A| − 1 points from each voter (depending
on the position the alternative is ranked in). The alterna-
tives with highest accumulated score win.

MaxiMin The MaxiMin rule is only concerned with the
highest defeat of each alternative in a pairwise majority con-
test. It yields all alternatives as winners which have the
maximal value of miny∈A gxy.

Young’s Rule Young’s rule yields all alternatives that
can be made a CW by removing a minimal number of voters.

Dodgson’s Rule Dodgson’s rule selects all alternatives
that can be made a CW by a minimal number of pairwise
swaps of adjacent alternatives in the individual preference
relations.

Essential Set Consider the symmetric two-player zero-
sum game G given by the skew-symmetric matrix with en-
tries gxy for all pairs of alternatives x, y. The essential set
is the set of all alternatives that are played with positive
probability in some mixed Nash equilibrium of G.4

Except for Borda’s rule, all presented voting rules are in
fact Condorcet extensions. While Borda’s rule, MaxiMin,
and the essential set can be computed efficiently, Young’s
rule and Dodgson’s rule have been shown to be complete
for parallel access to NP. The essential set is one of the
few voting rules that do suffer from neither the CLP nor the
ACP, and is merely included as a reference. For more formal
definitions and computational properties of these rules, we
refer to Brandt et al. [9].

3.3 Voting Paradoxes
In this paper we focus on two voting paradoxes whose

occurrence can be determined given a voting rule f and a
preference profile R.

Let f be a voting rule. Formally, a (voting) paradox is
a characteristic function that maps a preference profile to 0
or 1. In the latter case, we say the paradox occurs for voting
rule f at profile R.

The Condorcet Loser Paradox (CLP) occurs when a vot-
ing rule selects the CL as a winner.

Definition 1. Given a voting rule f the Condorcet loser
paradox CLPf is defined as

CLPf (R) =

{
1 if f(R) contains a CL

0 otherwise.

The agenda contraction paradox (ACP) occurs when re-
ducing the set of alternatives, by eliminating unchosen al-
ternatives, influences the outcome of an election.

Definition 2. Given a voting rule f the agenda contrac-
tion paradox ACPf is a paradox defined as

ACPf (R) =

{
1 if f(R|B) 6= f(R) for some B ⊇ f(R)

0 otherwise.

4These mixed equilibria are also known as maximal lotteries
in probabilistic social choice.
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4. QUANTIFYING VOTING PARADOXES
In this section we present the three general approaches

for quantifying voting paradoxes: the analytical approach
via Ehrhart theory, the experimental approach via computer
simulations, and the empirical approach via real-world data.

4.1 Exact Analysis via Ehrhart Theory
Anonymous preference profiles only count the number of

voters for each of the m! possible rankings on m alternatives.
An anonymous preference profile can hence be viewed as an
integer point in a space of d := m! dimensions. Formally, the
set Sm,n of anonymous preference profiles on m alternatives
with n voters can be identified with the set of all integer
points z = (z1, . . . , zm!) ∈ Zm! which satisfy

zi ≥ 0 for all i ∈ {1, . . . ,m!}, and

m!∑

i=1

zi = n.

Under IAC each anonymous preference profile is assumed
to be equally likely to occur. Hence, in order to deter-
mine the probability of a paradox under IAC it is enough
to compute the number of points belonging to preference
profiles in which the paradox occurs and compare them to
the total number of points in Sm,n, which is known to be
|Sm,n| =

(
m!+n−1
m!−1

)
.5

In this framework, many paradoxes X can be described
with the help of linear constraints, i.e., the set of points
belonging to the event can be described with the help of
(in)equalities, a polytope. For variable n, this approach
then describes a dilated polytope Pn = nP := {n~x : ~x ∈ P}.
Hence, we know that the probability of a paradox Xn under
IAC is given by:

P(Xn) =
|nP ∩ Zd|
|Sm,n|

.

and we can determine the probability of (many) voting para-
doxes under IAC by evaluating the function L(P, n) :=
|nP∩Zd|, which describes the number of integer points inside
the dilation nP . This can be done with the help of Ehrhart
theory. Ehrhart [16] was the first to show that L(P, n) can
be described by special functions, called quasi- or Ehrhart-
polynomials. A function f : Z→ Q is a quasi-polynomial of
degree d and period q if there exists a list of q polynomials
fi : Z→ Q (0 ≤ i < q) of degree d such that f(n) = fi(n) if
n ≡ i mod q.

Quasi-polynomials can be determined with the help of
computer programs such as LattE (De Loera et al. [15])
or Normaliz (Bruns et al. [11]). Unfortunately, the com-
putation of our quasi-polynomials is computationally very
demanding, especially because the dimension of the poly-
topes grows super-exponentially in the number of alterna-
tives. This limits analytical results under IAC to rather
small numbers of alternatives. To the best of our knowl-
edge, Normaliz is the only program which is able to com-
pute polytopes corresponding to elections with up to four
alternatives. And even Normaliz is not always able to com-
pute the whole quasi-polynomial, but sometimes we had to

5For most preference models other than IAC this approach
does not work. While for specific combinations of (simple)
distributions and voting rules there are some highly tailor-
made computations in the literature (cf. Section 2), these
have to be redesigned for each individual setting.

Paradox Voting rule(s) Result

CLP
Condorcet extensions upper bound (∀n ∈ N)

MaxiMin probability (∀n ∈ N)
Tideman’s rule limit prob. (n→∞)

ACP MaxiMin limit prob. (n→∞)

Table 1: Theoretical results obtained via Ehrhart
theory (for four alternatives and under IAC)

resort to computing the leading coefficients only of the poly-
nomial, which fortunately suffices for determining the limit
probability of a paradox when the number of voters goes to
infinity.

An overview of our analytical findings obtained in this
way is provided in Table 1.

Finding a Quasi-polynomial for MaxiMin
As an example for the method just described, we consider
the CLPMaxiMin in four-alternative elections under IAC,
the probabilities of which can be computed from a quasi-
polynomial with degree 23 and a period of 5,040.6

In order to determine the polynomial, we first need to
describe the corresponding polytope with equalities and
inequalities. Recall the definition of MaxiMin from Sec-
tion 3.2:

fMaxiMin(R) := arg max
x∈A

min
y∈A

gxy.

For CLPMaxiMin(R) = 1 the CL of R has to have the lowest
highest defeat. Formally, there is x ∈ A such that for all
y ∈ A\{x},

gyx > 0, and (1)

max
z∈A\{x}

gzx ≤ max
z∈A\{y}

gzy. (2)

Now let A = {a, b, c, d} and assume x = d. We then have
that gad, gbd, gcd > 0, which implies maxz∈A\{d} gzd > 0.
Furthermore,

max
z∈A\{y}

gzy > 0 for all y ∈ {a, b, c},

from which it follows that either gab, gbc, gca > 0 or
gba, gcb, gac > 0. In both cases there is a majority cycle
between a, b, and c. Due to symmetry we can choose one
direction of the cycle arbitrarily and assume gab, gbc, gca > 0.
Then,

max
z∈A\{a}

gza = gca, max
z∈A\{b}

gzb = gab, and max
x∈A\{c}

gzc = gac.

Condition (1) is already represented in the form of linear
inequalities. In order to model condition (2) we determine
maxz∈A\{d} gzd and distinguish cases for the seven possible
outcomes. The inequalities for the case maxz∈A\{d} gzd =
{gad} are

gad − gbd > 0 and gad − gcd > 0.

6In theory, the analysis can be adapted to also cover more
complex rules (e.g., Dodgson’s and Young’s rule, which in-
volve solving an ILP). It is unclear, however, how one would
translate their definitions to linear inequalities.
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Condition (2) furthermore yields

gca − gad ≥ 0, gab − gad ≥ 0, and gbc − gad ≥ 0.

Each case belongs to a different polytope and the poly-
topes are pairwise distinct, so we can compute each quasi-
polynomial separately and later combine them to one. To
get the final polynomial we have to multiply by eight for the
four different possible choices of a CL and the two possible
directions of the majority cycle. This then enables us to
efficiently evaluate the exact probabilities for any number
of voters. The results are depicted in Figure 2. The lead-
ing coefficient of the quasi-polynomial can also be used to
determine the limit probability which is given by

P(CLPMaxiMin = 1 | m = 4, n→∞)

= 8 · 485052253637930099

6443662124777472000000
≈ 0.06%.

4.2 Experimental Analysis
As we will see, simulating elections with the help of com-

puters is a viable way of achieving very good approxima-
tions for the probabilities we are looking for. It even turns
out that the results of our simulations are almost indistin-
guishable from the theoretical result obtained via Ehrhart
theory (with the exception of the limit case, which cannot
be realized via simulations).

More specifically, the experimental approach works as fol-
lows: a profile source creates random preference profiles ac-
cording to a specific preference model. The profiles are then
used to compute the winner(s) according to a given voting
rule and to determine if the paradox occurs. Any such ex-
periment is carried out for each pair of n and m and repeated
frequently. In many cases in which we covered a wide range
of voters, we did not consider every possible value of n but,
more economically, only simulated the values: 1–30, 49–51,
99–101, 199–201, 499–501, 999–1,001.

In contrast to many other studies, we are concerned about
the statistical significance of our experimental results. Thus,
we also computed 99%-confidence intervals for each data
point we generated. To this end, we used the binofit func-
tion in Matlab which is based on the standard approach by
Clopper and Pearson [13]. It shows that, based on our sam-
pling rate of 105 and 106, respectively, the 99%-confidence
intervals are pleasantly small. Hence, even though they are
depicted in all of the figures throughout this paper, some-
times it can be difficult to recognize them.

4.3 Empirical Analysis
The most valuable quantification of voting paradoxes

would be their actual frequency in real-world elections. As
mentioned before, real-world election data is generally rela-
tively sparse, incomplete, and inaccurate. This makes em-
pirical research on this topic rather difficult. Otherwise, the
empirical approach strongly resembles the experimental ap-
proach.

For this paper we used two sources of empirical data.
First, we used the 314 profiles with strict order preferences
from the PrefLib library [25]. Second, we had access to the
54,650 preference profiles over four alternatives without a
CW which belong to the roughly 11 million four-alternative
elections which Mattei et al. [26] derived from the Netflix
Prize data [3]. Non-existence of Condorcet winners is a pre-
requisite for the paradoxes we study.

5. CONDORCET LOSER PARADOX
In this section we present our findings on the CLP. We con-

clude that—even though the CLP is possible in principle—it
is so unlikely that it cannot be used as a serious argument
against any of the Condorcet extensions we considered.

5.1 An Upper Bound
Before analyzing the CLP for concrete voting rules, we

discuss an upper bound valid for all Condorcet extensions.
For a Condorcet extension to choose the CL a profile obvi-
ously has to satisfy two conditions. First, there has to exist
a CL in the profile. Second, no CW may exist in the profile.
In the case of four-alternative elections—which is the first
interesting case—we can compute the quasi-polynomial via
Ehrhart theory and hence know the exact probabilities for
any number of voters. The derivation and presentation of
the quasi-polynomial, which has degree 23 and contains 24
polynomials, is omitted due to space constraints. The re-
sulting probabilities for up to 1 000 voters—and a compar-
ison with the results of an experimental analysis—can be
obtained from Figure 1. The value of the limit probability
is approximately 8%.

100 101 102 103
0%

10%

20%

30%

Number of voters

4 alternatives, IAC

Experimental (even)

Experimental (odd)

Analytical

Analytical (limit)

Figure 1: Probability of the event that a Condorcet
extension could choose a CL in four-alternative elec-
tions under IAC

Especially for small even numbers of voters, where the
probability is around 20%, the upper bound is too high to
discard the CLP for Condorcet extensions altogether, and
even the limit probability of 8% is relatively large. Also, for
an increasing number of alternatives this problem does not
vanish (for elections with 50 and 51 one voters and up to 100
alternatives the probabilities range between 5% and 25%).7

Note that differences between odd and even number of
voters were to be expected since even numbers allow for
majority ties, which have significant consequences for the
paradoxes; this effect decreases for larger electorates. In the

7These upper bounds turn out to be relatively indepen-
dent from the underlying preference distribution (among the
models we considered, cf. Section 5.3).
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specific case under consideration, the upper bound is gener-
ally higher for an even number of voters because the much
higher likelihood of not having a CW more than counterbal-
ances the lower likelihood of having a CL.

5.2 Results under IAC
Despite the high upper bounds from the previous section,

the picture is quite clear for concrete Condorcet extensions:
even under IAC, the risk of the considered Condorcet exten-
sions selecting the CL is very low, as shown in Figure 2 and
Figure 3 for four-alternative elections. The highest proba-
bility was found for CLPMaxiMin with 2.2% for three vot-
ers (CLPYoung with about 0.9%). The limit probability of
CLPMaxiMin, with 0.06% is so low that for sufficiently large
electorates it would occur in only one out of 10,000 elec-
tions. The same seems to hold for the limit probability for
CLPYoung. The probability of CLPDodgson is even signifi-
cantly lower, with a maximum of about 0.01% in elections
with 9,999 voters. We could determine the limit probability
of 0.01% only for an approximation of Dodgson’s rule by
Tideman [33], which seems to be close to that for Dodgson’s
rule, based on our experimental data.

When increasing the number of alternatives the probabil-
ities drop even further. For elections with more than ten
alternatives they reach a negligibly small level of less than
0.005% for all considered rules and in no simulations with
twelve or more alternatives we could find any occurrence of
the paradox.

100 101 102 103
0%

0.5%

1%

1.5%

2%

2.5%

Number of voters

4 alternatives, IAC

MaxiMin (odd)

MaxiMin (even)

MaxiMin (analytical)

MaxiMin (limit)

Young (odd)

Young (even)

Figure 2: Comparison between CLP probabilities
for MaxiMin and Young’s rule under IAC in four-
alternative elections

5.3 Results under Other Preference Models
Figure 4, as one would expect, shows that under more

realistic assumptions the probability of the CLP decreases
further in four-alternative elections with 50/51 voters, with
the highest probability occurring under the unrealistic as-
sumption of IC and the lowest probability under what may
be the most realistic model in many settings, the spatial

100 101 102 103 104
0%

0.005%

0.01%

0.015%

Number of voters

4 alternatives, IAC

Dodgson (odd)

Dodgson (even)

Tideman (limit)

Figure 3: CLP probabilities for Dodgson’s rule un-
der IAC in four-alternative elections; the seemingly
large confidence intervals are due to the small scale
of the graph.

model. In our experiments, Dodgson’s rule never selected a
CL in the spatial model.

Similarly, we could not find any occurrence of the CLP
in real-world data, which may be considered the strongest
evidence that the CLP virtually never materializes in prac-
tice.8

0% 0.05% 0.1% 0.15% 0.2% 0.25%

Spatial

Mallows

Urn

IAC

IC

MaxiMin, 4 alternatives

50 voters
51 voters

Figure 4: CLP probabilities in four-alternative elec-
tions for varying preference models and MaxiMin

8We tested 314 preference profiles with strict orders from
the PrefLib library as well as the roughly 11 million four-
alternative elections which Mattei et al. [26] derived from
the Netflix Prize data. While about 54,000 of those elec-
tions were susceptible to the CLP, it never occurred under
the rules we considered in this paper. In contrast, under
plurality it already occurred in twelve out of the 314 Pref-
Lib-instances.
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6. AGENDA CONTRACTION PARADOX
Recall that the agenda contraction paradox (ACP) occurs

when a reduced set of alternatives (created by the unavail-
ability of losing alternatives) influences the outcome of an
election. For many cases, it may be considered a generaliza-
tion of the CLP as the following argument shows. Suppose
the CL x is uniquely selected by a voting rule which im-
plements majority rule on two-alternative choice sets. Then
restricting A to {x, y} for some alternative y 6= x yields the
new winner y (since gxy > 0).

As we will see, the ACP is much more of a practical prob-
lem than the CLP. The picture, however, is not black and
white. Whether or not it is a serious threat depends on the
voting rule, the underlying preference distribution, and on
the parity of the number of voters.

6.1 Varying Voting Rules
The ACP probability strongly varies for different voting

rules (see Figure 5). Borda’s rule generally exhibits the
worst behavior of the rules studied, with probabilities of up
to 56%, and with 34% for large electorates with 1, 000 voters.
In contrast, Copeland’s rule is quite robust to the ACP for
large electorates (with only about 8% occurrence probability
for 1, 000 voters).9

The reason for this gap between Borda’s and Copeland’s
rule appears to be two-fold: First, Condorcet extensions are
safe from this paradox as long as a CW exists; Borda’s rule,
by contrast, is not. Second, the discriminatory power of
voting rules (i.e., their ability to select small winning sets)
strongly supports the paradox. As soon as a single majority-
dominated alternative is selected, the ACP has to occur. For
large numbers of voters, this is in line with Copeland’s rule
being least discriminating among those evaluated. The es-
sential set is among the most discriminating known voting
rules immune to the ACP, but presumably less discriminat-
ing than Copeland’s rule.

The behavior of MaxiMin is almost identical to that of
Young’s and Dodgson’s rule. Confirming our approximate
“limit” results of 1, 000 voters, we were able to analytically
compute the limit probability for MaxiMin as 331

2048
≈ 16%.

This is in perfect congruence with the (rounded) values for
MaxiMin, Young’s rule, and Dodgson’s rule.

It should also be noted that with fewer than 100 voters,
the parity of the number of voters plays a major role. For
even numbers, significantly higher probabilities arise (which
is particularly true for Copeland’s rule, see above). At least
part of this can be explained by a reduced probability for
CWs in these cases.

For more alternatives (see the right-hand side of Figure 5),
the relative behavior remains vastly unchanged with proba-
bilities further increasing to values larger than 40% to 80%
(mostly since the likelihood of a CW decreases roughly at
the same rate).

6.2 Varying Preference Models
Figure 6 extends the analysis of the previous section by

additionally considering preference models beyond IAC. The
overall picture regarding the different rules remains the
same. For large electorates Copeland’s rule outperforms the
other rules, whereas Borda’s rule performs worst.

9For small even numbers of voters, Copeland’s rule also fre-
quently fails agenda contraction, which is also visible in Fig-
ure 6 and explains the seemingly high values in Table 2.

Regarding the different preference models, three classes
emerge from Figure 6.

First, for Mallows-φ we observe probabilities that are van-
ishing with increased numbers of voters. Under the spatial
model this is true as well, with the surprising exception of
Borda’s rule, for which the picture looks completely differ-
ent and the probability does not go below 20% in the spa-
tial model. Presumably, this can be explained by Borda’s
inability to select the CW in this setting, a hypothesis that
deserves further study, however. On the contrary, the other
rules appear to be benefitting from the fact that the exis-
tence of a CW becomes very likely under models with high
voter interdependence.

Second, as expected, the assumption of IC serves as an
upper bound for all other preference models. The results for
IAC are not much lower, fostering the impression that IAC
could also be an unrealistic upper bound.

Third, the urn model yields much lower values compared
to IAC and IC. The absolute numbers, however, are still
beyond acceptable levels (between 4% and 23% for 1,000
voters).

The findings in the empirical data corroborate our ex-
perimental findings. In PrefLib the ACP occurs 17 times
for Borda, three times for Copeland and exactly once for
MaxiMin as well as Young’s and Dodgson’s rule. In the
Netflix data set, where the number of voters is at least 350,
Copeland performs much better than the other Condorcet
extensions (4, 400 compared to 18, 470 occurrences for the
other Condorcet extensions). Borda’s rule virtually always
suffers from the ACP on this data set: there are 54, 620 in-
stances of ACPs already when considering profiles that do
not have a CW (there are 54, 650 of such).

7. CONCLUSION
We investigated the likelihood of the CLP and the ACP

using Ehrhart theory, computer simulations, and empirical
data. The CLP is often cited as a major flaw of some Con-
dorcet extensions such as Dodgson’s rule, Young’s rule, and
MaxiMin. For example, Fishburn regards Condorcet exten-
sions that suffer from the CLP (specifically referring to the
three rules mentioned above) as “ ‘dubious’ extensions of the
basic Condorcet criterion” ([18], p. 480).10 While this is in-
telligible from a theoretical point of view, our results have
shown that the CLP is of virtually no practical concern. The
ACP, on the other hand, frequently occurs under various dis-
tributional assumptions about the voters’ preferences. The
extent to which it is real threat, however, strongly depends
on the voting rule, the underlying distribution of preferences,
and, surprisingly, the parity of the number of voters. Our
main quantitative results for the worst case are summarized
in Table 2. Potential future work includes the analysis of
other voting paradoxes (such as monotonicity failures or the
no-show paradox) and other rules (such as Nanson’s rule or
Black’s rule).
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Figure 5: Comparison between ACP probabilities for different voting rules under IAC
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Paradox Condorcet loser paradox (CLP) Agenda contraction paradox (ACP)

Model IAC IC IAC IC

n {1, . . . , 1000} {50, 51} {50, 51} {1, . . . , 1000} {50, 51} {1, . . . , 1000}
m 4 {1, . . . , 10} 4 4 {1, . . . , 10} 4

Essential set 0% 0% 0% 0% 0% 0%
Borda 0% 0% 0% 56% 84% 59%

Copeland 0% 0% 0% 56% 63% 58%
Dodgson 0.01% 0.005% 0.005% 21% 59% 23%
Young 1% 0.15% 0.25% 21% 59% 23%

MaxiMin 2.2% 0.15% 0.25% 21% 59% 23%

Table 2: Rounded maximal CLP and ACP probabilities which occurred during our simulations
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ABSTRACT
Pnyx is an easy-to-use and entirely web-based tool for prefer-
ence aggregation that does not require any prior knowledge
about social choice theory. The tool is named after a hill in
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1. INTRODUCTION
Preference aggregation and collective decision making are

common tasks in real life and computational multiagent sys-
tems. Apart from the well-known example of political elec-
tions, there are a number of more mundane settings that
require the aggregation of preferences. This includes joint de-
cisions such as where to have lunch or a company retreat, or
how to make best use of a scarce resource such as a meeting
room.

While computational social choice, a novel field of study
in the area of multiagent systems, has added a significant
amount of insights about the algorithmic properties of vot-
ing rules, the development of practical and user-friendly IT-
support for the problem of preference aggregation has found
little attention. (A rare exception is the fair allocation plat-
form spliddit.org, which was launched in November 2014.)
Apparently, there is a practical need for such tools and we
would like to contribute to fulfilling this need for the domain
of preference aggregation.

Often preference aggregation is conducted using inferior
aggregation methods such as plurality rule and using unsuit-
able tools such as doodle.com (which was originally intended

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Screenshot of our web-based tool for pref-
erence aggregation called Pnyx.

for scheduling a joint activity). The goal of this work is to
build a tool for preference aggregation that takes into ac-
count theoretical insights from social choice theory and does
so without expecting the user to possess any knowledge of the
underlying mechanisms. More concretely, we have created
a first version of a web-based and user-friendly application
that supports the whole process of collective decision making
from setting up the poll/election to the communication of the
aggregated outcome to participants. The user who sets up a
poll only has to select the desired input (e.g., preference rela-
tions, sets of approved alternatives, or simply most-preferred
alternatives) and output (e.g., single alternatives, rankings
of alternatives, or lotteries over alternatives), and the tool
then automatically selects the most appropriate aggregation
method. There is also support for periodic polls (for instance,
lunch polls that are conducted daily before lunchtime), for
which users only need to update their preferences if desired.

2. PRACTICAL PERSPECTIVE
The overall visual impression and users’ workflows are

probably best described in a 5-minute screencast, which
can be watched at vimeo.com/118576213. Figure 1 shows
a screenshot of the creation of a new poll.

Implementation Pnyx is an entirely web-based appli-
cation that was developed in Python, with the core of the
application being built using the web framework django. We
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tried to rely on further development frameworks and open-
source packages as much as possible. For the front-end, these
are the HTML, CSS, and JS framework Bootstrap as well
as the JavaScript libraries jQuery and jQuery UI . For the
back-end, the aggregation engine partially relies on linear and
integer programming, respectively,1 and makes use of further
Python packages for scientific computing (NumPy , PuLP).
The underlying database structure is currently supported by
SQLite.

3. THEORETICAL PERSPECTIVE
Pnyx is based on three preference aggregation rules:

Borda’s rule, Fishburn’s rule, and Kemeny’s rule. Which
of these mechanisms is selected depends on the output type
chosen by the poll creator:2

Single alternative: Borda’s rule Borda’s rule is a sim-
ple scoring rule that is particularly intuitive when preferences
are linear orders. When there are m alternatives, each voter
assigns a score of m − 1 to his most-preferred alternative,
m−2 to his second most-preferred alternatives, etc. The alter-
native with the highest accumulated score wins. We consider
a natural extension of Borda’s rule to arbitrary binary rela-
tions where the score each voter assigns to alternative x is
the number of alternatives that x is preferred to minus the
number of alternatives that are preferred to x.

Lottery over alternatives: Fishburn’s rule The rule
that we call Fishburn’s rule here was first proposed by Krew-
eras and studied in much more detail by Fishburn [3]. The
rule returns a so-called maximal lottery, i.e., a probability
distribution over the alternatives that is weakly preferred to
any other such probability distribution. Maximal lotteries
are equivalent to mixed maximin strategies (or Nash equilib-
ria) of the symmetric zero-sum game given by the pairwise
majority margins, which allows us to use linear programming
for their computation. For more details on Fishburn’s rule,
we refer to Brandl et al. [1].

Ranking of alternatives: Kemeny’s rule Kemeny’s
rule [4] is an aggregation rule which returns a ranking of
the alternatives that maximizes pairwise agreement, i.e., a
ranking in which as many pairwise comparisons as possible
coincide with the preferences of the voters. Alternatively,
Kemeny’s rule can be characterized using maximum likeli-
hood estimation or a consistency property for electorates of
variable size [5]. We implemented the NP-hard problem of
finding a Kemeny ranking via integer programming.

All of Pnyx’ rules belong to Fishburn’s class of C2 func-
tions [2]. There is a long and ongoing debate in social choice
theory about the advantages and disadvantages of certain
aggregation rules. While it has become increasingly clear
that there is no optimal rule for all purposes, there is strong
evidence that some rules are inferior to others in terms of
desirable axiomatic properties that have been proposed in
the literature. We tried our best to preselect three rules that,
in our view, represent a decent compromise between various
of these properties.

1Currently implemented via GLPK
2Note that, when inputs are simply given as unique most-
preferred alternatives or sets of approved alternatives (di-
chotomous preferences), all three rules coincide with the
well-known plurality rule and approval voting rule, respec-
tively.

As inputs, Pnyx supports five different choices of individual
preference types:

Most preferred alternative Each voter can only select
a unique most-preferred alternative among all alternatives.
With these individual preferences, all three aggregation rules
coincide with plurality rule.

Dichotomous preferences Each voter may approve an
arbitrary number of alternatives and automatically disap-
proves the remaining ones. There is no distinction between
alternatives within the set of approved or non-approved al-
ternatives, respectively. With these individual preferences,
all three aggregation rules coincide with approval voting.

Linear order Each voter has to provide a ranking of the
alternatives without ties.

Complete preorder This input format is a generaliza-
tion of linear orders that allows ties between alternatives.

Complete binary relation This is the most general form
of preferences supported by Pnyx. Voters may specify each
individual pairwise comparison among alternatives. By de-
fault, indifference between any pair is assumed. Note that
transitivity of the preferences is no longer required.

4. CONCLUSION AND OUTLOOK
While the system is fully operative with its core features

already, there are further ideas of how it could be extended:

Verification of randomness A particularly challenging
problem for probabilistic methods will be to conduct ran-
domizations in a user-verifiable way. To this end, we intend
to review and employ cryptographic protocols developed in
the e-voting and cryptography communities.

Anonymous preference collection There is an increas-
ing demand for practical preference collection, which, for
instance, the PrefLib library aims to satisfy. Pnyx could con-
tribute to such a library by means of anonymized preference
data.3
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D I S C U S S I O N O F T H E P R E S E N T E D M E T H O D S

Despite the success cases and new insights generated in this thesis,
of course, the presented approach also holds some challenges, which
we consider here before we conclude in the next chapter by offering
some ideas for future work. We take a critical stance and discuss the
approach with respect to its usability, its verifiability, and its limita-
tions.

8.1 usability of the tools

The question of whether the presented methods can be applied by
non-specialists is a particularly valid concern. Clearly, in their current
state without general tool support, applying solving methodologies
to social choice theory remains a task for expert users with program-
ming skills. While this does not impact the overall power of the ap-
proach, it obviously limits the degree to which it can be broadly used
by any researcher in social choice.

But even if we envision user-friendly tools that help formalizing
concepts of social choice theory in the languages of solvers, doubts
remain that this will change the game. In our experience, the design
of efficient encodings has to follow the requirements of—and needs
to be optimized for—the concrete problem. Hence, no one-fits-all en-
coding appears to exist that could be the basis for a general toolset. In
a way, this appears to also be an issue for very advanced and general
proof assistants with highly expressive input languages, such as the
Isabelle system [Nipkow et al., 2002]: while many problems can be
easily and intuitively formalized even by untrained mathematicians,
the ability of these systems to discover new results is rather limited
due to the high complexity of the general problem.

Yet, some basic toolsets to assist expert users when formalizing con-
cepts from social choice are certainly desirable and should be achiev-
able based on the commonalities of existing contributions. It remains
an interesting question to which extend such tools can take the role of
an automatic proof assistant which allows researchers to quickly test
hypotheses on small domains without giving up too much generality
and efficiency.
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156 discussion of the presented methods

8.2 verifiability of the results

As for any mathematical result or piece of software, also for our theo-
rems and tools there is the important question of how correctness can
be ensured. Compared to theorems with classical proofs, however,
many people appear to be particularly skeptical of computer-aided
and computer-generated results; probably because of the lack of a
classical certificate (human-readable proof) and since the “thinking”
is invisibly carried out by a machine rather than a human.

If we leave the manually proven lemmas out of the discussion, we
are left with two aspects of our approach that might be felt to deserve
additional verification:

1. the correctness of the encoding (i.e., “Does the encoding actu-
ally represent the given problem or question?”), and

2. the correctness of the solver output (i.e., “Is the answer we got
from the solver correct given the encoding?”)

As we have argued in Publications [1], [2], and [3], extracting
a human-readable proof from the computer-aided approach is an
elegant solution to both problems since it reduces (1.) and (2.)
to verifying a human-readable proof, a task mathematicians and
economist alike appear to be comfortable with. By providing such
a human-readable proof—even if the encoding and/or the solver was
incorrect—we still arrive at a correct result with a verifiable certificate.

As some results in Publication [2] and the main result in Publica-
tion [4] exhibit, this shortcut, however, is not always feasible as proofs
become too complex to be decoded by humans. In this case, (2.) can
usually be answered much more easily than (1.). A simple measure
to increase the confidence in (2.), i.e., that the problem encoding is
solved correctly, is to simply run a set of different solvers on the same
problem. For the case of SAT solving, there are even standardized
formats for proof traces of unsatisfiable instances38 [e.g., DRUP, see
Heule et al., 2013] that can—despite being highly non-accessible to
humans—be verified by third-party software. For SMT-based results,
another potential way out is the technique of proof reconstruction
[see, e.g., Böhme and Weber, 2010]: based on the output of a solver
one constructs (with machine support) a proof in another language
(e.g., higher-order logic (HOL)) that can then be verified by a proof as-
sistant (e.g., the Isabelle system). In fact, supported by the Isabelle

system, Eberl [2016] was able, not only to verify the results of Pub-
lication [4], but also to semi-automatically produce a very complex,
but in principle human-readable proof of the main result. This way,
also for Publication [4] the need to verify (1.), the correctness of the
encoding, has been lifted.

38 For satisfiable instances, a satisfying assignment is an efficiently verifiable certificate.
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But even in the absence of a human-readable proof, there are still a
few methods that one can apply to gain confidence in (1.). Whereas
verification of the tailor-made encoding software is mostly a theoret-
ical possibility, we found a combination of manual code review and
a special kind of testing most effective. The latter is based on encod-
ing known variants of the result to see whether the solver behaves in
the expected way: in the case of Publication [4] (when Eberl’s proof
had not yet been developed), we, for instance, reproduced in the very
same framework the results by Bogomolnaia and Moulin [2001] and
Katta and Sethuraman [2006], as well as the corresponding possibil-
ity result for m < 4. Previously, similar checks had also been carried
out for Publications [1] and [2] before the technique of proof extrac-
tion was available. Code review, on the other hand, can be applied
against the encoding software (mostly eliminating typos), but more
importantly also against the encoding itself (if it has been suitably
annotated by the encoding software). The full encoding will usu-
ally be too large to be verified by hand, but an MUS can often be
of manageable size (e.g., 16 and 94 clauses for the main results in
Publications [1] and [4], respectively).

8.3 limitations of the approach

The vision that Tang [2010] had when he invented the basis for the
methods applied in this thesis was computer-aided theorem discovery,
which in his words includes two aspects: “to come up with reason-
able conjectures automatically” and “to prove or disprove the con-
jectures automatically”. Our previous work on the relatively simple
subject matter of set extensions deals with both these components
[Geist and Endriss, 2011]. For the more complex settings in this the-
sis, however, we had to concentrate on the latter aspect and come
up with reasonable conjectures manually. Based on this experience,
we believe that this is the main role that computer-aided methods
will play in the near future. Key for successful application will then
be close collaboration between subject matter experts (who formu-
late the questions and provide theoretical tools) and experts on the
method (who answer the questions with the help of machine sup-
port). This enables not only quick testing of conjectures, but also
helps exploring similar statements as well as limits of the hypotheses.
When applied interactively, such collaboration might even guide the
search for new results in cases where the conjectures are not clearly
formulated yet, for instance by quickly providing counterexamples to
some ideas.39

39 This idea also manifests in the counterexample generator Nitpick [Blanchette and
Nipkow, 2010], which is part of the Isabelle system. Unfortunately, its high flexibil-
ity implied that its performance did not suffice for our special purposes (cf. Publica-
tion [1]).
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Regarding the types of theorems that can be proven with the pre-
sented approach, there neither is an obvious classification nor are
there strict limiting factors that are easily recognizable. As a good
proxy of what can be treated with the approach, one might be
tempted to look at the degree to which infinite domains are con-
cerned. But even this is no strict criterion as we show in Publica-
tion [4], in which two infinite domains are overcome not only by
theoretical lemmas, but also by more expressive solving frameworks
(cf. Section 4.1).

Based on the scope of existing results, proving impossibilities
rather than positive results, on the other hand, appears to be at least
somewhat of a restriction. Interestingly, however, this is a restriction
not of the finite computer-aided part, but of the inductive lemmas
extending finite results to full generality. While it certainly is possi-
ble to prove positive finite results with the presented methods (see,
e.g., Publications [1], [3], and [5]),40 it remains highly unclear how an
inductive step could be proven that extends, say a characterization
result from a finite to arbitrary numbers of alternatives.

40 For instance, for a characterization result one shows that (i) a given function is a
model for the axioms (SAT), and (ii) that the axioms are incompatible with an addi-
tional constraint saying that for at least one profile one must deviate from the given
function (UNSAT).
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O U T LO O K A N D F U T U R E W O R K

In this thesis and beyond, the application of computer-aided meth-
ods has lead to new insights for a range of questions in social choice
theory that are of independent interest to the social choice commu-
nity and unlikely to have been found without the help of computers.
Apart from their main application in computer-aided theorem prov-
ing, we have demonstrated the usefulness of computer-aided meth-
ods also for computational purposes (e.g., computing counterexam-
ples) and for some practical concerns of social choice.

Given the universality of the presented methods and their ease of
adaptation (e.g., “testing” of similar conjectures with minimal effort
by replacing or altering some axioms), we anticipate these and similar
techniques to yield further insights and solve other open problems in
social choice theory and related research areas in the future. The
breadth of results obtained so far supports this hypothesis.

A few concrete ideas for future work regarding specific problems
from social choice have already been mentioned in the corresponding
publications. Therefore, here we want to concentrate on more general
future challenges with respect to applying and further developing
the computer-aided methods of this project. We list those ideas first
which we believe to be easier to achieve.

applications in other areas of economic theory As indicated
in the introduction already, Kerber et al. [2015] have started to ap-
ply mechanized reasoning to the domain of auctions [Caminati et al.,
2015], an area in which there appears to be much more potential for
such methods. But there are more areas of economic theory in which
we see value for the presented computer-aided methods.

The domain of assignment is a particularly promising example: not
only has it remained mostly untouched by these methods so far, but
also can it be viewed as a subdomain of social choice (cf. Publica-
tion [4]). Hence, modeling problems from the assignment domain
should—despite some novel axioms that only make sense in assign-
ment, such as envy-freeness—not pose major challenges. Solving
these problems, however, could turn out to be harder since, at least
with the naïve translation, the number of alternatives increases super-
exponentially when moving from assignment to social choice.

Beyond these two domains, for example,

• cooperative and non-cooperative game theory (cf. the contribu-
tion by Tang and Lin [2011]),
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• judgement aggregation (with its inherent link to propositional
logic, the language of SAT solvers), and

• argumentation theory (see, e.g., the work by R. Booth and Rah-
wan [2014], in which three-valued logics are applied to directed
graphs, reminiscent of tournament solutions),

offer settings in which computer-aided methods could be promising
tools for solving open problems.

tool-support for researchers On the practical side, it will
probably be a key success factor for wider acceptance of the presented
methods to have user-friendly tools in place that can facilitate the en-
coding and solving process. We discussed the limitations of such
tools in Section 8.1. Yet we believe that support in the form of, e.g.,
automatic encoders with a richer input language than SAT/SMT or
experimenter tools (based on already formalized settings), could be
achievable.

logic-based classification and general induction steps For
all future applications of the described methods, it would be desirable
to have an (as simple as possible) characterization in logical terms of
which problems can be treated with these methods. If this charac-
terization could be complemented with general inductive theorems
which reduces any problem of a certain logical form to a finite in-
stance, the door to automated theorem discovery would be wide open
again. Our previous work on preference extensions [Geist and En-
driss, 2011] marks a first small step in this direction, but so far it is
entirely unclear how such results can be obtained for more complex
settings, such as the ones considered in this thesis.
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