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Bivariate Scoring Rules: Unifying the
Characterizations of Positional Scoring

Rules and Kemeny’s Rule

Patrick Lederer∗, Technical University of Munich

This paper studies social preference functions (SPFs), which map the vot-
ers’ ordinal preferences over a set of alternatives to a non-empty set of strict
rankings over the alternatives. Maybe the most prominent SPFs are posi-
tional scoring rules and Kemeny’s rule. While these two types of rules behave
intuitively quite different, they are axiomatically surprisingly similar and we
thus provide a joint axiomatic characterization of these SPFs. To this end,
we introduce the class of bivariate scoring rules which generalize Kemeny’s
rule by weighting comparisons between alternatives depending on their po-
sitions in the voters’ preference relations. In particular, this class contains
both Kemeny’s rule and all positional scoring rules. As our main result,
we then characterize the set of bivariate scoring rules as the only SPFs that
satisfy—aside of some standard axioms—mild consistency conditions for vari-
able electorates and variable agendas. As corollaries of this result, we also
derive variants of the well-known characterizations of positional scoring rules
by Smith (1973) and of Kemeny’s rule by Young (1988). Thus, our result
unifies the independent streams of research on positional scoring rules and
Kemeny’s rule by giving a joint axiomatic basis of these SPFs.

1. Introduction

One of the most classic problems in social choice theory is ranking aggregation: given
the voters’ strict preferences over a set of alternatives, a collective preference relation
should be found. Indeed, even Arrow’s impossibility, which is commonly considered as
the starting point of modern social choice theory, has originally been stated in terms
of ranking aggregation (Arrow, 1951). Moreover, the problem of ranking aggregation
has found its way to numerous fields, such as meta search (Dwork et al., 2001; Renda
and Straccia, 2003), computational biology (Lin, 2010; Kolde et al., 2012), engineering
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(Gaertner, 2019), and machine learning (Prati, 2012; Sarkar et al., 2014). For instance, in
machine learning, ranking aggregation is used to combine rankings produced by different
machine learning algorithms into a final ranking to make the outcome more robust.

In social choice theory, the problem of ranking aggregation is formalized by social
preference functions (SPFs) which compute a non-empty set of strict winning rankings
based on the voters’ preferences.1 In particular, the literature mainly focuses on two
types of SPFs: positional scoring rules (e.g., Smith, 1973; Young, 1975; Myerson, 1995)
and Kemeny’s rule (e.g., Young and Levenglick, 1978; Barthelemy and Monjardet, 1981;
Can and Storcken, 2013). In a positional scoring rule, each voter assigns a fixed score
to each alternative depending on its position in the voter’s preference relation and the
output rankings arrange the alternatives in decreasing order of their total scores. An
example of a positional scoring rules is Borda’s rule where voters give m − 1 points to
their favorite alternative, m − 2 points to their second best alternative, and so on. By
contrast, in Kemeny’s rule, voters give points to pairs of alternatives: a voter gives 1
point to a pair (a, b) if he prefers a to b and −1 point if he prefers b to a. Kemeny’s
rule then views each ranking ≻ as a set of ordered pairs and the score of a ranking is
the sum of scores assigned to the pairs (a, b) ∈ ≻. Finally, the chosen rankings are those
with maximal scores.

Intuitively, Kemeny’s rule and scoring rules have a rather diametrical behavior. On
the one hand, scoring rules are closely related to preference intensities: for example,
Borda’s rule assumes that a voter’s preference between his first-ranked and last-ranked
alternatives is much stronger than his preference between his first-ranked and second-
ranked alternatives. This interpretation follows by simply considering the scores assigned
to the alternatives by Borda’s rule. On the other hand, Kemeny’s rule completely ignores
such preference intensities as each voter gives 1 point to a pair of alternatives (a, b) if he
prefers a to b and −1 if he prefers b to a, independently of how close a and b are in the
voters’ preference relation. Indeed, Kemeny’s rule can be seen as a natural extension
of the majority rule (given the choice between two alternatives, pick the one that is
preferred by a majority of the voters) to ranking aggregation. This has even been
formally observed by Young and Levenglick (1978) who have characterized Kemeny’s
rule using a variant of Condorcet-consistency for rankings. By contrast, scoring rules
inherently conflict with the concept of majority decisions (Fishburn and Gehrlein, 1976).

Despite these intuitive differences, positional scoring rules and Kemeny’s rule are
rather similar from an axiomatic perspective. This is, e.g., demonstrated by the char-
acterization of positional scoring rules by Smith (1973) and the characterization of Ke-
meny’s rule by Young (1988): both of these results are driven by mild fairness axioms
and a consistency condition for variable electorates. In this paper, we thus aim to unify
these two classical results by giving a joint axiomatic foundation of positional scoring
rules and Kemeny’s rule.

1Another approach to study ranking aggregation are social welfare functions (SWFs) which return a
single weak ranking over the alternatives (see, e.g., Smith (1973) or Campbell and Kelly (2002)).
However, every SWF can be turned into an SPF by returning all strict rankings that can be derived
from the weak ranking by tie-breaking. By contrast, not every SPF can be turned into an SWF.
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Our contribution. To derive the joint axiomatic basis of positional scoring rules
and Kemeny’s rule, we will introduce and fully axiomatize a new class of SPFs called
bivariate scoring rules. For these rules, voters assign—just as for Kemeny’s rule—scores
to each pair of alternatives (a, b), but the exact score depends—analogous to positional
scoring rules—on the positions of a and b in the voters’ preference relations. The score
of an output ranking ▷ are then the sum of the scores assigned to pairs (a, b) with
(a, b) ∈ ▷ and the rule chooses the rankings with maximal total scores. In particular,
all positional scoring rules and Kemeny’s rule are bivariate scoring rules, so this class
allows for a joint treatment of these SPFs. Moreover, bivariate scoring rules can be seen
as variants of Kemeny’s rule that incorporate preference intensities as it is, e.g., possible
to assign scores depending on the distance between alternatives. Such generalizations of
Kemeny’s rule have attracted significant attention (e.g., Cook and Kress, 1986; Kumar
and Vassilvitskii, 2010; Can, 2014; Plaia et al., 2019) as it is a common observation that,
e.g., the first positions in a input ranking are more important than the later ones.

For our characterization of bivariate scoring rules, we rely (aside of mild standard
axioms) on consistency conditions for both variable electorates and variable agendas of
alternatives. In more detail, we use the prominent notion of reinforcement as variable
electorate condition, which requires that if an SPF chooses some rankings for two dis-
joint elections, then precisely these common winning rankings are chosen in a combined
election. Variants of this axiom feature in numerous prominent characterizations (e.g.,
Smith, 1973; Fishburn, 1978; Young and Levenglick, 1978; Brandl et al., 2016; Lackner
and Skowron, 2021). For consistency with respect to variable agendas, we use a new
axiom which we call local agenda consistency. Intuitively, this axiom requires that if
a ranking ▷ is chosen for a feasible set Y , then it holds for every set of consecutive
alternatives X in ▷ that ▷ restricted to X is a winning ranking for X. If this was not
the case, there is a better ranking for the set X and we can improve the ranking ▷ by
reordering the alternatives in X according to this ranking because the alternatives in X
appear consecutively in ▷. As our main result, we then show that an SPF is a bivariate
scoring rule if and only if it satisfies reinforcement, local agenda consistency, anonymity,
neutrality, continuity, and faithfulness (Theorem 1).

Based on this result, we furthermore infer variants of the prominent characterizations
of positional scoring rules by Smith (1973) and of Kemeny’s rule by Young (1988),
which demonstrates that our characterization of bivariate scoring rules indeed unifies
these two independent lines of research. In more detail, for our characterization of
positional scoring rules, we strengthen local agenda consistency to agenda consistency.
This axiom requires that the winning rankings for a smaller feasible set are derived
from those of a larger feasible set by deleting the unnecessary alternatives from the
winning ranking. We then show that an SPF is a positional scoring rule if and only
if it satisfies reinforcement, agenda consistency, anonymity, neutrality, continuity, and
faithfulness (Corollary 1). This result is in spirit of the prominent characterization of
positional scoring rules by Smith (1973) because the conjunction of agenda consistency
and reinforcement has similar consequences as separability, the main axiom of Smith (see
Remark 5 for details). However, while Smith (1973) proves his result for social welfare
functions, our result concerns the more general setting of SPFs.
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As second corollary, we characterize Kemeny’s rule as the only bivariate scoring rule
that satisfies independence of infeasible alternatives.2 This axiom requires that the
chosen rankings only depend on the alternatives in the feasible set (see, e.g., Arrow
(1951) or Sen (2017), Chapter 3∗). In more detail, we prove that an SPF is Kemeny’s
rule if and only if it satisfies reinforcement, local agenda consistency, independence of
infeasible alternatives, anonymity, neutrality, continuity, and faithfulness (Corollary 2).
This result is similar to the characterization of Kemeny’s rule by Young (1988) who
uses mostly the same axioms but another variable agenda condition called pairwise
consistency (we refer to Remark 6 for details).3,4 This axiom implies both local agenda
consistency and independence of infeasible alternatives when restricting the (smaller)
set to size 2, which turns out sufficient for our proof. Since pairwise consistency also
encompasses a third, more technical condition, our characterization of Kemeny’s rule
seems more attractive than the one by Young (1988). Finally, we note that Corollaries 1
and 2 emphasize the differences between positional scoring rules and Kemeny’s rule:
while the former SPFs satisfy stronger agenda consistency conditions, Kemeny’s rule is
additionally independent of infeasible alternatives.

Related Work. Rank aggregation is one of the most classic problems in social choice
theory and it is therefore not surprising that various SPFs have been suggested in the
literature, with the most prominent ones including Kemeny’s rule (Kemeny, 1959), po-
sitional scoring rules (Smith, 1973), various types of runoff scoring rules (Smith, 1973;
Boehmer et al., 2023), Slater’s rule (Slater, 1961), and the ranked pairs method (Tide-
man, 1987). In this paper, we will focus on positional scoring rules and Kemeny’s rule;
for an overview of other rules, we refer to Arrow et al. (2002) and Brandt et al. (2016).

Both Kemeny’s rule and positional scoring rules have attracted significant attention
and multiple characterizations are known for both types of rules. In more detail, Young
and Levenglick (1978), Young (1988), and Can and Storcken (2013) prove characteri-
zations of Kemeny’s rule. For instance, Young and Levenglick (1978) characterize Ke-
meny’s rule based on neutrality, reinforcement, and a non-standard notion of Condorcet-
consistency (see Remark 7). Moreover, Bossert and Sprumont (2014) study Kemeny’s
rule with respect to manipulability and several authors geometrically compared Ke-
meny’s rule to other SPFs (Saari and Merlin, 2000; Ratliff, 2001; Klamler, 2004), all of
whom conclude that Kemeny’s rule performs outstandingly from an axiomatic perspec-

2In light of Arrow’s impossibility theorem, it may sound surprising that Kemeny’s rule (or any other
attractive SPF) satisfies independence of infeasible alternatives. The reason why this claim holds
is that we use, in contrast to Arrow’s impossibility, a variable agenda framework. In this case,
independence of infeasible alternatives does not impose any consistency conditions between different
feasible sets and is therefore easy to satisfy. Indeed, when using a variable agenda framework, it
is well-known that independence of infeasible alternatives only becomes prohibitive when combined
with agenda consistency notions (see, e.g., Bordes, 1976; Sen, 1977).

3Young (1988) calls this concept first local stability and introduces the term pairwise consistency later on
(Young, 1994, Theorem 6). Furthermore, pairwise consistency is sometimes called local independence
of irrelevant alternatives (e.g., Young, 1995; Boehmer et al., 2023). We choose to call this condition
pairwise consistency to avoid confusion with our other axioms.

4Young (1988, 1994) does not provide a formal proof of this characterization but only an intuitive
argument why the claim is true. So, our proof can be seen as first formal verification of this result.
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tive. On the negative side, it is computationally intractable to compute the winning
rankings for Kemeny’s rule (Bartholdi, III et al., 1989; Hemaspaandra et al., 2005).

The picture for positional scoring rules is similar as there is a multitude of charac-
terizations of this class (Smith, 1973; Young, 1974; Myerson, 1995) and also of specific
positional scoring rules such as Borda’s rule (Young, 1974; Nitzan and Rubinstein, 1981)
or the plurality rule (Richelson, 1978; Ching, 1996); we refer to Chebotarev and Shamis
(1998) for a more detailed overview of this extensive stream of research. Remarkably, all
these characterizations crucially rely on variants of reinforcement as positional scoring
rules satisfy this condition—in contrast to Kemeny’s rule—also as social choice func-
tions (which return a set of winning alternatives rather than a set of winning rankings).
Moreover, there is also a vast number of results on specific aspects of scoring rules, such
as their manipulability (Pritchard and Wilson, 2007; Favardin and Lepelley, 2006), their
welfare guarantees (Pivato, 2016; Skowron and Elkind, 2017), or their probability to
elect the Condorcet winner (Gehrlein, 1982; Cervone et al., 2005).

In this paper, we will derive a joint characterization of Kemeny’s rule and positional
scoring rules, thus unifying all of the above results. We note that there are already
several classes of voting rules that could be used for this purpose, such as the mean neat
rules of Zwicker (2008), the simple scoring ranking rules of Conitzer et al. (2009), or
the distance-based voting rules studied in the context of distance rationalizability (see
Elkind and Slinko, 2016). However, these classes are too general to allow for an appealing
characterization. For an example, consider the simple scoring ranking rules by Conitzer
et al. (2009), which are defined by a scoring function s(≻,▷) that states how many
points a voter with preference relation ≻ assigns to each output ranking ▷ and simply
choose the rankings with maximal total score. While this class is easy to understand, it
is extremely general and thus very challenging to axiomatize. By contrast, by focusing
on the smaller class of bivariate scoring rules, we can find an appealing characterization.

Finally, our results are conceptually related to numerous prominent results in social
choice theory because variants of reinforcement and (local) agenda consistency have
frequently been studied. For instance, reinforcement has been used to characterize po-
sitional scoring rules in the context of single winner elections (Young, 1974; Myerson,
1995; Pivato, 2013), approval voting (Fishburn, 1978; Brandl and Peters, 2022), and
committee voting (Skowron et al., 2019; Lackner and Skowron, 2021; Dong and Lederer,
2023). Moreover, Brandl et al. (2016) use axioms similar to reinforcement and agenda
consistency to characterize a randomized voting rule called maximal lotteries. The study
of agenda consistency notions in social choice theory goes back to Sen (1971, 1977) and
has since then attracted significant attention (e.g., Tideman, 1987; Laffond et al., 1996;
Laslier, 1997). Hence, we employ classical ideas to derive new characterizations.

2. The Model

Let N = {1, 2, 3, . . . } denote an infinite set of voters and A = {a1, . . . , am} denote a set of
m alternatives. We employ in this paper both a variable agenda and a variable population
framework. To this end, we define F(X) = {Y ⊆ X : Y is non-empty and finite} as the
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set of all finite and non-empty subsets of a given set X. In particular, we interpret F(N)
as the set of possible electorates, whereas N is the set of all possible voters. Similarly,
F(A) is the set of all possible agendas (or feasible sets) of alternatives. Intuitively, a set
X ∈ F(A) contains the alternatives that need to be ranked by our voting rules.

Given an electorate N ∈ F(N), each voter i ∈ N is assumed to report a preference
relation ≻i on A, which is formally a strict total order on A. We call preference relations
also rankings and typically write these objects as comma separated lists; e.g., ≻i =
(a, b, c) means that voter i prefers a to b to c. We will omit the brackets around preference
lists whenever this helps readability. The set of all rankings over a set of alternatives X is
R(X). Moreover, ≻|X denotes the restriction of a ranking ≻ ∈ R(Y ) to the alternatives
in X ⊆ Y , i.e., ≻|X = ≻ ∩X2. Finally, we call a set of alternatives X consecutive in a
ranking ≻ ∈ R(Y ) if x ≻ z if and only if y ≻ z for all x, y ∈ X, z ∈ Y \X and define
C(X,Y ) = {≻ ∈ R(Y ) : X is consecutive in ≻} as the set of rankings on Y in which the
alternatives in X appear consecutively.

A preference profile R for an electorate N ∈ F(N) is a mapping from N to R(A),
i.e., it contains the preference relation of every voter i ∈ N . Conversely, NR denotes
the set of voters that report a preference relation in R. We note that, even though we
allow for a variable agendas, preference profiles are always defined on all alternatives.
When writing preference profiles, the number before a preference relation indicates how
many voters report a given preference relation; for instance, 3 : a, b, c means that three
voters prefer a to b to c. Next, we define R∗ as the set of all possible preference profiles:
R∗ =

⋃
N∈F(N)RN . Furthermore, we call two profiles R,R′ ∈ R∗ disjoint if NR∩NR′ = ∅

and define the profile R′′ = R+R′ by ≻′′
i = ≻i if i ∈ NR and ≻′′

i = ≻′
i if i ∈ NR′ .

In this paper, we aim to study social preference functions (SPFs) which choose a non-
empty set of winning rankings W ⊆ R(X) for each preference profile R ∈ R∗ and each
feasible set of alternatives X ∈ F(A). More formally, an SPF is a function f of the type
R∗×F(A) →

⋃
X∈F(A)F(R(X)) such that f(R,X) ⊆ R(X) for all profiles R ∈ R∗ and

feasible sets X ∈ F(A). While SPFs are also defined for feasible sets X of size 1, we
will ignore this case as there is only a single ranking if |X| = 1. The same model has
implicitly been considered by, e.g., Young (1988) and Boehmer et al. (2023). Finally, to
clearly distinguish between the preference relations of voters and the winning rankings
chosen by an SPF, we use ≻ for the former and ▷ for the latter.

2.1. Bivariate Scoring Rules

In this paper, we focus on three types of SPFs: positional scoring rules, Kemeny’s rule,
and our new class of bivariate scoring rules. An example illustrating these different rules
can be found in Figure 1.

Positional Scoring Rules. We first introduce positional scoring rules and define
to this end the rank of an alternative x in a preference relation ≻i as r(≻i, x) = 1 +
{y ∈ A \ {x} : y ≻i x}. Less formally, r(≻i, x) = k means that x is the k-th best
alternative of voter i. Each positional scoring rules is defined by a positional scoring
function s : {1, . . . ,m} → R which is non-increasing and non-constant, i.e., it holds that
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s(1) ≥ s(2) ≥ · · · ≥ s(m) and s(1) > s(m).5 Intuitively, s(i) states how many points a
voter assigns to his i-th best alternative. Next, we define the total score of an alternative
x in a profile R as ŝ(R, x) =

∑
i∈NR

s(r(≻i, x)). Finally, an SPF f is a positional scoring
rule if there is a positional scoring function s such that f(R,X) = {▷ ∈ R(X) : ∀x, y ∈
X : x ▷ y =⇒ ŝ(R, x) ≥ ŝ(R, y)} for all profiles R ∈ R∗ and all feasible sets X ∈ F(A).
We note that positional scoring rules are defined in a “broad” sense: we always compute
the scores with respect to the full profile R on A, even if some alternative are not in the
feasible set. Common examples of positional scoring rules are Borda’s rule (defined by
s(x) = m− x) or the Plurality rule (defined by s(1) = 1 and s(x) = 0 for x > 1).

Kemeny’s Rule. Next, we turn to Kemeny’s rule which interprets rankings
▷ ∈ R(X) as a set of ordered pairs of alternatives, i.e., ▷ = {(x, y) ∈ X2 : x ▷ y}.
Formally, Kemeny’s rule is also defined by a scoring function s which takes two al-
ternatives x, y and a preference relation ≻i as input: s(x, y,≻i) = 1 if x ≻i y and
s(x, y,≻i) = −1 if y ≻i x. The Kemeny score of a ranking ▷ ∈ R(X) in a profile R is
then defined as ŝKemeny(R,▷) =

∑
(x,y)∈▷

∑
i∈NR

s(x, y,≻i) and Kemeny’s rule chooses
the rankings with maximal Kemeny score, i.e., fKemeny(R,X) = {▷ ∈ R(X) : ∀▷′ ∈
R(X) : ŝKemeny(R,▷) ≥ ŝKemeny(R,▷′)} for all profiles R ∈ R∗ and feasible sets of
alternatives X ∈ F(A). This definition is equivalent to choosing the rankings that mini-
mize the total swap distance to the voters’ preference relations. We note that Kemeny’s
rule reduces to the majority rule for agendas of size 2: fKemeny(R, {x, y}) = {(x, y)} if a
strict majority of voters prefers x to y, fKemeny(R, {x, y}) = {(y, x)} if a strict majority
prefers y to x, and fKemeny(R, {x, y}) = {(x, y), (y, x)} otherwise.

Bivariate Scoring Rules. Finally, we introduce the class of bivariate scoring rule. To
this end, we observe that Kemeny’s rule can also be defined based on a scoring function
s that only takes the ranks of two alternatives as input: s(r(≻i, x), r(≻i, y)) = 1 if
r(≻i, x) < r(≻i, y) and s(r(≻i, x), r(≻i, y)) = −1 if r(≻i, x) > r(≻i, y). The idea for
bivariate scoring rules is now to introduce weights in this function. To this end, we
introduce bivariate scoring functions which are functions of the type s : {1, . . . ,m} ×
{1, . . . ,m} → R that satisfy s(ℓ, k) ≥ 0 and s(ℓ, k) = −s(k, ℓ) for all ℓ, k ∈ {1, . . . ,m}
with ℓ < k and s(ℓ, k) > 0 for some ℓ, k ∈ {1, . . . ,m}. Intuitively, a bivariate scoring
function quantifies how important it is for a voter that his ℓ-th ranked alternative is
ranked over his k-th ranked alternative in the output ranking. We thus define the score
of a pair of alternatives (x, y) in a profile R as ŝ(R, (x, y)) =

∑
i∈NR

s(r(≻i, x), r(≻i, y))
and the score of a ranking ▷ ∈ R(X) as ŝ(R,▷) =

∑
(x,y)∈▷ ŝ(R, (x, y)). Finally, an

SPF f is a bivariate scoring rule if there is a bivariate scoring function s such that
f(R,X) = {▷ ∈ R(X) : ∀▷′ ∈ R(X) : ŝ(R,▷) ≥ ŝ(R,▷′)} for all R ∈ R∗ and feasible
sets of alternatives X ∈ F(X). More intuitively, bivariate scoring rules allow the election

5Positional scoring rules can be defined without these assumptions. However, if a positional scoring
function s fails to be non-increasing, the corresponding positional scoring rule violates several de-
sirable properties. Thus, numerous authors assume that the score vector is non-decreasing (e.g.,
Gehrlein, 1982; Pritchard and Wilson, 2007; Favardin and Lepelley, 2006; Pivato, 2016; Skowron and
Elkind, 2017). The condition that s is non-constant only entails that the corresponding positional
scoring rule does not always choose every ranking.
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R :
3: a, b, c, d
2: b, c, d, a
2: c, d, a, b

fBorda(R, {a, b, c}) = {(c, b, a)}
fKemeny(R, {a, b, c} = {(a, b, c)}

fd(R, {a, b, c}) = {(c, b, a)}

Figure 1: Examples of different SPFs. The left hand side depicts the profile R which
consists of 7 voters and 4 alternatives. On the right side, we display the
chosen rankings by Borda’s rule, Kemeny’s rule, and the bivariate scoring
rule fd defined by s(i, j) = −(i − j)3 for the feasible set {a, b, c}. It can
be verified that Borda’s rule assigns 11 points to a, 12 points to b, and 13
points to c (and 6 points to d), so it chooses the ranking c, b, a. On the other
hand, 5 voters prefer a to b, 5 voters prefer b to c, and 4 voters prefer c to a.
Consequently, the ranking (a, b, c) maximizes the Kemeny score with a value of
5− 2+5− 2+4− 3 = 7 and is therefore elected by Kemeny’s rule. Finally, for
computing fd, we go over every voter and each pair of alternatives to compute
the scores. For instance, each voter with the preference relation b, c, d, a gives
1 point to the pair (b, c), 4 points to the pair (c, a), and 27 points to the pair
(b, a) (or conversely −1 point to (c, b), −4 points to (a, c), and −27 points to
(a, b)). By continuing these computations, one can verify that c, b, a maximizes
the total scores as the pairs (c, b) and (b, a) both get 5·(−1)+2·27 = 49 points.

designer to value each comparison between two alternatives x, y in a voters’ preference
relation differently depending on the position of x and y. Thus, these SPFs can be
seen as weighted variants of Kemeny’s rule. Finally, we note that the assumption that
s(ℓ, k) = −s(k, ℓ) is without loss of generality because the resulting bivariate scoring rule
is independent of additive shifts for each pair of indices.

The class of bivariate scoring rules contains a variety of interesting SPFs, with Ke-
meny’s rule constituting the most apparent example. Moreover, bivariate scoring rules
are a very flexible concept, and one can, for instance, also define “distance-based” rules
whose bivariate scoring function s(ℓ, k) only depends on ℓ− k. For instance, the rule fd
defined by s(ℓ, k) = −(ℓ−k)3 in Figure 1 is such a rule and such SPFs have been studied
before (e.g., Drissi-Bakhkhat and Truchon, 2004). Finally, we will next show that also
all positional scoring rules are bivariate scoring rules.

Proposition 1. Every positional scoring rule is a bivariate scoring rule.

Proof. Consider an arbitrary positional scoring rule f and let s denote its positional
scoring function. We define a bivariate scoring function s′ by s′(ℓ, k) = s(ℓ) − s(k) for
all ℓ, k ∈ {1, . . . ,m} and let f ′ denote the corresponding bivariate scoring rule. First,
we note that s′ is indeed a bivariate scoring function since s(1) ≥ s(2) ≥ · · · ≥ s(m)
and s(1) > s(m), so s(ℓ, k) ≥ 0 if ℓ < k and s(1,m) > 0. Our goal is to show that
f(R,X) = f(R′, X) for all profiles R ∈ R∗ and feasible sets X ∈ F(A). To this end,
we note that ŝ′(R, (x, y)) =

∑
i∈NR

s(r(≻i, x)) − s(r(≻i, y)) = ŝ(R, x) − ŝ(R, y) for all
profiles R ∈ R∗ and alternatives x, y ∈ A. Hence, it holds for every ranking ▷ ∈ f ′(R,X)
and all alternatives x, y ∈ X that ŝ(R, x) ≥ ŝ(R, y) if x is placed directly above y in
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▷. Otherwise, the ranking ▷′ derived from ▷ by swapping x and y has a higher score
than ▷ since ŝ′(R,▷′) = ŝ′(R,▷) − ŝ′(R, (x, y)) + ŝ′(R, (y, x)) = ŝ′(R,▷) + 2ŝ(R, y) −
2ŝ(R, x) > ŝ′(R,▷). This contradicts the assumption that ▷ ∈ f ′(R,X), so it holds
for all rankings ▷ ∈ f ′(R,X) that ŝ(R, x) ≥ ŝ(R, y) if x ▷ y and x, y are consecutive
in ▷. Even more, if there is a non-consecutive pair of alternatives x, y ∈ X in ▷ such
that ŝ(R, x) < ŝ(R, y) and x ▷ y, we can also find a consecutive pair that satisfies these
conditions. Hence, we infer that f ′(R,X) ⊆ f(R,X). For the converse direction, we note
that if ŝ(R, x) = ŝ(R, y) for two alternatives x, y ∈ X that are consecutive in a ranking
▷, then ŝ′(R,▷) = ŝ′(R,▷′) for the ranking ▷′ derived from ▷ by swapping x and y.
Hence, ▷ ∈ f ′(R,X) also implies that ▷′ ∈ f ′(R,X) for these rankings. Since we already
know that f ′(R,X) ⊆ f(R,X) and the rankings in f(R,X) only differ by reordering
alternatives x, y ∈ X with ŝ(R, x) = ŝ(R, y), it follows that f(R,X) = f ′(R,X).

2.2. Basic Axioms

We next introduce five standard axioms which will form the basis of our analysis. We
note that these axioms can be used to characterize scoring rules in various contexts
(Young, 1975; Myerson, 1995; Skowron et al., 2019; Lackner and Skowron, 2022). By
contrast, this is not the case for SPFs as, e.g., also scoring runoff rules satisfy all axioms
listed in this section.

Anonymity. Anonymity is a mild fairness condition that postulates that voters are
treated equally. In more detail, an SPF f is anonymous if f(R,X) = f(π(R), X) for all
profiles R ∈ R∗, feasible sets X ∈ F(A), and permutations π : N → N. Here, R′ = π(R)
denotes the profile such that NR′ = {π(i) : i ∈ NR} and ≻′

π(i) = ≻i for all i ∈ NR.

Neutrality. Similar to anonymity, neutrality is a standard fairness condition for
alternatives. Formally, an SPF f is neutral if f(τ(R), τ(X)) = {τ(▷) : ▷ ∈ f(R,X)}
for all profiles R ∈ R∗, feasible sets X ∈ F(A), and permutations τ : A → A. Here,
▷′ = τ(▷) is the ranking defined by τ(x) ▷′ τ(y) if and only if x ▷ y for all x, y ∈ A,
and R′ = τ(R) is the profile with NR′ = NR, and ≻′

i = τ(≻i) for all i ∈ NR.

Faithfulness. Faithfulness requires that SPFs should respect the voters’ preferences
if there is only a single voter and two alternatives in the feasible set. In more detail, an
SPF f is faithful if for all alternatives x, y ∈ A, it holds that (x, y) ∈ f(≻i, {x, y}) for all
rankings ≻i ∈ R(A) with x ≻i y and f(≻i, {x, y}) = {(x, y)} for some ranking ≻i with
x ≻i y. This condition is, for instance, weaker Pareto-optimality (which requires that if
x ≻i y for all voters i in some profile R, then x ▷ y for all ▷ ∈ f(R,X)).

Continuity. Continuity, also known as the overwhelming majority property (Myer-
son, 1995) or the Archimedean property (Smith, 1973), roughly states that large groups
of voters can ensure that some of their desired outcomes are chosen. More formally, an
SPF f is called continuous if for all profiles R,R′ ∈ R∗ and feasible sets X ∈ F(A),
there is λ ∈ N such that f(λR + R′, X) ⊆ f(R,X). Here, the profile λR consists of λ
copies of R; the names of the voters in λR will not matter due to anonymity. We note
that all axioms defined so far are very mild and satisfied by all commonly studied SPFs.
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Reinforcement. As the last axiom in this section, we introduce reinforcement. In-
tuitively, this axiom requires that if some rankings are chosen for two disjoint elec-
tions, then precisely the common winning rankings should be chosen in a joint elec-
tion. More formally, an SPF f is reinforcing if f(R,X) ∩ f(R′, X) ̸= ∅ implies that
f(R + R′, X) = f(R,X) ∩ f(R′, X) for all disjoint profiles R,R′ ∈ R∗ and feasible sets
X ∈ F(A). The idea here is that a winning ranking is as good as any other winning
ranking and better than any unchosen ranking. Thus, if some rankings are chosen for
two disjoint elections, these are precisely the best rankings for the combined election.

2.3. Agenda consistency

As the last ingredient for our results, we will introduce consistency conditions for variable
agendas. Roughly, these axioms aim to describe how the outcome should change if we
modify the feasible set. To make this more clear, let us revisit the profile R in Figure 1,
where fBorda(R, {a, b, c}) = {(c, b, a)}. The question we now ask is how the winning
ranking changes when, e.g., alternative b is deleted from the feasible set. Maybe the
most straightforward idea is that we should choose the ranking (c, a)—we simply remove
the now unavailable alternative b from the ranking to derive the winning ranking for the
smaller feasible set. We formalize this idea with agenda consistency which postulates
of an SPF f that f(R,X) = {▷|X : ▷ ∈ f(R, Y )} for all profiles R ∈ R∗ and feasible
sets X,Y ∈ F(A) with X ⊆ Y . Note that the general idea of this axiom coincides
with known rationality conditions such as Sen’s contraction and expansion consistency
for (social) choice functions (Sen, 1971, 1977). Even though agenda consistency is a
restrictive axiom, all positional scoring rules satisfy this condition as these rules always
order the feasible alternatives with respect to the scores computed for the full profile.

Unfortunately, it turns out that Kemeny’s rule fails agenda consistency. This can be
shown by considering the profile R in Figure 1: it holds that fKemeny(R, {a, c}) = {(c, a)}
but fKemeny(R, {a, b, c}) = {(a, b, c)}. On a first glance, this may seem like a flaw
of Kemeny’s rule because the ordering over a and c depends on the availability of b.
However, the problem runs much deeper: agenda consistency entails a high degree of
transitivity for agendas of size 2. In more detail, since fKemeny(R, {a, b}) = {(a, b)},
fKemeny(R, {b, c}) = {(b, c)}, and fKemeny(R, {a, c}) = {(c, a)}, fKemeny fails agenda
consistency regardless of which rankings it chooses for {a, b, c}. Or, put differently,
agenda consistency requires a form of transitivity for the choice on agendas of size 2:
if f(R, {a, b}) = {(a, b)} and f(R, {b, c}) = {(b, c)}, then f(R, {a, c}) = {(a, c)}. In
concordance with a large stream of research (e.g., May, 1954; Fishburn, 1970; Bar-
Hillel and Margalit, 1988; Anand, 2009), we view this transitivity requirement of agenda
consistency as unduly restrictive because such transitivity notions have empirically been
shown to be unrealistic and often lead to negative theoretical results.

We therefore consider a weakening of agenda consistency which is based on the idea
that a winning ranking ▷ for a large set Y should only inherit to a subset X if the
alternatives in X appear consecutively in ▷. The reason for this is that if ▷|X is not
chosen for the set X, there is a better ranking for these alternatives. Moreover, we
can reorder the alternatives x ∈ X in the ranking ▷ without affecting the alternatives
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in Y \ X, so we can intuitively also improve this ranking. To formalize this idea, we
recall that C(X,Y ) denotes the set of rankings ▷ ∈ R(Y ) in which the alternatives
in X appear consecutively. Then, local agenda consistency requires that f(R,X) ⊇
{▷|X : ▷ ∈ f(R, Y )} ∩ C(X,Y ) for all profiles R ∈ R∗ and feasible sets X,Y ∈ F(A)
with X ⊆ Y . Clearly, this is a rather mild condition and we will show later that all
bivariate scoring rules satisfy it.

Finally, we note that all of our axioms are independent of Arrow’s independence of
infeasible alternatives (Arrow, 1951). This axiom demands that the winning rankings
should only depend on the available alternatives. More formally, an SPF f satisfies
independence of infeasible alternatives if f(R,X) = f(R′, X) for all profiles R,R′ ∈ R∗

and all feasible sets X ∈ F(A) such that NR = NR′ and ≻i|X = ≻′
i|X for all i ∈ NR. We

note that in our context, independence of infeasible alternatives is easy to satisfy as it
suffices to apply a voting rule to the input profile restricted to the feasible set. Moreover,
this axiom is typically motivated by the fact that it allows to compute the outcome for a
given feasible set only depending on the voters’ preferences over this set of alternatives.
By contrast, just as Sen’s contraction consistency, our agenda consistency notions only
relate the outcomes for different feasible sets but do no restrict the information that can
be used to compute the winning rankings.

3. Characterizations

We are now ready to state our results. In more detail, we show in Section 3.1 the
characterization of bivariate scoring rules, and discuss in Section 3.2 and Section 3.3 the
characterizations of positional scoring rules and Kemeny’s rule, respectively.

3.1. Bivariate Scoring Rules

In this section, we discuss our main result, the characterization of bivariate scoring rules,
and its consequences. Since the proof of this result is rather involved, we only show in
the main body that every bivariate scoring rule satisfies all given axioms and give a proof
sketch for the inverse direction. The full proof can be found in the appendix.

Theorem 1. An SPF is a bivariate scoring rule if and only if it satisfies anonymity,
neutrality, continuity, faithfulness, reinforcement, and local agenda consistency.

Proof Sketch. The proof consists of two claims: we need to show that bivariate scoring
rules satisfy all given axioms and that they are the only SPFs that do so.

( =⇒ ) We first show that every bivariate scoring rule satisfies all considered properties.
Hence, let f denote a bivariate scoring rule and let s denote its corresponding bivariate
scoring function. We first note that f is clearly anonymous and neutral as the scoring
function s does not depend on the names of voters or alternatives. Furthermore, f is
faithful because s(ℓ, k) ≥ 0 for all ℓ, k ∈ {1, . . . ,m} with ℓ < k and this inequality is
strict for some ℓ, k. Next, f satisfies continuity because it maximize scores: it holds
for all profiles R ∈ R∗, feasible sets X ∈ F(A), and rankings ▷ ∈ f(R,X) and ▷′ ∈
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R(X)\f(R,X) that ŝ(R,▷) > ŝ(R,▷′). Thus, there is for every other profile R′ a λ ∈ N
such that ŝ(λR + R′,▷) > ŝ(λR + R′,▷′) for all ▷ ∈ f(R,X), ▷′ ∈ R(X) \ f(R,X),
which entails that f(λR+R′, X) ⊆ f(R,X).

Next, we will prove that f is reinforcing, for which we consider two disjoint profiles
R,R′ ∈ R∗ and a feasible set X ∈ F(A) such that f(R,X) ∩ f(R′, X) ̸= ∅. This
means for all rankings ▷ ∈ f(R,X) ∩ f(R′, X) and ▷′ ∈ R(X) that ŝ(R,▷) ≥ ŝ(R,▷′)
and ŝ(R′,▷) ≥ ŝ(R′,▷′), so ŝ(R + R′,▷) ≥ ŝ(R + R′,▷′) and ▷ ∈ f(R + R′, X).
Moreover, if a ranking ▷′ is not in f(R,X) or in f(R′, X), then ŝ(R,▷) > ŝ(R,▷′) or
ŝ(R′,▷) > ŝ(R′,▷′) for every ▷ ∈ f(R,X)∩ f(R′, X). This implies that ŝ(R+R′,▷) >
ŝ(R + R′,▷′) and ▷′ ̸∈ f(R +R,X). Hence, f(R + R′, X) = f(R,X) ∩ f(R′, X) and f
satisfies reinforcement.

Finally, we show that f satisfies local agenda consistency. To this end, consider
two feasible sets X,Y ∈ F(A) with X ⊆ Y , a profile R ∈ R∗, and a ranking
▷ ∈ f(R, Y ) ∩ C(X,Y ). The score of the ranking ▷ in R is ŝ(R,▷) = ŝ(R,▷|X) +∑

(x,y)∈▷\X2 ŝ(R, (x, y)). Now, if ▷|X ̸∈ f(R,X), there is a ranking ▷′ ∈ R(X) such
that ŝ(R,▷′) > ŝ(R,▷|X). Since the alternatives in X appear consecutively in R,
we can now reorder these alternatives in ▷ according to ▷′ to derive another rank-
ing ▷′′ on Y such that ŝ(R,▷′′) = ŝ(R,▷′) +

∑
(x,y)∈▷\X2 ŝ(R, (x, y)) > ŝ(R,▷|X) +∑

(x,y)∈▷\X2 ŝ(R, (x, y)) = ŝ(R,▷). Hence, if ▷|X ̸∈ f(R,X), then ▷ ̸∈ f(R, Y ), which
contradicts our assumption and therefore shows that f satisfies local agenda consistency.

( ⇐= ) Let f denote an SPF that satisfies anonymity, neutrality, continuity, faithful-
ness, reinforcement, and local agenda consistency. The main goal of our proof is to find a
bivariate scoring function s that describes f . To this end, we will use a similar approach
as presented by, e.g., Young (1975) or Young and Levenglick (1978), but we will need a
significant amount of new ideas to make our proof work. We will give here only a high
level overview of our proof and postpone all technical details to the appendix.

As a first step, we will show that the conjunction of our axioms implies that f is
non-imposing. This means that for every feasible set X ∈ F(A) and every ranking
▷ ∈ R(X), there is a profile R such that f(R,X) = {▷}. Next, we will change the
domain of f from preference profiles to a numerical space. To this end, we represent
preference profiles R by vectors v ∈ Nm! which state how often each possible preference
relation is reported. In particular, v(R) denotes the vector corresponding to the profile
R. Since f is anonymous, it is straightforward that there is a function g such that
f(R,X) = g(v(R), X) for all profiles R ∈ R∗ and feasible sets X ∈ F(A). Moreover,
it is easy to see that g inherits all desirable properties of f . As the next step, we use
reinforcement to extend the domain of g from Nm!×F(A) to Qm!×F(A) while preserving
the desirable properties of f (resp. g). This leads to a new function ĝ which still satisfies
that f(R,X) = ĝ(v(R), X) for all profiles R ∈ R∗ and feasible sets X ∈ F(A). So, it
suffices to describe the function ĝ by a bivariate scoring function to show that f is a
bivariate scoring rule.

To this end, we define the sets R▷ = {v ∈ Qm! : ▷ ∈ ĝ(v,X)} for all feasible sets
X ∈ F(A) and rankings ▷ ∈ R(X). Moreover, we denote by R̄▷ the closure of R▷ with
respect to Rm!. We observe that ĝ(v,X) = {▷ ∈ R(X) : v ∈ R▷} ⊆ {▷ ∈ R(X) : v ∈
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R̄▷}, so our next intermediate goal is to describe the sets R̄▷. Here, it can be shown
that the sets R̄▷ are convex as ĝ inherits reinforcement of f , and that intR̄▷∩ intR̄▷′ = ∅
for all feasible set X ∈ F(A) and rankings ▷,▷′ ∈ R(X). As a consequence, we can
apply the separation theorem for convex sets to find a non-zero vector u▷,▷′ ∈ Rm! such
that vu▷,▷′ ≥ 0 for all v ∈ R̄▷ and vu▷,▷′ ≤ 0 for all v ∈ R̄▷′ (where vu denotes
the standard scalar product). These vectors describe the sets R̄▷ as we prove that
R̄▷ = {v ∈ Rm! : ∀▷′ ∈ R(X) \ {▷} : vu▷,▷′ ≥ 0}. Thus, for understanding the sets R̄▷,
we only need to understand the vectors u▷,▷′ .

For doing so, we first restrict our attention to feasible sets of size 2. The reason for
this is that for a feasible set X = {x, y}, there are only two possible rankings: (x, y) and
(y, x). Consequently, R̄(x,y) = {v ∈ Rm! : vu(x,y),(y,x) ≥ 0}, so it suffices to study a single
vector u(x,y),(y,x). We thus show that there is a bivariate scoring function s such that
u
(x,y),(y,x)
k = s(r(≻k, x), r(≻k, y)) for all alternatives x, y ∈ A and preference relations

≻k ∈ R(A). Next, we turn to larger feasible sets and note that ĝ inherits local agenda
consistency from f . This implies that R̄▷ ⊆ R̄(x,y) if x, y appear consecutively in ▷ and
x ▷ y. As a consequence, it holds for all rankings ▷,▷′ ∈ R(X) that only differ in a
single pair of alternatives (x, y) that the vector u(x,y),(y,x) separates the set R̄▷ from R̄▷′

(i.e., vu(x,y),(y,x) ≥ 0 if v ∈ R̄▷ and vu(x,y),(y,x) ≤ 0 if v ∈ R̄▷′) as it separates R̄(x,y)

from R̄(y,x). The reason for this is that ▷ \ ▷′ = {(x, y)} implies that x and y appear
consecutively in both ▷ and ▷′, but in different order.

Next, we aim to understand the vectors u▷,▷′ for rankings ▷,▷′ with |▷\▷′| > 1. To do
so, we fix a feasible set X = {a1, . . . , aℓ} and introduce a neighbor relation on rankings in
R(X). In more detail, we associate every ranking ▷ with a matrix M▷ defined by M▷

i,j =
1 if ai ▷ aj , M▷

i,j = −1 if aj ▷ ai, and M▷
i,j = 0 if ai = aj otherwise. Next, we define

the set M as the convex hull of these matrices, and call two rankings ▷,▷′ neighbors if
they are neighboring extreme points on M. This neighborhood relation has also been
used by Young and Levenglick (1978) because there is a characterization of neighbors by
Young (1978) (see also Gilmore and Hoffmann (1964)), which turns out helpful in the
analysis. In particular, we then show for any two neighboring rankings ▷,▷′ ∈ R(X)
that the vector

∑
(x,y)∈▷\▷′ u(x,y),(y,x) separates R̄▷ from R̄▷′ . We note that this step

is the technically most involved one and includes, e.g., a complete specification of the
linear (in)dependence of the vectors u(x,y),(y,x).

We proceed then by defining the set Neighbor(▷) as the neighbors of a ranking ▷ ∈
R(X), and R̄N

▷ = {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : vu▷,▷′ ≥ 0}. It holds that ĝ(v,X) ⊆
{▷ ∈ R(X) : v ∈ R̄N

▷ } for all v ∈ Qm! and X ∈ F(A) since R̄▷ ⊆ R̄N
▷ . Now, by the last

step, we can choose u▷,▷′
=

∑
(x,y)∈▷\▷′ u(x,y),(y,x). Moreover, the analysis of feasible

sets of size 2 shows that the vectors u(x,y),(y,x) can be described by a bivariate scoring
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function s. This implies for two neighboring rankings ▷,▷′ ∈ R(X) that

ŝ(v,▷)− ŝ(v,▷′) =
∑

(x,y)∈▷\▷′

ŝ(v, (x, y))−
∑

(x,y)∈▷′\▷

s(v, (x, y))

= 2
∑

(x,y)∈▷\▷′

ŝ(v, (x, y))

= 2v
∑

(x,y)∈▷\▷′

u(x,y),(y,x),

where ŝ(v, (x, y)) =
∑m!

k=1 vks(r(≻k, x), r(≻k, y)) and ŝ(v,▷) =
∑

(x,y)∈▷ ŝ(v, (x, y)).
Hence, we infer that R̄N

▷ = {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : ŝ(v,▷) ≥ ŝ(v,▷′)}.
Finally, we note that {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : ŝ(v,▷) ≥ ŝ(v,▷′)} = {v ∈

Rm! : ∀▷′ ∈ R(X) : ŝ(v,▷) ≥ ŝ(v,▷′)}. The reason for this is that the second set can be
seen as a linear optimization problem: given a vector v ∈ Rm! we choose the rankings
▷ that correspond to the extreme points that maximize

∑
ai,aj∈X Mi,j · ŝ(v, (ai, aj))

subject to M ∈ M. It is a well-known fact that, if an extreme point is not optimal,
then there is a neighboring extreme point with a higher objective value. This insight
then implies the set equality, so we can now infer that f(R,X) = ĝ(v(R), X) ⊆ {▷ ∈
R(X) : ∀▷′ ∈ R(X) : ŝ(v(R),▷) ≥ ŝ(v(R),▷′)} for all profiles R ∈ R∗ and all feasible
sets of alternatives X ∈ F(A). Or, put differently, f always chooses a subset of the
bivariate scoring rule defined by s. As last step, we use continuity to show that this
must be an equality, so f is indeed a bivariate scoring rule.

Remark 1 (Independence of the Axioms). All axioms are necessary for Theorem 1.
If we only drop local agenda consistency, then every rule that maximizes the score ac-
cording to a scoring function s that assigns points to every pair of input and output
rankings satisfies all axioms, and this class is a strict superset of our bivariate scoring
rules. If we only drop reinforcement, we can return the union of the output of two
different bivariate scoring rules. Or, to be more precise, one can check that the rule
f(R,X) = fBorda(R,X) ∪ fKemeny(R,X) only fails reinforcement. When excluding con-
tinuity from our list of axioms, we can use composite bivariate scoring rules which first
compute a bivariate scoring rule and then refine it by choosing the rankings with max-
imal score according to another bivariate scoring rules. An example for this is the rule
that first computes the rankings with maximal Borda scores and then refines the output
by only choosing the rankings with maximal Kemeny scores. Faithfulness is required
to exclude, e.g., the trivial rule that always returns all outcomes or bivariate scoring
rules that give negative score to a pair (a, b) if a voter prefers a to b. To only violate
anonymity, we can treat voters differently: for instance, we can count the vote of “even”
voters i ∈ 2N twice, but the votes of the “odd” voters i ∈ 2N + 1 only once. Finally,
for neutrality, we can, e.g., consider a biased version of Kemeny’s rule that counts the
points for a specific pair of alternatives twice.

Remark 2 (Faithfulness). The example in Remark 1 demonstrating that faithfulness
is required for Theorem 1 generalizes the class of bivariate scoring rules by allowing
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for bivariate scoring functions s with s(ℓ, k) < 0 if ℓ < k or that s(ℓ, k) = 0 for all
ℓ, k ∈ {1, . . . ,m}. While these rules are not particular appealing, one may wonder
whether it is possible to characterize a more general class of bivariate scoring rules when
simply dropping faithfulness. This is not the case because, without faithfulness, local
agenda consistency becomes trivial to satisfy: we can simply define f(R,X) = R(X) for
all profiles R ∈ R∗ and all feasible sets of alternatives X ∈ F(A) with X ̸= A and define
f(R,A) by any SPF that satisfies anonymity, neutrality, consistency, and, continuity.

Remark 3 (Local Agenda Consistency). It is noteworthy that our proof of The-
orem 1 does actually not use the full power of local agenda consistency. Instead, we
only use local agenda consistency for situations where the smaller feasible set consists of
precisely two alternatives. Analogous claims will also hold for Corollaries 1 and 2 and
this observation is, e.g, also known for Arrow’s impossibility (Schwartz, 1986).

Remark 4 (SSB Utility Functions). Positional scoring rules are closely connected
to vNM utility functions: in a positional scoring rule, we assume that each voter has the
same canonical utiliy function and we then order the alternatives according to their social
welfare. A similar interpretation is possible for bivariate scoring rule by considering the
class of skew-symmetric bilinear utility (SSB) functions (Fishburn, 1984), which assign
a value to each pair of alternatives (and thus discard the transitivity enforced by vNM
utilities): the decision maker chooses a canonical SSB utility function and the winning
rankings are those with maximal social welfare (where the welfare of a ranking is simply
the sum of the utilities of each pair of alternatives in a ranking). We note that this
interpretation of SSB utility functions is new as SSB utilities have not been studied in
the context of rankings.

3.2. Positional Scoring Rules

Next, we turn to our characterization of positional scoring rules. We derive this result
as a corollary of Theorem 1 by strengthening local agenda consistency to agenda consis-
tency. Moreover, Corollary 1 can be interpreted as a variant of the characterization of
positional scoring rules by Smith (1973), so our main result intuitively generalizes this
prominent result.

Corollary 1. An SPF is a positional scoring rule if and only if satisfies anonymity,
neutrality, continuity, faithfulness, reinforcement, and agenda consistency.

Proof. First, we note that all positional scoring rules satisfy anonymity, neutrality, con-
tinuity, faithfulness, and reinforcement because they are bivariate scoring rules. Further-
more, these SPFs are also agenda consistent because they compute the scores of each
alternative with respect to the full profile and simply order the available alternatives in
decreasing order of their scores. Hence, if we delete some alternatives from the feasible
set, we only need to delete these alternatives from the old rankings to derive the winning
rankings for the smaller feasible set.

For the other direction, let f denote an SPF satisfying all given axioms. First, since
agenda consistency implies local agenda consistency, we can infer that f is a bivariate
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scoring rule by Theorem 1. Hence, let s denote the the bivariate scoring function of
f . We will next show that s(i, k) = s(i, j) + s(j, k) for all i, j, k ∈ {1, . . . ,m} with
i < j < k. Assume for contradiction that this is not the case for some i, j, k and consider
the following profile R for three voters: voter 1 places a at position i, b at position j,
and c at position k, voter 2 places b at position i, c at position j, and a at position k,
and voter 3 places c at position i, a at position j, and b at position k. All remaining
alternatives can be arranged arbitrarily. Next, consider the feasible set {a, b}: it holds
that ŝ(R, (a, b)) = s(i, j)+s(j, k)+s(k, i) ̸= 0 and ŝ(R, (b, a)) = s(j, i)+s(k, j)+s(i, k) =
−ŝ(R, (a, b)) because of our assumption that s(i, k) ̸= s(i, j) + s(j, k) and the fact that
s(x, y) = −s(y, x). This means that |f(R, {a, b})| = 1 and we suppose without loss of
generality that s(i, j)+s(j, k)+s(k, i) > 0, so f(R, {a, b}) = {(a, b)}. Based on symmetric
calculations, we also get that f(R, {b, c}) = {(b, c)} and f(R, {a, c}) = {(c, a)}. However,
this means that f fails agenda consistency for f(R, {a, b, c}) since any chosen ranking ▷
has to satisfy a ▷ b, b ▷ c, and c ▷ a. This violates the transitivity of rankings, so our
initial assumption is wrong and s(i, k) = s(i, j) + s(j, k) for all i, j, k ∈ {1, . . . ,m} with
i < j < k.

We can now infer the positional scoring function s′ of f : we define s′(i) = s(i,m)
for all i ∈ {1, . . . ,m − 1} and s′(m) = 0. By our previous computations, it holds that
s(i, j) = s(i,m) − s(j,m) for all i, j ∈ {1, . . . ,m} with i < j. Moreover, if j < i, then
s(i, j) = −s(j, i) = −(s(j,m)− s(i,m)) = s(i,m)− s(j,m), so the equality holds for all
i, j ∈ {1, . . . ,m}. This means that s′ is non-increasing: if s′(i) < s′(i + 1) for some i,
then s(i, i+1) = s(i,m)−s(i+1,m) = s′(i)−s′(i+1) < 0, which violates the definition
of a bivariate scoring function. Also, since there are i, j ∈ {1, . . . ,m} with s(i, j) > 0, s′

is non-constant as s′(i) > s′(j). Thus, s′ is indeed a positional scoring function. Finally,
we note that ŝ(R, (x, y)) =

∑
i∈NR

s(r(≻i, x),m) − s(r(≻i, x),m) = ŝ′(R, x) − s′(R, y)
for all profiles R and alternatives x, y ∈ A. This implies for all feasible sets X ∈ F(A)
and all rankings ▷,▷′ ∈ R(X) that

ŝ(R,▷)− ŝ(R,▷′) =
∑

(x,y)∈▷

ŝ(R, (x, y))−
∑

x,y∈▷′

ŝ(R, (x, y))

= 2
∑

(x,y)∈▷\▷′

ŝ(R, (x, y))

= 2
∑

(x,y)∈▷\▷′

ŝ′(R, x)− ŝ′(R, y).

Now, let f ′ denote the positional scoring rule defined by s′. Our goal is to show that
f(R,X) = f ′(R,X) for all profiles R ∈ R∗ and all feasible sets X ∈ F(A). To this end,
consider two rankings ▷ ∈ f(R,X) and ▷′ ∈ R(X) \ f(R,X) for some profile R ∈ R∗

and agenda X ∈ F(A). By definition of f , we have that ŝ(R,▷) > ŝ(R,▷′), which means
that

∑
(x,y)∈▷\▷′ ŝ′(R, x) − ŝ′(R, y) > 0. Hence, there is a pair of alternatives x, y ∈ X

such that ŝ′(R, x) > ŝ′(R, y) and y ▷′ x. The definition of positional scoring rules
then requires that ▷′ ̸∈ f ′(R,X), and thus f ′(R,X) ⊆ f(R,X). For the other direction,
consider a ranking ▷ ∈ R(X)\f ′(R,X). This means that there are alternatives x, y ∈ X
such that x ▷ y but ŝ′(R, x) < ŝ′(R, y). By iterating through ▷, we can also find two
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consecutive alternatives x′, y′ ∈ X in ▷ that satisfy x′ ▷ y′ but ŝ′(R, x′) < ŝ′(R, y′).
Now, consider the ranking ▷′ derived from ▷ by swapping x′ and y′. It holds that
ŝ(R,▷′)− ŝ(R,▷) = 2ŝ′(R, y′)− 2ŝ′(R, x′) > 0, which shows that ▷ ̸∈ f(R,X). Hence,
we also get that f(R,X) ⊆ f ′(R,X), so f is the positional scoring rule induced by s′.

Remark 5 (Smith’s Characterization of Positional Scoring Rules). Corollary 1
is closely related to the characterization of positional scoring rules due to Smith (1973).6

In more detail, Smith (1973) characterizes positional scoring rules in the context of social
welfare functions (SWFs), which return a single weak order over the alternatives rather
than a set of strict orders, and shows that an SWF is a positional scoring rule if and
only if it satisfies anonymity, neutrality, continuity, and separability. The last axiom,
separability, is a variant of reinforcement for SWFs which requires that if f(R)|{a,b} ∩
f(R)|{a,b} ̸= ∅, then f(R + R′)|{a,b} = f(R)|{a,b} ∩ f(R′)|{a,b} for all disjoint profiles
R,R′ ∈ R∗ and all alternatives a, b ∈ A (here, f(R), f(R′), and f(R + R′) denote the
weak rankings on A returned by the SWF f for R, R′, and R+R′, respectively).

While our result is logically independent to the one by Smith since we work in a dif-
ferent setting, reinforcement and agenda consistency transfer the idea of separability to
SPFs. To make this more formal, we write a ≿f(R,X) b if there is a ranking ▷ ∈ f(R,X)
with a ▷ b and a ≻f(R,X) b if a ▷ b for all rankings ▷ ∈ f(R,X). Then, reinforcement
and agenda consistency together require for all disjoint profiles R,R′ ∈ R∗, feasible
sets X ∈ F(A), and alternatives a, b ∈ X that if ≿f(R,X)|{a,b} ∩ ≿f(R′,X)|{a,b} ̸= ∅,
then ≿f(R+R′,X)|{a,b} = ≿f(R,X)|{a,b} ∩ ≿f(R′,X)|{a,b}. The reason for this is that
≿f(R̄,X)|{a,b} = f(R̄, {a, b}) for every profile R̄ because of agenda consistency. Hence,
if ≿f(R,X)|{a,b} ∩ ≿f(R′,X)|{a,b} ̸= ∅, then f(R, {a, b}) ∩ f(R′, {a, b}) ̸= ∅ and reinforce-
ment shows that f(R+R′, {a, b}) = f(R, {a, b}) ∩ f(R′, {a, b}). Applying again agenda
consistency then shows that ≿f(R+R′,X)|{(a,b)} = f(R + R′, {a, b}) = ≿f(R,X)|{a,b} ∩
≿f(R′,X)|{a,b}, which proves our claim.

3.3. Kemeny’s rule

As our last result, we discuss our characterization of Kemeny’s rule for which we ad-
ditionally use independence of infeasible alternatives. Just as Corollary 1, this result
follows as simple corollary from Theorem 1. Since this corollary can be seen as a variant
of the characterization of Kemeny’s rule by Young (1988), Theorem 1 indeed combines
the prominent characterizations of Smith (1973) and Young (1988).

Corollary 2. An SPF is Kemeny’s rule if and only if it satisfies anonymity, neutrality,
continuity, faithfulness, reinforcement, local agenda consistency, and independence of
infeasible alternatives.

Proof. Since Kemeny’s rule is a bivariate scoring rule, it satisfies all axioms but inde-
pendence of infeasible alternatives due to Theorem 1. To show that Kemeny’s rule also

6It should be noted that the result by Smith (1973) considers positional scoring rules defined by arbitrary
scoring rules s, i.e., this author drops the assumption that s is non-increasing and non-constant.
When using agenda consistency instead of local agenda consistency and faithfulness in the proof of
Theorem 1, we can also infer this stronger result.
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satisfies independence of infeasible alternatives, we consider two profiles R and R′ and a
feasible set X ∈ F(A) such that NR = NR′ and ≻i|X = ≻′

i|X for all i ∈ NR. This means
for all alternatives x, y ∈ X and all voters i ∈ NR that x ≻i y if and only if x ≻′

i y.
Furthermore, by the definition of Kemeny’s rule, every voter gives 1 point to a ranking
▷ ∈ R(X) for every pair of alternatives x, y ∈ X with x ≻i y and x ▷ y and −1 points
for every pair of alternatives x, y ∈ X with x ≻i y and y ▷ x. Combining these two
insights implies that ŝKemeny(R,▷) = ŝKemeny(R,▷′) for every ranking ▷ ∈ R(X) and
thus fKemeny(R,X) = fKemeny(R

′, X).
For the other direction, let f denote an SPF that satisfies all given axioms. By Theo-

rem 1, f is a bivariate scoring rule that satisfies independence of infeasible alternatives
and we let s denote its bivariate scoring function. By the definition of bivariate scoring
functions, there are indices i, j ∈ {1, . . . ,m} with i < j such that s(i, j) > 0. Our goal
is now to show that s(i′, j′) = s(i, j) for all indices i′, j′ with i′ < j′. To this end, we
consider two profiles R and R′, which are both defined by 2 voters. In more detail, in
R, a is the i-th best alternative of voter 1 and the j-th best alternative of voter 2, and b
is the j-th best alternative of voter 1 and the i-th best alternative of voter 2. All other
alternatives can be ranked arbitrarily. Since s(i, j) = −s(j, i), it is easy to check that
f(R, {a, b}) = {(a, b), (b, a)}. In the second profile R′, voter 2 has the same preference
as in R, but voter 1 places a now at position i′ and b at position j′. We note that
≻k|{a,b} = ≻′

k|{a,b} for k ∈ {1, 2}, so independence of infeasible alternatives entails that
f(R′, {a, b}) = f(R, {a, b}) = {(a, b), (b, a)}. This means that ŝ(R′, (a, b)) = ŝ(R′, (b, a)).
Moreover, it is easy to see that ŝ(R′, (a, b)) = s(i′, j′) + s(j, i) = −(s(j′, i′) + s(i, j)) =
−ŝ(R′, (b, a)). We therefore infer that s(i′, j′) + s(j, i) = s(i′, j′) − s(i, j) = 0. Hence,
s(i, j) = s(i′, j′) for all i′, j′ ∈ {1, . . . ,m} with i′ < j′, which means that f is Kemeny’s
rule as s is skew-symmetric and f is invariant under scaling s.

Remark 6 (Young’s Characterization of Kemeny’s Rule). Corollary 2 can be seen
as a variant of a prominent characterization in the literature: Young (1988) has shown
that Kemeny’s rule is the only SPF satisfying anonymity, neutrality, reinforcement,
faithfulness, and pairwise consistency (see also Young, 1994, Theorem 6). The last
condition in this list, pairwise consistency, requires for all profiles R ∈ R∗, feasible sets
of alternatives X ∈ F(A), rankings ▷ ∈ f(R,X), and alternatives a, b ∈ X that are
consecutive in ▷ that (i) if a ▷ b, then (a, b) ∈ f(R, {a, b}), (ii) if a ▷ b and (b, a) ∈
f(R, {a, b}), then (▷\{(a, b)})∪{(b, a)} ∈ f(R,X), and (iii) f(R, {a, b}) = f(R′, {a, b})
for all R′ ∈ R∗ with NR′ = NR and ≻′

i|{a,b} = ≻i|{a,b} for all i ∈ NR. Clearly, the first
condition corresponds to local agenda consistency for agendas of size 2, and the third
condition to independence of infeasible alternatives for agendas of size 2. By contrast,
none of our axioms relates to the second condition. Since our proofs also work with this
restricted notions of local agenda consistency and independence of infeasible alternatives,
Corollary 2 gives another, intuitively slightly stronger variant of this characterization.
In particular, our result replaces the technical second condition of pairwise consistency
with continuity, thus resulting in a more natural characterization of Kemeny’s rule.

Remark 7 (Condorcet-consistency). There is also another characterization of Ke-
meny’s rule by Young and Levenglick (1978) that relies on a variant of Condorcet-
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consistency. In more detail, this axiom postulates for all profiles R ∈ R∗, feasible sets
X ∈ F(A), rankings ▷ ∈ f(R,X), and alternatives a, b ∈ X that are consecutive in ▷
that (i) if a ▷ b, then a (weak) majority of voters prefer a to b, and (ii) if as many voters
prefer a to b than vice versa and a ▷ b, then (▷ \ {(a, b)}) ∪ {(b, a)} ∈ f(R,X). This
definition of Condorcet-consistency differs vastly from classical definitions of Condorcet-
consistency and consequently, the result of Young and Levenglick (1978) is often erro-
neously stated with a weaker variant of Condorcet-consistency.7 Our main result allows
for another variant of this characterization. Firstly, it is easy to see that Kemeny’s rule
is the only bivariate scoring rule that always ranks the Condorcet winner first whenever
such an alternative exists. Even more, Theorem 1 also holds when replacing local agenda
consistency and IIA with another variant of Condorcet-consistency, which requires that
if a is ranked directly over b in a winning ranking, then a (weak) majority of the voters
must prefer a to b. This axiom implies local agenda consistency and IIA for feasible sets
of size 2, so this statement follows directly from our proof.

Remark 8 (Arrow’s Impossibility). It is an immediate consequence of Corollary 1
and Corollary 2 that no bivariate scoring rule satisfies both agenda consistency and in-
dependence of infeasible alternatives. Indeed, when imposing both axioms at the same
time, it is easy to see that Arrow’s impossibility theorem applies: only dictatorships
satisfy Pareto-optimality, agenda consistency, and independence of infeasible alterna-
tives. This follows analogous to the proofs of Arrow’s impossibility in, e.g., Campbell
and Kelly (2002). Hence, Corollaries 1 and 2 can be seen as attractive escape routes to
this impossibility.

4. Conclusion

In this paper, we study social preference functions (SPFs) which, given the voters’ strict
preferences over some set of alternatives, compute a non-empty set of winning rankings
over a feasible subset of alternatives. Two of the most prominent classes of SPFs are
positional scoring rules and Kemeny’s rule, both of which have repeatedly been charac-
terized (e.g., Smith, 1973; Young, 1974; Young and Levenglick, 1978; Young, 1988). In
this paper, we unify these two independent streams of research by characterizing the class
of bivariate scoring rules, which contains both Kemeny’s rule and all positional scoring
rules. Roughly, bivariate scoring rules can be seen as variants of Kemeny’s rule that
weight comparisons between alternatives differently depending on their positions in the
voters’ preference relations. We characterize this class of rules by mainly relying on two
axioms called reinforcement and local agenda consistency, which formalize consistency
notions with respect to variable electorates and variable agendas, respectively. Based
on this result, we also infer characterizations of the class of positional scoring rules and
of Kemeny’s rule as corollaries. These characterizations can be seen as variants of the
characterizations by Smith (1973) and Young (1988), which demonstrates that our main

7Maybe the most prominent occurrence of such a mistake is in the chapter by Zwicker (2016), where
Condorcet-consistency only requires that the first-ranked alternative in a winning ranking must be
the Condorcet winner if one exists.
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result indeed combines these two classical theorems. Or, put differently, our main result
tries to unify the axiomatic research on positional scoring rules and Kemeny’s rule.

Moreover, we note that our characterizations of positional scoring rules and Kemeny’s
rule also highlight the differences of these SPFs: while the latter SPF satisfy indepen-
dence of infeasible alternatives, the former ones satisfy a stronger notion of agenda con-
sistency. Since these axioms are jointly incompatible under mild additional conditions
due to Arrow’s impossibility (Arrow, 1951), these results thus draw a sharp boundary
between Kemeny’s rule and positional scoring rules.

Finally, we note that our paper can also be seen as progress to the open problem
of better understanding SPFs from an axiomatic perspective. Indeed, while there are
very general classes of SPFs (see, e.g., Elkind and Slinko, 2016), there is little progress
in understanding these large classes from an axiomatic perspective. While our result
focuses on a subset of these classes, it still is the most general characterization of SPFs
so far and can thus be seen as a first step in the analysis of more general classes of SPFs.
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A. Appendix: Proof of Theorem 1

In this appendix, we provide a complete proof of Theorem 1: an SPF is a bivariate scoring
rule if and only if it satisfies anonymity, neutrality, continuity, faithfulness, reinforcement,
and local agenda consistency. Since we have shown in the main body that every bivariate
scoring rule satisfies the given axioms, we focus here on the converse and thus assume
throughout the appendix that f is an SPF that satisfies all six axioms. Our goal is to find
the underlying bivariate scoring function of f to show that it is indeed a bivariate scoring
rule. For this, we follow the proof sketch inj the main body. For a better readability, we
place the lemmas in groups indicated by subsections: in Appendix A.1 we show that f is
non-imposing, in Appendix A.2 we apply the separation theorem for convex sets to infer
the vectors u▷,▷′ , in Appendix A.3 we study feasible sets of size 2, and in Appendix A.4,
we extend our reasoning to larger feasible sets and proof Theorem 1.

A.1. Non-imposition

Our first goal is to show that the SPF f is non-imposing. To this end, we first construct
an auxiliary profile Ra, in which all rankings over a feasible X are chosen that top-rank
a specific alternative x ∈ X.

Lemma 1. For all feasible sets X ∈ F(A) and alternatives a ∈ X, there is a profile Ra

such that f(Ra, X) = {▷ ∈ R(X) : ∀x ∈ X \ {a} : a ▷ x}.

Proof. Fix an arbitrary feasible set X ∈ F(A) and an alternative a ∈ X. If |X| = 1, the
claim is trivial and we thus suppose that |X| ≥ 2. For constructing the profile Ra, we
will first derive a profile Ra,b such that f(Ra,b, {a, b}) = {(a, b)} for some alternative b ∈
X \{a}, (a, x) ∈ f(Ra,b, {a, x}) for all x ∈ X \{a, b}, and f(Ra,b, {x, y}) = {(x, y), (y, x)}
for all x, y ∈ X\{a, b}. To this end, we recall that there is a preference relation ≻∗∈ R(A)
such that a ≻∗ b and f(≻∗, {a, b}) = {(a, b)} by faithfulness.

Now, the profile Ra,b simply contains all preference relations ≻∈ R(A) with a ≻ b once.
By faithfulness, it holds for all these preference relations that (a, b) ∈ f(≻, {a, b}). Since
≻∗ also appears in Ra,b, we can infer from reinforcement that f(Ra,b, {a, b}) = {(a, b)}.
Furthermore, we note that in Ra,b, all alternatives x, y ∈ X \ {a, b} are completely
symmetric. So, anonymity and neutrality require that f(Ra,b, {x, y}) = {(x, y), (y, x)}.
Finally, we will show that (a, x) ∈ f(Ra,b, {a, x}) for all x ∈ X \ {a, b}. To this end, fix
such an alternative x ∈ A \ {a, b} and let τ denote the permutation that only exchanges
a and x. The key insight now is that that for every ranking ≻ in Ra,b with x ≻ a, the
ranking τ(≻) (i.e., the ranking derived from ≻ by exchanging a and x) is also in Ra,b

as because every alternative x that is preferred to a is also preferred to b. Now, let R1

denote the profile that contains each ballots ≻ with x ≻ a ≻ b once, R2 is the profile that
contains each ballot with a ≻ x ≻ b once, and R3 is the profile that consists all ballots
with a ≻ b ≻ x once. First, we note that R1 + R2 + R3 = Ra,b. Secondly, faithfulness
implies for R3 that (a, x) ∈ f(R3, {a, x}) because every voter prefers a to x. As the last
point, note that τ maps R1 to R2 and R2 to R1. As a consequence, anonymity and
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neutrality require for every ranking ≻ that f(R1 +R2, {a, x}) = {(a, x), (x, a)}. Finally,
reinforcement then shows that (a, x) ∈ f(Ra,b, {a, x}).

The profile Ra consists now of a copy of Ra,b for every alternative b ∈ X \{a}. By our
previous analysis, we have that f(Ra,b, {a, b}) = {(a, b)} and (a, x) ∈ f(Ra,b, {a, x}) for
all b ∈ X \ {a}, x ∈ X \ {a, b}. Hence, reinforcement shows that f(Ra, {a, x}) = {(a, x)}
for all alternatives x ∈ X \ {a}. By local agenda consistency, this means that a▷x for
all rankings ▷ ∈ f(Ra, X) and alternatives x ∈ X \ {a}; otherwise, there is a ranking
▷′ ∈ f(Ra, X) and an alternative x ∈ X such that x▷′a and a, x are consecutive in
▷′. However, local agenda consistency now implies that (x, a) ∈ f(Ra, {a, x}), which
contradicts our previous analysis. So, f(Ra, X) ⊆ {▷ ∈ R(X) : ∀x ∈ X \ {a} : a ▷ x}.
Finally, it is easy to see that all alternatives x ∈ X \ {a} are symmetric to each other.
As a consequence, anonymity and neutrality turn this subset relation into an equality,
which proves this lemma.

Based on Lemma 1, we next show that f is non-imposing, i.e., for every feasible
set X ∈ F(A) and every ranking ▷ ∈ R(X), there is a profile R ∈ R∗ such that
f(R,X) = {▷}.

Lemma 2. The SPF f is non-imposing.

Proof. Fix an arbitrary feasible set of alternatives X = {a1, . . . , ak} ∈ F(X) and rank-
ing ▷ ∈ F(X). We will construct the profile R▷ in which f uniquely chooses ▷ =
a1, a2, . . . , ak inductively. In more detail, we will use an induction on ℓ ∈ {1, . . . , |X|−1}
to construct a profile Rℓ such that f(Rℓ, X) = {▷ ∈ R(X) : ∀x ∈ X \ {a1, . . . , aℓ} : a1 ▷
. . . ▷ aℓ ▷ x}. Less formally, f should return for Rℓ all preference relations on X which
rank the first ℓ alternatives like ▷ and the remaining alternatives can be placed in ev-
ery possible way. Furthermore, all alternatives x ∈ X \ {a1, . . . , aℓ} will be completely
symmetric in the profile Rℓ. We note that this induction proves our lemma because at
ℓ = |X| − 1, f(R|X|−1, X) = {▷} is the only possible outcome.

Now, the induction hypothesis ℓ = 1 follows directly from Lemma 1 as f(Ra1 , X) =
{▷ ∈ R(X) : ∀x ∈ X \ {a1} : a1 ▷ x}. Next, suppose that there is a profile Rℓ

for ℓ < |X| − 1 such that f(Rℓ, X) = {▷ ∈ R(X) : ∀x ∈ X \ {a1, . . . , aℓ} : a1 ▷
. . . ▷ aℓ ▷ x}. Moreover, we suppose that all alternatives in X \ {a1, . . . , aℓ}
are completely symmetric to each other in Rℓ. As first point, we observe that
f(Rℓ, {aℓ+1, . . . , a|X|}) = R({aℓ+1, . . . , a|X|}) because of local agenda consistency. Fur-
thermore, consider the profile Raℓ+1 of Lemma 1 for which f(Raℓ+1 , {aℓ+1, . . . , a|X|}) =
{▷ ∈ R({aℓ+1, . . . , a|X|}) : ∀x ∈ {aℓ+2, . . . , a|X|} : aℓ+1▷x}. By reinforcement,
we derive that for every λ ∈ N that f(λRℓ + Raℓ+1 , {aℓ+1, . . . , a|X|}) = {▷ ∈
R({aℓ+1, . . . , a|X|}) : ∀x ∈ {aℓ+2, . . . , a|X|} : aℓ+1 ▷ x}. Moreover, continuity implies
that there is a λ ∈ N such that f(λRℓ + Raℓ+1 , X) ⊆ f(Rℓ). Now, by using again
local agenda consistency, it follows that f(λRℓ + Raℓ+1 , X) ⊆ {▷ ∈ R(X) : ∀x ∈
X \ {a1, . . . , aℓ+1} : a1 ▷ . . . ▷ aℓ ▷ aℓ+1 ▷ x}. Finally, we note that the alterna-
tives in {aℓ+2, . . . , a|X|} are completely symmetric in both Rℓ and Raℓ+1 , so anonymity
and neutrality turn this subset relation into an equality. This proves the induction step
and thus concludes the proof of this lemma.
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A.2. Separating Hypeplanes

After establishing that f is non-imposing, we will work towards deriving the bivariate
scoring function of f . For doing so, we will use the separating hyperplane theorem for
convex sets as, e.g., showcased by Young (1975); Young and Levenglick (1978). For this,
we first will change the representation of f from preference profiles to a numerical space.
Hence, let b : {1, . . . ,m!} → R(A) denote an enumeration of all possible preference
relations. Based on b, we can present preference profiles simply as a vector v ∈ Nm! (we
suppose 0 ∈ Nm!: the entry vk states how often the ballot b(k) appears. To indicate
the vector corresponding to a profile R, we will simply write v(R), so v(R)k states how
many voters report b(k) in R. Now, since f is anonymous, there is a (unique) function
g : Nm! × F(A) →

⋃
X∈F(A)F(R(X)) such that f(R,X) = g(v(R), X) for all profiles

R ∈ R∗ and feasible sets X ∈ F(A). Moreover, it is easy to see that g inherits the
desirable properties from f :

• Neutrality: g(τ(v), τ(X)) = {τ(▷) : ▷ ∈ g(v,X)} for all vectors v ∈ Nm!, feasible
sets X ∈ F(A), and permutations τ : A → A. Here, τ(v) denotes the vector
defined by τ(v)ℓ = vk for all indices ℓ, k with τ(b(k)) = b(ℓ). This ensures that
v(τ(R)) = τ(v(R)).

• Reinforcement: g(v + v′, X) = g(v,X) ∩ g(v′, X) for all vectors v, v′ ∈ Nm! and
feasible sets X ∈ F(A) with g(v,X) ∩ g(v′, X) ̸= ∅.

• Local Agenda Consistency: g(v,X) ⊇ g(v, Y ) ∩ C(X,Y ) for all v ∈ Nm! and all
feasible sets X,Y ∈ F(A) with X ⊆ Y .

We next extend the domain of g to Qm!×F(A) while preserving the desirable properties
of f .

Lemma 3. There is a neutral, reinforcing, and local agenda consistent function ĝ :
Qm!×F(A) →

⋃
X∈F(A)F(R(X)) such that g(v,X) ⊆ R(X) and f(R,X) = g(v(R), X)

for all profiles R ∈ R∗ and feasible sets X ∈ F(A).

Proof. First, since f is anonymous, we know that there is a function g : Nm! ×F(A) →⋃
X∈F(A)F(R(X)) that satisfies the requirements of the lemma. For extending the

definition of this function to Qm!, we will heavily rely on the profile R∗ in which every
preference relation ≻∈ R(A) is reported once. Moreover, let v∗ = v(R∗) and note that
f(R,X) = g(v(R,X)) = R(X) for every feasible set X ∈ F(A) because of anonymity
and neutrality. We will now proceed in two steps and first generalize g to Zm! and then
to Qm!.

Step 1: Extension to Zm!

For this step, we define the function ḡ(v,X) = g(v + λv∗, X) for all v ∈ Zm! and
X ∈ F(A), where λ ∈ N is an arbitrary scalar such that v + λv∗ ∈ Nm!. Now, first note
that ḡ is indeed defined for all v ∈ Zm! as for all such vectors, there is λ ∈ N such that
v + λv∗ ∈ Nm!. Next, we show that ḡ is well-defined despite the fact that we do not
fully specify λ. To this end, consider a feasible set X ∈ F(A), a vector v ∈ Zm!, and
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two values λ1, λ2 ∈ N such that v + λ1v
∗ ∈ Nm! and v + λ2v

∗ ∈ Nm!. We will show that
g(v + λ1v

∗, X) = g(v + λ2v
∗, X), which entails that ḡ is well-defined. Now, if λ1 = λ2,

this is obvious. Hence, suppose without loss of generality that λ1 > λ2, which implies
that v+λ1v

∗ = v+λ2v
∗+(λ1−λ2)v

∗. Since g((λ1−λ2)v
∗, X) = R(X) due to neutrality,

we infer that g(v+λ1v
∗, X) = g(v+λ1v

∗, X)∩g((λ1−λ2)v
∗, X) = g(v+λ1v

∗, X), which
proves our claim.

Furthermore, we note that f(R,X) = g(v(R) + 0v∗, X) = ḡ(v(R), X) for all profiles
R ∈ R∗ and feasible sets X ∈ F(A), so ḡ indeed represents f .

Next, we show that ḡ satisfies our four properties. To this end, consider an arbitrary
vector v1 ∈ Zm! and a scalar λ1 ∈ N such that v1 + λ1v

∗ ∈ Nm!. First, for neutrality, we
note that τ(v1 + λ1v

∗) = τ(v1) + λ1v
∗ for every permutation τ : A → A. This implies

that ḡ(τ(v1), τ(X)) = g(τ(v1) + λ1v
∗, τ(X)) = g(τ(v1 + λ1v

∗, τ(X)) = {τ(▷) : ▷ ∈
g(v1 + λ1v

∗, X)} = {τ(▷) : ▷ ∈ ḡ(v1, X)} because of the neutrality of g, so ḡ also
satisfies this axiom.

Next, we consider local agenda consistency and consider to this end two feasible sets
X,Y ∈ F(A) with X ⊆ Y . Now, by the local agenda consistency of f , it is straightfor-
ward that ḡ(v1, X) = g(v1+λ1v

∗, X) ⊇ g(v1+λ1v
∗, Y )∩C(X,Y ) = ḡ(v1, Y )∩C(X,Y ),

which demonstrates that ḡ satisfies this axiom, too.
Finally, for reinforcement, let v2 ∈ Zm! denote another vector and λ2 ∈ N such that

v2 + λ2v
∗ ∈ Nm! and suppose that ḡ(v1, X) ∩ ḡ(v2, X) ̸= ∅ for some X ∈ F(A). Now,

since g is reinforcing, it holds that ḡ(v1 + v2, X) = g(v1 + v2 + (λ1 + λ2)v
∗, X) =

g(v1 + λ1v
∗, X) ∩ g(v2 + λ2v

∗, X) = ḡ(v1, X) ∩ ḡ(v2, X). This shows that ḡ satisfies
reinforcement.

Step 2: Extension to Qm!

In the second step, we will extend ḡ to Qm!. To this end, we define ĝ(v,X) = ḡ(λv,X)
for all vectors v ∈ Qm! and feasible sets X ∈ F(A), where λ ∈ N is an arbitrary scalar
such that λv ∈ Zm!. First, we note that ḡ is indeed defined for all v ∈ Qm! because
each such vector can be represented as v′

λ for v′ ∈ Zm! and λ ∈ N. Next, we will show
that ĝ is well-defined. For this, we consider a vector v ∈ Qm! and two scalars λ1, λ2 ∈ N
such that vλ1 ∈ Zm! and vλ2 ∈ Zm!. Since ḡ is reinforcing, it is now easy to verify that
ḡ(λ1v,X) = ḡ(λ1λ2v,X) = ḡ(λ2v,X), so ĝ is well-defined.

Moreover, we note again that ĝ represents f since f(R,X) = ḡ(1 · v(R), X) =
ĝ(v(R), X) for all profiles R ∈ R∗ and feasible sets X ∈ F(A).

As the last point of this lemma, we again verify that ĝ satisfies all required axioms.
To this end, we let v1 ∈ Qm! denote an arbitrary vector and λ1 ∈ N a scalar such that
λ1v1 ∈ Zm!. Now, for showing that ĝ is neutral, we note that λ1v1 ∈ Zm! implies that
λ1τ(v1) ∈ Zm! for every permutation τ : A → A. Hence, it holds that ĝ(τ(v1), τ(X) =
ḡ(λ1τ(v1), τ(X)) = ḡ(τ(λ1v1), τ(X)) = {τ(▷) : ḡ(λ1v1, X)} = {τ(▷) : ĝ(v1, X)} for ev-
ery X ∈ F(A), so ĝ is neutral.

Next, we show that ĝ is locally agenda consistent, for which we consider two feasible
sets X,Y ∈ F(A) with X ⊆ Y . It is easy to verify that ĝ(v1, X) = ḡ(λ1v1, X) ⊇
ḡ(λ1v1, Y ) ∩ C(X,Y ) = ḡ(v1, Y ) ∩ C(X,Y ) because ḡ is locally agenda consistent. This
proves that ĝ satisfies this condition, too.
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For reinforcement, we consider again a second vector v2 ∈ Qm! and a scalar λ2 ∈ N such
that λ2v2 ∈ Zm!. Moreover, suppose that ĝ(v1, X) ∩ ĝ(v2, X) ̸= ∅ for some X ∈ F(A).
Since λ1λ2(v1 + v2) ∈ Zm!, ḡ(λ1λ2v1, X) = ḡ(λ1v1, X), and ḡ(λ1λ2v2, X) = ḡ(λ2v2, X),
we derive that ĝ(v1 + v2, X) = ḡ(λ1λ2(v1 + v2), X) = ḡ(λ1λ2v1, X) ∩ ḡ(λ1λ2v2, X) =
ḡ(λ1v1, X) ∩ ḡ(λ2v2, X) = ĝ(v1, X) ∩ ĝ(v2, X). Thus, ĝ satisfies all our required axioms.

Since f(R,X) = ĝ(v(R), X) for all profiles R ∈ R∗, we will from now on analyze the
function ĝ. To this end, we define the sets R▷ = {v ∈ Qm! : ▷ ∈ ĝ(v,R)} for all feasible
sets X ∈ F(A) and rankings ▷ ∈ R(X). Moreover, we define R̄▷ as the closure of R▷

with respect to Rm!. First note that the sets R̄▷ are symmetric. In more detail, it holds
that if v ∈ R̄▷, then τ(v) ∈ R̄τ(▷) for every permutation τ : A → A. The reason for
this is that ĝ is neutral and thus, if ▷ ∈ ĝ(v,X), then τ(▷) ∈ ĝ(τ(v), τ(X)). Moreover,
we note that

⋃
▷∈R(X)R▷ = Qm! for every feasible set X ∈ F(A) as the domain of ĝ is

Qm! for every feasible set X. Since there are only finitely many rankings in R(X), this
also implies that

⋃
▷∈R(X) R̄▷ = Rm! for all feasible sets X ∈ F(A). Finally, we note

that the sets R▷ are Q-convex: it holds for all v, v′ ∈ R▷ and all λ ∈ [0, 1] ∩ Q that
vλ+ (1− λ)v′ ∈ R▷. This follows from the reinforcement of ĝ because v, v′ ∈ R▷ imply
that ▷ ∈ ĝ(v,X) = ĝ(λv,X) and ▷ ∈ ĝ(v′, X) = ĝ((1 − λ)v′, X). Moreover, if R▷ is
Q-convex, then R̄▷ is known to the convex (see Young (1975)). In fact these sets are
even convex cones because v ∈ R▷ entails that λv ∈ R▷ for every λ > 0. Finally, since
R(X) is finite and

⋃
▷∈R(X) R̄▷ = Rm!, we infer that the sets R̄▷ are fully dimensional.

We next show that these insights imply that for every feasible set X ∈ F(A) and
rankings ▷,▷′ ∈ R(X), there is a non-zero vector that separates R̄▷ from R̄▷′ . More
formally, this means that there is a vector u▷,▷′ such that vu▷i,▷j ≥ 0 if v ∈ R̄▷i and
vu▷i,▷j ≤ 0 if v ∈ R̄▷j (recall that vu denotes the standard scalar product).

Lemma 4. For every feasible set X ∈ F(A) and rankings ▷,▷′ ∈ R(X), there is a
non-zero vector u▷,▷′ ∈ Rm! such that vu▷,▷′ ≥ 0 if v ∈ R̄▷′ and vu▷,▷′ ≤ 0 if v ∈ R̄▷′.

Proof. Consider an arbitrary feasible set X ∈ F(A) and two distinct rankings ▷, ▷′ ∈
R(X). Moreover, let R̄▷ and R̄▷′ be defined as explained before the lemma and recall
that these sets are convex cones. For finding the non-zero vector u▷,▷′ that separates R̄▷

from R̄▷′ , we aim to apply the separation theorem for convex sets (see, e.g., Rockafeller,
1970). This requires us to show that intR̄▷ ∩ intR̄▷′ = ∅.

Assume for contradiction that this is not the case. Since both R̄▷ and R̄▷′ are fully
dimension, this means that there is a point v ∈ intR̄▷ ∩ intR̄▷′ ∩ Qm!. As first point,
we note that intR̄▷ is a subset of the convex hull of R▷. Because R▷ is Q-convex and
v ∈ Qm!, this entails that v ∈ R▷. An analogous argument also shows that v ∈ R▷′ ,
so ▷,▷′ ∈ ĝ(v,R). Next, we note that there is a profile R such that f(R,X) = {▷}
because of Lemma 2. By Lemma 3, it also holds that ĝ(v′, X) = {▷} for the vector
v′ = v(R) ∈ Nm!. Finally, since v ∈ intR̄▷′ , there is λ ∈ (0, 1) ∩Qm! such that v + λv′ ∈
intR̄▷′ . Now, using the same reasoning as for v, it follows that v + λv′ ∈ R▷′ . However,
this means that ▷′ ∈ g(v+λv′, X) but ▷′ ̸∈ g(v,X)∩g(λv′, X) = {▷}. This contradicts
that ĝ is reinforcing, so the assumption that intR̄▷ ∩ intR̄▷′ ̸= ∅ must be wrong.
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Next, we note that both intR̄▷ and intR̄▷′ are non-empty because these sets are fully
dimensional. Hence, we can now apply the separation theorem for convex sets to infer
that there is a non-zero vector u▷,▷′ ∈ Rm! such that vu▷,▷′ ≥ 0 if v ∈ R̄▷ and vu▷,▷′ ≤ 0
if v ∈ R̄▷′ . This completes the proof of this lemma.

As the last lemma for this section, we show that the separating vectors u▷,▷′ for
▷′ ∈ R(X) \ {▷} fully describe the set R̄▷.

Lemma 5. Consider a feasible set X ∈ F(A) and a ranking ▷ ∈ R(X). It holds that
R̄▷ = {v ∈ Rm! : ∀▷′ ∈ R(X) \ {▷} : vu▷,▷′ ≥ 0}, where u▷i,▷j are arbitrary non-zero
vectors that separate R̄▷ from R̄▷′.

Proof. Fix an arbitrary feasible set X and a ranking ▷ ∈ R(X). Moreover, we define
S▷ = {v′ ∈ Rm! : ∀▷′ ∈ R(X) \ {▷} : v′u▷,▷′ ≥ 0} for a simpler notation. First, we note
that, by definition, vu▷,▷′ ≥ 0 for all v ∈ R̄▷ and ▷′ ∈ R(X) \ {▷}. Hence, v ∈ R̄▷

implies v ∈ S▷, so R̄▷ ⊆ S▷.
For the other direction, we first note that intS▷ ̸= ∅ since intR̄▷ ̸= ∅ and R̄▷ ⊆ S▷.

Thus, consider a point v ∈ intS▷. This implies that vu▷,▷′
> 0 for all ▷′ ∈ R(X) \ {▷},

which in turn means that v ̸∈ R̄▷′ . Otherwise, we would have vu▷,▷′ ≤ 0. Since⋃
▷′′∈R(X) R̄▷′′ = Rm!, this means that v ∈ R̄▷. Hence, intS▷ ⊆ R̄▷ and, since R̄▷ is

closed, it also holds that S▷ ⊆ R̄▷. This completes the proof of this lemma.

A.3. Feasible Sets of Size 2

Since the vectors u▷,▷′ completely specify the sets R̄▷, which in turn specify ĝ and f , we
will show that these vectors can be represented by a bivariate scoring function. For this,
we will first prove that these vectors can be described by a bivariate scoring function if
the feasible set has size 2.

Lemma 6. There are non-zero vectors û(x,y),(y,x) for all distinct x, y ∈ A and a bivariate
scoring function s such that û(x,y),(y,x) separates R̄(x,y) from R̄(y,x) and û

(x,y),(y,x)
k =

s(r(b(k), x), r(b(k), y)) for all alternatives x, y ∈ A and preference relations b(k) ∈ R(A).

Proof. Before we define the bivariate scoring function s, we first need to show some
insights on the vectors u(x,y),(y,x) that separate R̄(x,y),(y,x). To this end, we consider an
arbitrary pair of alternatives x, y ∈ A and let u(x,y),(y,x) be the vector that separates
R̄(x,y) from R̄(x,y) given by Lemma 4. We will first show that, up to scaling with a
positive scalar, u(x,y),(y,x) is the only vector that separates R̄(x,y) from R̄(y,x). Consider
for this an arbitrary second non-zero vector u that also separates R̄(x,y) from R̄(y,x). By
Lemma 5, we get that R̄(x,y) = {v ∈ Rm! : vu(x,y),(y,x) ≥ 0} = {v ∈ Rm! : vu ≥ 0} and
R̄(x,y) = {v ∈ Rm! : − vu(x,y),(y,x) ≥ 0} = {v ∈ Rm! : − vu ≥ 0}. The second equation
follows that since −u(x,y),(y,x) (resp. −u) separates R̄(y,x) from R̄(x,y). This means that
R̄(x,y) ∩ R̄(y,x) = {v ∈ Rm! : vu(x,y),(y,x) = 0} = {v ∈ Rm! : vu = 0}. Hence, the vectors
u(x,y),(y,x) and u are linearly dependent, i.e., there is a non-zero constant α ∈ R such
that αu(x,y),(y,x) = u. It is furthermore straightforward that α ≥ 0 as otherwise, we have
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vu(x,y),(y,x) > 0 for all v ∈ intR̄(x,y) but vu < 0. Hence, u is indeed only a scaling of
u(x,y),(y,x) by a positive scalar.

To get unique vectors, we now define û(x,y),(y,x) = α(x,y),(y,x)u(x,y),(y,x) for all pairs
x, y ∈ A, where α(x,y),(y,x) > 0 is a scalar such that |û(x,y),(y,x)|2 = 1. Now, first note that
the vectors −û(y,x),(x,y) separate R̄(x,y) from R̄(y,x) and satisfy that | − û(y,x),(x,y)|2 = 1.
By the uniqueness of our separating vectors we hence get that û(x,y),(y,x) = −û(y,x),(x,y).
Next, we observe that for every permutation τ : A → A, the vector τ(u(x,y),(y,x)) sep-
arates R̄τ((x,y)) from R̄τ((y,x)). This follows from the fact that for every v ∈ R̄τ((x,y)),
there is another vector v′ ∈ R̄(x,y) such that τ(v′) = v. Moreover, it is easy to verify that
0 ≤ v′u(x,y),(y,x) = τ(v′)τ(u(x,y),(y,x)) = vτ(u(x,y),(y,x)). Since an analogous argument
holds for R̄τ((y,x)), τ(u(x,y),(y,x)) separates these two sets from each other. By the unique-
ness of the separating vectors, we infer thus that û(τ(x),τ(y)),(τ(y),τ(x)) = τ(û(x,y),(y,x))

Based on these two insights, we can now define the bivariate scoring function s. To
this end, we fix a pair of alternatives x∗, y∗ ∈ A and set s(i, j) = û

(x∗,y∗),(y∗,x∗)
k for all

i, j ∈ {1, . . . ,m}, where b(k) ∈ R(A) is an arbitrary preference relation such that i =

r(b(k), x∗) and j = r(b(k), y∗). We first show that û
(x,y),(y,x)
k = s(r(b(k), x), r(b(k), y))

for all x, y ∈ A and b(k) ∈ R(A). To this end, consider arbitrary alternatives x, y ∈ A
and a preference relation b(k) and let b(k′) denote the preference relation used to define
s(i, j) for i = r(b(k), x) and j = r(b(k), y), i.e., it holds that r(b(k), x) = r(b(k′), x∗) and
r(b(k), y) = r(b(k′), y∗). Clearly, this implies that there is a permutation τ : A → A
such that τ(x∗) = x, τ(y∗) = y, and τ(b(k′)) = b(k). Now, by our previous insight,
we have that û(x,y),(y,x) = τ(û(x

∗,y∗),(y∗,x∗)). In particular, it holds that û
(x,y),(y,x)
k =

τ(û(x
∗,y∗),(y∗,x∗))k = û

(x∗,y∗),(y∗,x∗)
k′ because τ(b(k′)) = b(k). Finally, this means that

û
(x,y),(y,x)
k = s(r(b(k), x), r(b(k), y)) for all x, y ∈ A and b(k) ∈ R(A).
It remains to show that s is indeed a pairwise scoring rule. To this end, we first

note that s(i, j) = −s(j, i) because s(r(b(k), x), r(b(k), y)) = û
(x,y),(y,x)
k = −û

(y,x),(x,y)
k =

−s(r(b(k), y), r(b(k), x)) for all alternatives x, y ∈ A and preference relations b(k) ∈
R(A). Furthermore, the faithfulness of f entails that s(i, j) ≥ 0 if i < j. To make
this more precise, fix two alternatives x, y and consider a preference relation ≻∈ R(A)
with x ≻ y. By faithfulness, it holds that (x, y) ∈ f(≻, {(x, y)}) = ĝ(v(≻, {(x, y)}), so
v(≻) ∈ R̄(x,y). This means that û

(x,y),(y,x)
k ≥ 0 for the index k with b(k) = ≻, so also

s(i, j) ≥ 0 if i < j. Finally, since û(x,y),(y,x) is non-zero, there are indices i, j ∈ {1, . . . ,m}
with i < j and s(i, j) > 0.

We note that the vectors û(x,y),(y,x) constructed in Lemma 6 are highly symmetric,
and we thus will always work with these vectors from now. For simplicity, we will denote
these vectors also by u(x,y),(y,x) (i.e., without the hat).

We next will investigate the linear independence of the vectors u(x,y),(y,x) constructed
in Lemma 6 as this will be crucial for the analysis of larger feasible sets.

Lemma 7. Consider a feasible set X = {a1, . . . , aℓ} ∈ F(A) with ℓ ≥ 3 and the sets
UX
1 = {u(a1,ai),(ai,a1) : i ∈ {2, . . . , ℓ}} and UX

2 = {u(ai,aj),(aj ,ai) : i, j ∈ {1, . . . , ℓ} : i < j}.
The following claims are true:
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(1) The set UX
1 is linearly independent.

(2) If UX
2 is linearly dependent, then u(ai,aj),(aj ,ai) = u(ai,a1),(a1,ai)+u(a1,aj),(a1,aj) for all

i, j ∈ {2, . . . , ℓ} with i < j.

Proof. Let X ∈ F(A) denote an arbitrary feasible set with at least three alternatives
and let UX

1 and UX
2 be defined as in the lemma. We will show both claims separately

and start with the linear independence of UX
1 .

Claim (1): The set UX
1 is linearly independent.

For proving this claim, we consider the profiles Rai constructed in Lemma 1 and recall
that f(Rai , {a1, ai}) = {(ai, a1)}. By definition of R̄(ai,a1), this means that v(Rai) is
contained by this set. Even more, continuity and reinforcement entail that there is λ ∈ N
such that f(λRai + ≻, {a1, ai}) = {(ai, a1)} for all ≻ ∈ R(A), so v(Rai) ∈ int R̄(ai,a1).
In turn, Lemma 5 then shows that v(Rai)u(ai,a1),(a1,ai) > 0. On the other hand, it
holds by local agenda consistency that f(Rai , {a1, aj}) = {(a1, aj), (aj , a1)} for all aj ∈
X \ {a1, ai}, so v(Rai) ∈ R̄(a1,aj) ∩ R̄(aj ,a1). This means that v(Rai)u(a1,aj),(aj ,a1) = 0,
so u(a1,ai),(ai,a1) is linearly independent of the other vectors in UX

1 . Since ai is chosen
arbtrarily, we infer that UX

1 is linearly independent.

Claim (2): If UX
2 is linearly dependent, then u(ai,aj),(aj ,ai) = u(ai,a1),(a1,ai) +

u(a1,aj),(a1,aj) for all i, j ∈ {2, . . . , ℓ} with i < j.
We prove this claim in multiple steps and therefore start with an auxiliary observations

on v(Rx)u(y,z),(z,y). As the second step, we prove the claim for the case that |X| = 3,
and in the last step, we derive the presentation also for |X| ≥ 4.

Step 1: The goal of this step is to better understand the relation between the profile Rx

constructed in Lemma 1 and the vectors u(y,z),(z,y). In particular, we will show that that
v(Rx)u(y,z),(z,y) = 0 and v(Rx)u(x,y),(y,x) = v(Rx)u(x,z),(z,x) > 0 for all distinct alter-
natives x, y, z ∈ A. For the first claim, we note that f(Rx, {y, z}) = {(y, z), (z, y)}
by local agenda consistency, so v(Rx) ∈ R̄(y,z),(z,y) ∩ R̄(z,y),(y,z). This means that
v(Rx)u(y,z),(z,y) = 0. For the second claim, we observe that f(Rx, {x, y}) = {(x, y)}
for all y ∈ A \ {y}, so v(Rx) ∈ R̄(x,y). Moreover, due to continuity and reinforcement,
there is λ ∈ N such that f(λRx+ ≻, {x, y}) = {(x, y)}) for all ≻ ∈ R. This means that
v(Rx) ∈ int R̄(x,y) and Lemma 5 hence entails that v(Rx)u(x,y),(y,x) > 0. Finally, we
consider the permutation τ with τ(y) = z, τ(z) = y, and τ(w) = w for all other alterna-
tives w ∈ A \ {y, z}. It follows by Lemma 6 that u

(x,z),(z,x)
k = τ(u

(x,y),(y,x)
k = u

(x,y),(y,x)
k′

for all rankings b(k), b(k′) ∈ R with b(k) = τ(b(k′)) since r(b(k), x) = r(b(k′), x) and
r(b(k), y) = r(b(k′), y), so u(x,z),(z,x) = τ(u(x,y),(y,x). Since also τ(v(Rx)) = v(Rx) due to
the symmetry of this profile, it follows that v(Rx)u(x,y),(y,x) = τ(v(Rx))τ(u(x,y),(y,x)) =
v(Rx)u(x,z),(z,x).

Step 2: Next, we will show Claim (2) for the case that |X| = 3. To this end, we fix a
feasible set X = {a1, a2, a3} and suppose that UX

2 is linearly dependent. By Claim (1), we
have that UX

1 is linearly independent, so there are values λ2, λ3 such that u(a2,a3),(a3,a2) =
λ2u

(a1,a2),(a2,a1)+λ3u
(a1,a3),(a3,a1). Now, consider the profile Ra1 , for which Step 1 shows

that v(Ra1)u(a2,a3),(a3,a2) = 0 and v(Ra1)u(a1,a2),(a2,a1) = v(Ra1)u(a1,a3),(a3,a1) > 0. These
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observations entail that λ2 = −λ3. Finally, we consider the profile Ra2 : it holds that
v(Ra2)u(a2,a3),(a3,a2) = v(Ra2)u(a2,a1),(a1,a2) > 0 and v(Ra2)u(a1,a3),(a3,a1) = 0 by Step 1.
Since u(a2,a1),(a1,a2) = −u(a1,a2),(a2,a1), we can now easily infer that λ2 = −1 and therefore
λ3 = 1. Thus, u(a2,a3),(a3,a2) = u(a2,a1),(a1,a2) + u(a1,a3),(a3,a1).

Step 3: As the last case, we suppose that |X| ≥ 4 and that u(x,y),(y,x) ∈ UX
2 is a

vector that is linearly depending on the other vectors in UX
2 . Furthermore, let U−

2 =
U2 \ {u(x,y),(y,x)}. By the linear dependence, there are values λ(x′,y′),(y′,x′), not all of
which are 0, such that u(x,y),(y,x) =

∑
u(x′,y′),(y′,x′)∈U−

2
λ(x′,y′),(y′,x′)u

(x′,y′),(y′,x′). Now, let
T1 = {τ ∈ AA : τ(x) = x∧τ(y) = y} denote the set of permutations that map x to x and
y to y. By Lemma 6, we infer for all permutations τ ∈ T1 and preference relations b(k)

and b(k′) = τ(b(k)) that τ(u(x,y),(y,x))k′ = u
(x,y),(y,x)
k = u

(x,y),(y,x)
k′ because r(b(k), x) =

r(b(k′), x) and r(b(k), y) = r(b(k′), y). Hence, it holds that u(x,y),(y,x) = τ(u(x,y),(y,x)) =∑
u(x′,y′),(y′,x′)∈UX

2
λ(x′,y′),(y′,x′)τ(u

(x′,y′),(y′,x′)) for every τ ∈ T1 and therefore also that

u(x,y),(y,x) = 1
(m−2)!

∑
τ∈T1

∑
u(x′,y′),(y′,x′)∈U−

2
λ(x′,y′),(y′,x′)τ(u

(x′,y′),(y′,x′)).
Next, we aim to simplify this representation by summing up the λ(x′,y′),(y′,x′) as-

sociated with every vector u(x
′,y′),(y′,x′). More formally, for every pair of alternatives

v, w ∈ A we define λ′
(v,w),(w,v) = 1

(m−2)!

∑
x′,y′∈X

∑
τ∈T1 : τ(x′)=v∧τ(y′)=w λ(x′,y′),(y′,x′). It

is straightforward that u(x,y),(y,x) =
∑

x′,y′∈A λ′
(x′,y′),(y′,x′)u

(x′,y′),(y′,x′). We first observe
that λ′

(x,y),(y,x) = λ′
(y,x),(x,y) = 0 because τ(x) = x and τ(y) = y for all τ ∈ T1. Next,

we consider two pairs of alternatives v, w ∈ A \ {x, y} and x′, y′ ∈ X \ {x, y}. There
are precisely (m − 4)! permutations in T1 with τ(x′) = v and τ(y′) = w and another
(m − 4)! permutations with τ(x′) = w and τ(y′) = v. Hence, λ′

(v,w),(w,v) = λ′
(w,v),(v,w).

Since Lemma 6 entails that u(v,w),(w,v)
k = −u

(w,v),(v,w)
k for all k ∈ {1, . . . ,m!}, we can now

cancel the summands that concern only alternatives v, w ∈ A \ {x, y}. More formally,
this means that u(x,y),(y,x) =

∑
z∈A\{x,y} λ

′
(x,z),(z,x)u

(x,z),(z,x)+λ′
(z,y),(y,z)u

(z,y),(y,z). (Note
here that we can always replace u(z,x),(x,z) with −u(x,z),(z,x) and push the minus into the
λ′ if required).

Furthermore, for all z, z′ ∈ A \ {x, y}, there are precisely (m− 3)! permutations with
τ(x) = x, τ(y) = y, and τ(z′) = z. Hence, each vector u(x,z

′),(z′,x) (resp. u(z
′,x),(x,z′))

is mapped to u(x,z),(z,x) equally often. This implies that λ′
(x,z),(z,x) = λ′

(x,z′),(z′,x)

for all z, z′ ∈ A \ {x, y}. An analogous argument also shows that λ′
(z,y),(y,z) =

λ′
(z′,y),(y,z′) for all z, z′ ∈ A \ {x, y}. Finally, by considering again the profiles Rz

of Lemma 1, we derive that λ(x,z),(z,x) = λ(z,y),(y,z) since v(Rz)u(x,y),(y,x) = 0 and
v(Rz)u(x,z),(z,x)) = −v(Rz)u(z,y),(y,z) < 0. Hence, there is λ ̸= 0 such that u(x,y),(y,x) =
λ
∑

z∈A\{x,y} u
(x,z),(z,x) + u(z,y),(y,z).

As our next step, we will derive a representation of u(x,y),(y,x) based on less “interme-
diate” alternatives. For this, let B denote the set of alternatives z such that u(x,z),(z,x)

and u(y,z),(z,y) still appear in the presentation of u(x,y),(y,x). In particular, B = A\{x, y}
in the beginning. We will now give a construction that allows to remove one alternative
from B if |B| > 1. Thus, choose an arbitrary alternative z ∈ B \ {a1} and consider the
permutations τ1 and τ2 that only swap x and z, and y and z, respectively. Lemma 6
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entails for all alternatives v, w, v′, w′ ∈ A that u(v
′,w′),(w′,v′) = τ(u(v,w),(w,v)) if τ(v) = v′

and τ(w) = w′, so it holds that

u(z,y),(y,z) = τ1(u
(x,y),(y,x)) = λ

∑
w∈B

τ1(u
(x,w),(w,x)) + τ1(u

(w,y),(y,w))

= λu(z,x),(x,z) + λu(x,y),(y,x) + λ
∑

w∈B\{z}

u(z,w),(w,z) + u(w,y),(y,w)

u(x,z),(z,x) = τ2(u
(x,y),(y,x)) = λ

∑
w∈B

τ2(u
(x,w),(w,x)) + τ2(u

(w,y),(y,w))

= λu(x,y),(y,x) + λu(y,z),(z,y) + λ
∑

w∈B\{z}

u(x,w),(w,x) + u(w,z),(z,w).

By summing up these two inequalities and dividing by 2λ, we infer that

1

2λ
u(x,z),(z,x) +

1

2λ
u(z,y),(y,z) =

1

2
u(z,x),(x,z) +

1

2
u(y,z),(z,y) + u(x,y),(y,x)

+
1

2

∑
w∈B\{z}

u(x,w),(w,x) + u(w,y),(y,w)

=(
1

2
− λ)(u(z,x),(x,z) + u(y,z),(z,y))

+ (
1

2
+ λ)

∑
w∈B\{z}

u(x,w),(w,x) + u(w,y),(y,w).

This simplifies to ( 1
2λ −λ+ 1

2)(u
(x,z),(z,x)+u(z,y),(y,z)) = (12 +λ)

∑
w∈B\{z} u

(x,w),(w,x)+

u(w,y),(y,w). Now, first note that Claim (1) shows that u(x,z),(z,x)+u(z,y),(y,z) ̸= 0 as these
two vectors are linear independent. Furthermore, if

∑
w∈B\{z} u

(x,w),(w,x)+u(w,y),(y,w) =

0, then u(x,y),(y,x) = λ(u(x,z),(z,x) + u(z,y),(y,z)) since u(x,y),(y,x) = λ
∑

w∈B u(x,w),(w,x) +

u(w,y),(w,x). By applying the permutation τ that only swaps a1 and z, we equivalently get
that u(x,y),(y,x) = λ(u(x,a1),(a1,x)+u(a1,y),(a1,z)) and we can then proceed with the steps in
the subsequent paragraph. Hence, we next assume that

∑
w∈B\{z} u

(x,w),w,x+uw,y→y,w ̸=
0. For this case, we note that ( 1

2λ − λ + 1
2) = 0 is only true if λ = −1

2 or λ = 1.
Now, if λ = 1, then 0 = (12 + 1)

∑
w∈B\{z} u

(x,w),(w,x) + u(w,y),(y,w), but this contradicts
that

∑
w∈B\{z} u

(x,w),(w,x) + u(w,y),(y,w) ̸= 0. On the other hand, λ ̸= −1
2 as otherwise

v(Rx)u(x,y),(y,x) > 0 and λv(Rx)
∑

w∈B u(x,w),(w,x) + u(w,y),(y,w) < 0. This follows from
Step 1 as v(Rx)u(x,w),(w,x) > 0 for every w ∈ A \ {x} and v(Rx)u(w,y),(y,w) = 0 for all
w ∈ A \ {w, y}. Hence, we can now conclude that

u(x,z),(z,x) + u(z,y),(y,z) =
1
2 + λ

1
2λ − λ+ 1

2

∑
w∈B\{z}

u(x,w),(w,x) + u(w,y),(y,w).
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By setting λ′ = λ+λ
1
2
+λ

1
2λ

−λ+ 1
2

, we then get that u(x,y),(y,x) = λ′∑
w∈B\{z} u

(x,w),(w,x)+

u(w,y),(y,w) and have thus removed z from our set B. We can clearly repeat this until
B = {a1}, so u(x,y),(y,x) = λ(u(x,a1),(a1,x) + u(a1,y),(y,ai) for some λ ̸= 0.

As last step, we need to show that λ = 1. To this end, we consider again the vector
v(Rx): it holds that v(Rx)u(x,y),(y,x) = v(Rx)u(x,a1),(a1,x) > 0 and v(Rx)u(a1,y),(y,a1) = 0
due to Step 1. So, it follows that λ = 1. Finally, we consider two arbitrary alternatives
ai, aj with i, j ∈ {2, . . . ,m} and i < j and let τ denote a permutation with τ(x) = ai,
τ(y) = aj , and τ(a1) = a1. It follows from Lemma 6 that u(ai,aj),(aj ,ai) = τ(u(x,y),(y,x)) =
τ(u(x,a1),(a1,x)) + τ(u(a1,y),(y,a1)) = u(ai,a1),(a1,ai) + u(a1,aj),(a1,aj), so the lemma is proven.

A.4. Feasible Sets of Size Greater 2

We now turn to feasible sets X with |X| > 2 and, as a first step, relate the hyperplanes
between rankings for large feasible sets with smaller feasible sets. To this end, recall
that C(X,Y ) = {≻∈ R(Y ) : ∀x, y ∈ X, z ∈ Y \X : z ≻ x if and only if z ≻ y} denotes
the set of rankings on Y in which the alternatives in X appear consecutively.

Lemma 8. Consider two feasible set X,Y ∈ F(A) and two rankings ▷,▷′ ∈ R(Y ) such
that X ⊆ Y and ▷,▷′ ∈ C(X,Y ). The vector u▷|X ,▷′|X separates R̄▷ from R̄▷′.

Proof. Consider two feasible X,Y ∈ F(A) and two rankings ▷,▷′ ∈ R(X) that satisfy
the conditions of the lemma. The key insight for the this lemma is that ĝ is locally
agenda consistent (see Lemma 3). Thus, if ▷ ∈ ĝ(v, Y )∩C(X,Y ) for some v ∈ Qm!, then
▷|X ∈ ĝ(v,X). As a consequence, v ∈ R▷ implies that v ∈ R̄▷|X , which equivalently
means that R▷ ⊆ R▷|X . From this, We can infer that R̄▷ ⊆ R̄▷|X and a symmetric
reasoning shows that R̄▷′ ⊆ R̄▷′|X . Now, consider a non-zero vector u▷|X ,▷′|X which
satisfies that vu▷|X ,▷′|X ≥ 0 if v ∈ R̄▷|X and vu▷|X ,▷′|X ≤ 0 if v ∈ R̄▷′|X . Since
R̄▷ ⊆ R̄▷|X and R̄▷′ ⊆ R̄▷′|X , it follows immediately that this vector also separates R̄▷

from R̄▷′ , which thus shows the lemma.

We note that Lemma 8 is rather general, but we will only use it for a particular
case: given a feasible set X with |X| ≥ 3 and two rankings ▷,▷′ ∈ R(X) such that
▷ \▷′ = {(x, y)} for some pair of alternatives x, y ∈ X, Lemma 8 shows that u(x,y),(y,x)

also separates R̄▷ from R̄▷′ . Or, less formally, if we want to investigate the hyperplane
between two rankings that differ only in a swap, we can restrict our attention exactly
to the swapped alternatives. We thus assume from now that u▷,▷′

= u(x,y),(y,x) for all
rankings ▷,▷′ with ▷ \▷′ = {(x, y)} for some pair of alternatives x, y ∈ X. This allows
us to transfer the insights of Appendix A.3 to larger feasible sets.

We next aim to find a representation of the hyperplanes for rankings ▷,▷′ with
|▷ \ ▷′| > 1. To this end, we want to show that u▷,▷′

=
∑

(x,y)∈▷\▷′ u(x,y),(y,x)

for all ▷,▷′. For doing so, we will heavily rely on Lemma 7; we recall thus that
UX
1 = {u(a1,ai),(ai,a1) : i ∈ {2, . . . , ℓ}} and UX

2 = {u(ai,aj),(aj ,ai) : i, j ∈ {1, . . . , ℓ} : i < j}
for an arbitrary feasible set X = {a1, . . . , aℓ}. Now, a consequence of Lemma 7 is that

35



Draft – June 19, 2023

either the set UX
2 is linear independent, or every strict superset of UX

1 is linear depen-
dent. We consider these cases separately and focus first on the simpler case that UX

1 is
a maximal linear independent set.

Lemma 9. Consider a feasible set X ∈ F(A) with |X| ≥ 3 and two rankings
▷,▷′ ∈ F(X) and suppose that the set UX

2 is linearly dependent. The vector
∑

(x,y)∈▷\▷′

separates R̄▷ from R̄▷′.

Proof. Consider a feasible set X = {a1, . . . , aℓ} ∈ F(A) such that UX
2 is linearly de-

pendent and two rankings ▷,▷′ ∈ F(X). Without loss of generality, we suppose
that ▷ = (a1, . . . , aℓ) and consider a point v ∈ R̄▷. By the local agenda consis-
tency of ĝ, it follows that v ∈ R̄(ai,ai+1) for all i ∈ {1, . . . , ℓ − 1}. This means that
vu(ai,ai+1),(ai+1,ai) ≥ 0. We will next show that vu(a1,ai+1),(ai+1,a1) ≥ vu(a1,ai),(ai,a1) ≥ 0.
To this end, we recall that 0 ≤ vu(ai,ai+1),(ai+1,ai) = vu(ai,a1),(a1,ai)+vu(a1,ai+1),(ai+1,a1) by
Lemma 7. Since u(ai,a1),(a1,ai) = −u(a1,ai),(ai,a1), our claim now follows. Now, consider
two arbitrary alternatives ai, aj ∈ X with i < j. Using Lemma 7 and our previous
observation, we infer that vu(ai,aj),(aj ,ai) = vu(ai,a1),(a1,ai) + vu(a1,aj),(aj ,a1) ≥ 0 because
vu(a1,aj),(aj ,a1) ≥ vu(a1,ai),(ai,a1). This means that vu(x,y),(y,x) ≥ 0 for all x, y with x ▷ y,
so v

∑
(x,y)∈▷\▷′ u(x,y),(y,x) ≥ 0.

Furthermore, an analogous argument for ▷′ shows that vu(x,y),(y,x) ≥ 0 for all v ∈ R̄▷′

and x, y ∈ X with x ▷′ y. Hence, it also holds that v
∑

(x,y)∈▷′\▷ u(x,y),(y,x) ≥ 0. Finally,
the lemma follows by observing that

∑
(x,y)∈▷′\▷ u(x,y),(y,x) = −

∑
(x,y)∈▷\▷′ u(x,y),(y,x)

because (x, y) ∈ ▷ \▷′ if and only if (y, x) ∈ ▷′ \▷ and u(x,y),(y,x) = −u(y,x),(x,y).

From the proof of Lemma 9, it can be easily inferred that the hyperplanes separating
R̄▷ from R̄▷′ are not unique if |▷ \ ▷′| > 1. Moreover, it can be shown that, if UX

2 is
linear dependent, then f is a positional scoring rule, so this insight corresponds to the
fact that there is also no unique representation of positional scoring rule by a bivariate
scoring function.

We next turn to the case that UX
2 is linear independent, which is significantly more

involved. To this end, we will reuse some of the ideas presented by Young and Levenglick
(1978). In particular, just as Kemeny’s rule, every bivariate scoring rule can be seen as
a linear optimization problem over a convex set. For formalizing this idea, we associate
each ranking ▷ ∈ R(X) on some feasible set X = {a1, . . . , a|X|} with the matrix M▷ ∈
R|X|×|X|, which is defined by M▷

i,j = 1 if ai ▷ aj , M▷
i,j = −1 if aj ▷ ai, and M▷

i,j = 0
if i = j. Moreover, let M denote the convex hull over the matrices M▷ for all ▷ ∈
FX , i.e., p ∈ M if and only if there are non-negative scalars λ▷ for all ▷ ∈ R(X)
such that

∑
▷∈R(X) λ▷ = 1 and p =

∑
▷∈R(X) λ▷M

▷. Given a profile R, it can now
easily be checked that a bivariate scoring rule simply solves the optimization problem∑

aj ,ak∈X Mj,kŝ(R, (aj , ak)) subject to M ∈ M. In more detail, every optimal extreme
point of the underlying polytope correponds to a chosen ranking of the bivariate scoring
rule.

The reason why we are interested in this representation is the following basic fact of
linear optimization: if a ranking ▷ ∈ R(X) is not chosen for some profile R, then there is
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a neighboring extreme point M▷′ in M that achieves a higher objective value. To make
this more formal, we call two rankings ▷,▷′ neighbors of each other if the points M▷

and M▷′ are contained on a facet of dimension 1 of M, and we write Neighbor(▷) for
the set of neighbors of ▷. Based on this notion, we can compute a bivariate scoring rules
only by considering the neighbors of every ranking, i.e., f(R,X) = {▷ ∈ R(X) : ∀▷′ ∈
Neighbor : ŝ(▷, R) ≥ ŝ(▷′, R)}.

Based on this insight, it will turn out sufficient to investigate the vectors u▷,▷′ only for
neighboring rankings ▷ ∈ R(X), ▷′ ∈ Neighbor(▷). This leads to the question of when
two rankings are neighbors in the polytope M. This question has been answered by
Young and Levenglick (1978) who note that for all feasible sets X = {a1, . . . , a|X|} and
rankings ▷ ∈ R(X), the matrices M̄▷ defined by M̄▷

i,j = 1 if ai ▷ aj and M̄▷
i,j = 0 oth-

erwise is a simple linear transformation of M▷. This means that two matrices M̄▷, M̄▷′

are neighbors in the respective polytope M̄ if and only if M▷,M▷′ are neighbors in
M. (In fact, it can be shown that the matrices M̄▷ can also be used to describe
bivariate scoring rules). Moreover, the polytope defined by the matrices M̄▷, M̄▷′ is
known as the permutation polytope, for which the neighborhood relation has been char-
acterized by Gilmore and Hoffmann (1964) and Young (1978). To explain this char-
acterization, we define the graph G(▷,▷′) for two rankings ▷,▷′ on some feasible set
X ∈ F(A) by the vertex set V = {{a, b} ∈ X2 : a ▷ b ∧ b ▷′ a} and the edge set
E = {{{a, b}, {b, c}} ∈ V 2 : a ̸= c ∧ {a, c} ̸∈ V }. The characterization of Hoffmann then
states that two rankings ▷,▷′ are neighbors with respect to M̄ and therefore also with
respect to M if and only if G(▷,▷′) is connected.

Based on our new notation and insights, we will now also analyze the vectors u▷,▷′

for larger feasible sets.

Lemma 10. Consider a set of alternatives X with |X| ≥ 3, two rankings ▷,▷ ∈ R(X)
with ▷′ ∈ Neighbor(▷). If the set UX

2 is linearly independent, then the vector∑
(x,y)∈▷\▷′ u(x,y),(y,x) separates R̄▷ from R̄▷′.

Proof. Consider an arbitrary feasible set X ∈ F(A) such that |X| ≥ 3 and UX
2 is linear

independent and two neighboring rankings ▷,▷′ ∈ R(X). Now, if ▷ \ ▷′ = 1, the
claim follows from Lemma 8 and the discussion after the lemma, so we suppose that
|▷ \ ▷′| ≥ 2. In this case, we proceed in multiple steps to prove the lemma. In more
detail, we show first that the vector u▷,▷′ is linearly dependent on UX

2 , which means
that there are values λu such that u▷,▷′

=
∑

u∈UX
2
λuu. In our second step, we then

show that λu = 0 for all u = u(x,y),(y,x) ∈ UX
2 with (x, y) ∈ ▷ if and only if (x, y) ∈ ▷′.

Hence, u▷,▷′
=

∑
(x,y)∈▷\▷′ λ(x,y),(y,x)u

(x,y),(y,x) for some values λ(x,y),(y,x). Based on this
insight, we proof the lemma in the third step for the special case that ▷ differs from ▷′

only by pushing an alternative two positions down (or up). In Step 4, we then generalize
the insights to arbitrary movements of a single alternative, and in Step 5, we finally
prove the lemma.

Step 1: As first step, we will show that the vector u▷,▷′ is linearly dependent on
UX
2 . For proving this claim, we assume for contradiction that this is not true. Now,

consider the matrix M that contains all vectors in U2
X and the vector u▷,▷′ as rows.
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Since all rows in M are linearly independent, this matrix has full rank, so its image has
full dimension. This means that there is a point v ∈ Rm! such that v(x,y),(y,x) = 1 for
all x, y ∈ X with x ▷ y and u▷,▷′

= −1. Now, by definition of the latter vector, we
immediately get that v ̸∈ R̄▷. On the other hand, for every other ranking ▷′′, there is
a pair of alternatives x, y ∈ X such that x ▷ y, y ▷′′ x, and ▷ ∈ C({x, y}, X). Now, by
the choice of v, we also know that v ̸∈ R̄(y,x) and, since these alternatives are consecutive
in ▷′′, Lemma 8 shows that v ̸∈ R̄▷′′ , too. However, this means that v ̸∈ R̄▷′′ for any
▷′′ ∈ R(X), which contradicts that

⋃
▷′′∈R(X) R̄▷′′ = Rm!. This shows that our initial

assumption was wrong, so u▷,▷′ is linearly dependent on UX
2 .

Step 2: As a consequence of Step 1, there are values λu for all u ∈ UX
2 , not all of

which are 0, such that u▷,▷′
=

∑
u∈UX

2
λuu. As next step, we will show that λu = 0 for

every vector u = u(x,y),(y,x) ∈ UX
2 such that (x, y) ∈ ▷ if and only if (x, y) ∈ ▷′. Once

again, we assume for contradiction that this is not the case, which means that there are
alternatives a, b ∈ X such that either (a, b) ∈ ▷ ∩ ▷′ or (a, b) ̸∈ ▷ ∪ ▷ but λu ̸= 0 for
u = u(a,b),(b,a). We subsequently focus on the case that (a, b) ∈ ▷∩▷′; if (a, b) ̸∈ ▷∪▷,
we can simply replace u(a,b),(b,a) with u(b,a),(a,b) and λu with −λu in the presentation of
u▷,▷′ to arrive at the case that (b, a) ∈ ▷ ∩▷′.

Now, consider a vector v ∈ Rm! such that vu = 0 for all u ∈ UX
2 \ {u(a,b),(b,a)} and

vu(a,b),(b,a) = 1; such a vector exists as the set UX
2 is linearly independent. By contrast,

we know that u▷,▷′ linearly depends on UX
2 and that λu ̸= 0. This means that vu▷,▷′ ̸= 0

and we suppose first that vu▷,▷′
< 0. In this case, let v′ ∈ Rm! denote a vector such

that u(a,b),(b,a) = 0 and v′u(x,y),(y,x) > 0 for all other x, y ∈ X with x ▷ y. Moreover, let
ϵ > 0 be a sufficiently small value that v′′ = v + ϵv′ satisfies v′′u▷,▷′

< 0. Now, since
v′′u▷,▷′

< 0, we infer that v′′ ̸∈ R̄▷. Furthermore, for every ranking ▷′′ ∈ R(X) \ {▷},
there is a consecutive pair of alternatives x, y with x ▷′′ y and y ▷ x. It is easy to verify
that v′′u(y,x),(x,y) > 0, so v′′ ̸∈ R̄(x,y) and Lemma 8 entails that v′′ ̸∈ R̄▷′′ . However, this
means that v′′ ̸∈ R̄▷′′ for any ▷′′ ∈ R(X), which contradicts that

⋃
▷′′∈R(X) R̄▷′′ = Rm!.

This is the desired contradiction, so vu▷,▷′
< 0 is not possible. Now, for the case that

vu▷,▷′
> 0, we can simply replace ▷ with ▷′ in our construction. Then, we will construct

a vector v′′ such that v′′ ̸∈ R̄▷′ since v′′u▷,▷′
> 0 and v′′ ̸∈ R̄▷′′ for any other ranking

▷′′ ∈ RX because there is a pair of consecutive alternatives (x, y) in ▷′′ such that
u(y,x),(x,y) > 0. Hence, it is also not possible that vu▷,▷′

> 0, so our initial assumption
that λu ̸= 0 must have been wrong.

Step 3: As third step, we will prove the lemma for rankings ▷,▷′ such that ▷
differs from ▷′ by only moving an alternative for two positions. We thus suppose that
▷ = . . . , a, b, c, . . . , and ▷′ = . . . , b, c, a, . . . , i.e., ▷′s is derived from ▷ by moving a two
positions down (the case of moving a up is symmetric). Now, by our last two steps, we
know that u▷,▷′

= λ(a,b),(b,a)u
(a,b),(b,a)+λ(a,c),(c,a)u

(a,c),(c,a) for some λ(a,b),(b,a), λ(a,c),(c,a) ∈
R. We will next show that λ(a,b),(b,a) = λ(a,c),(c,a) > 0. To this end, consider the vector
v ∈ Rm! such that vu(a,b),(b,a) = 1, vu(b,c),(c,b) = 1, vu(c,a),(a,c) = 1, and vu(x,y),(y,x) = 1
for all other pairs of alternatives x, y ∈ X with x ▷ y. Moreover, let τ denote the
permutation defined by τ(a) = b, τ(b) = c, τ(c) = a, and τ(x) = x for all other
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alternatives. It is easy to see that τ(v)τ(u(x,y),(y,x)) = vu(x,y),(y,x) for all x, y ∈ X
since the alternatives a, b, c appear consecutively in ▷ and a, b, c “form a cycle” with
respect to v. Next, we define the vector v∗ = 1

3(v + τ(v) + τ(τ(v))) and observe that
v∗u(x,y),(y,x) = vu(x,y),(y,x) for all x, y ∈ X due to the last insight. Moreover, it holds
that v∗ = τ(v∗), so a, b, and c are symmetric to each other in v∗.

Our goal is now to show that v∗ ∈ R̄▷ ∩ R̄▷′ because we then get that v∗u▷,▷′
= 0.

Since v∗u(a,b),(b,a) = 1 and v∗u(a,c),(c,a) = −v∗u(c,a),(a,c) = −1, this proves that
λ(a,b),(b,a) = λ(a,c),(c,a). For doing so, consider an arbitrary ranking ▷′′ such that
v∗ ∈ R̄▷′′ ; such a ranking exists as

⋃
▷′′∈R(X) R̄▷′′ = Rm!. Now, suppose there is a

pair of alternatives x, y ∈ X with {x, y} ̸⊆ {a, b, c} such that x ▷′′ y and y ▷ x. By
going now through the ranking ▷′′ starting at x, we can also find a consecutive pair of
alternatives x′, y′ with x′ ▷′′ y′ and y′ ▷ x′. However, it holds that v∗u(y

′,x′),(x′,y′) = 1,
so v∗ ̸∈ R̄(x′,y′) and Lemma 8 shows that v∗ ̸∈ R̄▷′′ either. This shows that if v∗ ∈ R̄▷′′ ,
then x ▷′′ y if and only if x▷y for all x, y ∈ X with {x, y} ̸⊆ {a, b, c}. Conse-
quently, ▷′′ can only contradict ▷ on the order on a, b, and c. Moreover, using again
Lemma 8 and the vectors u(a,b),(b,a), u(b,c),(c,b), and u(c,a),(a,c), we get that v∗ ̸∈ R̄▷′′

for ▷′′ ∈ {(. . . , b, a, c, . . . ), (. . . , a, c, b, . . . ), (. . . , c, b, a, . . . )}. This means that v∗ ∈ R̄▷′′

for ▷′′ = ▷, ▷′′ = ▷′, or ▷′′ = (. . . , c, a, b, . . . ). Finally, by the symmetry of v∗ and
of the sets R̄▷, we derive that v∗ ∈ R̄▷ if and only if τ(v∗) = v∗ ∈ R̄▷′ if and only
if τ(v∗) = v∗ ∈ R̄(...,c,a,b,... ). Hence, v∗ is in all three sets, so v∗ ∈ R̄▷ ∩ R̄▷′ and
λ(a,b),(b,a) = λ(a,c),(c,a).

Since u▷,▷′ is by definition a non-zero vector, λ(a,b),(b,a) = λ(a,c),(c,a) ̸= 0. We will next
show that λ(a,b),(b,a) = λ(a,c),(c,a) > 0. To see this, consider a point v ∈ Rm! such that
vu(x,y),(y,x) = 1 for all x, y ∈ X with x ▷ y; in particular vu(a,b),(b,a) = vu(a,c),(c,a) = 1.
Following a similar reasoning as in Steps 1 and 2, we infer that v ∈ R̄▷ and v ̸∈ R̄▷′′

for any other ranking ▷′′ ∈ R(X). This entails that vu▷,▷′
= λ(a,b),(b,a) + λ(a,c),(c,a) ≥ 0,

which is only the case if λ(a,b),(b,a) = λ(a,c),(c,a) > 0. Finally, since our separating vectors
are invariant under scaling, the vector u(a,b),(b,a) + u(a,c),(c,a) separates R̄▷ from R̄▷′ .

Step 4: For our fourth step, we will generalize the insights of the last step to arbitrary
shifts. For this, we assume that ▷ = . . . , a, b1, . . . , bℓ, . . . and ▷′ = . . . , b1, . . . , bℓ, a, . . . ,
i.e., we derive ▷′ from ▷ by pushing down a for several positions. We note again that
the case of moving up a is symmetric. If ℓ = 2, we know from Step 3 that the vector
u(a,b1),(b1,a) + u(a,b2),(b2,a) separates R̄▷ from R̄▷′ . We thus assume that ℓ ≥ 3. By
Steps 1 and 2, we already have that u▷,▷′

=
∑

i∈{1,...,ℓ} λ(a,bi),(bi,a)u
(a,bi),(bi,a) for some

λ(a,bi),(bi,a) ∈ R. We next suppose for contradiction that there is i ∈ {1, . . . , ℓ− 1} such
that λ(a,bi),(bi,a) < λ(a,bi+1),(bi+1,a). This means that there is an integer k ∈ N such that
kλ(a,bi+1),(bi+1,a) > kλ(a,bi),(bi,a) +

∑
x∈{1,...,ℓ}\{i+1} λ(a,bx),(bx,a). Now, consider a vector

v ∈ Rm! such that vu(a,bi),(bi,a) = k+1, vu(a,bi+1),(bi+1,a) = −k, vu(bj ,bj′ ),(bj′ ,bj) = k+1 for
all j, j′ ∈ {1, . . . , ℓ} with j < j′, and vu(x,y),(y,x) = 1 for all other alternatives x, y ∈ X
with x ▷ y. Such a vector exists as UX

2 is linearly independent. Our goal is to show
that v ̸∈ R̄▷′′ for all ▷′′ ∈ R(X) as this contradicts that

⋃
▷′′∈R(X) R̄▷′′ = Rm!. Hence,

the initial assumption that λ(a,bi),(bi,a) < λ(a,bi+1),(bi+1,a) must have been wrong.
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To this end, we first note that vu▷,▷′
= v

∑
j∈{1,...,ℓ} λ(a,bj),(bj ,a)u

(a,bj),(bj ,a) =

−kλ(a,bi+1),(bi+1,a) + kλ(a,bi),(bi,a) +
∑

x∈{1,...,ℓ}\{i+1} λ(a,bx),(bx,a) < 0, so v ̸∈ R̄▷. Now,
consider an arbitrary ranking ▷′′ ̸= ▷ and note that there is a consecutive pair of al-
ternatives x, y in ▷′′ such that x ▷′′ y and y ▷ x; otherwise ▷ = ▷′′. Now, if x ̸= bi+1

or y ̸= a, then it holds that vu(y,x),(x,y) > 0. So, v ̸∈ R̄(x,y) and, by Lemma 8, v ̸∈ R̄▷′′

either. Hence, the only consecutive pair in ▷′′ that is ordered differently than in ▷ is
(a, bi+1), i.e., we have bi+1 ▷′′ a. Next, let X+ and X− denote the alternatives that are
ranked above and below a in ▷′′, respectively, and note that all alternatives in X+ and
X− must be arranged as in ▷ due to our previous insight. Moreover, there cannot be
an alternative x with x ▷ a in X− because then ▷′′ = . . . , bi+1, a, x

′ for some x′ with
x′ ▷ a. However, then v ̸∈ R̄▷′′ because vu(x,a),(a,x) = 1, so x ▷ a implies x ∈ X+.

Next, we proceed with another case distinction and suppose that there is an alternative
bj ∈ X− with j ≤ i. By our previous insights, this means that such an alternative bj
is directly below a in ▷′′, i.e., ▷′′ = . . . , bi+1, a, bj , . . . . Now, consider the ranking
▷̂ = . . . , bj , bi+1, a, . . . that is derived from ▷′′ by pushing up bj two positions. It holds
that vu▷̂,▷′′

= vu(bj ,bi+1),(bi+1,bj) + vu(bj ,a),(a,bj) = k + 1 − 1 > 0 due to Step 3 and the
construction of v, so v ̸∈ R̄▷′′ . As second case, suppose that there is no alternative
bj ∈ X− with j ≤ i. This implies that bi ∈ X+ and, since these alternatives are ordered
just as in ▷, we have that ▷′′ = . . . , bi, bi+1, a, . . . . In this case, we consider the ranking
▷̂ = . . . , a, bi, bi+1, . . . and compute that vu▷̂,▷′′

= vu(a,bi),(bi,a) + vu(a,bi+1),(bi+1,a) =
k+ 1− k > 0. It thus follows again that v ̸∈ R̄▷′′ . However, this shows v ̸∈ R̄▷′′ for any
ranking ▷′′ ∈ R(X) \ {▷} either. This gives the desired contradiction and hence, the
assumption that λ(a,bi),(bi,a) < λ(a,bi+1),(bi+1,a).

As second case, we suppose that there is an index i ∈ {1, . . . , ℓ − 1} such
that λ(a,bi),(bi,a) > λ(a,bi+1),(bi+1,a). In this case, we note that the vector
−
∑

j∈{1,...,ℓ} λ(a,bj),(bj ,a)u
(a,bj),(bj ,a) separates R̄▷′ from R̄▷. Moreover, it holds that

−λ(a,bi),(bi,a) < −λ(a,bi+1),(bi+1,a), so we can now apply the same argument as before
by simply replacing ▷ with ▷′. Hence, we can conclude that λ(a,bi),(bi,a) = λ(a,bj),(bj ,a)

for all i, j ∈ {1, . . . , ℓ}. Moreover, since u▷,▷′ ̸= 0, not all of these λs are 0. Finally,
by considering the vector v with vux,y = 1 if x ▷ y, we can infer just as in Step 3 that
λ(a,bi),(bi,a) > 0 for all i ∈ {1, . . . , ℓ}. Finally, by rescaling, we thus get that the vector∑

j∈{1,...,ℓ} u
(a,bj),(bj ,a) separates R̄▷ from R̄▷′ .

Step 5: As last point, we consider arbitrary rankings ▷,▷′ ∈ R(X) such that
▷′ ∈ Neighbor(▷) and we will show that

∑
(x,y)∈▷\▷′ u(x,y),(y,x) separates R̄▷ from R̄▷′ .

To this end, we recall that u▷,▷′
=

∑
(x,y)∈▷\▷′ λ(x,y),(y,x)u

(x,y),(y,x) due to Steps 1 and 2.
Hence, this step follows again by showing that all λ(x,y),(y,x) are equal and positive. For
this, we will use the characterization of Gilmore and Hoffmann (1964), which entails that
the graph G(▷,▷′) (defined before this lemma) is connected as ▷ and ▷′ are neighbors.
Now, consider two connected vertices {a, b} and {a, c} in G(▷,▷′). Since these sets are
connected vertices of G(▷,▷′), we know that a ▷ b if and only if b ▷′ a, a ▷ c if and
only if c ▷′ a, and b ▷ c if and only if b ▷′ c. This entails that (▷|{a,b,c},▷′|{a,b,c}) ∈
{((a, b, c), (b, c, a)), ((a, c, b), (c, b, a)), ((b, c, a), (a, b, c)), ((c, b, a), (a, c, b))}. Since all
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these cases are symmetric, we subsequently suppose that a ▷ b ▷ c and b ▷′ c ▷′ a
(we note that this is not the same case as in Step 3 as there can be alternatives between
a, b, and c). We next aim to show that λ(a,b),(b,a) = λ(a,c),(c,a). Since G(▷,▷′) is con-
nected and the vertices of this graph correspond to ▷ \▷′, we can repeatedly apply this
argument to infer that λ(x,y),(y,x) = λ(x′,y′),(y′,x′) for all (x, y), (x′, y)′ ∈ ▷ \▷′.

To prove this claim, we consider the vector v such that vu(a,b),(b,a) = vu(b,c),(c,b) =
vu(c,a),(a,c) = 1 and vu(x,y),(y,x) = 0 for all other pairs of alternatives x, y ∈ X. Just as in
Step 3, we can also find a vector v∗ that is perfectly symmetric with respect to a, b, and
c by defining v∗ = 1

3(v + τ(v) + τ(τ(v))) for the permutation τ with τ(a) = b, τ(b) = c,
τ(c) = a, and τ(x) = x for all other alternatives x ∈ A \ {a, b, c}. In particular, it is
easy to check that v∗u(a,b),(b,a) = v∗u(b,c),(c,b) = v∗u(c,a),(a,c) = 1 and v∗u(x,y),(y,x) = 0
still holds. Our goal is to show that v∗ ∈ R̄▷ ∩ R̄▷′ as this implies that v∗u▷,▷′

=
v∗

∑
(x,y)∈▷\▷′ λ(x,y),(y,x)u

(x,y),(y,x) = λ(a,b),(b,a) − λ(a,c),(c,a) = 0.
To this end, we observe that v∗ ̸∈ R̄▷′′ for any ▷′′ with b ▷′′ a ▷′′ c because of Step 4.

In more detail, it holds for the ranking ▷̂, which is derived from ▷′′ by moving a over
b, that v∗u▷̂,▷′′

= v∗u(a,b),(b,a) = 1. Hence, v∗ ̸∈ R̄▷′′ . A similar argument also rules out
that v∗ ∈ R̄▷′′ for any ▷′′ ∈ R(X) with c ▷′′ b ▷′′ a and a ▷′′ c ▷′′ b. Now, let ▷′′

denote a ranking with v∗ ∈ R̄▷′′ ; such a ranking has to exist since
⋃

▷′′∈R(X) = R̄▷′′ .
Moreover, we assume that a ▷′′ b ▷′′ c as all other cases are symmetric. Finally, let x, y
denote two consecutive alternatives in ▷′′ such that x ▷′′ y and {x, y} ̸⊆ {a, b, c}. Our
goal is to show that v∗ ∈ R̄▷̂ for the ranking ▷̂ derived from ▷′′ by swapping x and y.
By repeatedly applying this argument, we derive that v∗ ∈ R̄▷̄ for every ranking ▷̄ with
a ▷̄ b ▷̄ c. Moreover, since a, b, c are completely symmetric in v∗ and the sets R̄▷̄ are
also symmetric, this entails that v∗ ∈ R̄▷̄ for all ▷̄ with b ▷̄ c ▷̄ a, which proves that
v∗ ∈ R̄▷ ∩ R̄▷′ .

To prove this claim, we assume for contradiction that v∗ ̸∈ R̄▷̂. This means that
there is another ranking ▷∗ such that v∗û▷̂,▷∗

< 0 due to Lemma 5. To derive a
contradiction, we introduce two auxiliary vectors: v1 is a vector such that v1u(b,c),(c,b) =
−1, v1vu

(c,a),(a,c) = −2, and v1u
(x,y),(y,x) = 0 for all other pairs of alternatives x, y ∈

X, and v2 is a vector such that v2u
(a,b),(b,a) = v2u

(b,c),(c,b) = v2u
(c,a),(a,c) = 0, and

v2u
(x,y),(y,x) = 1 for all other pairs of alternatives x, y ∈ X with x ▷̂ y. Again, such

vectors exist as UX
2 is linearly independent. Next, we define v∗1 as v∗1 = v∗ + ϵv1, where

ϵ > 0 is so small that v∗u▷1,▷2 < 0 implies v∗1u
▷1,▷2 < 0 for all rankings ▷1,▷2 ∈ R(X).

By Lemma 5, this means that if v∗ ̸∈ R̄▷1 for some ranking ▷1, then v∗1 ̸∈ R̄▷1 , too.
Moreover, we claim that v∗1 ̸∈ R̄▷1 for any ranking ▷1 with b ▷1 c ▷1 a or c ▷1 a ▷1

b. For proving this, we first assume that b ▷1 c ▷1 a and consider the ranking ▷2

which is derived by moving a over b. By Step 4 and the definition of v∗1, we have that
v∗1u

▷2,▷1 = v∗1u
(a,b),(b,a) + v∗1u

(a,c),(c,a) = 1 − (1 − 2ϵ) = 2ϵ > 0, so v∗ ̸∈ R̄▷1 . Similarly,
if c ▷1 a ▷1 b, we consider the ranking ▷2 derived by moving c below b and infer that
v∗1u

▷2,▷1 = v∗1u
(a,c),(c,a) + v∗1u

(b,c),(c,b) = −(1− 2ϵ) + (1− ϵ) = ϵ > 0. Putting everything
together, this shows that v∗1 can only be in sets R̄▷1 for rankings ▷1 with a ▷1 b ▷1 c.

As the next step, we consider the vector v∗2 defined by v∗2 = v∗1 + ϵ′v2, where ϵ > 0
is again so small that v∗1u

▷1,▷2 < 0 implies v∗2u
▷1,▷2 < 0 for all ▷1,▷2 ∈ R(X). Now,
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consider an arbitrary ranking ▷1 such that v∗2 ∈ R̄▷1 . By the choice of ϵ′ and our
previous insights, we get that a ▷1 b ▷1 c and ▷1 ̸= ▷̂ (because v∗ ̸∈ R̄▷̂). Furthermore,
since ▷1 ̸= ▷̂, there is at least one consecutive pair of alternatives x, y ∈ X such that
x ▷1 y, y ▷̂ x. Because a ▷1 b ▷1 c and a ▷̂ b ▷̂ c, we also infer that x, y ̸∈ {a, b, c}.
Finally, it follows now that v∗2u

(x,y),(y,x) = ϵ′v2u
(x,y),(y,x) < 0 by definition, so Lemma 8

shows that v∗2 ̸∈ R̄▷1 . However, this means that v∗2 ̸∈ R̄▷̄ for any ▷̄ ∈ R(X), which is a
contradiction. Hence, v∗ ∈ R̄▷′′ implies v∗ ∈ R̄▷̂.

In turn, we can now infer that v∗ ∈ R̄▷1 for all ▷1 ∈ R(X) with a ▷1 b ▷1 c. By the
symmetry of v∗ and our sets R̄▷1 , this means that v∗ ∈ R̄▷1 for all ▷1 ∈ R(X) with b ▷1

c ▷1 a, too. In particular, we thus have that v∗ ∈ R̄▷ ∩ R̄▷′ , so v∗u▷1,▷2 = λ(a,b),(b,a) −
λ(a,c),(c,a) = 0. Hence, we derive now that λ(a,b),(b,a) = λ(a,c),(c,a). By applying this
argument to all edges of the graph G(▷,▷′), we then infer that λ(x,y),(y,x) = λ(x′,y′),(y′,x′)

for all pairs of alternatives (x, y), (x′, y′) ∈ ▷ \ ▷′. Next, not all λ(x,y),(y,x) can be 0 as
u▷,▷′ is a non-zero vector. Finally, by considering again the vector v with vu(x,y),(y,x) = 1
for all x, y ∈ X with x▷y, we infer that all λ(x,y),(y,x) > 0 and rescaling proves the
lemma.

We are finally ready to prove our main theorem.

Theorem 1. An SPF is a bivariate scoring rule if and only if it satisfies anonymity,
neutrality, continuity, faithfulness, reinforcement, and local agenda consistency.

Proof. Since the direction from right to left was proven in the main body, we focus
on the converse. Thus, let f denote an SPF that satisfies all given axioms. First,
by Lemma 3, there is a function ĝ defined on Qm! × F(A) that inherits all desirable
properties of f and that satisfies f(R,X) = ĝ(v(R), X) for all profiles R ∈ R∗. Next,
we define the sets R▷ = {v ∈ Qm! : ▷ ∈ ĝ(v,X)} for every feasible set X ∈ F(A) and
every ranking ▷ ∈ R(X). Moreover, we let R̄▷ denote the closure of every R▷ with
respect to Rm!. It follows that ĝ(v,X) = {▷ ∈ R(X) : v ∈ R▷} ⊆ {▷ ∈ R(X) : v ∈ R̄▷}.
Now, in Lemmas 3 to 5, we show that we can describe these sets by non-zero vectors
u▷,▷′ that satisfy vu▷,▷′ ≥ 0 if v ∈ R̄▷ and vu▷,▷′ ≤ 0 if v ∈ R̄▷′ : it holds that
R̄▷ = {v ∈ Rm! : ∀▷′ ∈ R(X) \ {▷} : vu▷,▷′}.

If |X| = 2, this means that the set R̄(x,y) is the halfspace {v ∈ Rm! : vu(x,y),(y,x) ≥
0}. Moreover, Lemma 6 shows that these vectors can be described by a bivariate
scoring function s: there is a bivariate scoring function s such that u

(x,y),(y,x)
k =

s(r(b(k), x), r(b(k), y) for all x, y ∈ A and k ∈ {1, . . . ,m!}. Consequently, it holds
that R̄(x,y) = {v ∈ Rm! : vu(x,y),(y,x) ≥ 0} = {v ∈ Rm! : ŝ(v, (x, y)) ≥ ŝ(v, (y, x)}, where
ŝ(v, (x, y)) =

∑m!
k=1 vks(r(b(k), x), r(b(k), y)). This means that ĝ(R, {x, y}) ⊆ {▷ ∈

R({x, y}) : ŝ(v, (x, y)) ≥ ŝ(v, (y, x)}.
Now, for agendas of larger size, we restrict the set R̄▷ further: we define R̄N

▷ as
R̄N

▷ = {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : vu▷,▷′ ≥ 0} and note that R̄▷ ⊆ R̄N
▷ . By

Lemmas 9 and 10, we know that the vector
∑

(x,y)∈▷\▷′ u(x,y),(y,x) separates R̄▷ from
R̄▷′ for all neighboring rankings ▷,▷′ on some feasible set X. Since we know that the
vectors u(x,y),(y,x) can be described by a bivariate scoring function s, this means that
R̄N

▷ = {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : ŝ(▷, v) ≥ ŝ(▷′, v)}.
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Next, we note that R̄N
▷ = {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : ŝ(▷, v) ≥ ŝ(▷′, v)} =

{v ∈ Rm! : ∀▷′ ∈ R(X)(▷) : ŝ(▷, v) ≥ ŝ(▷′, v)} because we we can rewrite the
right hand side as a linear optimization problem. In more detail, as explained be-
fore Lemma 10, we can associate every ranking ▷ on a feasible set X = {a1, . . . , aℓ}
with the matrix M▷ defined by M▷

i,j = 1 if ai ▷ aj , M▷
i,j = −1 if aj ▷ ai, and

M▷
i,j = 0 otherwise. Moreover, we define the set M as the convex hull over all M▷

for ▷ ∈ R(X) and rewrite {v ∈ Rm! : ∀▷′ ∈ R(X) : ŝ(▷, v) ≥ ŝ(▷′, v)} = {v ∈
Rm! : M▷ ∈ argmaxM∈M

∑
i,j∈{1,...,ℓ}Mi,j ŝ(v, (ai, aj))} for every ranking ▷ ∈ R(X).

It is a well-known fact in linear optimization that each non-optimal extreme point
(the M▷ in our case) has a neighbor with higher objective value. Since the neigh-
bor relation of the matrices in M is equivalent to the neighborhood relationship of
our rankings, we infer that {v ∈ Rm! : ∀▷′ ∈ Neighbor(▷) : ŝ(▷, v) ≥ ŝ(▷′, v)} =
{v ∈ Rm! : ∀▷′ ∈ R(X)(▷) : ŝ(▷, v) ≥ ŝ(▷′, v)}. Putting everything together, we de-
rive that f(R,X) = ĝ(v(R), X) ⊆ {▷ ∈ R(X) : v(R) ∈ R̄N

▷ } = {▷ ∈ R(X) : ∀▷′ ∈
Neighbor(▷) : ŝ(v(R),▷) ≥ ŝ(v(R),▷′)} = {▷ ∈ R(X) : ∀▷′ ∈ R(X) : ŝ(v(R),▷) ≥
ŝ(v(R),▷′)} (where ŝ(v,▷) =

∑
(x,y)∈▷ ŝ(v, (x, y))) for every profile R ∈ R∗ and feasible

set X ∈ F(A). Or, put differently, this proves that f returns always a subset of the
bivariate scoring rule f ′ induced by s.

Finally, suppose for contradiction that f(R,X) ⊊ f ′(R,X) for some profile R ∈ R∗

and feasible set X ∈ F(A), and let ▷ ∈ f ′(R,X) \ f(R,X). Since f ′ satisfies all
axioms requires of Lemma 2, there is a profile R′ such that f ′(R′, X) = {▷} and by
our subset inclusion, we also have that f(R′, X) = {▷}. In turn, by the reinforcement
of f ′, it follows for every λ ∈ N that f(λR + R′, X) = f ′(λR + R′, X) = {▷}. This,
however, contradicts the continuity of f , which requires that there is a λ ∈ N such that
f(λR + R′, X) ⊆ f(R,X). Hence, it must hold that f(R,X) = f ′(R,X) for all profiles
R ∈ R∗ and feasible sets X ∈ F(A) and f is the bivariate scoring rule induced by s.
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