INSTITUT FUR INFORMATIK

149

i

Lehrstuhl fiir Rechnerkommunikation und maschinelle Deduktion
Prof. Dr. E. Jessen

Example Selection
for
Learning in Automated Theorem Proving

Diplomarbeit
Release 3
Aufgabensteller: Prof. E. Jessen
Betreuer: Stephan Schulz
Bearbeiter: Felix Brandt
Abgabedatum: 15.8.1998

UL

TECHNISCHE UNIVERSITAT MUNCHEN

Ich erkldre, dafl ich diese Diplomarbeit selbstindig verfafit und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

Miinchen, der 15.8.1998

(Felix Brandt)

Abstract

The equational theorem prover DISCOUNT, based on an extended version
of unfailing Knuth-Bendix completion, features advanced learning techniques
for heuristic evaluation functions. We present an extension to DISCOUN'T’s
most recent learning strategy called term space mapping. Experiments have
shown that if too many examples are used for learning, performance of the
prover decreases. Three different strategies that preselect examples from the
knowledge base are evaluated using a set of T'PT'P examples and compared with
previous learning methods and conventional heuristics.

Contents

1 Introduction 5
2 Equational Deduction 7
2.1 Theoretical Foundations 7
2.2 Unfailing Completion 10
2.3 A Semi-Decision Algorithm for F-Equality 12
2.4 Conventional Evaluation Functions 15
2.4.1 First In, First Qut - fifo 15

2.4.2 Simple Term Weighting - add weight 15

2.4.3 Goal-Oriented Evaluation - occnest 17

2.5 The TEAMWORK method 18

3 Machine Learning Support 20
3.1 Extracting Proof Knowledge 20
3.2 The Knowledge Base 21
3.3 Term Pair Retrieval 23
3.4 Term Pair Abstraction 24

4 Example Selection 28
4.1 The Need for Restriction, 28
4.2 Metric Spaceso 30
4.3 Criteria for Example Resemblance 30
4.4 Test Run Setup 31
4.5 Feature-based Selection - dprr oL 33
4.5.1 The Metric dprR -« - v« o v v i e 33

4.5.2 Parameter Test Runs 35

4.6 TSM-based Selection - d7gpr - v o o o o o oo o 36

CONTENTS 5

4.6.1 The Metric é7sap7 « - - v v v v v i o 37

4.6.2 Parameter Test Runs 41

4.6.3 Comparison of dprr and é7spr - . - . o o oo oL 41

4.7 Joined Forces - dprrx « « « o o 0 e e e e e e 44
471 The Metric Spfrx -« - v v o v v e e e e 44

4.7.2 Parameter Test Runs. 45

4.8 Selecting Random Examples - dpyp - - -« o o oo oo 46

5 Results 47
6 Conclusion 60
A An Example Proof 61
B Problems Used 68
C Changes to DISCOUNT 70
C.1 New Command-Line Options 70

C.2 Knowledge Base Maintenance 71

List of Figures

2.1 Simplified completion algorithm 13
2.2 INSERT CP using an evaluation function 14
2.3 Comparison of conventional strategies 16
2.4 TEAMWORK team 18
3.1 Learning in equational deduction, 22
3.2 Anexample TSM L 26
4.1 Knowledge excess L o o 29
4.2 Learning with example selection 29
4.3 New structure of the knowledge base 31
4.4 An example .sel file: 1usk3.sel (A ring with 2% = z is Abelian
[LOB2]) . . o 32
4.5 Influence of max_examples on dprR . « - « - o o ... 35
4.6 Distance between two TSMs 38
4.7 Influence of max_examples on dpsar « -« v o v oo oo . 41
4.8 Comparison of dprg and S7spr - v v o o o o oo 43
4.9 Distance measurement by dprg and drspsr - o - o o o oL 44
4.10 Distance measurement by dprr and drgar (sorted) 45
5.1 dprpr’s performance gain by selecting examples 58
5.2 drsum’s performance gain by selecting examples 59
C.1 An example kb_variablesfile 71

List of Tables

2.1 Completion algorithm input, variables, and functions 12
2.2 Performance of conventional strategies 16
4.1 Different parameter sets for dppr 36
4.2 Different parameter sets for drspsr . .« oo oL 42
4.3 Different parameter sets for darrx .« - - - o . o o oo 46
5.1 Performance of evaluation strategies (in detail) 56
5.2 Performance of example selection strategies 56
5.3 CASC-15Results o 57

Chapter 1

Introduction

The goal of automated theorem proving is to find a proof for a given hypothesis
under the assumption of a set of axioms. Due to the semi-decidability of this
problem, it is necessary to search for proofs in an infinite search space.

To accelerate the search process, improved calculi, very fast implementa-
tions [HBF96], and heuristics to guide the search process were developed. DIS-
COUNT (DIStributed COmpletion UsiNg Teamwork) is a proof system that
originated at the University of Kaiserslautern and has been under development
since 1991. Although the basic inference machine is quite slow compared with
today’s standards, DISCOUNT can still compete with modern provers due to
very strong heuristics for search control, including a variety of unique learning
heuristics. DISCOUN'Ts latest heuristics are based on learning methods for ac-
quiring search control knowledge by examples of successful proof searches. The
most recent learning algorithm for the equational theorem prover DISCOUNT
is learning by term space mapping. This strategy applies data from earlier proof
searches to build a tree that is then used to evaluate new equations. Exper-
imental results show that this strategy’s performance can be improved if the
training examples are carefully selected.

The aim of this work is to investigate strategies for selecting training ex-
amples from a flat knowledge base. Three different selection methods were
developed. The first one is based on features such as number of axioms, num-
ber of operators of a given arity in the signature of a problem, and average
term size. The second one compares term space maps spanned by the axioms.
A third method combines the two other strategies.

For this purpose, the learning strategies were extended to preselect examples
from the knowledge base and to learn only facts generated by these examples.
Numerous test runs had to be made to obtain a successful set of parameters for
the new selection techniques. The resulting system was tested and evaluated by
comparing it with both conventional and learning strategies without example
selection.

This thesis has the following structure. After the introduction, the second
chapter starts with a brief summary of the knowledge needed to comprehend the
basics of equational deduction. As this work is mainly about improving learn-
ing methods, only little knowledge about automated theorem proving (ATP) is

CHAPTER 1. INTRODUCTION 6

required. Chapter 3 explains the different learning techniques developed for the
DISCOUNT system. The following chapter establishes the need for knowledge
restriction, offers three example selecting strategies and compares the perfor-
mance of those strategies with several sets of parameters. Subsequently, chap-
ter 5 presents detailed results of various test runs on a subset of TPTP [SS97]
problems. Finally, the sixth chapter concludes this thesis with an evaluation
of the improvements rendered by example selection. The appendices contain
a computer-generated example proof, a description of the problem pool used
for evaluation throughout this work, and implementation details concerning

DISCOUNT.

Chapter 2

Equational Deduction

The basic problem in equational deduction can be expressed as follows:

Given a set of equations F, is s =t a logical consequence of ¥
(denoted as s =g t)?

To handle this problem, some theoretical background is required. We re-
duced the amount of theory in this chapter to the basics; for a more comprehen-
sive introduction, see [Ave95]. We omitted proofs for theorems 1 (Correctness
of U) and 2 (Completeness of U), which can be found in [Ave95] as well.

This chapter starts with fundamental definitions and notations, presents a
deduction algorithm, and compares conventional evaluation functions. When
learning methods are used to improve the prover’s performance, the basic algo-
rithm will not be modified; only the evaluation functions will be replaced.

2.1 Theoretical Foundations

Definition 1 (Terms)
Let F be a finite set of function symbols and V' an enumerable set of variables.
A term is defined recursively:

e All variables v € V are terms.

o If t1,...,t, are terms and f € F is a function symbol of arity =, then
ftr, ... ty) is a term.

The set of terms built from F and V is called Term (I, V). The set of ground
terms Term(F) contains terms that do not contain variables. The set var(t)
contains the variables occurring in a term ¢.

According to the previous definition, terms are recursively built by combin-
ing a function symbol with a number of subterms. Subterms can be described
by using positions in terms.

Definition 2 (Term positions and Subterms)

Positions in terms are sequences of natural numbers. X denotes the empty
sequence, t|, the subterm of t at the position p, and O(t) the set of all positions
in ¢ (a.b stands for the concatenation of two sequences a and b).

CHAPTER 2. EQUATIONAL DEDUCTION 8

o Ift € Term(F,V) is a constant or a variable, O(t) = {\} and |\ =¢.

o 11 = f(t,. 1), O) = {ig] 1< i < n p € O(1)) U A Hliy = tlp
and t|, = ¢.

Definition 3 (Equations)
A term pair (s,t) € (Term(F,V) x Term(F,V)) is called an equation. Equa-
tions are symmetrical: (s,t) = (t,s). We signify an equation as s = t instead

of (s,t).

Apart from function symbols, terms consist of variables, which are substi-
tutes for terms. This mapping is conveyed through a Substitution.

Definition 4 (Substitutions)
A substitution o : V + Term(F, V) maps a finite subset of variables {v| o(v) #
v} to the set of terms and the rest of the variables to themselves. o = {2, «
t1,...2, < t,} means that o maps z; to t; for 1 < i < n. 0,4 denotes the
empty substitution {}. ¢ : V — Term(F,V) is extended to o : Term(F,V)
Term(F,V) by defining o(f(t1,...,tn)) = f(o(t1),...,0(t,)). o o7 denotes
the concatenation of two substitutions ¢ and .

T is more general than p if there is a substitution o with 7 = o 0 p. This
ordering is called subsumption ordering.

By applying substitutions, it is possible to unify two terms, i.e. to make
them syntactically equal through a substitution. An important unifying sub-
stitution is the most general unifier.

Definition 5 (Most general unifier)
The most general unifier mgu(s,t) is a substitution o with o(s) = o(t), that is
more general than any other substitution 7 that fulfills 7(s) = 7(¢).

If s and ¢ are unifiable, a unique (apart from renaming variables) most
general unifier of s and ¢ can be computed.

One way of manipulating terms is to substitute subterms.

Definition 6 (Subterm substitutions)
t[p < t'] is the term ¢ with the subterm at position p replaced by ¢'.

Definition 7 (Encompassment ordering)
The encompassment ordering > is defined by s > ¢ if and only if o(s) = t|, for
a substitution ¢ and a position p. [> is the strict part of .

Definition 8 (Noetherian orderings)
An ordering > is called Noetherian (or terminating) if there is no infinite chain
t1 >t >1t3>....

Definition 9 (Reduction orderings)
A reduction ordering > is a Noetherian ordering compatible with the term
structure (7 >ty = t[p < t1] > t[p < t3]) and stable with respect to substi-
tutions (t; > ty = o(t1) > o(t2)). A ground reduction ordering is a reduction
ordering that is total on ground terms.

CHAPTER 2. EQUATIONAL DEDUCTION 9

Definition 10 (Rules)

A rule is a tuple (I,r) € (Term(F,V) x Term(F,V)) with Var(r) C Var(l)
and is denoted as [— r. A rule [— r is compatible with a reduction ordering
> if [> r. A set of rules R is compatible with > if all rules in R are compatible
with >.

Birkhoff [Bir35] has proven the conformity of the semantic and the opera-
tional F-equality, i.e. s =g t holds if and only if it is possible to transform s
into t by applying equations from FE. The application of an equation, a single
operational E-equality-step, is defined as follows.

Definition 11 (Operational E-equality)

t1 H gty if and only if there is an equation s = ¢, a position p in #; and a
substitution ¢ with o(s) =t1|p and t3 = t1[p + o(t)]. H g is symmetrical.
=g is the reflexive and transitive closure of H g.

Knuth-Bendix completion [KB70] builds a confluent system of rules by ori-
enting equations according to a reduction ordering >, generating new equations
from so-called critical pairs, and applying rules to simplify existing rules.

This calculus has been extended to handle unorientable equations [BDP89]
by generating only a ground confluent system and using orientable equations
for simplifications. The resulting calculus is called unfailing Knuth-Bendiz com-
pletion.

Definition 12 (Reduction relation)

Let R be a set of rules.

t1 =R 1ty if and only if there exists a rule [— r, a position p in #; and a
substitution o with t1|p = o(l) and t; = t;[p + o(r)]. If R is compatible with
a reduction ordering, the relation = is Noetherian.

Definition 13 (Confluence)
Let — be a relation and = the reflexive and transitive closure of —s.

A relation — is said to be confluent if each divergence (u = z and u = ¥)
possible in — can be rejoined (z = v and y = v).

Definition 14 (Normal form)
A term that cannot be reduced by application of =g, is in normal form (with
respect to a set of rules R).

Definition 15 (Orientable instances)

Let R be a set of rules.

The set Rg = {o(s) = o(t)|o(s) > o(t),s =1t € E, o is a substitution} is called
the set of orientable instances for ¥ and >. R(F)= RU Rg

Definition 16 (Critical pairs)

Let [y = ry and Iy = ry be two equations, > a reduction ordering, p a non-
variable position in /y and ¢ = mgu(ly|p,l2). If o(l1) £ o(r1) and o(l3) £ o(rs)
then (o(r1),o(li[p ¢ r2])) is called a critical pair between l; = ry and [y = rs.
Critical pairs between rules are defined similarly. C'P(F, R) is the set of all
critical pairs that can be built from K and R.

CHAPTER 2. EQUATIONAL DEDUCTION 10

2.2 Unfailing Completion

A completion-based prover tries to reduce both sides of the equation to be
proven into a common normal form by using a ground confluent and terminating
system of rules and equations derived from FE. The following input is handed
to the prover:

e A set of equations F
o A skolemized goal s =t
e A ground reduction ordering >
The current state of the proof process consists of three sets:
e F (processed, but unorientable equations)
e R (processed and oriented equations: rules)
e C'P (unprocessed equations: critical pairs)

FE and R are empty sets at the beginning of the completion process, whereas
CP contains the initial axioms. The prover then chooses an equation from C'P,
reduces it to normal form (applying £ and R), builds new critical pairs from
it, and deletes redundancies from £ and R using (S1) and (S2). The resulting
equation is added to R or F (depending on whether it can be oriented), and
the next critical pair is then examined.
On top of this algorithm, the goal is reduced to normal form with respect to F
and R. The goal is proven if both normal forms are identical or subsumed by
an equation from F.

The following calculus just uses one set of equations F that contains the pro-
cessed and unprocessed equations. The concrete algorithm in the next section
will distinguish between £ and C'P.

(U1) (Orient an equation)
(EU{s=t},R)
(E,RU{s —t})

ifs>t

(U2) (Generate an equation)

(B,R)
fsHA — t ¢
(EU{SZtLR)IS rurt H gurt, s } u,t } u
(U8) (Simplify an equation)
((gtj‘{{zzg:g; if s=pguorif s=pg, uusing! —r with s>/

(U4a) (Delete an equation)
(12U {s = s),)
(K, R)

CHAPTER 2. EQUATIONAL DEDUCTION 11

(U4b) (Subsume an equation)
(FU{s=t,u=v},R)
UG =17)

if ul, =0(s),v=[pt],ud s,
for a position p and a substitution o

(S1) (Simplify the right side of a rule)
(E,RU{s —t})

(E,RU{s — u})

(S2) (Simplify the left side of a rule)
E,RU{s —t})

(
(FU{u=1t},R)

if s =>g(pm) t using a rule [— r with s>/

(E,R) Fy (E',R') denotes that (¥, R) can be transformed into (E’,R’)
using a single inference rule from U. Applying inference rules does not change
the equality described by (F, R). This is called correctness of the calculus.

Theorem 1 (Correctness of U)
Assume (F, R) by (E', R') and let R be compatible with a reduction ordering
>. This has the following consequences:

e R’ is compatible with >
® =FUR = =FE'UR/

According to theorem 1 inference steps from U do not change the equality
defined by F/ and R. In order to obtain an end system with the desired features,
the sequence of inferences needs to fulfill certain conditions.

Definition 17 (U-fairness)

A sequence (Fj, R;)ien is called a U-derivation if ¥i € N @ (E;,R) Fu
(Eit1, Riy1). The system (R™, R™) of persistent rules and equations is de-
fined by

e =Nk and R =[JR (2.1)

i>0j>i i>05>i
A U-derivation (F;, R;)ien is fair, if

CP(E2, k) C | JFi (2.2)
i>0

In other words, a derivation is fair, if each critical pair between persistent
rules and equations is built at some time and then added to the set of equations.

Theorem 2 (Completeness of U)
Assume (F;, R;)ien is a fair U-derivation and let s,t € Term(F’) be two ground
terms with s =g ¢t. Then there is an 7 such that the normal forms of s and ¢
with respect to (£;, R;) are identical.

CHAPTER 2. EQUATIONAL DEDUCTION 12

2.3 A Semi-Decision Algorithm for E-Equality

Using the theoretical results of the previous sections, it is possible to construct
an algorithm that tries to decide on E-equality by building a fair derivation of
ground confluent sets of rules and equations.

Figure 2.1 shows a simplified version of the unfailing Knuth-Bendix comple-
tion algorithm actually used in DISCOUNT. Depending on PROOFMODE it is able
to either generate a ground confluent end system or prove a theorem. Table 2.1
lists the input, the variables and the functions used in the sketch algorithm.

Input

A A set of axioms
> A ground reduction ordering
PROOFMODE TRUE if a single goal is to be proven

FALSE if a ground confluent end system is required
(gs,gt) The goal to be proven (if PROOFMODE is TRUE)

Variables
R Processed rules
E Processed equations
CP Unprocessed equations
s,t Terms of an unprocessed equation
l,r Terms of a new rule
u,v Terms of a processed term pair
u’,v’ Descendants of u and v
Functions

NOTEMPTY(list) FALSE if list is empty

TRUE otherwise
FIRST(list) First element of 1ist
REST(1ist) list without first element
NORMALFORM(t,R) Computes the normal form of t with respect to R
SUBSUM(e,E) TRUE if e is subsumed by an equation in E

or an equation equivalent to e exists in E

FALSE otherwise
INSERT CP(list,e) | Inserts e into 1ist by applying a fair strategy
CPS(e,R) Returns all critical pairs between e and E

Table 2.1: Completion algorithm input, variables, and functions

Importance lies in the fact that INSERT_CP(list,e) is required to ensure
fairness. Only a finite number of pairs may be inserted in front of each equation
e. This can be accomplished by evaluating the critical pairs using a suitable
heuristic and inserting them at the appropriate position in the list. The program
sketch in figure 2.2 realizes this (The symbol “.” is used for concatenating two
lists).

EVAL : Term(F,V) X Term(F,V) — E computes the evaluation of a critical
pair based on some heuristic. Lower numbers signify more, greater numbers
less “quality” of the pair. E is a subset of R.

CHAPTER 2. EQUATIONAL DEDUCTION 13

BEGIN
CP := A;
E := {};
R = {};

WHILE NOTEMPTY(CP)
IF PROOFMODE = TRUE THEN
gs NORMALFORM(gs,R(E));
gt NORMALFORM(gt ,R(E));
IF gs = gt THEN END; /* Proof found */
ENDIF
(s,t) := FIRST(CP);
CP := REST(CP);
s := NORMALFORM(s,R(E));
t := NORMALFORM(t,R(E));
IF s#t AND NOT SUBSUM(s=t,E) THEN
FOREACH (u,v) € E
u’ NORMALFORM(u,R{s=t});
v’ := NORMALFORM(v,R{s=t});
IF u#u’ OR v#v’ THEN
E := E \ {u=v}
CP := INSERT_CP(CP,u’=v’);
ENDIF
ENDFOREACH
FOREACH (u,v) € R
v := NORMALFORM(v,R(E U {s=t}));
u’ := NORMALFORM(u,R{s=t});
IF NOT u’=u THEN
R :=R\ {(u,v)}
CP := INSERT_CP(CP,u’=v);
ENDIF
ENDFOREACH
FOREACH (u,v) € CPS(s=t,E U R) CP := INSERT_CP(CP,u=v);
IF s>t THEN R := R U {(s,t)};
ELSE IF s<t THEN R := R U {(t,s)};
ELSE E := E U {s=t};
ENDIF
ENDIF
ENDWHILE
/* (E,R) represents the ground confluent end system */
END

Figure 2.1: Simplified completion algorithm

CHAPTER 2. EQUATIONAL DEDUCTION 14

INSERT_CP(list,e)
IF EVAL(e) > EVAL(FIRST(1list)) THEN
RETURN FIRST(1list)+INSERT(REST(list),e))
ELSE
RETURN e.list
ENDIF
END

Figure 2.2: INSERT_CP using an evaluation function

Since the main algorithm always selects the first critical pair from CP, the
control of the completion completely depends on INSERT_CP, which is solely
guided by the critical pair evaluation function EVAL. As a consequence the
fairness of the completion algorithm can be attributed to the properties of
EVAL.

Theorem 3 (Fairness of the completion algorithm)
The completion algorithm is U-fair, if!
Ve € Term(F,V) x Term(F,V): {€'| EVAL(e') < EVAL(e)} is finite

Proof: As stated in definition 17 a derivation is U-fair, if every critical pair
between persistent rules and equations will eventually be built. This holds
for the completion algorithm, that builds all critical pairs between R and
E, if no term pair remains in CP forever.

The condition ensures that not more than a finite number of critical pairs
are inserted before e. This guarantees that e will finally be reached and
removed as each iteration of the algorithm removes the first critical pair
from CP.

If E is a set of integer values with a lower bound b, there is a fairness criterion
that is easier to prove.

Theorem 4 (Fairness for integer evaluations)

The completion algorithm is U-fair, if?

EczZ AN TeE:VYaeE: b<a A

Vie N: el e€ Term(F,V)x Term(F,V), EVAL(e) = i} is finite

Proof: Let cp € CP be a critical pair with EVAL(cp) = 7. As EVAL maps
critical pairs to integers greater than a lower bound b, there is only a finite
number of evaluations that are less than or equal to j. According to the
assertion only finitely many critical pairs are mapped to a single value.
Thus, not more than a finite number of term pairs will ever be inserted
before cp.

'If term pairs with equal evaluations are selected fairly (e.g. applying fifo) or the evaluation
function is injective, the condition is sufficient and required.
?Please pay attention to the fact that this condition is sufficient, but not required.

CHAPTER 2. EQUATIONAL DEDUCTION 15

2.4 Conventional Evaluation Functions

The selection of the next critical pair to be processed is the most crucial step
in completion-based deduction. This choice is guided by an evaluation function
that maps equations to real numbers representing the value of critical pairs in
the proof process.

2.4.1 First In, First Out - fifo

The easiest fair strategy is first in, first out (fifo). Term pairs are processed
in the same order in which they were generated.

Definition 18 (fifo)
Let t € Term(F,V) be a term and w = 1. w is incremented every time fifo is

called.

fifo:Term(F,V)x Term(F,V) +— N
= w

fifo(s =1t) (2:3)

(w=w+1)
This method yields very poor performance (see table 2.2).

Theorem 5
fifo is fair.

Proof: Ve € Term(F,V)x Term(F,V): {€|fifo(e’) < fifo(e)} =10

2.4.2 Simple Term Weighting - add weight

A primitive evaluation function that prefers small terms is add_weight.

Definition 19 (add weight)
Let t € Term(F,V) be a term. Then the weight of this term is defined as

1 ifteV
weight(f) = 24 weight(t;) ift= f(t,ty,... tn) (2.4)
=1
For the weight of the entire equation, the two equation terms are added.
add_weight : Term(I, V) X Term(F,V) +— N
add weight(s =t) = weight(s)+ weight(#)
(2.5)

Despite its simplicity, add_weight performs very well (see table 2.2).

Theorem 6
add weight is fair.

CHAPTER 2. EQUATIONAL DEDUCTION 16

Proof: add_weight yields positive integers by definition. According to the-
orem 4 it remains to be shown that not more than a finite number of
critical pairs are mapped onto the same integer value.

Because F'is a finite set and V' can be treated as a finite set (due to the
subsumption in the deduction algorithm), it is obvious that add_weight
cannot map infinitely many term pairs onto the same value.

400 _Problems solved

350
300

253
250 237

200+

150 143

100+

504

0

fifo add_weight occnest

Figure 2.3: Comparison of conventional strategies

Strategy ‘ fifo add_weight | occnest
Problems solved 143 253 237
Time taken (seconds) | 1040.85 | 2011.10 1906.22

Note: 403 problems of the TPTP library had to be proven within a time limit
of 180 seconds for each problem.

Table 2.2: Performance of conventional strategies

CHAPTER 2. EQUATIONAL DEDUCTION 17

2.4.3 Goal-Oriented Evaluation - occnest

A different approach for an evaluation function is occnest [DF94], which, con-
trary to add_weight, is goal-oriented and hand-tuned for the domain of lattice
ordered groups.

Definition 20 (occ and nest)
Let f € F be a function symbol and t € T'erm(F, V) a term. Then the number
of occurrences occ(f,t) and the nesting nest(f,t) are defined as follows:

0 ifteV
oce(f,t) = q oce(f,tr) + -+ oce(f, 1n) ift=g(t,... tn), g & f
14 oce(f,t1) 4+ -+ oce(fyt,) ift=f(tr,... tn)
(2.6)

0 if f is a constant

nest(f,1) = { hnest(f,t,0,0) otherwise (2.7)

max({cur, abs})
if ¢ is a variable of a constant

hmest(f.t, cur, abs) = max({hnest(f,t;,0, max({cur,abs}))| 1 <i < n})

ift=g(th,....tn), fZ£g
max({hnest(f, t;, cur+ 1,abs)| 1 <i < n})
lft_ (tl,...,)

(2.8)

Definition 21 (occ and nest for equations)
occ and nest are extended to equations by computing the maximum of the two
terms.

occlfis=1) = max({oce(f,), oce(f,1)}) (29)
nest(f,s =t) = max({nest(f,s),nest(f,t)}) (2.10)

Definition 22 (occnest)

Let s = t be a critical pair and v = v the goal to be proven. D C F is a
subset of F' containing the function symbols that are supposed to contribute to
occnest(s = t). Finally, occnest is defined by multiplying the weight of s =1¢
with a value describing the difference of the structural complexity of s =t and
the goal u = v. 1) is needed to ensure that the factor remains positive.

occnest(s =) = add_weight(s H my (2.11)
fEF
with
1
B if f¢D
"I Gloce(fys = 1) — oce(fu=v)) - Pnest(f, s =t) - nest(f,u =1v))
otherwise

(2.12)

CHAPTER 2. EQUATIONAL DEDUCTION 18

and

, 1 ifz <0
Y(z) = { z4+1 othe;wise (2.13)
occnest clearly outperforms add weight in the domain of groups (compare
[Sch95] and [DS96a]). However, it is less successful in a general set of problems
like the TPTP library (see table 2.2).
There is still no answer to the question of whether occnest is fair or not.
Thus, according to theorem 4, the completeness of occnest is doubtful. Figure
2.3 shows the strong impact of heuristics on the proof success.

2.5 The TEAMWORK method

Besides the various strong heuristics, DISCOUN'T’s main strength lies in the
distribution of proving procedures. Actually, DISCOUNT was originally in-
tended as an experimental system for studying the TEAMWORK method.
Inspired by teams of human experts, the TEAMWORK method [AD93]
implements distributed deduction, using multiple processes running on different
processors. A team’s head is the supervisor, who selects experts to work on a
specific task. This judgement is based on the conclusions drawn by the referees
belonging to the experts. Figure 2.4 shows the basic structure of a team.

Supervisor

Referee 1 .. Refereen

Expert 1 - Expert n

Figure 2.4: TEAMWORK team

Experts work on their own. Results are exchanged only at team meetings,
and a new team is put together by the supervisor.

CHAPTER 2. EQUATIONAL DEDUCTION 19

A completion based prover using TEAMWORK is complete if several fair-
ness criteria are fulfilled (compare [AD93] for a proof). TEAMWORK is a
successful extension to DISCOUNT. However, it is of no further interest in this
work as it does not affect the example selection at all.

Chapter 3

Machine Learning Support

Analysis of proofs has indicated that there are regularities among proofs of iden-
tical and sometimes even different domains. Similarities with existing proofs
can be taken into consideration when proving new problems, thus learning from
theorems already proven. Several proofs share common lemmas, emphasizing
the impression that reusing acquired proof knowledge can accelerate the proof
process.

After introducing a way to extract proof knowledge and explaining the struc-
ture of the knowledge base, this chapter presents two approaches for learning
from recorded knowledge. The first one is simple pattern memorization, prefer-
ring critical pairs that have the same term patterns as equations that have been
used in successful proofs before. The second strategy is learning by term space
mapping, a refined version of learning by term evaluation trees. This tech-
nique abstracts proof knowledge by building a tree structure, that is applied to
evaluate critical pairs.

3.1 Extracting Proof Knowledge

In order to better understand automatically generated proofs, the Proof Com-
munication Language PCL was developed ([DS94] and [DS96b]). PCIL com-
mands describe a proof protocol by using a plain notation. A unique identifier
is followed by a fact (an equation or a rule) and an expression representing the
fact’s origin (the way it was created and references to utilized facts). The entire
expression is called a PCL step.

PCL listings are prover-independent (besides DISCOUNT, PCL is used by
Waldmeister [HBF96] and various other programs as well) and purely sequen-
tiall.

A major problem with step by step listings of the proof is the overwhelming
amount of data produced. Many proof protocols exceed hundred thousand
steps. However, only a tiny fraction of these steps is necessary to prove the
problem. A proof system leaves many dead ends in the search space.

"However, it is possible to describe distributed proofs (e.g., proofs by DISCOUNT using
TEAMWORK) as well.

20

CHAPTER 3. MACHINE LEARNING SUPPORT 21

Various tools have been developed to work on PCL listings generated by a
prover. Two of them are mextract and lemma.

mextract prunes a PCL listing down to the necessary steps (steps on the
proof path) by tracking the listing backward, starting with the goal. This results
in a listing that is by margins smaller than the original one. For example, the
complete PCL file for the Lusk6 problem? consists of 387,273 steps, whereas
the pruned listing contains only 190 steps. Most pruned proof protocols do not
contain more than at most a few hundred steps. The extracted proofs allow a
much easier analysis of the proofs by both humans and the prover itself (to learn
from previous proofs). Facts close to the proof path (up to a certain number
of edges) can be extracted too. This option is required to obtain negative facts
for the learning component.

The lemma program marks especially important proof steps in order to make
further investigations even easier and improve the proof presentation (see ap-
pendix A for a readable proof containing lemmas).

The huge difference between the lengths of original and pruned PCL listings
once again emphasizes the importance of a heuristic controlling the progress in
the search space.

3.2 The Knowledge Base

DISCOUNT’s learning scheme is represented in figure 3.1. The PCL protocol of
a successful proof is pruned by mextract and then handed to kb_insert, which
computes the representative term patterns of the included facts and inserts the
modified facts with accompanying data into the knowledge base. The facts
collected in the knowledge base are then utilized to evaluate new critical pairs
while trying to prove another problem.

If the learning component deals with positive and negative examples, facts
close to the proof path will be extracted and annotated as negative, whereas
facts that belong to the proof are marked as positive.

To provide an abstraction of the signature of a particular example without
having to compute a potentially expensive (in terms of processor time) signature
match, representative term patterns have been developed.

Definition 23 (Representative term patterns)
Let I = {f;;} with i € No,j € Nand V = {z,z5,...} be two disjoint sets of
symbols that comply with the following total orderings:

Ti>v e & 1> (3.1)
fii>rfu & (E>kVviEi=kAj>I)

The representative term pattern pat(t) for a given term ¢ is constructed by
substituting the function symbols and the variables in ¢ with symbols from F
and V. The variables are substituted with symbols from V in their order of
appearance in £. The resulting term is called wvariable normalized. The jth

A ring with ¢® = z is Abelian [LOS82].

CHAPTER 3. MACHINE LEARNING SUPPORT 22

Prover Knowledge

(DI SCOUNT) Base
-

1z o
Evaluation | g

Unfailing Completion ~—™> Strategy | O
-

2 O

Full PCL Protocol

Y

Proof Pruning
(mextract)

Term Pair with
additional Data

Pruned PCL Protocol

Abstraction
(kb_insert)

Figure 3.1: Learning in equational deduction

function symbol of arity 7 in ¢ is replaced by the symbol f;; from F?. For
instance, pat(f(g(a), g(z))) = far (f11(for), fi1(z1)).

In order to be able to compute representative term patterns of equations, we
define a quasi-ordering on terms.

Definition 24 (The quasi-ordering >,,;)

Assuming f;; > xy for all f;; € I and all 2, € V, the two orderings on F and
V produce a total ordering > on UV, which can be easily generalized to a
total ordering >,,; on term patterns (;pat is the lexicographical extension of
>pat)-

§>prl & (S, EVAs>y L)V
(s = f(s1,82,...,8x) At EV)V
(s=f(s1,82,- -y s0) ANt =g(t1, b2, tm) NfF >F IV (3.3)
(S f(Sl,SQ,...,Sn)/\t— (tl,tg,...,t)/\
(51,825 -+, 8n) Spat (1,82, - 1))

This ordering is then extended to a quasi-ordering on the whole set of terms.

8 2pat t < pat(s) >pas pat(t) (3.4)

9This is a more specialized version of the definition than the original one [Sch95]. Tt was
first presented in [Sch98].

CHAPTER 3. MACHINE LEARNING SUPPORT 23

Definition 25 (Representative term patterns for equations)
Finally, representative term patterns for equations pat(s = t) are obtained
by orienting the equation according to >,,; and then substituting the func-
tion symbols and variables in s = ¢ with symbols from /' and V, treating the
equation as a single term.

pat(s = t) = pat(t = s) holds because either s >,,s t or ¢t >,, s or

pat(s) = pat(t).

3.3 Term Pair Retrieval

The first, straight-forward learning evaluation strategy called global learn
simply searches the knowledge base for a term pattern identical with the one to
be evaluated and obtains the annotation to compute the critical pair’s weight.
In the actual implementation, the complete file cdata (or pdata if only lemmas
are desired) is read, and an AVL tree containing the facts is built. This tree is
scanned for pat(s=t) each time a term pair s =t has to be evaluated.

Definition 26 (global learn)
In case the search for the term pattern is successful the following weight is
assigned to the equation:

global learn(s=1¢) = addweight(s=1)—
(sc (wio - to + Wpr + Pr+ Wy » AU + Wyq - gd))
(3.5)

to is the number of times the fact has been referenced in any proof, pr is the
number of proofs that contained the fact, av is the average number of applica-
tions it had in a proof, and gd is the average distance to the goal of the fact.
Wiy, Wpp, Wey and wgyq are weights for the four parameters, while sc serves as a
scaling factor for the whole learning component of the evaluation function.

If the search for the term pattern fails, a conventional estimation of the
quality of the equation is used.

global learn(s =) = add_weight(s =) + pen (3.6)

pen is used to prevent, term pairs not contained in the knowledge base from
being rated too high; learned term pairs are preferred.

Theorem 7
global_learn is fair.

Proof: global_learn yields integers by definition. There is a finite number
of function symbols F" and variables V' in DISCOUN'T. The representative
generalization of a term pair contains the same number of symbols as the
original term pair. Thus, only a finite set of equations shares the same
representative term pattern. This means that only a finite number of
equations can be evaluated using (3.5). Any finite set has a minimum.

CHAPTER 3. MACHINE LEARNING SUPPORT 24

We call this minimum a. The minimum of the backup strategy in (3.6) is
pen. Concluding, the lower bound b of global learn is min(a, pen).

In order to apply theorem 4, it remains to be shown that only a finite
number of equations is mapped onto the same value. This is true because
only finitely many equations are mapped by (3.5) at all. The backup
strategy (3.6) maps only finite numbers of equations on the same value
(theorem 6). Thus, this holds for global_learn as well.

3.4 Term Pair Abstraction

global learn is only capable of evaluating critical pairs that are contained
in the knowledge base. Other pairs are treated by the conventional strategy
add_weight. It is clearly more desirable to be able to evaluate more equations,
including new term pairs. This can be achieved by abstracting from the repre-
sentative term patterns.

The strategy tsm_learn compiles knowledge derived by generalizing the term
patterns into a huge, recursive tree structure called term space map (TSM)*.

Definition 27 (TSMs and TSAs)

A term space map tsm is a non-empty set of term space alternatives (TSAs)
{tsay,...,tsa,}. A TSAisatuple (indezx, (tsmy,...,tsmy),info), whose index
is an index that depends on the definition of the index function (see defini-
tion 28); tsm; is the TSM belonging to the ith argument of f; and info is
an annotation vector storing information about the term, which is required for
term evaluation. The whole set of TSMs is called TSM; the set of TSAs is
called T'S'A.

We use the following notations to represent TSMs®:

o tsm.T'SA is the set of TSAs belonging to tsm

e tsm.n is the number of elements in tsm.T'S A

e tsa.n is the arity of the function represented by tsa
e tsa.tsmli] is the ith TSM belonging to tsa

e tsa.i is the index of tsa

e tsa.info is the information vector annotated to tsa

“TSMs are generalizations of term evaluation trees (TETs), introduced in [Sch95].
5Please note that TSM or TSA (in capital letters) stands for a set of TSMs or TSAs,
whereas tsm and tsa are single elements (if not stated otherwise, TSM and T'SA denote the

entire set of TSMs and TSAs).

CHAPTER 3. MACHINE LEARNING SUPPORT 25

Definition 28 (Index function)
The index function index is used as a partition criterion for TSMs. f € F is
an arbitrary function symbol, v € V' a variable and ¢t € Term(F,V) a term.

index : Term(F,V) — [
index(f(t1,...,t,)) = f (I=FUV) (3.7)
index(v) = v
This index function is currently used in the implementation. Other possible
index functions are

index(f(t1,...,tn)) = n (I =N)°
index(v) = 0 (3:8)
index(t) = t (I =Term(F,V)) (3.9)

Definition 29 (Inserting terms into TSMs)
Let T' = (tsaq,...,tsa,) be a TSM and let t = f(t1,...,t,) be a ground term.
mmfo € INFQO is a vector of additional data about a term, containing, e.g., the
number of positive and negative proof references. The tuple (¢,info) is called
term with additional data.

ins : TSM x (Term(F)XINFO) — TSM maps a TSM and a ground term
with additional data to a new TSM. If there is no tsa; with the index index(t),
a new TSA is added to T and the subterms ¢; are included recursively.

ins(T, (t,info)) := TU
{(index(t), (ins({}, (t1,inf0)),...,ins({}, (tn,inf0))),info)}

In case there is a tsa; = (index(t), (tsmq,tsmq, ..., tsm,),info’), the annota-
tions are added and the subterms are added by recursion.

(3.10)

ins(T, (t,info)) := {tsa, ..., tsa;—1,t8a;i11,. .., tat, }U
{(index(t), (ins(tsmy, (t1,info)),..., ins(tsmy, (t,, info))),info+info')}
(3.11)

ins can be applied to non-ground terms by treating variables as functions of
arity 0. This extends ins to ins : T'SM X (Term(F,V) X INFO) — TSM.

ins is associative, i.e. a TSM is defined for a set of terms and does not
depend on the order in which the terms are inserted.

Figure 3.2 shows an example TSM that was built by inserting five terms
with a single integer annotation (e.g., the number of proof references).

The insertion function is defined for equations by inserting the two terms
separately.

ins(T, (s=t,info)) = ins(ins(7,(s,info)),(t,info)) (3.12)

Before an equation s = t is inserted into a I'SM, its representative term
pattern pat(s = t) is computed.

Tn this special case, a TSM is a TET.

CHAPTER 3. MACHINE LEARNING SUPPORT 26

i L] T
-

[81]“ 3] [b 4] m f(ab); 1

f(b,b); 3
al

g(b); 1
a(f(ab)); 2

Figure 3.2: An example TSM

Definition 30 (TSM-based term pair measurement)
The weight of a term ¢ evaluated using a TSM tsm is assigned by the function
eval : Term(F,V) x TSM — R*.

if 3tsa € tsmTSA: tsa.i=index(t)

tsa.n
eval(t, tsm) = 2 e(tsa) + Z; eval(t;,tsa.tsm[t]) ift = f(ty,...,tn)
e(tsa) otherwise
(3.13)
with
e(tsa) = (1 — (pl - tsa.info.pos)) - (1 + (nl - tsa.info.neg)) (3.14)

tsa.in fo.pos is the relative quota of positive proof occurrences. It is defined as
the number of positive proof references of the single TSA node tsa, divided by
the accumulated number of positive proof references of all T'SAs belonging to
the same TSM. tsa.in fo.neg is defined similarly for negative proof occurrences.
pl and nl are corresponding weighting factors, lower than or equal to 1.

In case ¢t cannot be mapped on tsm, the backup strategy add weight is used.

if Atsa € tsm.TSA: tsa.i = index(t)
eval(t,tsm) = add_weight(t) (3.15)
As usual, the weight of a term pair tsm_learn : (Term(F,V) x Term(F,V)) X

TSM + R* is computed by adding the single term weights.

tsm_learn(s =t,tsm) = eval(s,tsm) + eval(t,tsm) (3.16)

CHAPTER 3. MACHINE LEARNING SUPPORT 27

To give an example, we compute the weight of ¢(f(a,a)) according to the
TSM of figure 3.2. pl is set to 1 and the number of negative proof references is
0 for all TSA nodes.
eval(g(f(a,a)),tsm)=2(1-2)+2(1-2)+1-2+1=32 = 1.67
A default term weight is assigned to unknown subterms. The weight of g(h(a, a)),
for instance, is greater than the weight computed above.
eval(g(h(a,a)),tsm)=2(1 — 2) 4+ add_weight(h(a,a)) = 4 = 5.25

Theorem 8
tsm_learn is fair.

Proof: A TSM is a finite structure and the terms in the DISCOUNT system
are built from finite sets of symbols. Only a finite number of equations
share the same representative term pattern. Thus, it is only possible to
evaluate a finite number of terms using the TSM-based measurement de-
fined in (3.13). The backup strategy for unknown subterms add_weight is
fair according to theorem 6. As a result, Ve € Term(F,V)xTerm(F,V) :
{€'| tsm_learn(e’) < tsm_learn(e)} is finite and tsm_learn is fair due to
theorem 3.

A slight variation of the TSM-based strategy described in this section is
called ordered T'SM learning. This method builds two T'SMs; tsm; for the left
and tsm, for the right side of the oriented (according to >,.s) equations. The
evaluation function evaluates each term of a term pair on the appropriate TSM.

Definition 31 (otsm_learn)
Let uw = v be the representative term pattern of s =t ((u = v) = pat(s = t)).

otsm_learn(s = t,tsmy,tsm,) = eval(u,tsm;) + eval(v,tsm,) (3.17)

Theorem 9
otsm_learn is fair.

Proof: otsm_learn is fair due to exactly the same reasons specified in theo-
rem 8.

Chapter 4

Example Selection

Using as much knowledge as is available can mislead the proof process. In this
chapter, we develop criteria for example resemblance and present and evaluate
three selection strategies based on these criteria. The first one uses simple fea-
tures like number of axioms and average term depth of the axioms, whereas the
second one is based on a similarity measure on TSMs (containing the axioms),
developed for this purpose. A third strategy combines both measures.

4.1 The Need for Restriction

Although tsm_learn performs very well, the strategy suffers from misleading
knowledge provided by facts from proofs that required a different solution than
the problem to be solved. In contrast to global learn, tsm learn’s perfor-
mance is not increased by every new fact inserted in the knowledge base. There
is a certain degree of knowledge saturation (see figure 4.1).

To avoid knowledge overkill, we preselect fitting examples from the knowl-
edge base (see figure 4.2). A selection strategy sorts the example proofs ac-
cording to some measure of distance to the specification of the problem to be
proven. Only a fraction of the proofs in the knowledge base, limited to a fixed
number and a certain degree of similarity, is then used for the learning strategy.

Two parameters (max_examples and max_delta) control this process. Up to
max_examples examples, whose distance to the current problem’s specification
is less than or equal to max_delta, are selected and inserted into the TSM.

28

CHAPTER 4. EXAMPLE SELECTION 29

Time taken (seconds)

60 T T T T T T T T

50

40

30

20

0 L L L L L L L L
10 20 30 40 50 60 70 80 90

Examples used for Learning

Note: Ordered TSM learning with dp;7x example selection was used to prove
B0O0008-2

Figure 4.1: Knowledge excess

(D|Pgé/§rJNT) - . Knowledge

-~ \gase
- O
Evaluation O

Unfailing Completion <> Staegy Q
- Q

Full PCL Protocol Example Selection

Y

Proof Pruning
(mextract)

Term Pair with
additional Data

Pruned PCL Protocol

Abstraction
(kb_insert)

Figure 4.2: Learning with example selection

CHAPTER 4. EXAMPLE SELECTION 30

4.2 Metric Spaces

As the problem distance measures are supposed to be metrics, some theory
about metric spaces is required (see [Duf95] for details about metrics and topol-
ogy in general).

Definition 32 (Metrics and metric spaces)
d: X x X — R%is a metric on X if the following axioms hold. The tuple (X, d)
is called a metric space.

T

d(a,b)=0 a="b
d(a,b) = d(b,a) (Symmetry) (4.1)
d(a,¢) < d(a,b)+d(b,c) (Triangle inequality)

It can easily be shown that scaled metrics and sums of metrics are metrics

too.
Theorem 10
If (X, d) is a metric space, (X, w - d) is a metric space as well (w € RT).
Proof:
o w-d(a,b)=0&d(a,b)=0a=1b
o w-d(a,b)=w-d(b,a) & d(a,b)=d(b,a)
o w-d(a,c)<w-d(a,b)+ w-d(b,c)& d(a,c) <d(a,b)+d(b,c)
Theorem 11
If (X,dy) and (X, d3) are metric spaces, (X, d; + dz) is a metric space as well.
Proof:
o di(a,b)+ dy(a,b) =0 di(a,b) =0Ads(a,b)=0a=1b
° dl(a, b) + dy(a,b) = dy(b,a) + dy(a,b) = dy(b,a) + dz(b, a)
(aac)+d2(a70) Sd ()+d2(a b)+d1(bvc)+d2(bac)
d (aac)+d2(a70)§g ()+d1(2+gz(a7b)+d2(b7c)<:>

>d; (a,c) >d2(a c)
di(a,c) < dy(a,b)+ di(b,c) Adsy(a,c) < dy(a,b)+ dy(b,c)

Note: This obviously also holds for metrics on different sets (X,d;) and
(Y, dy), if the distance of two pairs a = (21, y1) and b = (23, y2) is defined
as the sum of the components distances d(a,b) = di(z1,22) + d2(y1, y2)-
The resulting metric space is (X x Y, d).

4.3 Criteria for Example Resemblance

To be able to decide whether an example proof’s facts should be inserted into the
TSM, criteria are needed which describe the similarity of problem specifications.
We chose the following;:

CHAPTER 4. EXAMPLE SELECTION 31

e Number of axioms (N A)

Average term depth of the axioms (AD)

Standard deviation of the term depth of the axioms (DD)
e Depth of the goal (GD)

e Number of function symbols of a given arity: arity frequencies (ﬁ)

EXAMPLES cdat a pdat a SELECTI (]\IDATA}

all facts only lemmas

JXtr| oL | oxtr . sel . sel

extracted proof protocols selection criteria
Figure 4.3: New structure of the knowledge base

These features and the representative term patterns of the axioms them-
selves are saved for each problem in the SELECTIONDATA folder of the knowl-
edge base (see figure 4.3). The figure omits the folders SPECDOMS and GOALDOMS
and the corresponding files specdoms and goaldoms. This data was used to
preselect examples with identical specifications or goals for global learn. As
tsm_learn is mainly used now, these files are of no interest to us. Figure 4.4
shows an example .sel-file.

4.4 Test Run Setup

The subset of all unit-equality problems with universally quantified goals from
version 2.1 of the TPTP problem library ([SS97]) was used to evaluate the selec-
tion strategies. All in all, there are 403 problems of which 341 are automatically
provable, 57 are theorems that have not yet been proven by current ATP sys-
tems, and 5 are open problems (for more details about the used problems, see
appendix B).

The knowledge base contained the positive facts of 201 proofs, all that
DISCOUNT was able to solve within 180 seconds using the regular add_weight
strategy.

BOOOO1-1 BOOO0O2-1 B0O0O002-2 BOO003-2 BO0O003-4 BO0O004-2
B0O0004-4 B0O0O005-2 BO0O005-4 BO0O006-2 BO0O006-4 BOOOO7-2
B0O0007-4 B0O0O009-2 BO0O009-4 BO0O010-2 BO0010-4 B0OOO11-2
BOOO11-4 B0O0O12-2 B0O0012-4 B00013-2 BO0O013-4 B0O0O0O14-2

CHAPTER 4. EXAMPLE SELECTION

Number_of_Axioms: 10
Average_Depth: 1.250000
Depth_Standard_Deviation: 0.829156
Goal_Depth: 2

Max_Arity: 2

Arity_Frequencies: 3 1 2

Axioms:
x1 = £2_1(x1,x1)
x1 = f2_1(f0_1(0),x1)

x1 = f2_1(x1,f0_1())
f0_1() = f2_1(f1_1(x1),x1)
f0_1() = f2_1(x1,f1_1(x1))
f2_1(x1,x2) = f2_1(x2,x1)

f2_1(x1,f2_1(x2,x3))
f2_1(x1,f2_1(x2,x3))
f2_1(x1,f2_2(x2,x3))
f2_1(£f2_2(x1,x2),x3)

f2_1(£2_1(x1,x2),x3)
f2_1(f2_1(x1,x2),x3)
£2_2(f2_1(x1,x2),f2_1(x1,x3))
£2_2(f2_1(x1,x3),f2_1(x2,x3))

32

Figure 4.4: An example .sel file: lusk3.sel (A ring with z? = z is Abelian

[1L082])

B0O0O0O14-4
COL003-12
COL042-6
COL059-1
COL062-3
C0L064-10
COLO64-6
GRP001-2
GRPO11-4
GRP115-1
GRP121-1
GRP140-1
GRP146-1
GRP152-1
GRP158-1
GRP165-1
GRP167-1
GRP169-2
GRP174-1
GRP182-2
GRP188-2
GRP191-2
LCL116-2
LCL140-1

B0O0O015-2
COL003-13
COLO42-7
COL060-2
COL063-2
COLO64-11
COLO64-7
GRP001-4
GRP012-4
GRP116-1
GRP122-1
GRP141-1
GRP147-1
GRP153-1
GRP159-1
GRP165-2
GRP167-2
GRP171-1
GRP175-2
GRP182-3
GRP189-1
LCL110-2
LCL132-1
LCL141-1

BO0OO15-4
COL003-14
COL042-8
COL060-3
COL063-3
COLO64-2
COLO64-8
GRP002-2
GRP014-1
GRP117-1
GRP136-1
GRP142-1
GRP148-1
GRP154-1
GRP160-1
GRP166-1
GRP167-5
GRP171-2
GRP175-3
GRP182-4
GRP189-2
LCL112-2
LCL133-1
LCL153-1

B0O0O016-2
COL003-15
COL042-9
COLO61-2
COLO63-4
C0LO64-3
COLO64-9
GRP002-3
GRP022-2
GRP118-1
GRP137-1
GRP143-1
GRP149-1
GRP155-1
GRP161-1
GRP166-2
GRP168-1
GRP172-1
GRP176-1
GRP186-3
GRP190-1
LCL113-2
LCL134-1
LCL154-1

B0OOO17-2
COL003-16
COL058-2
COL061-3
COL063-5
COLO64-4
COL066-2
GRP002-4
GRP023-2
GRP119-1
GRP138-1
GRP144-1
GRP150-1
GRP156-1
GRP162-1
GRP166-3
GRP168-2
GRP172-2
GRP176-2
GRP186-4
GRP190-2
LCL114-2
LCL135-1
LCL155-1

BO0O018-4
COLO04-3
COLO58-3
COL062-2
COL063-6
COLO64-5
COLO66-3
GRP010-4
GRP114-1
GRP120-1
GRP139-1
GRP145-1
GRP151-1
GRP157-1
GRP163-1
GRP166-4
GRP169-1
GRP173-1
GRP182-1
GRP188-1
GRP191-1
LCL115-2
LCL139-1
LCL156-1

CHAPTER 4. EXAMPLE SELECTION 33

LCL157-1 LCL158-1 LCL159-1 LCL160-1 LCL161-1 LCL164-1
LDAOO1-1 LDAOO2-1 LDAOO7-3 RNGOO7-4 RNGOO8-3 RNGO08-4
RNGOO8-7 RNGO09-7 RNGO11-5 RNGO12-6 RNGO13-6 RNGO14-6
RNGO15-6 RNGO16-6 RNGO17-6 RNGO18-6 RNG023-6 RNGO023-7
RNGO24-6 RNGO24-7 ROB002-1 ROBO03-1 ROB0O04-1 ROBO10-1
ROB0O13-1 SYNO80-1 SYNO83-1

The specified times relate to a Linux system on a Pentium PC running at
233 MHz with 64 Mb of RAM, which was used as a testing platform for all
experiments.

4.5 Feature-based Selection - dprp

The first measure of distance computes the distance between two problem spec-
ifications by simply comparing their features.

4.5.1 The Metric drrr

Let ma be the maximum arity of the functions. Then AF(i) is defined as the
number of occurrences of arity ¢ within the function symbols and AF' is a vector
with the components AF (7).

AF(0)
AP = AI_T_(_D (4.2)
AF(ma)

Definition 33 (Feature vector)
The feature vector f is defined as follows:

The feature vector space is denoted as F.

Definition 34 (4)
In order to be able to combine weighted differences of several features, we define
a function § that scales the distance of two features to the interval [0;1].

§:RY xRt — [0;1]

0 if a,b=0 (4.4)
§(a,b) = |a — b]

—— otherwi
max(a, b) otherwise

CHAPTER 4. EXAMPLE SELECTION 34

Definition 35 (d4r)
As the feature “Arity Frequencies” is a vector, the distance of two vectors AF1

and AL requires a special definition. §47 scales the sum of each arity distance
to the interval [0; 1]. As usual, 7;(%) denotes the projection of the ith component
of 7.

N8 (mi (A7), mi(AT))
5 W’ A_ﬁ _ =0 4.5
ar(Aby, ALY) max(0 < j < ma| 7w (AF) # 0V 7;(AF3) #0) o

Definition 36 (6p7R)
Finally, the metric dprr on the feature vector space is as follows:

5FTR X F [0,1]
ror _ wnadnatwap-dap+wpp-Spptwap-daptwar-dar
5FTR(f1’ f2) - wNa+wap+wpp+waptwar

(4.6)

We use the following abbreviations: . . .
dnNa = 5(771(f_}),771(f_g))7 dap = 5(71'2(f1)77[‘2(f2)),_‘ dpp = 5(773(f1),773(f2))7
dGp = 8(ma(f1), ma(f2)) and dar = dar (ms5(f1), m5(/2)).

WN A, WAD, WpD, wagp and wap are weighting factors for the corresponding
features.

Theorem 12
0rTR is a metric on the feature vector space F.

Proof: Since dprg is a scaled sum of ds, it suffices to show that ¢ is a metric
on R* (theorem 10 and 11). & must fulfill the following axioms.

a) 6(a,b) =0 (- —0vab=0)cla—b=0ca=0h

max(a,b)
a—b —a
b) 5(0” b) = m|ax(a!b) = m|:x(b,|a) = 5(bv a)
la—c| |a—b| la—c|
C) max(a,c) < max(a,b) + max(a,c)

Case 1l (a>b>c)
a=c cazb b2t s hla—c) < bla—b)+alb—c) &

a

ab - be<ab—0*+ab—acs bla—b)+c(b—a)>0& (a—b)(b—c) >0

Case2(Zc>b)
a=c cazb p =h s ela—c) <cla—b)+alc—b) &
ca — c? Sa(' betac—ab<s c(ec—b)+a(c—b)>0& (c—b)(c+a) >0

CHAPTER 4. EXAMPLE SELECTION 35

Case3(Z Z c)
sttt o bla—c)<alb—a)+alb—c) &
ab bc<ab—a t+ab—acs alb—a)+eclb—a)>0& (b—a)(a+c) >0
e e
>0 >0
Case4(c>a)

ema b ”‘-I—%(:)b(c—a)<c(b—a)-|—c(b—c)¢>
bc—ab<bc act+bc—ctseclb—c)talb—c) >0 (b—c)(atec)>0

[~

Case5(c>a>b)
c“g“ab—l— <:>a(c—a)<c(a—b)—|—a(c—b)

ac— a? <ac—bc+ac—ab<:>c(a—b)—l—a(a—b)20<:>(a—b) (a4+¢)>0

Case 6 (¢ > b > a)
c"‘<bz”‘-|— boblc—a) <c(b—a)+alc—b) &
bc—ab<bc—ac—l—bc—62<:>c(b—a)—b(b—a) >0 (b—a)(c—b)>0

4.5.2 Parameter Test Runs

55800

55600

55400

55200

55000

54800

54600

Accumulated Time (seconds)

54400

54200 | | | | | | | |

Number of Examples

Note: Accumulated time is the sum of all single proving times, assuming 360
seconds for unsolved problems.

Figure 4.5: Influence of max_examples on dprpr

Figure 4.5 shows the performance of §prgr applying different number of ex-
amples. The strategy is very fast using only one example. A couple of problems
(COL003-12 to COL003-15) that could not be proven with any other parame-
ter set are proven very quickly (under 11 seconds per problem). However, this
setting breaks down on several other demanding problems.

CHAPTER 4. EXAMPLE SELECTION

36

As a result, max_examples=b5 is the most successful number of examples in
our testing environment. It proves one example more than max_examples=1,

even though the latter is slightly faster.

P
fz;\@ il &
9 A/b’o \d S S @ < 6’§ . »&e
& & S TS S Q3 3

1 1 1 1 1 1 1 257 | 1828.13
2 1 1 1 1 1 1 257 | 2269.31
3 1 1 1 1 1 1 257 | 2302.81
4 1 1 1 1 1 1 256 | 2126.25
5 1 1 1 1 1 1 258 | 2418.19
6 1 1 1 1 1 1 257 | 2299.36
7 1 1 1 1 1 1 257 | 2287.26
8 1 1 1 1 1 1 257 | 2319.75
9 1 1 1 1 1 1 257 | 2362.35
10 1 1 1 1 1 1 254 | 2068.38
20 0.5 1 1 1 1 1 250 | 1796.33
1000 0.125 1 1 1 1 1 254 | 1859.45
10 0.5 0 1 1 1 1 254 | 1864.12
10 0.5 1 0 1 1 1 253 | 2098.07
10 0.5 1 1 0 1 1 252 | 1732.74
10 0.5 1 1 1 0 1 254 | 2182.04
10 0.5 1 1 1 1 0 252 | 1764.59
10 0.5 1 1 1 1 1 254 | 2065.38
10 0.5 1 1 1 2 3 250 | 1788.62
10 0.5 1 3 2 1 1 254 | 1910.50
10 0.5 1 4 1 1 1 254 | 1714.45
10 0.5 0 1 0 1 0 252 | 1716.62
10 0.5 0.5 4 2 1 1 254 | 1805.99
5 1 0.5 2 1 1 1 258 | 2425.20
5 1 0.5 4 2 1 1 255 | 2117.05
5 0.5 0 1 1 1 1 255 | 2075.64
5 0.5 1 1 1 1 1 258 | 2419.47

Table 4.1: Different parameter sets for éprpr

Various combinations of feature weights were tested, but yielded no perfor-

mance gain.

4.6 TSM-based Selection - d75y,

The features described in the feature vector (4.3) represent a generalization of
the actual problem specification, which is nothing but a set of equations. In

CHAPTER 4. EXAMPLE SELECTION 37

another context, structures that generalize equations have already been devel-
oped: Term Space Maps.

drsy computes the difference of two problem specifications by building two
TSMs of each set of axioms and then determining the distance of both TSMs
according to a recursive measurement.

4.6.1 The Metric drss

To measure similarity of TSMs, we extend T'S M to a metric space (1T'SM, drsnr).
The function drsas should be independent of the following attributes to allow
fair comparison of TSMs:

e Depths of entire TSMs
e Number of TSAs per TSM
o Arity of TSAs
Using the TSM and TSA notations described in section 3.4, we define drgar.

Definition 37 (d75nr)
5TSM TSM xTSM — [0; 1]

Z 8 gpg(tsa,tsmy. TS A)

tsa€tsmq1. TSA
tsmi.n

if tsmq.n > tsmy.n

drsy(tsmy, tsmg) =
(tsmy, tsmy) S" Ghsul(tsa, tsmy TS A)
tsa€tsmo. TSA
tsmoy.n
otherwise
. . drsa(tsa,tsa’) Ttsa’ € TSA: tsa.i=tsd.i
Orsar(tsa, SA) = { 1 ’ otherwise
tsay.n
Z drsn(tsay .tsmli], tsas.tsmli])
drsa(tsar,tsay) = =1 NI i tsay.n £ 0
0 otherwise

(4.7)

Figure 4.6 illustrates how d7gar measures the distance between the example
TSM presented in figure 3.2 and another TSM.

In order to be capable of proving some properties of the new distance mea-
sure, we define the following relation.

CHAPTER 4. EXAMPLE SELECTION 38

tsm, tsm,

aolo 0w
))| ()] () ()) [g)] [a)(b]

()]] (&) [a) [b]

0+1 4y 140
Akl

Srsm(tsmy, tsmy) = 3 =1

Figure 4.6: Distance between two TSMs

Definition 38 (Mapping terms on TSMs)
We denote t « tsm, if £ can be completely mapped on tsm.

Ift=f(t1,...,tn): toxctsm <& (Itsa €tsm.TSA: index(t) = tsa.i)A
(Vi 1<i<n: t; <tsatsmli])
IfteV: totsm <& (Jtsa €tsmTSA: index(t) = tsa.i)
(4.8)

Theorem 13
(T'SM, érsn) is a metric space.

Proof: drgar has to fulfill the following axioms.

a) drsar(tsmy,tsmy) = & tsmy = tsmg

b)

0
drsar(tsmy, tsmy) = dranr(tsmy, tsmy)
c) Srsa(tsmy,tsms) < ér

sultsmy, tsma) + Srsar(tsma, tsms)

a) We assume tsmy.n > tsmy.n.

drsa(tsmy,tsmy) = 0 < 86y, will never be 1 during the comparison <
Vi€ Term(F,V) toctsmy: o tsmy < tsmy = tsmy

b) drsar(tsmy,tsmy) = drsar(tsma, tsmy) by definition.

c) We prove the triangle inequality by induction.

Induction start

Consider two TSMs tsm; and tsmgy of depth 1. All TSAs in tsm;. T'SA
and tsmy.I'S A represent either variables or functions symbols of arity 0.
This implies that dpg4 is 0 for all matching pairs of TSAs. 876, is 1 if
the two TSMs do not share a given TSA, and 0 otherwise. In order to
simplify the representation of drgps for TSMs of depth 1, we introduce

CHAPTER 4. EXAMPLE SELECTION 39

the following index sets:

A= U tsa.1

tsa€tsmq1. TSA

B = U tsa.t

tsa€tsmo. TSA
We now write drspr by applying A and B.

t n,t n)—|ANB
5TSM(tSm1,t8m2):maX(smy.n, tsma.n) — [AN B

max(tsmy.n,tsmy.n)

We henceforth assume without loss of generality that tsmq.n = tsmy.n =:
k (The set of TSAs with less elements is filled up with TSAs that have
indices that are not used anywhere else). This reduces drsar to

k—|AN B

drsar(tsmy, tsmy) = 7

We now prove the triangle inequality for three TSMs (tsmq, tsmq and
tsms) of depth 1 by assuming tsmy.n = tsmg.n = tsmz.n =: k and
introducing a third index set C' = U tsa.i.

tsa€tsmz. TSA

k—]AnC| _k-]AnB] +k—|BﬂC|
k - k k
Sk—|ANC|<2k—|ANB|—|BNC| ()
S |ANB|+|BNCI<|ANC|+k
S BN(AUC)+|ANBNC| <|ANC|+k
S BN(AUC)+|ANC| = |(ANCN\B| < |[ANC|+ &
S |BN(AUC)| —[(ANC)\B| < k

<|B|=k

-

<k—|(ANC)\B
c0<|(AnC)\B]

Induction step

We now prove that the triangle inequality holds for TSMs of depth d
under the assumption that it already holds for TSMs of depth d — 1.
Once again, we assume that tsmy.n = tsmg.n = tsmg.n =: k and define
the following abbreviation (1 < 4,j < 3):

Sij = E 5TSA(t8a1, tSlZQ)
tsay€tsm; TSAtsas€tsm; TSA: tsay.i=tsas.i

s13 for example is the sum of |[A N C| terms.
Using the abbreviation, the triangle inequality can be expressed as follows:

k—|ANC|+si3<k—|ANB|+k—|BNC|+ s12+ sa3

CHAPTER 4. EXAMPLE SELECTION 40

Case 1 (JANC|>|ANB|+|BNC))
|AmB|+|BmCJ§k+|AmC|+S]2+823—813

<lAnc]

& 513 < k+ s12 + s23

& orsal-evy-e)+ 0rsaloos) <k s+ s23
T _<,1_/

<0 < 512+ 523
Case 2 (J[ANC| < [ANB|+|BNC|) (%)
k—lAﬂC|-|—813§2k—|AﬂB|—|BﬂC|+812+823

< 8513 < 812+ 823 because (*) is proven

We now prove this inequality, starting with the induction assumption.
The induction assumption states that the triangle inequality holds for
any triple of sub-TSMs of tsmy, tsmy or tsms.

Vtsay,tsay, tsas € tsmi TSAUtsmy TSAUtsms. TSA:

Vi,j, kb 1<i<tsar.n,1<j<tsaz.n,1<k<tsaz.n:

drsar(tsay . tsmli], tsaz.tsmlk])
< drsm(tsayr.tsmli], tsaz.tsmlj]) + drsn(tsag.tsmj], tsas.tsmlk])

This implies that the following inequality holds as well.

Vtsay,tsag, tsaz € tsmy. TSAUtsmy. TSAUtsms. TSA
tsay.t = tsaq.t = tsas.i :
drsa(tsar,tsas) < drsa(tsar,tsaz) + drsa(tsay,tsas)
Due to (**), this directly yields

S13 < S12 + Sg3

Theorem 14
drsnm(tsmy,tsma) =1 At € Term(V, F): toctsmy At o tsmg

Proof: Assume tsmq.n > tsmy.n.
drsar(tsmy,tsmy) =1
& Visa € tsmy. TSA: Spga(tsa,tsmy. TSA) =1

This holds if either the intersection of two related sets of TSAs on a TSM
path is empty (*) or, if there are two TSAs that share the same index,
14 of those two TSAs is 1 and thus cannot be 0. This means that there
are not two corresponding TSAs with equal indices and arity 0 on any
TSM path (**). According to definition 1, all term structures end in a
subterm of arity 0, a variable or a function symbol of arity 0.

A term t with £ o< tsm; cannot be completely mapped to tsmy because
the mapping fails either at a certain index because of (*) or at a subterm
of arity 0 because of (**).

CHAPTER 4. EXAMPLE SELECTION 41

4.6.2 Parameter Test Runs

55800

55600

55400

55200

55000

54800

Accumulated Time (seconds)

54600

54400 L L
5 6 7] 9 10 11 12 13 14 15

Number of Examples

Note: Accumulated time is the sum of all single proving times, assuming 360
seconds for unsolved problems.

Figure 4.7: Influence of max_examples on drgns

Figure 4.7 clearly shows that the most effective number of examples is
around 11. As drgps has no weights controlling the measure of similarity, the
parameter space is much smaller than §prR’s one.

We experienced that the knowledge restriction can be easier controlled by
using max_examples instead of max delta. We mainly applied max delta to
filter very inappropriate examples. Please note that max_examples is an abso-
lute value and should be adjusted if the knowledge base’s size strongly differs
from the one used in our experiments.

4.6.3 Comparison of drrr and drsas

Figure 4.9 and figure 4.10 compare the distance measures drgpys and dprpg.
The TSM distance between the Lusk3 specification and one problem (SYN080-1)
is 1, which means according to theorem 14 that the TSMs spanned by the axioms
do not share a single term!. The maximal distance to Lusk3 measured by drrr
is less than 0.8.

The figures reveal that d7gar assigns only a small set of coarse values, result-
ing in many equal distances. dgprpR reacts more sensitively to different problem
specifications. One reason for this effect is that large groups of TPTP problems
share the same set of axioms. dpgas uses solely the axioms of a problem to build
the TSMs; dprr, however, takes the goal depths into consideration as well.
As two TSMs, built from the goals, would be extremely small, it does not make

13YN080-1 has just one axiom: f(z) = g(y).

CHAPTER 4. EXAMPLE SELECTION

N

S <7 &

é“'{s& bé’» ~<>\e} <
& & ¥ &

1 1 254 | 2506.61
5 0.5 256 | 2530.83
6 0.5 256 | 2316.75
7 0.5 255 | 2151.22
8 0.5 256 | 2300.68
9 0.5 256 | 2336.38
10 0.5 258 | 2263.36
11 0.5 258 | 2269.85
12 0.5 258 | 2268.37
13 0.5 253 | 1781.97
14 0.5 253 | 1550.12
15 0.5 253 | 1542.51
20 0.5 251 | 1845.18
50 0.5 253 | 1751.69
100 0.5 253 | 1844.08
1000 0.5 253 | 1937.93
5 0.125 256 | 2523.74
10 0.125 256 | 2271.49
20 0.125 253 | 1790.74
50 0.125 253 | 1796.10
20 0.0625 255 | 2216.87

Table 4.2: Different parameter sets for dpsar

CHAPTER 4. EXAMPLE SELECTION 43

4 - _E
- | @
£ % | o

7] II T = r 9
s © o
T F—

o 8
O
= i :<D(Z
= ok
|

. - O

= |

Problem Domain

!
T
GRP

|
!

BOO COL

60
0
60

180
120
120
180

(Spuogss) swil)

Note: dprp ran with max_examples = 5 and max_delta = 1 and all weights
set to 1, drgp with max examples = 10 and max delta = 0.5. Unsolved
problems have no impulse in the graph.

Figure 4.8: Comparison of dprgr and drgns

CHAPTER 4. EXAMPLE SELECTION 44

much sense to measure their distance. A more workable method is to integrate
the goal depths into drgpas. This task is accomplished in the next section by
introducing darrx.

1 1 1 1 1 1
DeltaFTR
0.5
o]
g i ! i
0.5
DeltaTSM
1 T T T T
0 50 100 150 200

Problem No.

Note: The figure shows the distance between Lusk3 and each problem in the
knowledge base.

Figure 4.9: Distance measurement by drrr and drsar

4.7 Joined Forces - dy/7yv

Figure 4.8 shows that, although dprr and drgar perform similarly, both strate-
gies solve different examples.

In contrast to d7sar, SpTR proves GRP181-3 and GRP181-4, while drgps is
solely capable of solving COL003-15 and COLO03-16. As a consequence, we mix
both selection techniques, although they process redundant information?. This
might fix a possible drawback of §7gar; the goal is now taken into consideration
as well.

4.7.1 The Metric Sumrx

We define dprrx by treating drsar as a single feature.

2 Attributes like number of axioms, term depths, or arity frequencies are already included

in a TSM.

CHAPTER 4. EXAMPLE SELECTION 45

1 : ' ' I
DeltaFTR
0.5
U
g T
'g O i
0.5
DeltaTSM
1 T T T I
0 50 100 150 200

Problem No.

Note: The figure shows the distance between l.usk3 and each problem in the
knowledge base, sorted by the distance.

Figure 4.10: Distance measurement by drrr and drgar (sorted)

Definition 39 (dp77x)

Sarrx (B X TSM)x (FxTSM) — [0;1]

rd rd + 5 t t
Svrx ((fistsma), (fotsmg)) = ptematiresiranliomton)

(4.9)

SFTR = WNA *O0NaA + wap + dap + wpp - dpp + WG * 0Gp + War - SaF is the
weighted sum of features used in 4.6.

Theorem 15
dpmrx is a metric on I x T'SM.

Proof: The assumption is a direct implication of theorems 10, 11, 12 and

13.

4.7.2 Parameter Test Runs

Finally, the set of possible parameter combinations has reached a size, that
makes it impossible to search systematically for successful settings®. We did
not try any other feature weight combinations than the standard setting and
just tested a couple of different weights for the T'SM distance.

A single parameter test run on our evaluation machine lasts up to eight hours.

CHAPTER 4. EXAMPLE SELECTION 46

As intended, d3r7x succeeds in solving the union set of the problems proven
by the previous selection strategies for a certain drgys weighting.

N
&
a &
,4,9"% Sl ool ol | o ¢ & e
& @7 ol O oL PV I R >
10 1 1 1 1 1 1 255 | 2322.48
10 2.5 1 1 1 1 1 260 | 2542.43
10 5 1 1 1 1 1 258 | 2263.36

Note: max delta was set to 0.5 for all experiments.

Table 4.3: Different parameter sets for dprrx

4.8 Selecting Random Examples - dzyp

In order to verify the usefulness of the selection strategies chosen, we define

another “measure of distance” that yields random values values between 0 and
1.

Definition 40 (6rnD)

(SRND :rnd(O,]) (410)

This allows us to compare our selection methods with a strategy that selects
a given number of examples purely at random.

Chapter 5

Results

The following table shows the detailed performance of each conventional strat-
egy, regular ordered tsm learn and ordered tsm learn with drgps example se-
lection (max_examples=10 and max_delta=0.5). A dash (-) indicates that the
strategy was not able to solve the problem within the 180-second time limit.

Problem fifo add | occnest otsm | otsm-drgps
BOOO001-1 - 0.03 0.07 1 0.67
BOO002-1 - | 15.34 1.69 2.24 2.03
BOO002-2 - | 15.22 1.69 2.24 2.07
BOO003-2 - 1.13 0.52 0.84 0.59
BOO003-4 - 0.66 0.51 0.83 0.6
BOO004-2 - 0.53 0.21 0.82 0.58
BOO004-4 - 0.03 0.17 0.81 0.57
BOO005-2 - 0.55 1.59 0.82 0.57
BOO005-4 - 0.02 1.13 0.8 0.57
BOO006-2 - 1.15 1.06 0.84 0.6
BOO006-4 - 0.66 0.74 0.83 0.59
BOO007-2 - | 161.5 63.02 30.01 20.79
BOO007-4 - | 159.73 76.31 28.87 22.19
BOO008-2 - - 33.67 33.14 24.15
BOO008-4 - - 33.45 32.26 25.47
BOO009-2 - 1.11 2.03 0.85 0.61
BOO009-4 - 0.67 1.89 0.83 0.6
BOO010-2 - 1.11 2.02 0.85 0.61
BOO010-4 - 0.66 1.89 0.83 0.6
BOO011-2 1.84 0.02 0.02 0.81 0.57
BOOO011-4 - 0.02 0.02 0.8 0.56
BOO012-2 - 0.52 0.06 0.92 0.66
BOO012-4 - 0.75 0.14 0.91 0.65
BOO013-2 - 0.64 0.5 0.84 1.89
BOOO013-4 - 0.94 0.25 3.96 2.27
BOO014-2 - | 26.03 - 11.52 8.18
BOO014-4 - 9.79 17.22 8.86 35.78

47

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
BOO015-2 - | 21.34 81.8 10.33 8.12
BOOO015-4 - 9.6 17.33 8.86 35.52
BOO016-2 - 1.17 2.01 0.89 0.67
BOO017-2 - 1.15 2.34 0.85 0.64
BOO018-4 - 0.02 0.02 0.8 0.56
BOO019-1 - - - - -
COL001-1 - 0.39 2.84 0.94 0.89
COL001-2 0.23 0.07 0.13 0.85 0.62
COL002-1 0.17 0.04 0.11 0.82 0.58
COL002-4 0.87 - - - -
COL002-5 - - - - -
COL003-1 - - - - -
COL003-12 - | 10.59 - - -
COL003-13 - | 10.61 - - -
COL003-14 - | 10.59 - - 2.84
COL003-15 - | 10.61 - - 2.08
COL003-16 - | 10.59 - - 2.09
COL003-17 - - - - 113.28
COL003-18 - - - - 112.88
COL.003-19 - - - - 113.04
COL003-20 - - - - 112.14
COL004-1 28.43 1.25 11.4 2.91 3.04
COL004-2 - - - - -
COL004-3 0.14 0.01 0.02 0.78 0.6
COL005-1 - - - - -
COL006-1 - | 41.47 - 4.53 47.59
COLO006-5 - - - - -
COIL.006-6 - - - - -
COL.006-7 - - - - -
COL007-1 0 0.01 0.02 0.82 0.54
COLO008-1 0.02 0.03 0.02 0.82 0.56
COL009-1 - - 0.32 - -
COLO010-1 0.02 0.01 0.07 0.83 0.71
COLO11-1 7.07 9.38 - 8.66 50.42
COL012-1 0.01 0.01 0 0.8 0.53
COL013-1 0.01 0.02 0.02 0.82 0.55
COL014-1 0.01 0.01 0.02 0.82 0.54
COLO015-1 0.01 0.04 0.04 0.85 0.59
COLO016-1 0.02 0.02 0.02 0.81 0.55
COLO017-1 0.02 0.04 0.03 0.85 0.66
COL018-1 0.01 0.02 0.02 0.82 0.55
COL019-1 - 0.05 2.3 0.83 0.57
COL020-1 - 0.71 - 0.98 0.83
COL021-1 0.05 0.1 0.09 0.9 0.81

48

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
COL022-1 0.02 0.27 0.31 1.19 0.99
COL023-1 1.48 0.13 2.84 0.87 0.74
COL024-1 0.02 0.03 0.03 0.83 0.9
COL025-1 0.02 0.02 0.03 0.83 0.56
COL026-1 0.93 1.16 4.24 1.19 2.01
COL027-1 1.94 0.24 4.84 0.9 0.83
COL028-1 1.49 0.12 2.84 0.87 0.74
COL029-1 0.02 0.02 0.02 0.8 0.54
COL030-1 0.25 0.05 0.16 0.86 0.59
COLO031-1 0.02 0.02 0.01 0.82 0.55
COL032-1 0.2 0.07 0.07 0.89 0.62
COL033-1 1.97 0.57 0.55 1.93 1.3
COL034-1 - - - - -
COL035-1 8.75 1.12 1.46 2.13 0.78
COL036-1 - - 1.43 - -
COL037-1 - 0.9 - 1.19 0.86
COL038-1 - - - - -
COL039-1 0.04 0.28 1.75 1.31 1.11
COL041-1 - - - - -
COL042-1 - - - - -
COL042-6 40.77 42 - 88.27 7.43
COL042-7 - | 42.14 - || 143.46 4.78
COL042-8 41.5 | 41.99 - 76.1 5.69
COL042-9 - | 41.91 - - 11.16
COL043-1 - - - - -
COL043-3 - - - - -
COL044-1 1.99 0.35 5.05 0.99 1.01
COL044-6 - - - - -
COL044-7 - - - - -
COL044-8 - - - - -
COL044-9 - - - - -
COL045-1 0.48 0.14 0.72 0.95 1.09
COL046-1 - - - - -
COL047-1 - - - - -
COL048-1 0.03 0.02 0.05 0.84 0.65
COL049-1 - - - - -
COLO050-1 0.02 0.02 0.02 0.83 0.63
COLO051-1 0.01 0.01 0.02 0.83 0.6
COL052-1 0.03 0.03 0.03 0.79 0.59
COL053-1 0.02 0.01 0.02 0.81 0.58
COL056-1 0.02 0.01 0.01 0.79 0.61
COLO057-1 - 0.89 26.46 2.42 1.31
COLO058-1 0.01 0.03 0.02 0.83 0.61
COL058-2 0.06 0.03 0.03 0.84 0.64

49

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
COL058-3 0.06 0.03 0.05 0.83 0.61
COL059-1 1.57 0.02 0.05 0.79 0.62
COL060-1 1.27 1.27 1.28 2.07 2.01
COL060-2 0.02 0.02 0.02 0.82 0.62
COL.060-3 0.02 0.03 0.02 0.81 0.6
COL061-1 1.28 1.27 1.28 2.08 1.98
COL061-2 0.01 0.01 0.02 0.82 0.59
COL061-3 0.01 0.01 0.02 0.82 0.61
COL062-1 14.93 | 14.87 14.9 15.73 17.47
COL062-2 0.01 0.02 0.01 0.82 0.6
COL062-3 0.02 0.01 0.01 0.82 0.58
COL063-1 18.67 | 18.69 18.69 19.51 21.54
COL063-2 0.02 0.02 0.02 0.82 0.61
COL063-3 0.01 0.03 0.02 0.82 0.58
COL063-4 0.01 0.01 0.02 0.82 0.6
COL063-5 0.02 0.03 0.03 0.81 0.61
COL063-6 0.02 0.02 0.02 0.82 0.59
COL064-1 - - - - -
COL064-10 0.02 0.01 0.02 0.98 0.69
COL064-11 0.01 0.02 0.02 0.82 0.6
COL064-2 0.02 0.02 0.02 0.81 0.57
COL064-3 0.02 0.02 0.01 0.82 0.58
COL064-4 0.02 0.01 0.02 0.82 0.63
COL064-5 0.02 0.02 0.01 0.82 0.59
COL064-6 0.02 0.02 0.02 0.82 0.64
COL064-7 0.01 0.02 0.02 0.83 0.6
COL064-8 0.02 0.01 0.02 0.82 0.6
COL064-9 0.02 0.02 0.02 0.82 0.61
COL065-1 110.82 | 111.26 110.73 112.9 122.44
COL066-1 - - - - -
COL066-2 0.08 0.46 0.06 1.65 0.76
COL066-3 0.08 0.46 0.05 1.57 0.78
COL067-1 - - - - -
COL068-1 - - - - -
COL069-1 - - - - -
COL070-1 26.21 0.15 1.23 1.09 0.66
COLO71-1 - - - - -
COL072-1 - - - - -
COL073-1 - - - - -
COLO075-2 0.15 0.02 0.05 0.96 0.63
GRP001-2 0.1 0.02 0.02 0.85 0.57
GRP001-4 0.12 0.03 0.01 0.88 0.56
GRP002-2 28.29 0.49 1.74 1.31 1.11
GRP002-3 - 0.74 - 1.64 0.89

50

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
GRP002-4 - 0.72 - 1.58 0.83
GRP010-4 0.08 0.02 0.02 0.86 0.57
GRP011-4 0.52 0.02 0.02 0.89 0.58
GRP012-4 0.08 0.02 0.02 0.89 0.57
GRP0O14-1 - 3.62 10.05 3.1 2.29
GRP022-2 0.01 0.02 0.02 0.84 0.58
GRP023-2 0.01 0.02 0.02 0.86 0.56
GRP114-1 - | 48.91 1.12 21.31 22.04
GRP115-1 - 0.03 0.37 0.88 0.61
GRP116-1 - 0.02 0.27 0.9 0.6
GRP117-1 - 0.03 0.25 0.87 0.6
GRP118-1 - 0.03 0.22 0.86 0.6
GRP119-1 - 2.29 19.39 2.43 1.87
GRP120-1 - 2.31 13.64 2.39 1.89
GRP121-1 - 2.3 13.49 2.44 1.9
GRP122-1 - 2.66 2.13 2.54 1.92
GRP136-1 0.03 0.02 0.02 0.93 0.58
GRP137-1 0.04 0.02 0.02 0.91 0.57
GRP138-1 - 7.79 0.13 23.67 24.99
GRP139-1 0.89 0.11 0.03 2 1.35
GRP140-1 - 7.82 0.12 23.97 22.15
GRP141-1 50.97 0.11 0.18 1.96 1.45
GRP142-1 0.28 0.02 0.02 0.92 0.56
GRP143-1 0.05 0.03 0.03 0.97 0.58
GRP144-1 0.03 0.02 0.02 0.93 0.56
GRP145-1 0.18 0.03 0.03 0.97 0.58
GRP146-1 0.91 0.41 0.03 2.06 1.36
GRP147-1 - | 10.86 0.34 || 23.43 24.93
GRP148-1 - | 10.86 0.35 23.63 22.12
GRP149-1 32.01 0.41 0.18 1.94 1.46
GRP150-1 0.08 0.04 0.02 0.85 0.58
GRP151-1 0.39 0.02 0.03 0.88 0.57
GRP152-1 0.14 0.02 0.03 0.92 0.57
GRP153-1 0.03 0.03 0.02 0.91 0.57
GRP154-1 0.04 1.66 0.02 3.73 2.15
GRP155-1 0.03 2.25 0.03 3.84 2.24
GRP156-1 67.39 2.25 0.03 3.84 2.23
GRP157-1 0.04 1.06 0.02 2.65 1.41
GRP158-1 0.03 1.44 0.02 2.7 1.41
GRP159-1 0.88 1.06 0.03 2.67 1.39
GRP160-1 0.02 0.02 0.02 0.92 0.58
GRP161-1 0.02 0.01 0.02 0.92 0.57
GRP162-1 - 0.07 0.22 0.97 0.63
GRP163-1 - 0.07 0.22 0.98 0.62

51

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
GRP164-1 - - - - -
GRP164-2 - - - - -
GRP165-1 0.63 1.09 0.03 2.56 1.86
GRP165-2 0.76 1.13 0.03 2.6 1.51
GRP166-1 - 1.31 18.11 2.92 2.1
GRP166-2 - 1.37 2.71 2.98 1.66
GRP166-3 0.64 | 11.26 0.02 5.89 4.12
GRP166-4 0.77 | 11.41 0.02 6.06 3.25
GRP167-1 - | 49.37 2.52 22.82 6.87
GRP167-2 - | 49.16 1.11 22.68 12.63
GRP167-3 - - - - -
GRP167-4 - - 129.46 - -
GRP167-5 - 5.39 2.5 5.03 4.45
GRP168-1 0.03 1.66 0.02 3.33 2.15
GRP168-2 0.04 2.25 0.03 3.44 2.26
GRP169-1 - 9.45 - 7.26 6.51
GRP169-2 - 9.48 - 7.23 6.55
GRP170-1 - - 0.89 - -
GRP170-2 - - 0.93 - -
GRP170-3 - - 0.92 - -
GRP170-4 - - 0.89 - -
GRP171-1 - 6.8 1.07 || 77.58 96.94
GRP171-2 - 1.58 1.07 3.13 1.78
GRP172-1 - 1.57 1.06 3.12 2.31
GRP172-2 - 6.81 1.07 | 77.02 128.39
GRP173-1 - 1.37 - 2.82 2.42
GRP174-1 - 1.35 - 2.83 2.22
GRP175-1 0.63 - 0.04 - -
GRP175-2 0.76 | 57.98 0.06 || 43.71 35.76
GRP175-3 68.45 | 58.28 0.32 || 44.11 45.91
GRP175-4 0.88 - 0.32 - -
GRP176-1 0.04 1.35 0.04 2.91 1.36
GRP176-2 0.03 1.35 0.04 2.92 1.75
GRP177-1 - - - - -
GRP177-2 - - - - -
GRP178-1 - - 96.73 - -
GRP178-2 - - 96.77 - -
GRP179-1 - - - - -
GRP179-2 - - - - -
GRP179-3 - - - - -
GRP180-1 - - - - -
GRP180-2 - - - - -
GRP181-1 - - - - -

GRP181-2

52

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
GRP181-3 - - - - -
GRP181-4 - - - - -
GRP182-1 0.28 0.02 0.03 0.83 0.57
GRP182-2 0.28 0.02 0.03 0.82 0.59
GRP182-3 0.39 0.02 0.02 0.83 0.58
GRP182-4 0.39 0.03 0.02 0.83 0.59
GRP183-1 - - - - -
GRP183-2 - - - - -
GRP183-3 - - - - -
GRP183-4 - - - - -
GRP184-1 - - - - -
GRP184-2 - - - - -
GRP184-3 - - - - -
GRP184-4 - - - - -
GRP185-1 - - 59.74 - -
GRP185-2 - - 60.1 - -
GRP185-3 - - - - -
GRP185-4 - - - - -
GRP186-1 - - - - -
GRP186-2 - - - - -
GRP186-3 - 8.61 0.25 6.73 6
GRP186-4 132.81 8.6 0.04 6.7 5.14
GRP187-1 - - - - -
GRP188-1 0.15 0.03 0.02 0.82 0.58
GRP188-2 0.14 0.02 0.03 0.83 0.6
GRP189-1 0.04 0.03 0.02 0.81 0.57
GRP189-2 0.04 0.02 0.02 0.82 0.6
GRP190-1 - | 12.83 12.3 17.14 12.96
GRP190-2 - 12.82 12.53 17.18 13.01
GRP191-1 - 12.82 12.53 17.33 12.93
GRP191-2 -1 12.85 12.29 17.24 12.59
GRP192-1 98.75 - 0.32 - 1.13
GRP193-1 - - 96.63 - -
GRP193-2 - - 96.92 - -
LCL109-2 - - - - 36.94
[.CL.109-6 - - - - -
LCL110-2 - 0.06 0.07 0.88 0.6
LCL111-2 - - 148.45 - 17.77
LCL112-2 - 0.06 0.09 0.88 0.61
LCL113-2 - 0.16 0.11 0.92 0.67
LCL114-2 - 0.13 0.08 0.9 0.65
LCL115-2 - 0.07 0.07 0.91 0.63
LCL116-2 - 0.18 0.17 0.97 0.84
L.CL132-1 0.38 0.03 0.03 0.81 0.57

53

CHAPTER 5. RESULTS

Problem fifo add | occnest | otsm | otsm-drgps
LCL133-1 102.06 0.07 - 0.86 0.62
LCL134-1 - 0.03 0.03 0.83 0.58
LCL135-1 - 0.03 0.03 0.81 0.57
LCL136-1 - - - - -
LCL137-1 - - - - -
LCL138-1 - - - - 19
LCL139-1 - 0.05 0.14 0.89 0.61
LCL140-1 - 0.06 0.08 0.89 0.61
LCL141-1 - 0.14 0.1 0.91 0.64
LCL153-1 - 5.76 - 21.63 6.6
LCL154-1 - 5.76 - 21.63 6.62
L.CL155-1 - 5.77 - 21.68 6.6
LCL156-1 - 0.24 - 1.12 0.81
LCL157-1 - 0.37 - 1.18 0.97
LCL158-1 - 5.77 - 21.62 6.61
LCL159-1 - 5.84 - 58.99 7.46
LCL160-1 - 5.75 - 21.65 6.63
LCL161-1 10.33 0.29 - 1.29 0.87
LCL162-1 - - - - -
L.CL.163-1 - - - - -
LCL164-1 10.65 0.29 - 1.32 0.9
LCL165-1 - - - - -
LDA001-1 - 0.03 0.02 0.79 0.57
LLDA002-1 - 5.72 138.34 || 25.58 9.18
LDA007-3 - 0.03 0.03 0.81 0.57
RNG007-4 102.7 0.02 0.4 0.82 0.58
RNGO008-3 - 0.37 21.34 1.56 1.15
RNGO008-4 - 0.38 21.32 1.58 1.14
RNGO008-7 - 1.65 40.58 2.48 1.89
RNG009-5 - - - - -
RNG009-7 -1 133.14 - - 158.55
RNGO010-5 - - - - -
RNGO010-6 - - - - -
RNGO010-7 - - - - -
RNGO11-5 0.05 0.92 0.02 1.42 0.84
RNGO012-6 - 17.79 131.82 18.17 2.36
RNGO013-6 - 17.79 1.28 18.14 2.34
RNGO014-6 - | 17.57 0.98 13.05 1.54
RNGO015-6 - 32 0.34 || 23.74 2.02
RNGO016-6 - | 32.27 0.5 34.01 4.22
RNGO017-6 - | 17.86 0.61 18.09 2.38
RNGO018-6 - 17.62 04 13.01 1.54
RNG019-6 - - - - -

RNGO019-7

54

CHAPTER 5. RESULTS

Problem

fifo

occnest

Otsm-dTSjw

RNG020-6

RNGO020-7

RNGO021-6

RNGO021-7

RNG023-6

0.42

15.68

RNG023-7

0.52

15.52

RNG024-6

0.33

15.72

RNGO024-7

0.4

15.49

RNGO025-4

RNGO025-5

RNG025-6

RNG025-7

RNG025-8

RNG025-9

RNGO026-6

RNG026-7

RNGO027-5

RNGO027-6

RNG027-7

RNG027-8

RNG027-9

RNG028-5

RNG028-6

RNG028-7

RNG028-8

RNGO028-9

RNG029-5

RNG029-6

RNG029-7

RNG030-6

RNGO030-7

RNGO031-6

RNGO031-7

RNG032-6

RNG032-7

RNG033-6

RNG033-7

RNG033-8

RNGO033-9

RNGO035-7

RNG036-7

ROBO001-1

ROB002-1

ROB003-1

5.03

55

CHAPTER 5. RESULTS 56

Problem fifo add | occnest | otsm | otsm-drgps
ROB004-1 - 5.79 11.61 5.73 4.34
ROBO005-1 - - -

ROB006-1 - - - - -
ROB006-2 - - - - -
ROB007-1 - - - - -
ROB007-2.1 - - - - -
ROB007-2.2 - - - - -
ROB007-2.3 - - - - -
ROBO008-1 - - - - -
ROB009-1 - - - - -
ROB010-1 0.38 0.1 0.1 0.91 0.67
ROBO013-1 - 0.12 0.11 0.92 0.7
ROB020-1 - - - - -
ROB020-2.1 - - - - -
ROB020-2.2 - - - - -
ROB020-2.3 - - - - -
ROB022-1 - - - - 44.84
ROB023-1 - - 22.96 - 125.61
ROB024-1 - - - - -
ROB026-1 - - - - -
ROB027-1 - - - -
SYNO080-1 0.01 0.02 0.01 0.78 0.52
SYNO083-1 0.02 0.01 0.02 0.81 0.55
SYN305-1 0.03 0.01 0.02 0.78 0.6

Table 5.1: Performance of evaluation strategies (in detail)

Strategy ‘ No ex. sel. ‘ SFTR ‘ Srsm ‘ OMIx ‘ ORND ‘
Problems solved 248 259 263 262 239
Time taken (seconds) | 1936.69 1891.41 | 2168.11 | 2099.37 | 1764.12

Note: 403 problems of the TPTP library had to be proven within a time limit
of 180 seconds for each problem. Ordered TSM learning was used with the
following parameters. dprp: max_examples = 5, max delta = 1 and all weights
set to 1; drsps: max_examples = 10, max_delta = 0.5; dp/rx: max_examples =
10, max_delta = 0.5 and all weights set to 1.

Table 5.2: Performance of example selection strategies

The overhead of the example selection mechanism has been reduced by
applying a binary tree for sorting the examples. It is less than half a second in
the average.

During the extensive test runs, we were able to prove three problems that
have not been solved by an ATP system before (according to the TPTP li-
brary documentation). Two of the problems were solved by other state-of-

CHAPTER 5. RESULTS 57

the-art provers as well, but there is no recorded proof for COL042-9 except
DISCOUNTs.

The new improved version of DISCOUNT, called DISCOUNT-TSM 2.1,
took part in the unit equality division of the CADE-15 System Competition
[Sut98] and achieved a satisfying third rank (see table 5.3). We used or-
dered tsm_learn with drsys example selection and the standard parameters
(max_examples=10 and max_delta=0.5) during the competition.

Prover Problems solved | Average time
(seconds)

Waldmeister 798 30 0.62
Otter 3.0.5 25 10.68
DISCOUNT-TSM 2.1 25 28.32
Bliksem 1.00 25 47.43
Gandalf c-1.1 25 60.96
SPASS 1.0.0a 23 33.73

E 0.1 19 31.65
SCOTT v3.1.0 19 78.57

Note: 30 Problems of the TPTP library had to be solved within a time limit
of 300 seconds per problem.

Table 5.3: CASC-15 Results

CHAPTER 5. RESULTS 58

E B P _E
< x| O
O ; D — (a]

18 - Ero
3 s | K
3R Ro
% a
; 0

3 ﬁj T :<DEZ
o i]
< = r
P 3 1

. | - O

Problem Domain

!
T
GRP

BOO COL

180
120
120
180

(Spuogss) swil)

Note: dprpg ran with max_examples = 5 and max_delta = 1 and all weights
set to 1.

Figure 5.1: dprp’s performance gain by selecting examples

CHAPTER 5. RESULTS

3 £
o NN Ia
=3 — u
5 =

14 SESEN -
O - : : :
=

180

Note:

120
60
60

120

180

(Spuogss) swil)
drsar ran with max_examples = 10 and max delta = 0.5.

Figure 5.2: drgar’s performance gain by selecting examples

ROB SYN

LCL LDA
RNG

Problem Domain

GRP

BOO COL

59

Chapter 6

Conclusion

We presented metrics that measure the distance between problem specifications,
thus enabling the prover to select training examples that are similar to the
problem to be proven. For this purpose, we used two different approaches that
both revealed advantages and disadvantages.

This resulted in a third method that combines the previous two and outperforms
both of them.

The results of all three selection techniques confirmed the need for knowledge
restriction of TSM-based learning. Each of them proved more problems than
the regular learning strategy using all examples available.

We showed that the distance measures are appropriate to decide on similar-
ity of problems by introducing another strategy that selects a fixed number of
examples purely at random. This method performs poorly, even worse than the
conventional learning strategy without example selection. Solely restricting the
used knowledge does not increase performance. The crucial step is to decide
which knowledge can be omitted and which is important.

When we used ordered TSM learning in the final evaluation, the TSM-based
measure of similarity surprisingly yielded better results than both other strate-
gies. One reason for this might be that we tuned all parameters for the regular
TSM learning. The selection mechanism reacts sensitively to minor parameter
changes. We firmly believe that parameter tuning for ordered TSM learning
will result in performance gains for all three selection techniques. Unfortunately,
parameter test runs take much time and the parameter space is extremely large.

The results of this work emphasize the power of learning heuristics, whose
development is still at the beginning, having much room for improvements.

Finally, DISCOUNT’s development might come to an end. DISCOUNT was
intended as an experimental prover for the demonstration of the TEAMWORK
method and has since then been modified by many different people for various
reasons.

It seems to be a challenging task to couple DISCOUNT’s strong learn-
ing heuristics with a faster inference engine by creating a new state-of-the-art
prover.

60

Appendix A

An Example Proof

This appendix contains DISCOUNT’s proof of the Lusk3 problem®. The fol-
lowing problem specification is handed to DISCOUNT:

MODE

NAME

ORDERING

EQUATIONS

CONCLUSION

PROOF
Lusk3

XKBO
£f:5 > j:4 > g:3>0:1>b:1>a:l

j (0,x) = X
j (x,0) = x
j (g (x),x) =0
j (x,g (x)) =0

j G (x,m,2) =j (x,j (y,2))

i (x,y = j(y,x)

f (f (x,y),2) = f (x,f (y,2))

f (x,j (y,2)) = j (£ (x,y),f (x,2))
£ G (x,y),2) =3 (€ (x,2),f (y,2))
f (x,x) = x

f (a,b) = f (b,a)

+*

#

left identity
right identity

left inverse
right inverse

associativity
commutativity

associativity

distributivity

X*X = X

theorem

DISCOUNT then generates a pruned PCI. listing of the proof.

0 : tes-eqn :
1 : tes-eqn
2 : tes-eqn
3 : tes-eqn :

f(x,x) = x : initial:(0,0,T,0)

: j00,x) = x : initial:(0,0,T,0)

: j(x,00)) = x : initial:(0,0,T,0)
j(g(x),x) = 0() : initial:(0,0,T,2)

'A ring with #? = x is Abelian.

61

APPENDIX A. AN EXAMPLE PROOF

102

108 :
120 :
152 :
167 :
168 :
170 :

171
172

173 :
176 :
177
196 :
247 :
289 :

309

348 :
367 :
401 :
402 :
403 :
408 :
505 :
621 :
660 :
667 :
746 :

: tes-eqn : x =
100 :
101 :

jly.j(z,j(x,g(i(y,2)))))

¢ tes-eqn : j(x,g(x)) = 0() : initial:(0,0,T,0)

¢ tes-eqn : j(x,y) = j(y,x) : initial:(0,0,T,186)

: tes-eqn : j(j(x,y),z) = j(x,j(y,z)) : initial:(0,0,T,0)

: tes-eqn : f(£f(x,y),z) = f(x,f(y,z)) : initial:(0,0,T,41)

: tes-eqn : f(x,j(y,z)) = j(£(x,y),f(x,z)) : initial:(0,0,T,0)

: tes-eqn : £(j(x,y),z) = j(£(x,z),f(y,z)) : initial:(0,0,T,0)

: tes-goal : £(a(),b()) = £(b(),a()) : hypothesis:(0,0,T,0)

: tes-rule : f(x,x) -> x : orient(O,u):(0,0,T,11)

: tes-rule : j(O0(),x) -> x : orient(1,u):(0,0,T,76)

¢ tes-rule : j(x,00)) -> x : orient(2,u):(0,0,T,36)

: tes-rule : j(g(x),x) -> 0) : orient(3,u):(0,0,F,2)

: tes-eqn : 00) = g(0()) : cp(14,L,13,L):(1,1,F,26)

¢ tes-rule : g(0()) -> 00) : orient(15,x):(1,1,F,26)

: tes-rule : j(x,g(x)) -> 000 : orient(4,u):(0,0,T,67)

: tes-rule : j(j(x,y),z) -> j(x,j(y,z)) : orient(6,u):(0,0,T,122)
: tes-eqgn : j(x,j(g(x),y)) = j(0O,y) : cp(40,L.1,19,L):(0,0,T,0)
: tes-eqn : j(x,j(g(x),y)) =y : tes-red(48,R,12,L):(0,0,T,0)

: tes-eqn : j(x,j(y,z)) = j(y,j(z,x)) : cp(5,L,40,L):(0,0,T,218)

: tes-eqn : j(x,j(y,z)) = j(j(y,x),z) : cp(40,L.1,5,L):(1,1,F,214)
: tes-eqn : j(x,j(y,z)) = j(y,j(x,z)) : tes-red(56,R,40,L):(2,1,F,214)
¢ tes-rule : j(x,j(g(x),y)) -> y : orient(49,u):(0,0,T,81)

: tes-eqn : g(g(x)) = j(x,000) : cp(60,L.2,19,L):(0,0,T,0)

: tes-eqn : g(g(x)) = x : tes-red(66,R,13,L):(0,0,T,0)

: tes-eqn : x = j(y,j(z,j(g(jly,z)),x))) : cp(60,L,40,L):(1,1,F,128)
: tes-eqn : x = j(y,j(x,g(y))) : cp(60,L.2,5,L):(0,0,T,0)

: tes-rule : g(g(x)) -> x : orient(67,u):(0,0,T,24)

: tes-eqn : x = j(g(y),j(y,x)) : cp(60,L.2.1,84,L):(0,0,T,0)

¢ tes-rule : j(x,j(y,g(x))) -> y : orient(82,x):(0,0,T,103)

: ¢p(91,L,40,L):(1,1,F,99)

919 : tes-rule
989 : tes-rule

jlg(x),g(y)) -> g(i(y,x))

1048 : tes-eqn : x = j(y,j(g(j(z,y)),j(glg(z)),x))) :
1049 : tes-eqn : x = j(y,j(g(j(z,y)),j(z,x)))

1050 : tes-eqn : x = j(y,j(z,j(x,g(j(z,y)))))

1089 : tes-eqn : x = j(y,j(z,j(g(i(z,y)),x)))

1162 : tes-rule : j(x,j(y,j(z,g(j(x,y))))) => z :
1325 : tes-rule : j(x,j(y,j(z,g(x)))) -> j(y,z)

s jx, iy, (g x,y)),2))) => z

tes-eqn : j(x,y) = j(z,j(x,j(y,g(2)))) : cp(91,L.2,40,L):(1,1,F,131)
tes-eqn : j(x,j(j(y,g(x)),z)) = j(y,z) : cp(40,L.1,91,L):(1,1,F,158)

: tes-eqn : j(x,j(y,j(g(x),z))) = j(y,z) : tes-red(101,L.2,40,L):(2,1,F,158)
tes-eqn : x = j(g(y),j(x,y)) : cp(91,L.2.2,84,L):(0,0,T,0)
tes-rule : j(g(x),j(x,y)) -> y : orient(88,x):(0,0,T,23)
tes-rule : j(g(x),j(y,x)) -> y : orient(108,x):(0,0,T,25)
tes-eqn : x = j(g(j(g(x),y)),y) : cp(152,L.2,60,L):(1,1,F,23)
tes-eqn : x = j(y,g(j(g(x),y))) : tes-red(167,R,5,L):(2,1,F,23)
tes-eqn : x = j(g(j(y,g(x))),y) : cp(152,L.2,91,L):(1,1,F,21)

: tes-eqn : x = j(y,g(j(y,g(x)))) : tes-red(170,R,5,L):(2,1,F,21)

: tes-eqn : g(x) = j(g(j(x,y)),y) : cp(152,L.2,120,L):(0,0,T,0)
tes-eqn : g(x) = j(y,g(j(x,y))) : tes-red(172,R,5,L):(0,0,T,0)
tes-eqn : g(x) = j(g(j(y,x)),y) : cp(152,L.2,152,L):(1,1,F,75)
tes-eqn : g(x) = j(y,g(j(y,x))) : tes-red(176,R,5,L):(2,1,F,75)
tes-rule : j(x,g(j(g(y),x))) -> y : orient(168,x):(2,1,F,23)
tes-rule : j(x,g(j(x,g(y)))) -> y : orient(171,x):(2,1,F,21)
tes-rule : j(x,g(j(y,x))) => g(y) : orient(173,x):(0,0,T,77)

1 tes-eqn : g(j(x,g(y))) = j(y,g(x)) : cp(60,L.2,289,L):(1,1,F,41)
tes-rule : j(x,g(j(x,y))) -> g(y) : orient(177,x):(2,1,F,75)
tes-eqn : g(j(g(x),y)) = j(x,g(y)) : cp(348,L.2.1,60,L):(3,2,F,62)
tes-rule : f(£f(x,y),z) -> f(x,f(y,z)) : orient(7,u):(0,0,F,41)
tes-eqn : f(x,f(y,f(x,y))) = £(x,y) : cp(401,L,11,L):(1,1,F,44)
tes-eqn : f(x,f(x,y)) = f(x,y) : cp(401,L.1,11,L):(1,1,F,26)
tes-rule : f(x,f(x,y)) -> f(x,y) : orient(403,u):(1,1,F,26)
tes-eqn : j(x,j(y,z)) = j(z,j(y,x)) : cp(54,L.2,5,L):(1,1,F,214)
tes-rule : g(j(x,g(y))) => j(y,g(x)) : orient(309,u):(1,1,F,41)
tes-eqn : j(g(x),g(y)) = g(j(y,x)) : cp(621,L.1.2,84,L):(2,2,F,46)
tes-rule : g(j(g(x),y)) -> j(x,g(y)) : orient(367,u):(3,2,F,62)
tes-rule : f(x,f(y,f(x,y))) -> £f(x,y) : orient(402,u):(1,1,F,44)

orient (660,u):(2,2,F,46)

orient(68,x):(1,1,F,128)

: ¢cp(989,L.2.2.1.1,5,L):(2,2,F,128)

orient(99,x):(1,1,F,99)
: orient(100,x):(1,1,F,131)

62

cp(989,L.2.2.1.1,289,L):(2,2,F,99)
: tes-red(1048,R.2.2.1,84,L):(3,2,F,99)
: tes-red(1049,R.2,54,L):(4,2,F,99)

APPENDIX A. AN EXAMPLE PROOF 63

1364 : tes-eqn : j(x,y) = j(j(y,z),j(x,g(z))) : cp(1325,L.2.2,348,L):(3,2,F,102)
1365 : tes-eqn : j(x,y) = j(g(z),j(j(y,z),x)) : tes-red(1364,R,54,R):(4,2,F,102)
1366 : tes-eqn : j(x,y) = j(g(z),j(y,j(z,x))) : tes-red(1365,R.2,40,L):(5,2,F,102)
1385 : tes-eqn : j(x,y) = j(g(=z),j(x,j(y,z))) : cp(1325,L.2.2.2,84,L):(2,2,F,102)
1447 : tes-rule : j(x,j(y,j(g(x),z))) -> j(y, z) : orient(102,u):(2,1,F,158)

1617 : tes-rule : j(x,j(y,j(z,g(j(y,x))))) -> z : orient(1050,x):(4,2,F,99)

1828 : tes-rule : j(x,j(y,j(g(j(y,x)),2z))) -> z : orient(1089,x):(2,2,F,128)
2111 : tes-rule : j(g(x),j(y,j(x,2))) -> j(z,y) : orient(1366,x):(5,2,F,102)
2366 : tes-rule : j(g(x),j(y,j(z,x))) -> j(y,z) : orient(1385,x):(2,2,F,102)
2625 : tes-rule : j(£(x,y),f(x,z)) -> £(x,j(y,z)) : orient(8,x):(0,0,T,66)

2626 : tes-eqn : f(x,j(x,y)) = j(x,f(x,y)) : cp(2625,L.1,11,L):(0,0,T,0)

2627 : tes-eqn : f(x,j(y,x)) = j(£f(x,y),x) : cp(2625,L.2,11,L):(0,0,T,0)

2628 : tes-eqn : f(x,j(y,x)) j(x,f(x,y)) : tes-red(2627,R,5,L):(0,0,T,0)

2666 : tes-rule : f(x,j(x,y)) -> j(x,f(x,y)) : orient(2626,u):(0,0,T,57)

2679 : tes-eqn : j(x,f(x,00))) = f(x,x) : cp(2666,L.2,13,L):(0,0,T,0)

2680 : tes-eqn : j(x,f(x,0())) = x : tes-red(2679,R,11,L):(0,0,T,0)

2685 : tes-eqn : j(x,f(x,j(g(x),y))) = f(x,y) : cp(2666,L.2,60,L):(1,1,F,64)
2686 : tes-eqn : j(x,f(x,j(y,g(x)))) = f(x,y) : cp(2666,L..2,91,L):(1,1,F,45)
2717 : tes-rule : j(x,f(x,00))) -> x : orient(2680,uw):(0,0,T,27)

2731 : tes-eqn : f(g(x),00)) = j(x,g(x)) : cp(60,L.2,2717,L):(0,0,T,0)

2732 : tes-eqn : f(g(x),000) = 0() : tes-red(2731,R,19,L):(0,0,T,0)

2777 : tes-rule : £(g(x),00)) -> 0() : orient(2732,u):(0,0,T,8)

2797 : tes-eqn : 0() = £(x,0()) : cp(2777,L.1,84,L):(0,0,T,0)

2800 : tes-rule : f(x,00)) -> 0() : orient(2797,x):(0,0,T,17)

2807 : tes-eqn : f(x,f(0(),y)) = £(00),y) : cp(401,L.1,2800,L):(1,1,F,27)

2821 : tes-rule : £(x,f(00,y)) -> £(00),y) : orient(2807,u):(1,1,F,27)

2863 : tes-rule : f(x,j(y,x)) -> j(x,f(x,y)) : orient(2628,u):(0,0,T,56)

2886 : tes-eqn : j(g(x),f(g(x),x)) = £(g(x),00)) : cp(2863,L.2,19,L):(0,0,T,0)
2887 : tes-eqn : j(g(x),f(g(x),x)) = 0() : tes-red(2886,R,2800,L):(0,0,T,0)

2947 : tes-rule : j(g(x),f(g(x),x)) -> 0() : orient(2887,u):(0,0,T,33)

2964 : tes-eqn : f(g(x),x) = j(x,00)) : cp(60,L.2,2947,L):(0,0,T,0)

2965 : tes-eqn : f(g(x),x) = x : tes-red(2964,R,13,L):(0,0,T,0)

3047 : tes-rule : f(g(x),x) -> x : orient(2965,u):(0,0,T,12)

3051 : tes-eqn : f(g(x),f(x,y)) = f(x,y) : cp(401,L.1,3047,L):(1,1,F,29)

3063 : tes-eqn : g(x) = f(x,g(x)) : cp(3047,L.1,84,L):(1,1,F,16)

3066 : tes-rule : f(x,g(x)) -> g(x) : orient(3063,x):(1,1,F,16)

3068 : tes-eqn : f(x,f(g(x),y)) = £(g(x),y) : cp(401,L.1,3066,L):(2,2,F,29)
3093 : tes-rule : f(g(x),f(x,y)) -> £f(x,y) : orient(3051,u):(1,1,F,29)

3155 : tes-rule : f(x,f(g(x),y)) -> £(g(x),y) : orient(3068,u):(2,2,F,29)

3230 : tes-rule : j(x,f(x,j(g(x),y))) -> £(x,y) : orient(2685,u):(1,1,F,64)
3364 : tes-rule : j(x,f(x,j(y,g(x)))) -> £f(x,y) : orient(2686,u):(1,1,F,45)
3460 : tes-rule : j(f(x,y),f(z,y)) -> £(j(x,z),y) : orient(9,x):(0,0,T,63)

3461 : tes-eqn : f(j(x,y),x) = j(x,£f(y,x)) : cp(3460,L.1,11,L):(0,0,T,0)

3462 : tes-eqn : f(j(x,y),y) = j(£(x,y),y) : cp(3460,L.2,11,L):(0,0,T,0)

3463 : tes-eqn : f(j(x,y),y) = j(y,f(x,y)) : tes-red(3462,R,5,L):(0,0,T,0)

3499 : tes-eqn : f(j(x,y),£f(00),z)) = j(£(00),z) ,£f(y,£(00),2z))) : cp(3460,L.1,2821,L):(2,2,F,41)
3500 : tes-eqn : £(0(),x) = j(£(00),x),f(y,£(00) ,x))) : tes-red(3499,L,2821,L):(3,2,F,41)
3501 : tes-eqn : £f(0(),x) = j(£(0(),x),£(0(0),x)) : tes-red(3500,R.2,2821,L):(4,2,F,41)
3502 : tes-eqn : £(0(),x) £(0(),j(x,x)) : tes-red(3501,R,2625,L):(5,2,F,41)
3536 : tes-rule : £(0(),j(x,x)) -> £(0(),x) : orient(3502,x):(5,2,F,41)

3604 : tes-rule : f(j(x,y),x) -> j(x,f(y,x)) : orient(3461,u):(0,0,T,49)

3624 : tes-eqn : j(x,f(00),x)) = f(x,x) : cp(3604,L.1,13,L):(0,0,T,0)

3625 : tes-eqn : j(x,f(0(0),x)) = x : tes-red(3624,R,11,L):(0,0,T,0)

3626 : tes-eqn : j(x,f(g(x),x)) = £(00,x) : ¢cp(3604,L.1,19,L):(0,0,T,0)

3627 : tes-eqn : j(x,x) = £(0(),x) : tes-red(3626,L.2,3047,L):(0,0,T,72)

3676 : tes-rule : j(x,f(0(),x)) -> x : oriemnt(3625,u):(0,0,T,39)

3861 : tes-eqn : x = j(x,j(x,x)) : cp(3676,L.2,3627,R):(0,0,T,0)

3935 : tes-rule : j(x,j(x,x)) -> x : orient(3861,x):(0,0,T,52)

3975 : tes-eqn : g(x) = j(j(x,x),g(x)) : cp(289,L.2.1,3935,L):(0,0,T,0)

3976 : tes-eqn : g(x) = j(g(x),j(x,x)) : tes-red(3975,R,5,L):(0,0,T,0)

3977 : tes-eqn : g(x) j(x,j(x,g(x))) : tes-red(3976,R,54,L):(0,0,T,0)

3978 : tes-eqn : g(x) = j(x,00)) : tes-red(3977,R.2,19,L):(0,0,T,0)

3979 : tes-eqn : g(x) = x : tes-red(3978,R,13,L):(0,0,T,0)

4109 : tes-rule : g(x) -> x : oriemnt(3979,u):(0,0,T,0)

4120 : tes-rule : j(x,x) -> 0() : tes-red(19,L.2,4109,L):(1,0,F,28)

4124 : tes-rule : j(x,j(x,y)) -> y : tes-red(60,L.2.1,4109,L):(0,0,T,0)

APPENDIX A. AN EXAMPLE PROOF

64

4125 : tes-rule : j(x,j(y,x)) -> y : tes-red(91,L.2.2,4109,L):(1,0,F,46)

4130 : tes-rule : j(x,j(y,j(z,x))) -> j(y,z) : tes-red(1325,L.2.2.2,4109,L):(2,1,F,62)
4131 : tes-rule : j(x,j(y,j(x,2))) -> j(y,z) : tes-red(1447,L.2.2.1,4109,L):(3,1,F,61)
4153 : tes-rule : j(x,x) -> 00) : orient(4120,u):(1,0,F,28)

4154 : tes-rule : f£(0(),00)) -> £(0(),x) : tes-red(3536,L.2,4153,L):(6,2,F,13)

4155 : tes-eqn : 0() = £(0(),x) : tes-red(4154,L,11,L):(7,2,F,13)

4203 : tes-rule : £(0(),x) -> 0() : orient(4155,x):(7,2,F,13)

4247 : tes-rule : j(x,j(x,y)) -> y : orient(4124,u):(0,0,T,44)

4251 : tes-eqn : j(j(x,y),f(i(x,y),x)) = £(j(x,y),y) : cp(2863,L.2,4247,L):(0,0,T,0)
4252 : tes-eqn : j(j(x,y),j(x,f(y,x))) = £(j(x,y),y) : tes-red(4251,L.2,3604,L):(0,0,T,0)
4253 : tes-eqn : j(x,j(£f(y,x),j(x,y))) = £(j(x,y),y) : tes-red(4252,L,54,L):(0,0,T,0)
4254 : tes-eqn : j(x,j(j(x,y),f(y,x))) = £(j(x,y),y) : tes-red(4253,L.2,5,L):(0,0,T,0)
4255 : tes-eqn : j(x,j(x,j(y,f(y,x)))) = £(j(x,y),y) : tes-red(4254,L.2,40,L):(0,0,T,0)
4256 : tes-eqn : j(x,f(x,y)) = £(j(y,x),x) : tes-red(4255,L,4247,L):(0,0,T,0)

4325 : tes-rule : j(x,j(y,x)) -> y : orient(4125,u):(1,0,F,46)

4422 : tes-rule : f(j(x,y),y) -> j(y,f(x,y)) : orient(3463,u):(0,0,T,30)

4501 : tes-rule : j(x,j(y,j(z,x))) -> j(y,z) : orient(4130,u):(2,1,F,62)

4634 : tes-rule : j(x,j(y,j(x,2))) -> j(y,z) : orient(4131,u):(3,1,F,61)

4786 : tes-eqn : j(x,f(x,y)) = j(x,f(y,x)) : tes-red(4256,R,4422,L):(0,0,T,59)

4820 : tes-eqn : j(x,f(j(x,y),x)) = j(x,j(x,f(x,y))) : cp(4786,L.2,2666,L):(0,0,T,0)
4821 : tes-eqn : j(x,j(x,f(y,x))) = j(x,j(x,f(x,y))) : tes-red(4820,L.2,3604,L):(0,0,T,0)
4822 : tes-eqn : f(x,y) = j(y,j(y,f(y,x))) : tes-red(4821,L,4247,L):(0,0,T,0)

4823 : tes-eqn : f(x,y) = f(y,x) : tes-red(4822,R,4247,L):(0,0,T,0)

4991 : tes-final : f(a(),b()) = £(b(),a()) : instance(10,4823):(0,0,T,0)

In order to obtain more readable proofs, the proof program was developed.
It is able to convert a PCL proof to a proof appropriate to human understanding.

Terms that are to be replaced are underlined, while inserted terms are set
in bold face.

Consider the following set of axioms:

Axiom 1: f(x, x) = x

Axiom 2: j(0, x) = x

Axiom 3: j(x, 0) = x

Axiom 4: j(g(x),x) =0

Axiom 5: j(x, g(x)) =0

Axiom 6: j(X, y) = j(Y7 X)

Axiom 7: j(j(x,y), z) = j(x, j(y, 2))
Axiom 8: f(f(x, y), z) = f(x, f(y, 7))
Axiom 9: f(x, j(v, z)) = j(f(x, v), f(x, 7))

>
.
®)
3
—
<
—
[
—_
ke
<
~—
N
~—
Il
—
—~
—
—~
ke

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

APPENDIX A. AN EXAMPLE PROOF

Proof:

Lemma 1: j(u, j(g(u), 7)) = 7
i(u, j(g(u), 7)) j

Lemma 2: g(g(u)) =u

g(g(w)) j(u, j(g(u), g(g(u))))
i(u, 0)

Lemma 3: i(a(x), fg(7), 7)) = 0

i(g(2), f(g(2), 2)) i(f(g(2), 2), g(z))
i(f(g(=), z), 1(g(z), g(2)))
f(g(z), i(z, g(2)))
f(g(z), 0)

f(s(s(s(2))), 0)

i(g(g(2z)), i(g(g(g(z))), f(g(g(g(z))), 0)))
i(e(e(z), i(f(g(g(g(2))); g(g(g(2)))), f(g(z(g()),0)))

65

Z

f(g(g(g(2))), i(g(g(g(2))), 0)))

7)), 8(g(g(2))))

Lemma 4: f(j(v,y), v) =j(v, f(y, v))
fG(v,y),v) = j(f(v,v), f(y, v))
= (v, fy,v))

i(g(g(7)),
i(e(g(z)), f(g(s(s(2))), 8(g(g(2)))))
i(g(g(z))

APPENDIX A. AN EXAMPLE PROOF

Lemma 5: g(y) = j(i(y;), &(y))
g(y) i(&((y, i(ys ¥))), i(8(8((y, iy, ¥)))): 8()))

Gy ity ¥))), i(e(y), g(gli(y, i(ys ¥))))))
iy, it ¥)))s i(g(y), iy, 3(ys ¥))))
iy, it ¥)))s iely), ils(s(y)), iy, ¥))))
il iy, ¥))), iy ¥))

iG(ys ¥), 8G(ys i(ys ¥))))
3Gy, y), gy, iy, iy, 0)))))

G y), gGv i iy, ig(y), flg(y)s y)))))))
3Gy, ¥), glily, iy f(g(¥)s ¥)))))
G y), Gy, fG(ys 8(y))s ¥))))
3Gy, ¥), glily, f(0, ¥))))
3Gy, ¥), gfG(y, 0)5 ¥)))
G v), g(fly, ¥)))
G v)s 8(y)
Lemma 6: j(u, j(u, z)) = z
j(u, j(u, z)) = j(u, j(§(u, 0), z))
= j(u, j(j(u, j(u, g(u))), z))
= j(u, j§@(u, u), g(un)), z))
= j(v, i(g(u), 7))

Lemma 7: j(z, f(z, w)) = j(z, f(w, z))

j(Z7 f(Z7 W)) j(W7 j(W7 j(Z, f(Z, W))))
iw, j(G(w, 2), f(z, w)))
j(W, i(f(z, w), j(w, Z)))
iG(w, f(z, w)), j(w, 2))
iG(w, 2), j(w, f(z, w)))
iG(w, 2), £(G(w, 2), w))
iEG(w, 2z), w), j(w, 2))
JEG(w, 2), w), f(j(w, 2), j(w, 2)))
fG(w, 2), j(w, j(w, 2)))
f(i(w, 2), z)

i(f(w, z), f(z, z))

J(f(w, 2), =)

i(z, f(w, z))

APPENDIX A. AN EXAMPLE PROOF

Theorem 1: f(a, b) = f(b, a)
f(a, b) i(b, j(b, f(a, b)))
j(bv (i (b, a), b))
i(b, f(b, j(b, a)))
j(bv j(f(bv b)a f(ba a)))
i(b, j(b, f(b, a)))
f(b, a)

67

Appendix B

Problems Used

The subset of unit-equality problems of the TPTP library [SS97] we used
throughout this work contains 403 problems from eight domains.

BOO Boolean Algebra
A Boolean algebra is a set with two binary operations that are idempo-
tent, commutative, associative and mutually distributive and an unary
operation of complementation. Additionally, there are universal bounds
0 and 1. A Boolean algebra can be described by three equations: com-
mutativity, associativity, and the so-called Huntington equation.

COL Combinatory logic
Combinatory logic is a system satisfying two combinators and reflexiv-
ity, symmetry, transitivity, and two equality substitution axioms for a
function that exists implicitly for applying one combinator to another.

GRP Groups
A group is a set A and a binary, associative operation + : A X A — A
with an identity element i € A| Va € A: i+ a = a and each element
z € G hasits inverse y € G| 24y =1.

LCL Logic Calculi
A logic calculus consists of axioms and inference rules that can be used
to prove theorems.

LDA Left distributive Algebra
Left distributive algebras are algebras with a binary operation o generated
by a single element 1 using the left distributive law ao(boc) = aobo(aoc).

RNG Rings
A ring is an Abelian (commutative) group with another binary, associa-
tive, and distributive operation o : A X A — A with an identity element
jeEAl YaeA: joa=a.

ROB Robbins Algebra
A Robbins algebra is defined exactly like a Boolean algebra but the Hunt-
ington equation is replaced by the Robbins equation. It was actually

68

APPENDIX B. PROBLEMS USED 69

shown by an ATP system (EQP), that every Robbins algebra is a Boolean
algebra [McC97].

SYN Syntactic
Syntactic problems are problems without an obvious semantic interpreta-
tion.

Appendix C

Changes to DISCOUNT

C.1 New Command-Line Options

As dprrx subsumes dppgr and Spgar, the final implementation just features
dprx- Setting wrgys to 0 results in dppg; setting all feature weights to 0 yields

drsar.

-max_examples <arg> Maximum number of examples used for building the

TSM (Default: 10)

-max_delta <arg> Only examples with dyr7x < <arg> will be used for learning
(Default: 0.5)

-w_TSM <arg> Weight of d7gar (Default: 1)

-w_NA <arg> Feature-weight: Number of Axioms (Default: 0)

-w_AD <arg> Feature-weight: Average term Depth (Default: 0)

-w. DD <arg> Feature-weight: Depth standard Deviation (Default: 0)
-w_GD <arg> Feature-weight: Goal Depth (Default: 0)

-w_AF <arg> Feature-weight: Arity Frequency (Default: 0)

-N or -no_selection Disable example selection (Default: false)

70

APPENDIX C. CHANGES TO DISCOUNT 71

C.2 Knowledge Base Maintenance

The new knowledge base is in version 1.2 format and contains an additional
flag for example selection (see figure C.1).

Version = "1.2 (Mar 2 1998)"

PreserveArity = TRUE
PosAndNeg = FALSE
HasSpecDoms = FALSE
HasGoalDoms = FALSE
HasSelData = TRUE

Figure C.1: An example kb_variables file

kb_create now also creates a folder called SELECTIONDATA, and kb_insert
computes the features and inserts them and the axioms of the given proof into
SELECTIONDATA.

Both programs use the new option “~E” to ignore example selection.

Bibliography

[AA90]

[Ave95]
[AD93]

[BDP8Y]

[Bir35]

[DF94]

[Duf95]

Anantharaman, D.; Andrianarievelo, N.: Heuristical criteria in
refutational theorem proving, Proc. DISCO’90, LNCS 429:184-193,
1990.

Avenhaus, J.: Reduktionssysteme, Springer, 1995.

Avenhaus, J.; Denzinger, J.: Distributing equational theorem
proving, Proc. of the RTA-93, Montreal, LNCS 690:62-76, Springer,
1993.

Bachmair, L.; Derschowitz, N.; Plaisted, D.A.: Completion
without Failure, Coll. on the Resolution of Equations in Algebraic
Structures, Austin, Academic Press, 1989.

Birkhoff, G.: On the Structure of Abstract Algebras, Proc. Cam-
bridge Philos. Society, 31:433-454, 1935.

Denzinger, J.; Fuchs, M.: Goal Orientated Fquational Theo-
rem Proving Using Teamwork, Proc. 8th KI-94, Saarbriicken, LNAI
861:343-354, Springer, 1994.

Dufner, G.: Topologie, Skript zur Vorlesung im SS95, Department
of Mathematics, Technical University Munich, 1995.

[DFGS98] Denzinger, J.; Fuchs, M.; Goller, C.; Schulz, S.: Learning

[DKS97]

[DS94]

[DS95]

from Previous Proof Fzperience, Journal of Symbolic Computation,
to appear, 1998.

Denzinger, J.; Kronenburg, M.; Schulz, S.: DISCOUNT: A
Distributed and Learning Fquational Prover, Journal of Automated

Reasoning, 18(2):189-198, 1997.

Denzinger, J.; Schulz, S.: Analysis and Representation of Fqua-
tional Proofs Generated by a Distributed Completion Based Proof Sys-
tem, SEKI-Report SR-94-05, Kaiserslautern, 1994.

Denzinger, J.; Schulz, S.: Automatic Acquisition of Search Control
Knowledge from Multiple Proof Attempts, Journal of Information and
Computation, to appear, 1998.

72

BIBLIOGRAPHY 73

[DSY6a]

[DS96b]

[Gue97]
[HBF96]

[Hue80]

[Kar74]

[KB70]

[.082]

[LW92]

[Mar94]

[McC97]

[Sch93]

[Sch95]

[Sch98]

[Sut9s]

Denzinger, J.; Schulz, S.: Learning Domain Knowledge to Im-
prove Theorem Proving, Proc. of CADE-13, New Brunswick, LNAI
1104:62-76, Springer, 1996.

Denzinger, J.; Schulz, S.: Recording and Analysing Knowledge-
Based Distributed Deduction Processes, Journal of Symbolic Compu-
tation, 21:523-541, 1996.

Guess, J.C.: Professional English, Oldenbourg Verlag, 1997.

Hillenbrand, T.; Buch, A.; Fettig, R.: On Gaining Ffficiency
in Completion-Based Theorem Proving, Proc. of the 7th RTA, LNCS
1103:432-435, Springer, 1996.

Huet, G.: Confluent Reductions: Abstract Properties and Applica-
tions to Term Rewriting Systems, Journal of ACM 27, 4:798-821,
1980.

Karzel, H.: Lineare Algebra und Analytische Geometrie, Skript zur
Vorlesung im WS73/74 und SS74, Department of Mathematics, Tech-
nical University Munich, 1992.

Knuth, D.E.; Bendix, P.B.: Simple Word Problems in Universal
Algebras, Computational Problems in Abstract Algebra, ed.: J. Leech,
pp. 263-297, Pergamon Press, 1970.

Lusk, E.L.; Overbeck, R.A.: A Short Problem Set for Testing Sys-
tems that Include Equality Reasoning, Argonne National Laboratory,
llinois, 1982.

Lusk, E.L.; Wos, L.: Benchmark problems in which equality plays
the major role, Proc. CADE-11, LNAI 607:781-785, Saratoga Springs,
Springer, 1992.

Markel, M.: Writing in the Technical Fields, New York, IEEE
Press, 1994.

McCune, W. : Solution of the Robbins Problem, Journal of Auto-
mated Reasoning, 19(3):263-276, 1997.

Schulz, S.: Analyse und Transformation von Gleichheitsbeweisen,
Projektarbeit, University of Kaiserslautern, 1993.

Schulz, S.: Fzplanation Based Learning for Distributed Fquational
Deduction, Diploma Thesis, University of Kaiserslautern, 1995.

Schulz, S.: Term Space Mapping for DISCOUNT, Proc. of the
CADE-15 Workshop on Using AI methods in Deduction, Lindau,
1998.

Sutcliffe, G.: CADE-15 ATP System Competition,
http://www.cs.jeu.edu.au/ tptp/CASC-15/, 1998.

BIBLIOGRAPHY 74

[SS97] Suttner, C.B.; Sutcliffe, G.: The TPTP Problem Library v2.1.0,
Technical Report AR-97-04, Technical University Munich, 1997.

[Win84] Winston, P.H.: Artificial Intelligence, Addison-Wesley, 1984.

[Wos96] Wos, L.: The Automation of Reasoning, Academic Press, 1996.

